Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / uts / common / rpc / svc.c
blob7cf92c4b9a70a1920cb0555b811885115c292209
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2012 Marcel Telka <marcel@telka.sk>
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
29 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
30 * Use is subject to license terms.
34 * Copyright 1993 OpenVision Technologies, Inc., All Rights Reserved.
37 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
38 /* All Rights Reserved */
41 * Portions of this source code were derived from Berkeley 4.3 BSD
42 * under license from the Regents of the University of California.
46 * Server-side remote procedure call interface.
48 * Master transport handle (SVCMASTERXPRT).
49 * The master transport handle structure is shared among service
50 * threads processing events on the transport. Some fields in the
51 * master structure are protected by locks
52 * - xp_req_lock protects the request queue:
53 * xp_req_head, xp_req_tail, xp_reqs, xp_size, xp_full, xp_enable
54 * - xp_thread_lock protects the thread (clone) counts
55 * xp_threads, xp_detached_threads, xp_wq
56 * Each master transport is registered to exactly one thread pool.
58 * Clone transport handle (SVCXPRT)
59 * The clone transport handle structure is a per-service-thread handle
60 * to the transport. The structure carries all the fields/buffers used
61 * for request processing. A service thread or, in other words, a clone
62 * structure, can be linked to an arbitrary master structure to process
63 * requests on this transport. The master handle keeps track of reference
64 * counts of threads (clones) linked to it. A service thread can switch
65 * to another transport by unlinking its clone handle from the current
66 * transport and linking to a new one. Switching is relatively inexpensive
67 * but it involves locking (master's xprt->xp_thread_lock).
69 * Pools.
70 * A pool represents a kernel RPC service (NFS, Lock Manager, etc.).
71 * Transports related to the service are registered to the service pool.
72 * Service threads can switch between different transports in the pool.
73 * Thus, each service has its own pool of service threads. The maximum
74 * number of threads in a pool is pool->p_maxthreads. This limit allows
75 * to restrict resource usage by the service. Some fields are protected
76 * by locks:
77 * - p_req_lock protects several counts and flags:
78 * p_reqs, p_size, p_walkers, p_asleep, p_drowsy, p_req_cv
79 * - p_thread_lock governs other thread counts:
80 * p_threads, p_detached_threads, p_reserved_threads, p_closing
82 * In addition, each pool contains a doubly-linked list of transports,
83 * an `xprt-ready' queue and a creator thread (see below). Threads in
84 * the pool share some other parameters such as stack size and
85 * polling timeout.
87 * Pools are initialized through the svc_pool_create() function called from
88 * the nfssys() system call. However, thread creation must be done by
89 * the userland agent. This is done by using SVCPOOL_WAIT and
90 * SVCPOOL_RUN arguments to nfssys(), which call svc_wait() and
91 * svc_do_run(), respectively. Once the pool has been initialized,
92 * the userland process must set up a 'creator' thread. This thread
93 * should park itself in the kernel by calling svc_wait(). If
94 * svc_wait() returns successfully, it should fork off a new worker
95 * thread, which then calls svc_do_run() in order to get work. When
96 * that thread is complete, svc_do_run() will return, and the user
97 * program should call thr_exit().
99 * When we try to register a new pool and there is an old pool with
100 * the same id in the doubly linked pool list (this happens when we kill
101 * and restart nfsd or lockd), then we unlink the old pool from the list
102 * and mark its state as `closing'. After that the transports can still
103 * process requests but new transports won't be registered. When all the
104 * transports and service threads associated with the pool are gone the
105 * creator thread (see below) will clean up the pool structure and exit.
107 * svc_queuereq() and svc_run().
108 * The kernel RPC server is interrupt driven. The svc_queuereq() interrupt
109 * routine is called to deliver an RPC request. The service threads
110 * loop in svc_run(). The interrupt function queues a request on the
111 * transport's queue and it makes sure that the request is serviced.
112 * It may either wake up one of sleeping threads, or ask for a new thread
113 * to be created, or, if the previous request is just being picked up, do
114 * nothing. In the last case the service thread that is picking up the
115 * previous request will wake up or create the next thread. After a service
116 * thread processes a request and sends a reply it returns to svc_run()
117 * and svc_run() calls svc_poll() to find new input.
119 * svc_poll().
120 * In order to avoid unnecessary locking, which causes performance
121 * problems, we always look for a pending request on the current transport.
122 * If there is none we take a hint from the pool's `xprt-ready' queue.
123 * If the queue had an overflow we switch to the `drain' mode checking
124 * each transport in the pool's transport list. Once we find a
125 * master transport handle with a pending request we latch the request
126 * lock on this transport and return to svc_run(). If the request
127 * belongs to a transport different than the one the service thread is
128 * linked to we need to unlink and link again.
130 * A service thread goes asleep when there are no pending
131 * requests on the transports registered on the pool's transports.
132 * All the pool's threads sleep on the same condition variable.
133 * If a thread has been sleeping for too long period of time
134 * (by default 5 seconds) it wakes up and exits. Also when a transport
135 * is closing sleeping threads wake up to unlink from this transport.
137 * The `xprt-ready' queue.
138 * If a service thread finds no request on a transport it is currently linked
139 * to it will find another transport with a pending request. To make
140 * this search more efficient each pool has an `xprt-ready' queue.
141 * The queue is a FIFO. When the interrupt routine queues a request it also
142 * inserts a pointer to the transport into the `xprt-ready' queue. A
143 * thread looking for a transport with a pending request can pop up a
144 * transport and check for a request. The request can be already gone
145 * since it could be taken by a thread linked to that transport. In such a
146 * case we try the next hint. The `xprt-ready' queue has fixed size (by
147 * default 256 nodes). If it overflows svc_poll() has to switch to the
148 * less efficient but safe `drain' mode and walk through the pool's
149 * transport list.
151 * Both the svc_poll() loop and the `xprt-ready' queue are optimized
152 * for the peak load case that is for the situation when the queue is not
153 * empty, there are all the time few pending requests, and a service
154 * thread which has just processed a request does not go asleep but picks
155 * up immediately the next request.
157 * Thread creator.
158 * Each pool has a thread creator associated with it. The creator thread
159 * sleeps on a condition variable and waits for a signal to create a
160 * service thread. The actual thread creation is done in userland by
161 * the method described in "Pools" above.
163 * Signaling threads should turn on the `creator signaled' flag, and
164 * can avoid sending signals when the flag is on. The flag is cleared
165 * when the thread is created.
167 * When the pool is in closing state (ie it has been already unregistered
168 * from the pool list) the last thread on the last transport in the pool
169 * should turn the p_creator_exit flag on. The creator thread will
170 * clean up the pool structure and exit.
172 * Thread reservation; Detaching service threads.
173 * A service thread can detach itself to block for an extended amount
174 * of time. However, to keep the service active we need to guarantee
175 * at least pool->p_redline non-detached threads that can process incoming
176 * requests. This, the maximum number of detached and reserved threads is
177 * p->p_maxthreads - p->p_redline. A service thread should first acquire
178 * a reservation, and if the reservation was granted it can detach itself.
179 * If a reservation was granted but the thread does not detach itself
180 * it should cancel the reservation before it returns to svc_run().
183 #include <sys/param.h>
184 #include <sys/types.h>
185 #include <rpc/types.h>
186 #include <sys/socket.h>
187 #include <sys/time.h>
188 #include <sys/tiuser.h>
189 #include <sys/t_kuser.h>
190 #include <netinet/in.h>
191 #include <rpc/xdr.h>
192 #include <rpc/auth.h>
193 #include <rpc/clnt.h>
194 #include <rpc/rpc_msg.h>
195 #include <rpc/svc.h>
196 #include <sys/proc.h>
197 #include <sys/user.h>
198 #include <sys/stream.h>
199 #include <sys/strsubr.h>
200 #include <sys/strsun.h>
201 #include <sys/tihdr.h>
202 #include <sys/debug.h>
203 #include <sys/cmn_err.h>
204 #include <sys/file.h>
205 #include <sys/systm.h>
206 #include <sys/callb.h>
207 #include <sys/vtrace.h>
208 #include <sys/zone.h>
209 #include <nfs/nfs.h>
212 * Defines for svc_poll()
214 #define SVC_EXPRTGONE ((SVCMASTERXPRT *)1) /* Transport is closing */
215 #define SVC_ETIMEDOUT ((SVCMASTERXPRT *)2) /* Timeout */
216 #define SVC_EINTR ((SVCMASTERXPRT *)3) /* Interrupted by signal */
219 * Default stack size for service threads.
221 #define DEFAULT_SVC_RUN_STKSIZE (0) /* default kernel stack */
223 int svc_default_stksize = DEFAULT_SVC_RUN_STKSIZE;
226 * Default polling timeout for service threads.
227 * Multiplied by hz when used.
229 #define DEFAULT_SVC_POLL_TIMEOUT (5) /* seconds */
231 clock_t svc_default_timeout = DEFAULT_SVC_POLL_TIMEOUT;
234 * Size of the `xprt-ready' queue.
236 #define DEFAULT_SVC_QSIZE (256) /* qnodes */
238 size_t svc_default_qsize = DEFAULT_SVC_QSIZE;
241 * Default limit for the number of service threads.
243 #define DEFAULT_SVC_MAXTHREADS (INT16_MAX)
245 int svc_default_maxthreads = DEFAULT_SVC_MAXTHREADS;
248 * Maximum number of requests from the same transport (in `drain' mode).
250 #define DEFAULT_SVC_MAX_SAME_XPRT (8)
252 int svc_default_max_same_xprt = DEFAULT_SVC_MAX_SAME_XPRT;
256 * Default `Redline' of non-detached threads.
257 * Total number of detached and reserved threads in an RPC server
258 * thread pool is limited to pool->p_maxthreads - svc_redline.
260 #define DEFAULT_SVC_REDLINE (1)
262 int svc_default_redline = DEFAULT_SVC_REDLINE;
265 * A node for the `xprt-ready' queue.
266 * See below.
268 struct __svcxprt_qnode {
269 __SVCXPRT_QNODE *q_next;
270 SVCMASTERXPRT *q_xprt;
274 * Global SVC variables (private).
276 struct svc_globals {
277 SVCPOOL *svc_pools;
278 kmutex_t svc_plock;
282 * Debug variable to check for rdma based
283 * transport startup and cleanup. Contorlled
284 * through /etc/system. Off by default.
286 int rdma_check = 0;
289 * This allows disabling flow control in svc_queuereq().
291 volatile int svc_flowcontrol_disable = 0;
294 * Authentication parameters list.
296 static caddr_t rqcred_head;
297 static kmutex_t rqcred_lock;
300 * If true, then keep quiet about version mismatch.
301 * This macro is for broadcast RPC only. We have no broadcast RPC in
302 * kernel now but one may define a flag in the transport structure
303 * and redefine this macro.
