Merge remote-tracking branch 'origin/master'
[unleashed/lotheac.git] / usr / src / uts / common / rpc / svc_clts.c
blobf38f8e85ed25b863c79411050c5a16d5fdf63ab0
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 * Copyright 2012 Marcel Telka <marcel@telka.sk>
27 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */
34 * Portions of this source code were derived from Berkeley 4.3 BSD
35 * under license from the Regents of the University of California.
39 * svc_clts.c
40 * Server side for RPC in the kernel.
44 #include <sys/param.h>
45 #include <sys/types.h>
46 #include <sys/sysmacros.h>
47 #include <sys/file.h>
48 #include <sys/stream.h>
49 #include <sys/strsun.h>
50 #include <sys/strsubr.h>
51 #include <sys/tihdr.h>
52 #include <sys/tiuser.h>
53 #include <sys/t_kuser.h>
54 #include <sys/fcntl.h>
55 #include <sys/errno.h>
56 #include <sys/kmem.h>
57 #include <sys/systm.h>
58 #include <sys/cmn_err.h>
59 #include <sys/kstat.h>
60 #include <sys/vtrace.h>
61 #include <sys/debug.h>
63 #include <rpc/types.h>