305 #define version_keepquiet(xprt) (FALSE)
308 * ZSD key used to retrieve zone-specific svc globals
310 static zone_key_t svc_zone_key;
312 static void svc_callout_free(SVCMASTERXPRT *);
313 static void svc_xprt_qinit(SVCPOOL *, size_t);
314 static void svc_xprt_qdestroy(SVCPOOL *);
315 static void svc_thread_creator(SVCPOOL *);
316 static void svc_creator_signal(SVCPOOL *);
317 static void svc_creator_signalexit(SVCPOOL *);
318 static void svc_pool_unregister(struct svc_globals *, SVCPOOL *);
319 static int svc_run(SVCPOOL *);
321 /* ARGSUSED */
322 static void *
323 svc_zoneinit(zoneid_t zoneid)
325 struct svc_globals *svc;
327 svc = kmem_alloc(sizeof (*svc), KM_SLEEP);
328 mutex_init(&svc->svc_plock, NULL, MUTEX_DEFAULT, NULL);
329 svc->svc_pools = NULL;
330 return (svc);
333 /* ARGSUSED */
334 static void
335 svc_zoneshutdown(zoneid_t zoneid, void *arg)
337 struct svc_globals *svc = arg;
338 SVCPOOL *pool;
340 mutex_enter(&svc->svc_plock);
341 while ((pool = svc->svc_pools) != NULL) {
342 svc_pool_unregister(svc, pool);
344 mutex_exit(&svc->svc_plock);
347 /* ARGSUSED */
348 static void
349 svc_zonefini(zoneid_t zoneid, void *arg)
351 struct svc_globals *svc = arg;
353 ASSERT(svc->svc_pools == NULL);
354 mutex_destroy(&svc->svc_plock);
355 kmem_free(svc, sizeof (*svc));
359 * Global SVC init routine.
360 * Initialize global generic and transport type specific structures
361 * used by the kernel RPC server side. This routine is called only
362 * once when the module is being loaded.
364 void
365 svc_init()
367 zone_key_create(&svc_zone_key, svc_zoneinit, svc_zoneshutdown,
368 svc_zonefini);
369 svc_cots_init();
370 svc_clts_init();
374 * Destroy the SVCPOOL structure.
376 static void
377 svc_pool_cleanup(SVCPOOL *pool)
379 ASSERT(pool->p_threads + pool->p_detached_threads == 0);
380 ASSERT(pool->p_lcount == 0);
381 ASSERT(pool->p_closing);
384 * Call the user supplied shutdown function. This is done
385 * here so the user of the pool will be able to cleanup
386 * service related resources.
388 if (pool->p_shutdown != NULL)
389 (pool->p_shutdown)();
391 /* Destroy `xprt-ready' queue */
392 svc_xprt_qdestroy(pool);
394 /* Destroy transport list */
395 rw_destroy(&pool->p_lrwlock);
397 /* Destroy locks and condition variables */
398 mutex_destroy(&pool->p_thread_lock);
399 mutex_destroy(&pool->p_req_lock);
400 cv_destroy(&pool->p_req_cv);
402 /* Destroy creator's locks and condition variables */
403 mutex_destroy(&pool->p_creator_lock);
404 cv_destroy(&pool->p_creator_cv);
405 mutex_destroy(&pool->p_user_lock);
406 cv_destroy(&pool->p_user_cv);
408 /* Free pool structure */
409 kmem_free(pool, sizeof (SVCPOOL));
413 * If all the transports and service threads are already gone
414 * signal the creator thread to clean up and exit.
416 static bool_t
417 svc_pool_tryexit(SVCPOOL *pool)
419 ASSERT(MUTEX_HELD(&pool->p_thread_lock));
420 ASSERT(pool->p_closing);
422 if (pool->p_threads + pool->p_detached_threads == 0) {
423 rw_enter(&pool->p_lrwlock, RW_READER);
424 if (pool->p_lcount == 0) {
426 * Release the locks before sending a signal.
428 rw_exit(&pool->p_lrwlock);
429 mutex_exit(&pool->p_thread_lock);
432 * Notify the creator thread to clean up and exit
434 * NOTICE: No references to the pool beyond this point!
435 * The pool is being destroyed.
437 ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
438 svc_creator_signalexit(pool);
440 return (TRUE);
442 rw_exit(&pool->p_lrwlock);
445 ASSERT(MUTEX_HELD(&pool->p_thread_lock));
446 return (FALSE);
450 * Find a pool with a given id.
452 static SVCPOOL *
453 svc_pool_find(struct svc_globals *svc, int id)
455 SVCPOOL *pool;
457 ASSERT(MUTEX_HELD(&svc->svc_plock));
460 * Search the list for a pool with a matching id
461 * and register the transport handle with that pool.
463 for (pool = svc->svc_pools; pool; pool = pool->p_next)
464 if (pool->p_id == id)
465 return (pool);
467 return (NULL);
471 * PSARC 2003/523 Contract Private Interface
472 * svc_do_run
473 * Changes must be reviewed by Solaris File Sharing
474 * Changes must be communicated to contract-2003-523@sun.com
477 svc_do_run(int id)
479 SVCPOOL *pool;
480 int err = 0;
481 struct svc_globals *svc;
483 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
484 mutex_enter(&svc->svc_plock);
486 pool = svc_pool_find(svc, id);
488 mutex_exit(&svc->svc_plock);
490 if (pool == NULL)
491 return (ENOENT);
494 * Increment counter of pool threads now
495 * that a thread has been created.
497 mutex_enter(&pool->p_thread_lock);
498 pool->p_threads++;
499 mutex_exit(&pool->p_thread_lock);
501 /* Give work to the new thread. */
502 err = svc_run(pool);
504 return (err);
508 * Unregister a pool from the pool list.
509 * Set the closing state. If all the transports and service threads
510 * are already gone signal the creator thread to clean up and exit.
512 static void
513 svc_pool_unregister(struct svc_globals *svc, SVCPOOL *pool)
515 SVCPOOL *next = pool->p_next;
516 SVCPOOL *prev = pool->p_prev;
518 ASSERT(MUTEX_HELD(&svc->svc_plock));
520 /* Remove from the list */
521 if (pool == svc->svc_pools)
522 svc->svc_pools = next;
523 if (next)
524 next->p_prev = prev;
525 if (prev)
526 prev->p_next = next;
527 pool->p_next = pool->p_prev = NULL;
530 * Offline the pool. Mark the pool as closing.
531 * If there are no transports in this pool notify
532 * the creator thread to clean it up and exit.
534 mutex_enter(&pool->p_thread_lock);
535 if (pool->p_offline != NULL)
536 (pool->p_offline)();
537 pool->p_closing = TRUE;
538 if (svc_pool_tryexit(pool))
539 return;
540 mutex_exit(&pool->p_thread_lock);
544 * Register a pool with a given id in the global doubly linked pool list.
545 * - if there is a pool with the same id in the list then unregister it
546 * - insert the new pool into the list.
548 static void
549 svc_pool_register(struct svc_globals *svc, SVCPOOL *pool, int id)
551 SVCPOOL *old_pool;
554 * If there is a pool with the same id then remove it from
555 * the list and mark the pool as closing.
557 mutex_enter(&svc->svc_plock);
559 if (old_pool = svc_pool_find(svc, id))
560 svc_pool_unregister(svc, old_pool);
562 /* Insert into the doubly linked list */
563 pool->p_id = id;
564 pool->p_next = svc->svc_pools;
565 pool->p_prev = NULL;
566 if (svc->svc_pools)
567 svc->svc_pools->p_prev = pool;
568 svc->svc_pools = pool;
570 mutex_exit(&svc->svc_plock);
574 * Initialize a newly created pool structure
576 static int
577 svc_pool_init(SVCPOOL *pool, uint_t maxthreads, uint_t redline,
578 uint_t qsize, uint_t timeout, uint_t stksize, uint_t max_same_xprt)
580 klwp_t *lwp = ttolwp(curthread);
582 ASSERT(pool);
584 if (maxthreads == 0)
585 maxthreads = svc_default_maxthreads;
586 if (redline == 0)
587 redline = svc_default_redline;
588 if (qsize == 0)
589 qsize = svc_default_qsize;
590 if (timeout == 0)
591 timeout = svc_default_timeout;
592 if (stksize == 0)
593 stksize = svc_default_stksize;
594 if (max_same_xprt == 0)
595 max_same_xprt = svc_default_max_same_xprt;
597 if (maxthreads < redline)
598 return (EINVAL);
600 /* Allocate and initialize the `xprt-ready' queue */
601 svc_xprt_qinit(pool, qsize);
603 /* Initialize doubly-linked xprt list */
604 rw_init(&pool->p_lrwlock, NULL, RW_DEFAULT, NULL);
607 * Setting lwp_childstksz on the current lwp so that
608 * descendants of this lwp get the modified stacksize, if
609 * it is defined. It is important that either this lwp or
610 * one of its descendants do the actual servicepool thread
611 * creation to maintain the stacksize inheritance.
613 if (lwp != NULL)
614 lwp->lwp_childstksz = stksize;
616 /* Initialize thread limits, locks and condition variables */
617 pool->p_maxthreads = maxthreads;
618 pool->p_redline = redline;
619 pool->p_timeout = timeout * hz;
620 pool->p_stksize = stksize;
621 pool->p_max_same_xprt = max_same_xprt;
622 mutex_init(&pool->p_thread_lock, NULL, MUTEX_DEFAULT, NULL);
623 mutex_init(&pool->p_req_lock, NULL, MUTEX_DEFAULT, NULL);
624 cv_init(&pool->p_req_cv, NULL, CV_DEFAULT, NULL);
626 /* Initialize userland creator */
627 pool->p_user_exit = FALSE;
628 pool->p_signal_create_thread = FALSE;
629 pool->p_user_waiting = FALSE;
630 mutex_init(&pool->p_user_lock, NULL, MUTEX_DEFAULT, NULL);
631 cv_init(&pool->p_user_cv, NULL, CV_DEFAULT, NULL);
633 /* Initialize the creator and start the creator thread */
634 pool->p_creator_exit = FALSE;
635 mutex_init(&pool->p_creator_lock, NULL, MUTEX_DEFAULT, NULL);
636 cv_init(&pool->p_creator_cv, NULL, CV_DEFAULT, NULL);
638 (void) zthread_create(NULL, pool->p_stksize, svc_thread_creator,
639 pool, 0, minclsyspri);
641 return (0);
645 * PSARC 2003/523 Contract Private Interface
646 * svc_pool_create
647 * Changes must be reviewed by Solaris File Sharing
648 * Changes must be communicated to contract-2003-523@sun.com
650 * Create an kernel RPC server-side thread/transport pool.
652 * This is public interface for creation of a server RPC thread pool
653 * for a given service provider. Transports registered with the pool's id
654 * will be served by a pool's threads. This function is called from the
655 * nfssys() system call.
658 svc_pool_create(struct svcpool_args *args)
660 SVCPOOL *pool;
661 int error;
662 struct svc_globals *svc;
665 * Caller should check credentials in a way appropriate
666 * in the context of the call.
669 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
670 /* Allocate a new pool */
671 pool = kmem_zalloc(sizeof (SVCPOOL), KM_SLEEP);
674 * Initialize the pool structure and create a creator thread.
676 error = svc_pool_init(pool, args->maxthreads, args->redline,
677 args->qsize, args->timeout, args->stksize, args->max_same_xprt);
679 if (error) {
680 kmem_free(pool, sizeof (SVCPOOL));
681 return (error);
684 /* Register the pool with the global pool list */
685 svc_pool_register(svc, pool, args->id);
687 return (0);
691 svc_pool_control(int id, int cmd, void *arg)
693 SVCPOOL *pool;
694 struct svc_globals *svc;
696 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
698 switch (cmd) {
699 case SVCPSET_SHUTDOWN_PROC:
701 * Search the list for a pool with a matching id
702 * and register the transport handle with that pool.
704 mutex_enter(&svc->svc_plock);
706 if ((pool = svc_pool_find(svc, id)) == NULL) {
707 mutex_exit(&svc->svc_plock);
708 return (ENOENT);
711 * Grab the transport list lock before releasing the
712 * pool list lock
714 rw_enter(&pool->p_lrwlock, RW_WRITER);
715 mutex_exit(&svc->svc_plock);
717 pool->p_shutdown = *((void (*)())arg);
719 rw_exit(&pool->p_lrwlock);
721 return (0);
722 case SVCPSET_UNREGISTER_PROC:
724 * Search the list for a pool with a matching id
725 * and register the unregister callback handle with that pool.
727 mutex_enter(&svc->svc_plock);
729 if ((pool = svc_pool_find(svc, id)) == NULL) {
730 mutex_exit(&svc->svc_plock);
731 return (ENOENT);
734 * Grab the transport list lock before releasing the
735 * pool list lock
737 rw_enter(&pool->p_lrwlock, RW_WRITER);
738 mutex_exit(&svc->svc_plock);
740 pool->p_offline = *((void (*)())arg);
742 rw_exit(&pool->p_lrwlock);
744 return (0);
745 default:
746 return (EINVAL);
751 * Pool's transport list manipulation routines.
752 * - svc_xprt_register()
753 * - svc_xprt_unregister()
755 * svc_xprt_register() is called from svc_tli_kcreate() to
756 * insert a new master transport handle into the doubly linked
757 * list of server transport handles (one list per pool).
759 * The list is used by svc_poll(), when it operates in `drain'
760 * mode, to search for a next transport with a pending request.
764 svc_xprt_register(SVCMASTERXPRT *xprt, int id)
766 SVCMASTERXPRT *prev, *next;
767 SVCPOOL *pool;
768 struct svc_globals *svc;
770 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
772 * Search the list for a pool with a matching id
773 * and register the transport handle with that pool.
775 mutex_enter(&svc->svc_plock);
777 if ((pool = svc_pool_find(svc, id)) == NULL) {
778 mutex_exit(&svc->svc_plock);
779 return (ENOENT);
782 /* Grab the transport list lock before releasing the pool list lock */
783 rw_enter(&pool->p_lrwlock, RW_WRITER);
784 mutex_exit(&svc->svc_plock);
786 /* Don't register new transports when the pool is in closing state */
787 if (pool->p_closing) {
788 rw_exit(&pool->p_lrwlock);
789 return (EBUSY);
793 * Initialize xp_pool to point to the pool.
794 * We don't want to go through the pool list every time.
796 xprt->xp_pool = pool;
799 * Insert a transport handle into the list.
800 * The list head points to the most recently inserted transport.
802 if (pool->p_lhead == NULL)
803 pool->p_lhead = xprt->xp_prev = xprt->xp_next = xprt;
804 else {
805 next = pool->p_lhead;
806 prev = pool->p_lhead->xp_prev;
808 xprt->xp_next = next;
809 xprt->xp_prev = prev;
811 pool->p_lhead = prev->xp_next = next->xp_prev = xprt;
814 /* Increment the transports count */
815 pool->p_lcount++;
817 rw_exit(&pool->p_lrwlock);
818 return (0);
822 * Called from svc_xprt_cleanup() to remove a master transport handle
823 * from the pool's list of server transports (when a transport is
824 * being destroyed).
826 void
827 svc_xprt_unregister(SVCMASTERXPRT *xprt)
829 SVCPOOL *pool = xprt->xp_pool;
832 * Unlink xprt from the list.
833 * If the list head points to this xprt then move it
834 * to the next xprt or reset to NULL if this is the last
835 * xprt in the list.
837 rw_enter(&pool->p_lrwlock, RW_WRITER);
839 if (xprt == xprt->xp_next)
840 pool->p_lhead = NULL;
841 else {
842 SVCMASTERXPRT *next = xprt->xp_next;
843 SVCMASTERXPRT *prev = xprt->xp_prev;
845 next->xp_prev = prev;
846 prev->xp_next = next;
848 if (pool->p_lhead == xprt)
849 pool->p_lhead = next;
852 xprt->xp_next = xprt->xp_prev = NULL;
854 /* Decrement list count */
855 pool->p_lcount--;
857 rw_exit(&pool->p_lrwlock);
860 static void
861 svc_xprt_qdestroy(SVCPOOL *pool)
863 mutex_destroy(&pool->p_qend_lock);
864 kmem_free(pool->p_qbody, pool->p_qsize * sizeof (__SVCXPRT_QNODE));
868 * Initialize an `xprt-ready' queue for a given pool.
870 static void
871 svc_xprt_qinit(SVCPOOL *pool, size_t qsize)
873 int i;
875 pool->p_qsize = qsize;
876 pool->p_qbody = kmem_zalloc(pool->p_qsize * sizeof (__SVCXPRT_QNODE),
877 KM_SLEEP);
879 for (i = 0; i < pool->p_qsize - 1; i++)
880 pool->p_qbody[i].q_next = &(pool->p_qbody[i+1]);
882 pool->p_qbody[pool->p_qsize-1].q_next = &(pool->p_qbody[0]);
883 pool->p_qtop = &(pool->p_qbody[0]);
884 pool->p_qend = &(pool->p_qbody[0]);
886 mutex_init(&pool->p_qend_lock, NULL, MUTEX_DEFAULT, NULL);
890 * Called from the svc_queuereq() interrupt routine to queue
891 * a hint for svc_poll() which transport has a pending request.
892 * - insert a pointer to xprt into the xprt-ready queue (FIFO)
893 * - if the xprt-ready queue is full turn the overflow flag on.
895 * NOTICE: pool->p_qtop is protected by the pool's request lock
896 * and the caller (svc_queuereq()) must hold the lock.
898 static void
899 svc_xprt_qput(SVCPOOL *pool, SVCMASTERXPRT *xprt)
901 ASSERT(MUTEX_HELD(&pool->p_req_lock));
903 /* If the overflow flag is on there is nothing we can do */
904 if (pool->p_qoverflow)
905 return;
907 /* If the queue is full turn the overflow flag on and exit */
908 if (pool->p_qtop->q_next == pool->p_qend) {
909 mutex_enter(&pool->p_qend_lock);
910 if (pool->p_qtop->q_next == pool->p_qend) {
911 pool->p_qoverflow = TRUE;
912 mutex_exit(&pool->p_qend_lock);
913 return;
915 mutex_exit(&pool->p_qend_lock);
918 /* Insert a hint and move pool->p_qtop */
919 pool->p_qtop->q_xprt = xprt;
920 pool->p_qtop = pool->p_qtop->q_next;
924 * Called from svc_poll() to get a hint which transport has a
925 * pending request. Returns a pointer to a transport or NULL if the
926 * `xprt-ready' queue is empty.
928 * Since we do not acquire the pool's request lock while checking if
929 * the queue is empty we may miss a request that is just being delivered.
930 * However this is ok since svc_poll() will retry again until the
931 * count indicates that there are pending requests for this pool.
933 static SVCMASTERXPRT *
934 svc_xprt_qget(SVCPOOL *pool)
936 SVCMASTERXPRT *xprt;
938 mutex_enter(&pool->p_qend_lock);
939 do {
941 * If the queue is empty return NULL.
942 * Since we do not acquire the pool's request lock which
943 * protects pool->p_qtop this is not exact check. However,
944 * this is safe - if we miss a request here svc_poll()
945 * will retry again.
947 if (pool->p_qend == pool->p_qtop) {
948 mutex_exit(&pool->p_qend_lock);
949 return (NULL);
952 /* Get a hint and move pool->p_qend */
953 xprt = pool->p_qend->q_xprt;
954 pool->p_qend = pool->p_qend->q_next;
956 /* Skip fields deleted by svc_xprt_qdelete() */
957 } while (xprt == NULL);
958 mutex_exit(&pool->p_qend_lock);
960 return (xprt);
964 * Delete all the references to a transport handle that
965 * is being destroyed from the xprt-ready queue.
966 * Deleted pointers are replaced with NULLs.
968 static void
969 svc_xprt_qdelete(SVCPOOL *pool, SVCMASTERXPRT *xprt)
971 __SVCXPRT_QNODE *q;
973 mutex_enter(&pool->p_req_lock);
974 for (q = pool->p_qend; q != pool->p_qtop; q = q->q_next) {
975 if (q->q_xprt == xprt)
976 q->q_xprt = NULL;
978 mutex_exit(&pool->p_req_lock);
982 * Destructor for a master server transport handle.
983 * - if there are no more non-detached threads linked to this transport
984 * then, if requested, call xp_closeproc (we don't wait for detached
985 * threads linked to this transport to complete).
986 * - if there are no more threads linked to this
987 * transport then
988 * a) remove references to this transport from the xprt-ready queue
989 * b) remove a reference to this transport from the pool's transport list
990 * c) call a transport specific `destroy' function
991 * d) cancel remaining thread reservations.
993 * NOTICE: Caller must hold the transport's thread lock.
995 static void
996 svc_xprt_cleanup(SVCMASTERXPRT *xprt, bool_t detached)
998 ASSERT(MUTEX_HELD(&xprt->xp_thread_lock));
999 ASSERT(xprt->xp_wq == NULL);
1002 * If called from the last non-detached thread
1003 * it should call the closeproc on this transport.
1005 if (!detached && xprt->xp_threads == 0 && xprt->xp_closeproc) {
1006 (*(xprt->xp_closeproc)) (xprt);
1009 if (xprt->xp_threads + xprt->xp_detached_threads > 0)
1010 mutex_exit(&xprt->xp_thread_lock);
1011 else {
1012 /* Remove references to xprt from the `xprt-ready' queue */
1013 svc_xprt_qdelete(xprt->xp_pool, xprt);
1015 /* Unregister xprt from the pool's transport list */
1016 svc_xprt_unregister(xprt);
1017 svc_callout_free(xprt);
1018 SVC_DESTROY(xprt);
1023 * Find a dispatch routine for a given prog/vers pair.
1024 * This function is called from svc_getreq() to search the callout
1025 * table for an entry with a matching RPC program number `prog'
1026 * and a version range that covers `vers'.
1027 * - if it finds a matching entry it returns pointer to the dispatch routine
1028 * - otherwise it returns NULL and, if `minp' or `maxp' are not NULL,
1029 * fills them with, respectively, lowest version and highest version
1030 * supported for the program `prog'
1032 static SVC_DISPATCH *
1033 svc_callout_find(SVCXPRT *xprt, rpcprog_t prog, rpcvers_t vers,
1034 rpcvers_t *vers_min, rpcvers_t *vers_max)
1036 SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1037 int i;
1039 *vers_min = ~(rpcvers_t)0;
1040 *vers_max = 0;
1042 for (i = 0; i < sct->sct_size; i++) {
1043 SVC_CALLOUT *sc = &sct->sct_sc[i];
1045 if (prog == sc->sc_prog) {
1046 if (vers >= sc->sc_versmin && vers <= sc->sc_versmax)
1047 return (sc->sc_dispatch);
1049 if (*vers_max < sc->sc_versmax)
1050 *vers_max = sc->sc_versmax;
1051 if (*vers_min > sc->sc_versmin)
1052 *vers_min = sc->sc_versmin;
1056 return (NULL);
1060 * Optionally free callout table allocated for this transport by
1061 * the service provider.
1063 static void
1064 svc_callout_free(SVCMASTERXPRT *xprt)
1066 SVC_CALLOUT_TABLE *sct = xprt->xp_sct;
1068 if (sct->sct_free) {
1069 kmem_free(sct->sct_sc, sct->sct_size * sizeof (SVC_CALLOUT));
1070 kmem_free(sct, sizeof (SVC_CALLOUT_TABLE));
1075 * Send a reply to an RPC request
1077 * PSARC 2003/523 Contract Private Interface
1078 * svc_sendreply
1079 * Changes must be reviewed by Solaris File Sharing
1080 * Changes must be communicated to contract-2003-523@sun.com
1082 bool_t
1083 svc_sendreply(const SVCXPRT *clone_xprt, const xdrproc_t xdr_results,
1084 const caddr_t xdr_location)
1086 struct rpc_msg rply;
1088 rply.rm_direction = REPLY;
1089 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1090 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1091 rply.acpted_rply.ar_stat = SUCCESS;
1092 rply.acpted_rply.ar_results.where = xdr_location;
1093 rply.acpted_rply.ar_results.proc = xdr_results;
1095 return (SVC_REPLY((SVCXPRT *)clone_xprt, &rply));
1099 * No procedure error reply
1101 * PSARC 2003/523 Contract Private Interface
1102 * svcerr_noproc
1103 * Changes must be reviewed by Solaris File Sharing
1104 * Changes must be communicated to contract-2003-523@sun.com
1106 void
1107 svcerr_noproc(const SVCXPRT *clone_xprt)
1109 struct rpc_msg rply;
1111 rply.rm_direction = REPLY;
1112 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1113 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1114 rply.acpted_rply.ar_stat = PROC_UNAVAIL;
1115 SVC_FREERES((SVCXPRT *)clone_xprt);
1116 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1120 * Can't decode arguments error reply
1122 * PSARC 2003/523 Contract Private Interface
1123 * svcerr_decode
1124 * Changes must be reviewed by Solaris File Sharing
1125 * Changes must be communicated to contract-2003-523@sun.com
1127 void
1128 svcerr_decode(const SVCXPRT *clone_xprt)
1130 struct rpc_msg rply;
1132 rply.rm_direction = REPLY;
1133 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1134 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1135 rply.acpted_rply.ar_stat = GARBAGE_ARGS;
1136 SVC_FREERES((SVCXPRT *)clone_xprt);
1137 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1141 * Some system error
1143 void
1144 svcerr_systemerr(const SVCXPRT *clone_xprt)
1146 struct rpc_msg rply;
1148 rply.rm_direction = REPLY;
1149 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1150 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1151 rply.acpted_rply.ar_stat = SYSTEM_ERR;
1152 SVC_FREERES((SVCXPRT *)clone_xprt);
1153 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1157 * Authentication error reply
1159 void
1160 svcerr_auth(const SVCXPRT *clone_xprt, const enum auth_stat why)
1162 struct rpc_msg rply;
1164 rply.rm_direction = REPLY;
1165 rply.rm_reply.rp_stat = MSG_DENIED;
1166 rply.rjcted_rply.rj_stat = AUTH_ERROR;
1167 rply.rjcted_rply.rj_why = why;
1168 SVC_FREERES((SVCXPRT *)clone_xprt);
1169 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1173 * Authentication too weak error reply
1175 void
1176 svcerr_weakauth(const SVCXPRT *clone_xprt)
1178 svcerr_auth((SVCXPRT *)clone_xprt, AUTH_TOOWEAK);
1182 * Authentication error; bad credentials
1184 void
1185 svcerr_badcred(const SVCXPRT *clone_xprt)
1187 struct rpc_msg rply;
1189 rply.rm_direction = REPLY;
1190 rply.rm_reply.rp_stat = MSG_DENIED;
1191 rply.rjcted_rply.rj_stat = AUTH_ERROR;
1192 rply.rjcted_rply.rj_why = AUTH_BADCRED;
1193 SVC_FREERES((SVCXPRT *)clone_xprt);
1194 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1198 * Program unavailable error reply
1200 * PSARC 2003/523 Contract Private Interface
1201 * svcerr_noprog
1202 * Changes must be reviewed by Solaris File Sharing
1203 * Changes must be communicated to contract-2003-523@sun.com
1205 void
1206 svcerr_noprog(const SVCXPRT *clone_xprt)
1208 struct rpc_msg rply;
1210 rply.rm_direction = REPLY;
1211 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1212 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1213 rply.acpted_rply.ar_stat = PROG_UNAVAIL;
1214 SVC_FREERES((SVCXPRT *)clone_xprt);
1215 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1219 * Program version mismatch error reply
1221 * PSARC 2003/523 Contract Private Interface
1222 * svcerr_progvers
1223 * Changes must be reviewed by Solaris File Sharing
1224 * Changes must be communicated to contract-2003-523@sun.com
1226 void
1227 svcerr_progvers(const SVCXPRT *clone_xprt,
1228 const rpcvers_t low_vers, const rpcvers_t high_vers)
1230 struct rpc_msg rply;
1232 rply.rm_direction = REPLY;
1233 rply.rm_reply.rp_stat = MSG_ACCEPTED;
1234 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
1235 rply.acpted_rply.ar_stat = PROG_MISMATCH;
1236 rply.acpted_rply.ar_vers.low = low_vers;
1237 rply.acpted_rply.ar_vers.high = high_vers;
1238 SVC_FREERES((SVCXPRT *)clone_xprt);
1239 SVC_REPLY((SVCXPRT *)clone_xprt, &rply);
1243 * Get server side input from some transport.
1245 * Statement of authentication parameters management:
1246 * This function owns and manages all authentication parameters, specifically
1247 * the "raw" parameters (msg.rm_call.cb_cred and msg.rm_call.cb_verf) and
1248 * the "cooked" credentials (rqst->rq_clntcred).
1249 * However, this function does not know the structure of the cooked
1250 * credentials, so it make the following assumptions:
1251 * a) the structure is contiguous (no pointers), and
1252 * b) the cred structure size does not exceed RQCRED_SIZE bytes.
1253 * In all events, all three parameters are freed upon exit from this routine.
1254 * The storage is trivially managed on the call stack in user land, but
1255 * is malloced in kernel land.
1257 * Note: the xprt's xp_svc_lock is not held while the service's dispatch
1258 * routine is running. If we decide to implement svc_unregister(), we'll
1259 * need to decide whether it's okay for a thread to unregister a service
1260 * while a request is being processed. If we decide that this is a
1261 * problem, we can probably use some sort of reference counting scheme to
1262 * keep the callout entry from going away until the request has completed.
1264 static void
1265 svc_getreq(
1266 SVCXPRT *clone_xprt, /* clone transport handle */
1267 mblk_t *mp)
1269 struct rpc_msg msg;
1270 struct svc_req r;
1271 char *cred_area; /* too big to allocate on call stack */
1273 TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_START,
1274 "svc_getreq_start:");
1276 ASSERT(clone_xprt->xp_master != NULL);
1278 * Firstly, allocate the authentication parameters' storage
1280 mutex_enter(&rqcred_lock);
1281 if (rqcred_head) {
1282 cred_area = rqcred_head;
1284 /* LINTED pointer alignment */
1285 rqcred_head = *(caddr_t *)rqcred_head;
1286 mutex_exit(&rqcred_lock);
1287 } else {
1288 mutex_exit(&rqcred_lock);
1289 cred_area = kmem_alloc(2 * MAX_AUTH_BYTES + RQCRED_SIZE,
1290 KM_SLEEP);
1292 msg.rm_call.cb_cred.oa_base = cred_area;
1293 msg.rm_call.cb_verf.oa_base = &(cred_area[MAX_AUTH_BYTES]);
1294 r.rq_clntcred = &(cred_area[2 * MAX_AUTH_BYTES]);
1297 * Now receive a message from the transport.
1299 if (SVC_RECV(clone_xprt, mp, &msg)) {
1300 void (*dispatchroutine) (struct svc_req *, SVCXPRT *);
1301 rpcvers_t vers_min;
1302 rpcvers_t vers_max;
1303 bool_t no_dispatch;
1304 enum auth_stat why;
1307 * Find the registered program and call its
1308 * dispatch routine.
1310 r.rq_xprt = clone_xprt;
1311 r.rq_prog = msg.rm_call.cb_prog;
1312 r.rq_vers = msg.rm_call.cb_vers;
1313 r.rq_proc = msg.rm_call.cb_proc;
1314 r.rq_cred = msg.rm_call.cb_cred;
1317 * First authenticate the message.
1319 TRACE_0(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_START,
1320 "svc_getreq_auth_start:");
1321 if ((why = sec_svc_msg(&r, &msg, &no_dispatch)) != AUTH_OK) {
1322 TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1323 "svc_getreq_auth_end:(%S)", "failed");
1324 svcerr_auth(clone_xprt, why);
1326 * Free the arguments.
1328 (void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1329 } else if (no_dispatch) {
1331 * XXX - when bug id 4053736 is done, remove
1332 * the SVC_FREEARGS() call.
1334 (void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1335 } else {
1336 TRACE_1(TR_FAC_KRPC, TR_SVC_GETREQ_AUTH_END,
1337 "svc_getreq_auth_end:(%S)", "good");
1339 dispatchroutine = svc_callout_find(clone_xprt,
1340 r.rq_prog, r.rq_vers, &vers_min, &vers_max);
1342 if (dispatchroutine) {
1343 (*dispatchroutine) (&r, clone_xprt);
1344 } else {
1346 * If we got here, the program or version
1347 * is not served ...
1349 if (vers_max == 0 ||
1350 version_keepquiet(clone_xprt))
1351 svcerr_noprog(clone_xprt);
1352 else
1353 svcerr_progvers(clone_xprt, vers_min,
1354 vers_max);
1357 * Free the arguments. For successful calls
1358 * this is done by the dispatch routine.
1360 (void) SVC_FREEARGS(clone_xprt, NULL, NULL);
1361 /* Fall through to ... */
1364 * Call cleanup procedure for RPCSEC_GSS.
1365 * This is a hack since there is currently no
1366 * op, such as SVC_CLEANAUTH. rpc_gss_cleanup
1367 * should only be called for a non null proc.
1368 * Null procs in RPC GSS are overloaded to
1369 * provide context setup and control. The main
1370 * purpose of rpc_gss_cleanup is to decrement the
1371 * reference count associated with the cached
1372 * GSS security context. We should never get here
1373 * for an RPCSEC_GSS null proc since *no_dispatch
1374 * would have been set to true from sec_svc_msg above.
1376 if (r.rq_cred.oa_flavor == RPCSEC_GSS)
1377 rpc_gss_cleanup(clone_xprt);
1382 * Free authentication parameters' storage
1384 mutex_enter(&rqcred_lock);
1385 /* LINTED pointer alignment */
1386 *(caddr_t *)cred_area = rqcred_head;
1387 rqcred_head = cred_area;
1388 mutex_exit(&rqcred_lock);
1392 * Allocate new clone transport handle.
1394 SVCXPRT *
1395 svc_clone_init(void)
1397 SVCXPRT *clone_xprt;
1399 clone_xprt = kmem_zalloc(sizeof (SVCXPRT), KM_SLEEP);
1400 clone_xprt->xp_cred = crget();
1401 return (clone_xprt);
1405 * Free memory allocated by svc_clone_init.
1407 void
1408 svc_clone_free(SVCXPRT *clone_xprt)
1410 /* Fre credentials from crget() */
1411 if (clone_xprt->xp_cred)
1412 crfree(clone_xprt->xp_cred);
1413 kmem_free(clone_xprt, sizeof (SVCXPRT));
1417 * Link a per-thread clone transport handle to a master
1418 * - increment a thread reference count on the master
1419 * - copy some of the master's fields to the clone
1420 * - call a transport specific clone routine.
1422 void
1423 svc_clone_link(SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt, SVCXPRT *clone_xprt2)
1425 cred_t *cred = clone_xprt->xp_cred;
1427 ASSERT(cred);
1430 * Bump up master's thread count.
1431 * Linking a per-thread clone transport handle to a master
1432 * associates a service thread with the master.
1434 mutex_enter(&xprt->xp_thread_lock);
1435 xprt->xp_threads++;
1436 mutex_exit(&xprt->xp_thread_lock);
1438 /* Clear everything */
1439 bzero(clone_xprt, sizeof (SVCXPRT));
1441 /* Set pointer to the master transport stucture */
1442 clone_xprt->xp_master = xprt;
1444 /* Structure copy of all the common fields */
1445 clone_xprt->xp_xpc = xprt->xp_xpc;
1447 /* Restore per-thread fields (xp_cred) */
1448 clone_xprt->xp_cred = cred;
1450 if (clone_xprt2)
1451 SVC_CLONE_XPRT(clone_xprt2, clone_xprt);
1455 * Unlink a non-detached clone transport handle from a master
1456 * - decrement a thread reference count on the master
1457 * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1458 * if this is the last non-detached/absolute thread on this transport
1459 * then it will close/destroy the transport
1460 * - call transport specific function to destroy the clone handle
1461 * - clear xp_master to avoid recursion.
1463 void
1464 svc_clone_unlink(SVCXPRT *clone_xprt)
1466 SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1468 /* This cannot be a detached thread */
1469 ASSERT(!clone_xprt->xp_detached);
1470 ASSERT(xprt->xp_threads > 0);
1472 /* Decrement a reference count on the transport */
1473 mutex_enter(&xprt->xp_thread_lock);
1474 xprt->xp_threads--;
1476 /* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1477 if (xprt->xp_wq)
1478 mutex_exit(&xprt->xp_thread_lock);
1479 else
1480 svc_xprt_cleanup(xprt, FALSE);
1482 /* Call a transport specific clone `destroy' function */
1483 SVC_CLONE_DESTROY(clone_xprt);
1485 /* Clear xp_master */
1486 clone_xprt->xp_master = NULL;
1490 * Unlink a detached clone transport handle from a master
1491 * - decrement the thread count on the master
1492 * - if the transport is closing (xp_wq is NULL) call svc_xprt_cleanup();
1493 * if this is the last thread on this transport then it will destroy
1494 * the transport.
1495 * - call a transport specific function to destroy the clone handle
1496 * - clear xp_master to avoid recursion.
1498 static void
1499 svc_clone_unlinkdetached(SVCXPRT *clone_xprt)
1501 SVCMASTERXPRT *xprt = clone_xprt->xp_master;
1503 /* This must be a detached thread */
1504 ASSERT(clone_xprt->xp_detached);
1505 ASSERT(xprt->xp_detached_threads > 0);
1506 ASSERT(xprt->xp_threads + xprt->xp_detached_threads > 0);
1508 /* Grab xprt->xp_thread_lock and decrement link counts */
1509 mutex_enter(&xprt->xp_thread_lock);
1510 xprt->xp_detached_threads--;
1512 /* svc_xprt_cleanup() unlocks xp_thread_lock or destroys xprt */
1513 if (xprt->xp_wq)
1514 mutex_exit(&xprt->xp_thread_lock);
1515 else
1516 svc_xprt_cleanup(xprt, TRUE);
1518 /* Call transport specific clone `destroy' function */
1519 SVC_CLONE_DESTROY(clone_xprt);
1521 /* Clear xp_master */
1522 clone_xprt->xp_master = NULL;
1526 * Try to exit a non-detached service thread
1527 * - check if there are enough threads left
1528 * - if this thread (ie its clone transport handle) are linked
1529 * to a master transport then unlink it
1530 * - free the clone structure
1531 * - return to userland for thread exit
1533 * If this is the last non-detached or the last thread on this
1534 * transport then the call to svc_clone_unlink() will, respectively,
1535 * close and/or destroy the transport.
1537 static void
1538 svc_thread_exit(SVCPOOL *pool, SVCXPRT *clone_xprt)
1540 if (clone_xprt->xp_master)
1541 svc_clone_unlink(clone_xprt);
1542 svc_clone_free(clone_xprt);
1544 mutex_enter(&pool->p_thread_lock);
1545 pool->p_threads--;
1546 if (pool->p_closing && svc_pool_tryexit(pool))
1547 /* return - thread exit will be handled at user level */
1548 return;
1549 mutex_exit(&pool->p_thread_lock);
1551 /* return - thread exit will be handled at user level */
1555 * Exit a detached service thread that returned to svc_run
1556 * - decrement the `detached thread' count for the pool
1557 * - unlink the detached clone transport handle from the master
1558 * - free the clone structure
1559 * - return to userland for thread exit
1561 * If this is the last thread on this transport then the call
1562 * to svc_clone_unlinkdetached() will destroy the transport.
1564 static void
1565 svc_thread_exitdetached(SVCPOOL *pool, SVCXPRT *clone_xprt)
1567 /* This must be a detached thread */
1568 ASSERT(clone_xprt->xp_master);
1569 ASSERT(clone_xprt->xp_detached);
1570 ASSERT(!MUTEX_HELD(&pool->p_thread_lock));
1572 svc_clone_unlinkdetached(clone_xprt);
1573 svc_clone_free(clone_xprt);
1575 mutex_enter(&pool->p_thread_lock);
1577 ASSERT(pool->p_reserved_threads >= 0);
1578 ASSERT(pool->p_detached_threads > 0);
1580 pool->p_detached_threads--;
1581 if (pool->p_closing && svc_pool_tryexit(pool))
1582 /* return - thread exit will be handled at user level */
1583 return;
1584 mutex_exit(&pool->p_thread_lock);
1586 /* return - thread exit will be handled at user level */
1590 * PSARC 2003/523 Contract Private Interface
1591 * svc_wait
1592 * Changes must be reviewed by Solaris File Sharing
1593 * Changes must be communicated to contract-2003-523@sun.com
1596 svc_wait(int id)
1598 SVCPOOL *pool;
1599 int err = 0;
1600 struct svc_globals *svc;
1602 svc = zone_getspecific(svc_zone_key, curproc->p_zone);
1603 mutex_enter(&svc->svc_plock);
1604 pool = svc_pool_find(svc, id);
1605 mutex_exit(&svc->svc_plock);
1607 if (pool == NULL)
1608 return (ENOENT);
1610 mutex_enter(&pool->p_user_lock);
1612 /* Check if there's already a user thread waiting on this pool */
1613 if (pool->p_user_waiting) {
1614 mutex_exit(&pool->p_user_lock);
1615 return (EBUSY);
1618 pool->p_user_waiting = TRUE;
1620 /* Go to sleep, waiting for the signaled flag. */
1621 while (!pool->p_signal_create_thread && !pool->p_user_exit) {
1622 if (cv_wait_sig(&pool->p_user_cv, &pool->p_user_lock) == 0) {
1623 /* Interrupted, return to handle exit or signal */
1624 pool->p_user_waiting = FALSE;
1625 pool->p_signal_create_thread = FALSE;
1626 mutex_exit(&pool->p_user_lock);
1629 * Thread has been interrupted and therefore
1630 * the service daemon is leaving as well so
1631 * let's go ahead and remove the service
1632 * pool at this time.
1634 mutex_enter(&svc->svc_plock);
1635 svc_pool_unregister(svc, pool);
1636 mutex_exit(&svc->svc_plock);
1638 return (EINTR);
1642 pool->p_signal_create_thread = FALSE;
1643 pool->p_user_waiting = FALSE;
1646 * About to exit the service pool. Set return value
1647 * to let the userland code know our intent. Signal
1648 * svc_thread_creator() so that it can clean up the
1649 * pool structure.
1651 if (pool->p_user_exit) {
1652 err = ECANCELED;
1653 cv_signal(&pool->p_user_cv);
1656 mutex_exit(&pool->p_user_lock);
1658 /* Return to userland with error code, for possible thread creation. */
1659 return (err);
1663 * `Service threads' creator thread.
1664 * The creator thread waits for a signal to create new thread.
1666 static void
1667 svc_thread_creator(SVCPOOL *pool)
1669 callb_cpr_t cpr_info; /* CPR info for the creator thread */
1671 CALLB_CPR_INIT(&cpr_info, &pool->p_creator_lock, callb_generic_cpr,
1672 "svc_thread_creator");
1674 for (;;) {
1675 mutex_enter(&pool->p_creator_lock);
1677 /* Check if someone set the exit flag */
1678 if (pool->p_creator_exit)
1679 break;
1681 /* Clear the `signaled' flag and go asleep */
1682 pool->p_creator_signaled = FALSE;
1684 CALLB_CPR_SAFE_BEGIN(&cpr_info);
1685 cv_wait(&pool->p_creator_cv, &pool->p_creator_lock);
1686 CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1688 /* Check if someone signaled to exit */
1689 if (pool->p_creator_exit)
1690 break;
1692 mutex_exit(&pool->p_creator_lock);
1694 mutex_enter(&pool->p_thread_lock);
1697 * When the pool is in closing state and all the transports
1698 * are gone the creator should not create any new threads.
1700 if (pool->p_closing) {
1701 rw_enter(&pool->p_lrwlock, RW_READER);
1702 if (pool->p_lcount == 0) {
1703 rw_exit(&pool->p_lrwlock);
1704 mutex_exit(&pool->p_thread_lock);
1705 continue;
1707 rw_exit(&pool->p_lrwlock);
1711 * Create a new service thread now.
1713 ASSERT(pool->p_reserved_threads >= 0);
1714 ASSERT(pool->p_detached_threads >= 0);
1716 if (pool->p_threads + pool->p_detached_threads <
1717 pool->p_maxthreads) {
1719 * Signal the service pool wait thread
1720 * only if it hasn't already been signaled.
1722 mutex_enter(&pool->p_user_lock);
1723 if (pool->p_signal_create_thread == FALSE) {
1724 pool->p_signal_create_thread = TRUE;
1725 cv_signal(&pool->p_user_cv);
1727 mutex_exit(&pool->p_user_lock);
1731 mutex_exit(&pool->p_thread_lock);
1735 * Pool is closed. Cleanup and exit.
1738 /* Signal userland creator thread that it can stop now. */
1739 mutex_enter(&pool->p_user_lock);
1740 pool->p_user_exit = TRUE;
1741 cv_broadcast(&pool->p_user_cv);
1742 mutex_exit(&pool->p_user_lock);
1744 /* Wait for svc_wait() to be done with the pool */
1745 mutex_enter(&pool->p_user_lock);
1746 while (pool->p_user_waiting) {
1747 CALLB_CPR_SAFE_BEGIN(&cpr_info);
1748 cv_wait(&pool->p_user_cv, &pool->p_user_lock);
1749 CALLB_CPR_SAFE_END(&cpr_info, &pool->p_creator_lock);
1751 mutex_exit(&pool->p_user_lock);
1753 CALLB_CPR_EXIT(&cpr_info);
1754 svc_pool_cleanup(pool);
1755 zthread_exit();
1759 * If the creator thread is idle signal it to create
1760 * a new service thread.
1762 static void
1763 svc_creator_signal(SVCPOOL *pool)
1765 mutex_enter(&pool->p_creator_lock);
1766 if (pool->p_creator_signaled == FALSE) {
1767 pool->p_creator_signaled = TRUE;
1768 cv_signal(&pool->p_creator_cv);
1770 mutex_exit(&pool->p_creator_lock);
1774 * Notify the creator thread to clean up and exit.
1776 static void
1777 svc_creator_signalexit(SVCPOOL *pool)
1779 mutex_enter(&pool->p_creator_lock);
1780 pool->p_creator_exit = TRUE;
1781 cv_signal(&pool->p_creator_cv);
1782 mutex_exit(&pool->p_creator_lock);
1786 * Polling part of the svc_run().
1787 * - search for a transport with a pending request
1788 * - when one is found then latch the request lock and return to svc_run()
1789 * - if there is no request go asleep and wait for a signal
1790 * - handle two exceptions:
1791 * a) current transport is closing
1792 * b) timeout waiting for a new request
1793 * in both cases return to svc_run()
1795 static SVCMASTERXPRT *
1796 svc_poll(SVCPOOL *pool, SVCMASTERXPRT *xprt, SVCXPRT *clone_xprt)
1799 * Main loop iterates until
1800 * a) we find a pending request,
1801 * b) detect that the current transport is closing
1802 * c) time out waiting for a new request.
1804 for (;;) {
1805 SVCMASTERXPRT *next;
1806 clock_t timeleft;
1809 * Step 1.
1810 * Check if there is a pending request on the current
1811 * transport handle so that we can avoid cloning.
1812 * If so then decrement the `pending-request' count for
1813 * the pool and return to svc_run().
1815 * We need to prevent a potential starvation. When
1816 * a selected transport has all pending requests coming in
1817 * all the time then the service threads will never switch to
1818 * another transport. With a limited number of service
1819 * threads some transports may be never serviced.
1820 * To prevent such a scenario we pick up at most
1821 * pool->p_max_same_xprt requests from the same transport
1822 * and then take a hint from the xprt-ready queue or walk
1823 * the transport list.
1825 if (xprt && xprt->xp_req_head && (!pool->p_qoverflow ||
1826 clone_xprt->xp_same_xprt++ < pool->p_max_same_xprt)) {
1827 mutex_enter(&xprt->xp_req_lock);
1828 if (xprt->xp_req_head)
1829 return (xprt);
1830 mutex_exit(&xprt->xp_req_lock);
1832 clone_xprt->xp_same_xprt = 0;
1835 * Step 2.
1836 * If there is no request on the current transport try to
1837 * find another transport with a pending request.
1839 mutex_enter(&pool->p_req_lock);
1840 pool->p_walkers++;
1841 mutex_exit(&pool->p_req_lock);
1844 * Make sure that transports will not be destroyed just
1845 * while we are checking them.
1847 rw_enter(&pool->p_lrwlock, RW_READER);
1849 for (;;) {
1850 SVCMASTERXPRT *hint;
1853 * Get the next transport from the xprt-ready queue.
1854 * This is a hint. There is no guarantee that the
1855 * transport still has a pending request since it
1856 * could be picked up by another thread in step 1.
1858 * If the transport has a pending request then keep
1859 * it locked. Decrement the `pending-requests' for
1860 * the pool and `walking-threads' counts, and return
1861 * to svc_run().
1863 hint = svc_xprt_qget(pool);
1865 if (hint && hint->xp_req_head) {
1866 mutex_enter(&hint->xp_req_lock);
1867 if (hint->xp_req_head) {
1868 rw_exit(&pool->p_lrwlock);
1870 mutex_enter(&pool->p_req_lock);
1871 pool->p_walkers--;
1872 mutex_exit(&pool->p_req_lock);
1874 return (hint);
1876 mutex_exit(&hint->xp_req_lock);
1880 * If there was no hint in the xprt-ready queue then
1881 * - if there is less pending requests than polling
1882 * threads go asleep
1883 * - otherwise check if there was an overflow in the
1884 * xprt-ready queue; if so, then we need to break
1885 * the `drain' mode
1887 if (hint == NULL) {
1888 if (pool->p_reqs < pool->p_walkers) {
1889 mutex_enter(&pool->p_req_lock);
1890 if (pool->p_reqs < pool->p_walkers)
1891 goto sleep;
1892 mutex_exit(&pool->p_req_lock);
1894 if (pool->p_qoverflow) {
1895 break;
1901 * If there was an overflow in the xprt-ready queue then we
1902 * need to switch to the `drain' mode, i.e. walk through the
1903 * pool's transport list and search for a transport with a
1904 * pending request. If we manage to drain all the pending
1905 * requests then we can clear the overflow flag. This will
1906 * switch svc_poll() back to taking hints from the xprt-ready
1907 * queue (which is generally more efficient).
1909 * If there are no registered transports simply go asleep.
1911 if (xprt == NULL && pool->p_lhead == NULL) {
1912 mutex_enter(&pool->p_req_lock);
1913 goto sleep;
1917 * `Walk' through the pool's list of master server
1918 * transport handles. Continue to loop until there are less
1919 * looping threads then pending requests.
1921 next = xprt ? xprt->xp_next : pool->p_lhead;
1923 for (;;) {
1925 * Check if there is a request on this transport.
1927 * Since blocking on a locked mutex is very expensive
1928 * check for a request without a lock first. If we miss
1929 * a request that is just being delivered but this will
1930 * cost at most one full walk through the list.
1932 if (next->xp_req_head) {
1934 * Check again, now with a lock.
1936 mutex_enter(&next->xp_req_lock);
1937 if (next->xp_req_head) {
1938 rw_exit(&pool->p_lrwlock);
1940 mutex_enter(&pool->p_req_lock);
1941 pool->p_walkers--;
1942 mutex_exit(&pool->p_req_lock);
1944 return (next);
1946 mutex_exit(&next->xp_req_lock);
1950 * Continue to `walk' through the pool's
1951 * transport list until there is less requests
1952 * than walkers. Check this condition without
1953 * a lock first to avoid contention on a mutex.
1955 if (pool->p_reqs < pool->p_walkers) {
1956 /* Check again, now with the lock. */
1957 mutex_enter(&pool->p_req_lock);
1958 if (pool->p_reqs < pool->p_walkers)
1959 break; /* goto sleep */
1960 mutex_exit(&pool->p_req_lock);
1963 next = next->xp_next;
1966 sleep:
1968 * No work to do. Stop the `walk' and go asleep.
1969 * Decrement the `walking-threads' count for the pool.
1971 pool->p_walkers--;
1972 rw_exit(&pool->p_lrwlock);
1975 * Count us as asleep, mark this thread as safe
1976 * for suspend and wait for a request.
1978 pool->p_asleep++;
1979 timeleft = cv_reltimedwait_sig(&pool->p_req_cv,
1980 &pool->p_req_lock, pool->p_timeout, TR_CLOCK_TICK);
1983 * If the drowsy flag is on this means that
1984 * someone has signaled a wakeup. In such a case
1985 * the `asleep-threads' count has already updated
1986 * so just clear the flag.
1988 * If the drowsy flag is off then we need to update
1989 * the `asleep-threads' count.
1991 if (pool->p_drowsy) {
1992 pool->p_drowsy = FALSE;
1994 * If the thread is here because it timedout,
1995 * instead of returning SVC_ETIMEDOUT, it is
1996 * time to do some more work.
1998 if (timeleft == -1)
1999 timeleft = 1;
2000 } else {
2001 pool->p_asleep--;
2003 mutex_exit(&pool->p_req_lock);
2006 * If we received a signal while waiting for a
2007 * request, inform svc_run(), so that we can return
2008 * to user level and exit.
2010 if (timeleft == 0)
2011 return (SVC_EINTR);
2014 * If the current transport is gone then notify
2015 * svc_run() to unlink from it.
2017 if (xprt && xprt->xp_wq == NULL)
2018 return (SVC_EXPRTGONE);
2021 * If we have timed out waiting for a request inform
2022 * svc_run() that we probably don't need this thread.
2024 if (timeleft == -1)
2025 return (SVC_ETIMEDOUT);
2030 * calculate memory space used by message
2032 static size_t
2033 svc_msgsize(mblk_t *mp)
2035 size_t count = 0;
2037 for (; mp; mp = mp->b_cont)
2038 count += MBLKSIZE(mp);
2040 return (count);
2044 * svc_flowcontrol() attempts to turn the flow control on or off for the
2045 * transport.
2047 * On input the xprt->xp_full determines whether the flow control is currently
2048 * off (FALSE) or on (TRUE). If it is off we do tests to see whether we should
2049 * turn it on, and vice versa.
2051 * There are two conditions considered for the flow control. Both conditions
2052 * have the low and the high watermark. Once the high watermark is reached in
2053 * EITHER condition the flow control is turned on. For turning the flow
2054 * control off BOTH conditions must be below the low watermark.
2056 * Condition #1 - Number of requests queued:
2058 * The max number of threads working on the pool is roughly pool->p_maxthreads.
2059 * Every thread could handle up to pool->p_max_same_xprt requests from one
2060 * transport before it moves to another transport. See svc_poll() for details.
2061 * In case all threads in the pool are working on a transport they will handle
2062 * no more than enough_reqs (pool->p_maxthreads * pool->p_max_same_xprt)
2063 * requests in one shot from that transport. We are turning the flow control
2064 * on once the high watermark is reached for a transport so that the underlying
2065 * queue knows the rate of incoming requests is higher than we are able to
2066 * handle.
2068 * The high watermark: 2 * enough_reqs
2069 * The low watermark: enough_reqs
2071 * Condition #2 - Length of the data payload for the queued messages/requests:
2073 * We want to prevent a particular pool exhausting the memory, so once the
2074 * total length of queued requests for the whole pool reaches the high
2075 * watermark we start to turn on the flow control for significant memory
2076 * consumers (individual transports). To keep the implementation simple
2077 * enough, this condition is not exact, because we count only the data part of
2078 * the queued requests and we ignore the overhead. For our purposes this
2079 * should be enough. We should also consider that up to pool->p_maxthreads
2080 * threads for the pool might work on large requests (this is not counted for
2081 * this condition). We need to leave some space for rest of the system and for
2082 * other big memory consumers (like ZFS). Also, after the flow control is
2083 * turned on (on cots transports) we can start to accumulate a few megabytes in
2084 * queues for each transport.
2086 * Usually, the big memory consumers are NFS WRITE requests, so we do not
2087 * expect to see this condition met for other than NFS pools.
2089 * The high watermark: 1/5 of available memory
2090 * The low watermark: 1/6 of available memory
2092 * Once the high watermark is reached we turn the flow control on only for
2093 * transports exceeding a per-transport memory limit. The per-transport
2094 * fraction of memory is calculated as:
2096 * the high watermark / number of transports
2098 * For transports with less than the per-transport fraction of memory consumed,
2099 * the flow control is not turned on, so they are not blocked by a few "hungry"
2100 * transports. Because of this, the total memory consumption for the
2101 * particular pool might grow up to 2 * the high watermark.
2103 * The individual transports are unblocked once their consumption is below:
2105 * per-transport fraction of memory / 2
2107 * or once the total memory consumption for the whole pool falls below the low
2108 * watermark.
2111 static void
2112 svc_flowcontrol(SVCMASTERXPRT *xprt)
2114 SVCPOOL *pool = xprt->xp_pool;
2115 size_t totalmem = ptob(physmem);
2116 int enough_reqs = pool->p_maxthreads * pool->p_max_same_xprt;
2118 ASSERT(MUTEX_HELD(&xprt->xp_req_lock));
2120 /* Should we turn the flow control on? */
2121 if (xprt->xp_full == FALSE) {
2122 /* Is flow control disabled? */
2123 if (svc_flowcontrol_disable != 0)
2124 return;
2126 /* Is there enough requests queued? */
2127 if (xprt->xp_reqs >= enough_reqs * 2) {
2128 xprt->xp_full = TRUE;
2129 return;
2133 * If this pool uses over 20% of memory and this transport is
2134 * significant memory consumer then we are full
2136 if (pool->p_size >= totalmem / 5 &&
2137 xprt->xp_size >= totalmem / 5 / pool->p_lcount)
2138 xprt->xp_full = TRUE;
2140 return;
2143 /* We might want to turn the flow control off */
2145 /* Do we still have enough requests? */
2146 if (xprt->xp_reqs > enough_reqs)
2147 return;
2150 * If this pool still uses over 16% of memory and this transport is
2151 * still significant memory consumer then we are still full
2153 if (pool->p_size >= totalmem / 6 &&
2154 xprt->xp_size >= totalmem / 5 / pool->p_lcount / 2)
2155 return;
2157 /* Turn the flow control off and make sure rpcmod is notified */
2158 xprt->xp_full = FALSE;
2159 xprt->xp_enable = TRUE;
2163 * Main loop of the kernel RPC server
2164 * - wait for input (find a transport with a pending request).
2165 * - dequeue the request
2166 * - call a registered server routine to process the requests
2168 * There can many threads running concurrently in this loop
2169 * on the same or on different transports.
2171 static int
2172 svc_run(SVCPOOL *pool)
2174 SVCMASTERXPRT *xprt = NULL; /* master transport handle */
2175 SVCXPRT *clone_xprt; /* clone for this thread */
2176 proc_t *p = ttoproc(curthread);
2178 /* Allocate a clone transport handle for this thread */
2179 clone_xprt = svc_clone_init();
2182 * The loop iterates until the thread becomes
2183 * idle too long or the transport is gone.
2185 for (;;) {
2186 SVCMASTERXPRT *next;
2187 mblk_t *mp;
2188 bool_t enable;
2189 size_t size;
2191 TRACE_0(TR_FAC_KRPC, TR_SVC_RUN, "svc_run");
2194 * If the process is exiting/killed, return
2195 * immediately without processing any more
2196 * requests.
2198 if (p->p_flag & (SEXITING | SKILLED)) {
2199 svc_thread_exit(pool, clone_xprt);
2200 return (EINTR);
2203 /* Find a transport with a pending request */
2204 next = svc_poll(pool, xprt, clone_xprt);
2207 * If svc_poll() finds a transport with a request
2208 * it latches xp_req_lock on it. Therefore we need
2209 * to dequeue the request and release the lock as
2210 * soon as possible.
2212 ASSERT(next != NULL &&
2213 (next == SVC_EXPRTGONE ||
2214 next == SVC_ETIMEDOUT ||
2215 next == SVC_EINTR ||
2216 MUTEX_HELD(&next->xp_req_lock)));
2218 /* Ooops! Current transport is closing. Unlink now */
2219 if (next == SVC_EXPRTGONE) {
2220 svc_clone_unlink(clone_xprt);
2221 xprt = NULL;
2222 continue;
2225 /* Ooops! Timeout while waiting for a request. Exit */
2226 if (next == SVC_ETIMEDOUT) {
2227 svc_thread_exit(pool, clone_xprt);
2228 return (0);
2232 * Interrupted by a signal while waiting for a
2233 * request. Return to userspace and exit.
2235 if (next == SVC_EINTR) {
2236 svc_thread_exit(pool, clone_xprt);
2237 return (EINTR);
2241 * De-queue the request and release the request lock
2242 * on this transport (latched by svc_poll()).
2244 mp = next->xp_req_head;
2245 next->xp_req_head = mp->b_next;
2246 mp->b_next = (mblk_t *)0;
2247 size = svc_msgsize(mp);
2249 mutex_enter(&pool->p_req_lock);
2250 pool->p_reqs--;
2251 if (pool->p_reqs == 0)
2252 pool->p_qoverflow = FALSE;
2253 pool->p_size -= size;
2254 mutex_exit(&pool->p_req_lock);
2256 next->xp_reqs--;
2257 next->xp_size -= size;
2259 if (next->xp_full)
2260 svc_flowcontrol(next);
2262 TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_DEQ,
2263 "rpc_que_req_deq:pool %p mp %p", pool, mp);
2264 mutex_exit(&next->xp_req_lock);
2267 * If this is a new request on a current transport then
2268 * the clone structure is already properly initialized.
2269 * Otherwise, if the request is on a different transport,
2270 * unlink from the current master and link to
2271 * the one we got a request on.
2273 if (next != xprt) {
2274 if (xprt)
2275 svc_clone_unlink(clone_xprt);
2276 svc_clone_link(next, clone_xprt, NULL);
2277 xprt = next;
2281 * If there are more requests and req_cv hasn't
2282 * been signaled yet then wake up one more thread now.
2284 * We avoid signaling req_cv until the most recently
2285 * signaled thread wakes up and gets CPU to clear
2286 * the `drowsy' flag.
2288 if (!(pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2289 pool->p_asleep == 0)) {
2290 mutex_enter(&pool->p_req_lock);
2292 if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2293 pool->p_asleep == 0)
2294 mutex_exit(&pool->p_req_lock);
2295 else {
2296 pool->p_asleep--;
2297 pool->p_drowsy = TRUE;
2299 cv_signal(&pool->p_req_cv);
2300 mutex_exit(&pool->p_req_lock);
2305 * If there are no asleep/signaled threads, we are
2306 * still below pool->p_maxthreads limit, and no thread is
2307 * currently being created then signal the creator
2308 * for one more service thread.
2310 * The asleep and drowsy checks are not protected
2311 * by a lock since it hurts performance and a wrong
2312 * decision is not essential.
2314 if (pool->p_asleep == 0 && !pool->p_drowsy &&
2315 pool->p_threads + pool->p_detached_threads <
2316 pool->p_maxthreads)
2317 svc_creator_signal(pool);
2320 * Process the request.
2322 svc_getreq(clone_xprt, mp);
2324 /* If thread had a reservation it should have been canceled */
2325 ASSERT(!clone_xprt->xp_reserved);
2328 * If the clone is marked detached then exit.
2329 * The rpcmod slot has already been released
2330 * when we detached this thread.
2332 if (clone_xprt->xp_detached) {
2333 svc_thread_exitdetached(pool, clone_xprt);
2334 return (0);
2338 * Release our reference on the rpcmod
2339 * slot attached to xp_wq->q_ptr.
2341 mutex_enter(&xprt->xp_req_lock);
2342 enable = xprt->xp_enable;
2343 if (enable)
2344 xprt->xp_enable = FALSE;
2345 mutex_exit(&xprt->xp_req_lock);
2346 SVC_RELE(clone_xprt, NULL, enable);
2348 /* NOTREACHED */
2352 * Flush any pending requests for the queue and
2353 * free the associated mblks.
2355 void
2356 svc_queueclean(queue_t *q)
2358 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2359 mblk_t *mp;
2360 SVCPOOL *pool;
2363 * clean up the requests
2365 mutex_enter(&xprt->xp_req_lock);
2366 pool = xprt->xp_pool;
2367 while ((mp = xprt->xp_req_head) != NULL) {
2368 /* remove the request from the list */
2369 xprt->xp_req_head = mp->b_next;
2370 mp->b_next = (mblk_t *)0;
2371 SVC_RELE(xprt, mp, FALSE);
2374 mutex_enter(&pool->p_req_lock);
2375 pool->p_reqs -= xprt->xp_reqs;
2376 pool->p_size -= xprt->xp_size;
2377 mutex_exit(&pool->p_req_lock);
2379 xprt->xp_reqs = 0;
2380 xprt->xp_size = 0;
2381 xprt->xp_full = FALSE;
2382 xprt->xp_enable = FALSE;
2383 mutex_exit(&xprt->xp_req_lock);
2387 * This routine is called by rpcmod to inform kernel RPC that a
2388 * queue is closing. It is called after all the requests have been
2389 * picked up (that is after all the slots on the queue have
2390 * been released by kernel RPC). It is also guaranteed that no more
2391 * request will be delivered on this transport.
2393 * - clear xp_wq to mark the master server transport handle as closing
2394 * - if there are no more threads on this transport close/destroy it
2395 * - otherwise, leave the linked threads to close/destroy the transport
2396 * later.
2398 void
2399 svc_queueclose(queue_t *q)
2401 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2403 if (xprt == NULL) {
2405 * If there is no master xprt associated with this stream,
2406 * then there is nothing to do. This happens regularly
2407 * with connection-oriented listening streams created by
2408 * nfsd.
2410 return;
2413 mutex_enter(&xprt->xp_thread_lock);
2415 ASSERT(xprt->xp_req_head == NULL);
2416 ASSERT(xprt->xp_wq != NULL);
2418 xprt->xp_wq = NULL;
2420 if (xprt->xp_threads == 0) {
2421 SVCPOOL *pool = xprt->xp_pool;
2424 * svc_xprt_cleanup() destroys the transport
2425 * or releases the transport thread lock
2427 svc_xprt_cleanup(xprt, FALSE);
2429 mutex_enter(&pool->p_thread_lock);
2432 * If the pool is in closing state and this was
2433 * the last transport in the pool then signal the creator
2434 * thread to clean up and exit.
2436 if (pool->p_closing && svc_pool_tryexit(pool)) {
2437 return;
2439 mutex_exit(&pool->p_thread_lock);
2440 } else {
2442 * There are still some threads linked to the transport. They
2443 * are very likely sleeping in svc_poll(). We could wake up
2444 * them by broadcasting on the p_req_cv condition variable, but
2445 * that might give us a performance penalty if there are too
2446 * many sleeping threads.
2448 * Instead, we do nothing here. The linked threads will unlink
2449 * themselves and destroy the transport once they are woken up
2450 * on timeout, or by new request. There is no reason to hurry
2451 * up now with the thread wake up.
2455 * NOTICE: No references to the master transport structure
2456 * beyond this point!
2458 mutex_exit(&xprt->xp_thread_lock);
2463 * Interrupt `request delivery' routine called from rpcmod
2464 * - put a request at the tail of the transport request queue
2465 * - insert a hint for svc_poll() into the xprt-ready queue
2466 * - increment the `pending-requests' count for the pool
2467 * - handle flow control
2468 * - wake up a thread sleeping in svc_poll() if necessary
2469 * - if all the threads are running ask the creator for a new one.
2471 bool_t
2472 svc_queuereq(queue_t *q, mblk_t *mp, bool_t flowcontrol)
2474 SVCMASTERXPRT *xprt = ((void **) q->q_ptr)[0];
2475 SVCPOOL *pool = xprt->xp_pool;
2476 size_t size;
2478 TRACE_0(TR_FAC_KRPC, TR_SVC_QUEUEREQ_START, "svc_queuereq_start");
2481 * Step 1.
2482 * Grab the transport's request lock and the
2483 * pool's request lock so that when we put
2484 * the request at the tail of the transport's
2485 * request queue, possibly put the request on
2486 * the xprt ready queue and increment the
2487 * pending request count it looks atomic.
2489 mutex_enter(&xprt->xp_req_lock);
2490 if (flowcontrol && xprt->xp_full) {
2491 mutex_exit(&xprt->xp_req_lock);
2493 return (FALSE);
2495 ASSERT(xprt->xp_full == FALSE);
2496 mutex_enter(&pool->p_req_lock);
2497 if (xprt->xp_req_head == NULL)
2498 xprt->xp_req_head = mp;
2499 else
2500 xprt->xp_req_tail->b_next = mp;
2501 xprt->xp_req_tail = mp;
2504 * Step 2.
2505 * Insert a hint into the xprt-ready queue, increment
2506 * counters, handle flow control, and wake up
2507 * a thread sleeping in svc_poll() if necessary.
2510 /* Insert pointer to this transport into the xprt-ready queue */
2511 svc_xprt_qput(pool, xprt);
2513 /* Increment counters */
2514 pool->p_reqs++;
2515 xprt->xp_reqs++;
2517 size = svc_msgsize(mp);
2518 xprt->xp_size += size;
2519 pool->p_size += size;
2521 /* Handle flow control */
2522 if (flowcontrol)
2523 svc_flowcontrol(xprt);
2525 TRACE_2(TR_FAC_KRPC, TR_NFSFP_QUE_REQ_ENQ,
2526 "rpc_que_req_enq:pool %p mp %p", pool, mp);
2529 * If there are more requests and req_cv hasn't
2530 * been signaled yet then wake up one more thread now.
2532 * We avoid signaling req_cv until the most recently
2533 * signaled thread wakes up and gets CPU to clear
2534 * the `drowsy' flag.
2536 if (pool->p_drowsy || pool->p_reqs <= pool->p_walkers ||
2537 pool->p_asleep == 0) {
2538 mutex_exit(&pool->p_req_lock);
2539 } else {
2540 pool->p_drowsy = TRUE;
2541 pool->p_asleep--;
2544 * Signal wakeup and drop the request lock.
2546 cv_signal(&pool->p_req_cv);
2547 mutex_exit(&pool->p_req_lock);
2549 mutex_exit(&xprt->xp_req_lock);
2552 * Step 3.
2553 * If there are no asleep/signaled threads, we are
2554 * still below pool->p_maxthreads limit, and no thread is
2555 * currently being created then signal the creator
2556 * for one more service thread.
2558 * The asleep and drowsy checks are not not protected
2559 * by a lock since it hurts performance and a wrong
2560 * decision is not essential.
2562 if (pool->p_asleep == 0 && !pool->p_drowsy &&
2563 pool->p_threads + pool->p_detached_threads < pool->p_maxthreads)
2564 svc_creator_signal(pool);
2566 TRACE_1(TR_FAC_KRPC, TR_SVC_QUEUEREQ_END,
2567 "svc_queuereq_end:(%S)", "end");
2569 return (TRUE);
2573 * Reserve a service thread so that it can be detached later.
2574 * This reservation is required to make sure that when it tries to
2575 * detach itself the total number of detached threads does not exceed
2576 * pool->p_maxthreads - pool->p_redline (i.e. that we can have
2577 * up to pool->p_redline non-detached threads).
2579 * If the thread does not detach itself later, it should cancel the
2580 * reservation before returning to svc_run().
2582 * - check if there is room for more reserved/detached threads
2583 * - if so, then increment the `reserved threads' count for the pool
2584 * - mark the thread as reserved (setting the flag in the clone transport
2585 * handle for this thread
2586 * - returns 1 if the reservation succeeded, 0 if it failed.
2589 svc_reserve_thread(SVCXPRT *clone_xprt)
2591 SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2593 /* Recursive reservations are not allowed */
2594 ASSERT(!clone_xprt->xp_reserved);
2595 ASSERT(!clone_xprt->xp_detached);
2597 /* Check pool counts if there is room for reservation */
2598 mutex_enter(&pool->p_thread_lock);
2599 if (pool->p_reserved_threads + pool->p_detached_threads >=
2600 pool->p_maxthreads - pool->p_redline) {
2601 mutex_exit(&pool->p_thread_lock);
2602 return (0);
2604 pool->p_reserved_threads++;
2605 mutex_exit(&pool->p_thread_lock);
2607 /* Mark the thread (clone handle) as reserved */
2608 clone_xprt->xp_reserved = TRUE;
2610 return (1);
2614 * Cancel a reservation for a thread.
2615 * - decrement the `reserved threads' count for the pool
2616 * - clear the flag in the clone transport handle for this thread.
2618 void
2619 svc_unreserve_thread(SVCXPRT *clone_xprt)
2621 SVCPOOL *pool = clone_xprt->xp_master->xp_pool;
2623 /* Thread must have a reservation */
2624 ASSERT(clone_xprt->xp_reserved);
2625 ASSERT(!clone_xprt->xp_detached);
2627 /* Decrement global count */
2628 mutex_enter(&pool->p_thread_lock);
2629 pool->p_reserved_threads--;
2630 mutex_exit(&pool->p_thread_lock);
2632 /* Clear reservation flag */
2633 clone_xprt->xp_reserved = FALSE;
2637 * Detach a thread from its transport, so that it can block for an
2638 * extended time. Because the transport can be closed after the thread is
2639 * detached, the thread should have already sent off a reply if it was
2640 * going to send one.
2642 * - decrement `non-detached threads' count and increment `detached threads'
2643 * counts for the transport
2644 * - decrement the `non-detached threads' and `reserved threads'
2645 * counts and increment the `detached threads' count for the pool
2646 * - release the rpcmod slot
2647 * - mark the clone (thread) as detached.
2649 * No need to return a pointer to the thread's CPR information, since
2650 * the thread has a userland identity.
2652 * NOTICE: a thread must not detach itself without making a prior reservation
2653 * through svc_thread_reserve().
2655 callb_cpr_t *
2656 svc_detach_thread(SVCXPRT *clone_xprt)
2658 SVCMASTERXPRT *xprt = clone_xprt->xp_master;
2659 SVCPOOL *pool = xprt->xp_pool;
2660 bool_t enable;
2662 /* Thread must have a reservation */
2663 ASSERT(clone_xprt->xp_reserved);
2664 ASSERT(!clone_xprt->xp_detached);
2666 /* Bookkeeping for this transport */
2667 mutex_enter(&xprt->xp_thread_lock);
2668 xprt->xp_threads--;
2669 xprt->xp_detached_threads++;
2670 mutex_exit(&xprt->xp_thread_lock);
2672 /* Bookkeeping for the pool */
2673 mutex_enter(&pool->p_thread_lock);
2674 pool->p_threads--;
2675 pool->p_reserved_threads--;
2676 pool->p_detached_threads++;
2677 mutex_exit(&pool->p_thread_lock);
2679 /* Release an rpcmod slot for this request */
2680 mutex_enter(&xprt->xp_req_lock);
2681 enable = xprt->xp_enable;
2682 if (enable)
2683 xprt->xp_enable = FALSE;
2684 mutex_exit(&xprt->xp_req_lock);
2685 SVC_RELE(clone_xprt, NULL, enable);
2687 /* Mark the clone (thread) as detached */
2688 clone_xprt->xp_reserved = FALSE;
2689 clone_xprt->xp_detached = TRUE;
2691 return (NULL);
2695 * This routine is responsible for extracting RDMA plugin master XPRT,
2696 * unregister from the SVCPOOL and initiate plugin specific cleanup.
2697 * It is passed a list/group of rdma transports as records which are
2698 * active in a given registered or unregistered kRPC thread pool. Its shuts
2699 * all active rdma transports in that pool. If the thread active on the trasport
2700 * happens to be last thread for that pool, it will signal the creater thread
2701 * to cleanup the pool and destroy the xprt in svc_queueclose()
2703 void
2704 rdma_stop(rdma_xprt_group_t *rdma_xprts)
2706 SVCMASTERXPRT *xprt;
2707 rdma_xprt_record_t *curr_rec;
2708 queue_t *q;
2709 mblk_t *mp;
2710 int i, rtg_count;
2711 SVCPOOL *pool;
2713 if (rdma_xprts->rtg_count == 0)
2714 return;
2716 rtg_count = rdma_xprts->rtg_count;
2718 for (i = 0; i < rtg_count; i++) {
2719 curr_rec = rdma_xprts->rtg_listhead;
2720 rdma_xprts->rtg_listhead = curr_rec->rtr_next;
2721 rdma_xprts->rtg_count--;
2722 curr_rec->rtr_next = NULL;
2723 xprt = curr_rec->rtr_xprt_ptr;
2724 q = xprt->xp_wq;
2725 svc_rdma_kstop(xprt);
2727 mutex_enter(&xprt->xp_req_lock);
2728 pool = xprt->xp_pool;
2729 while ((mp = xprt->xp_req_head) != NULL) {
2730 rdma_recv_data_t *rdp = (rdma_recv_data_t *)mp->b_rptr;
2732 /* remove the request from the list */
2733 xprt->xp_req_head = mp->b_next;
2734 mp->b_next = (mblk_t *)0;
2736 RDMA_BUF_FREE(rdp->conn, &rdp->rpcmsg);
2737 RDMA_REL_CONN(rdp->conn);
2738 freemsg(mp);
2740 mutex_enter(&pool->p_req_lock);
2741 pool->p_reqs -= xprt->xp_reqs;
2742 pool->p_size -= xprt->xp_size;
2743 mutex_exit(&pool->p_req_lock);
2744 xprt->xp_reqs = 0;
2745 xprt->xp_size = 0;
2746 xprt->xp_full = FALSE;
2747 xprt->xp_enable = FALSE;
2748 mutex_exit(&xprt->xp_req_lock);
2749 svc_queueclose(q);
2750 #ifdef DEBUG
2751 if (rdma_check)
2752 cmn_err(CE_NOTE, "rdma_stop: Exited svc_queueclose\n");
2753 #endif
2755 * Free the rdma transport record for the expunged rdma
2756 * based master transport handle.
2758 kmem_free(curr_rec, sizeof (rdma_xprt_record_t));
2759 if (!rdma_xprts->rtg_listhead)
2760 break;
2766 * rpc_msg_dup/rpc_msg_free
2767 * Currently only used by svc_rpcsec_gss.c but put in this file as it
2768 * may be useful to others in the future.
2769 * But future consumers should be careful cuz so far
2770 * - only tested/used for call msgs (not reply)
2771 * - only tested/used with call verf oa_length==0
2773 struct rpc_msg *
2774 rpc_msg_dup(struct rpc_msg *src)
2776 struct rpc_msg *dst;
2777 struct opaque_auth oa_src, oa_dst;
2779 dst = kmem_alloc(sizeof (*dst), KM_SLEEP);
2781 dst->rm_xid = src->rm_xid;
2782 dst->rm_direction = src->rm_direction;
2784 dst->rm_call.cb_rpcvers = src->rm_call.cb_rpcvers;
2785 dst->rm_call.cb_prog = src->rm_call.cb_prog;
2786 dst->rm_call.cb_vers = src->rm_call.cb_vers;
2787 dst->rm_call.cb_proc = src->rm_call.cb_proc;
2789 /* dup opaque auth call body cred */
2790 oa_src = src->rm_call.cb_cred;
2792 oa_dst.oa_flavor = oa_src.oa_flavor;
2793 oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2795 bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2796 oa_dst.oa_length = oa_src.oa_length;
2798 dst->rm_call.cb_cred = oa_dst;
2800 /* dup or just alloc opaque auth call body verifier */
2801 if (src->rm_call.cb_verf.oa_length > 0) {
2802 oa_src = src->rm_call.cb_verf;
2804 oa_dst.oa_flavor = oa_src.oa_flavor;
2805 oa_dst.oa_base = kmem_alloc(oa_src.oa_length, KM_SLEEP);
2807 bcopy(oa_src.oa_base, oa_dst.oa_base, oa_src.oa_length);
2808 oa_dst.oa_length = oa_src.oa_length;
2810 dst->rm_call.cb_verf = oa_dst;
2811 } else {
2812 oa_dst.oa_flavor = -1; /* will be set later */
2813 oa_dst.oa_base = kmem_alloc(MAX_AUTH_BYTES, KM_SLEEP);
2815 oa_dst.oa_length = 0; /* will be set later */
2817 dst->rm_call.cb_verf = oa_dst;
2819 return (dst);
2821 error:
2822 kmem_free(dst->rm_call.cb_cred.oa_base, dst->rm_call.cb_cred.oa_length);
2823 kmem_free(dst, sizeof (*dst));
2824 return (NULL);
2827 void
2828 rpc_msg_free(struct rpc_msg **msg, int cb_verf_oa_length)
2830 struct rpc_msg *m = *msg;
2832 kmem_free(m->rm_call.cb_cred.oa_base, m->rm_call.cb_cred.oa_length);
2833 m->rm_call.cb_cred.oa_base = NULL;
2834 m->rm_call.cb_cred.oa_length = 0;
2836 kmem_free(m->rm_call.cb_verf.oa_base, cb_verf_oa_length);
2837 m->rm_call.cb_verf.oa_base = NULL;
2838 m->rm_call.cb_verf.oa_length = 0;
2840 kmem_free(m, sizeof (*m));
2841 m = NULL;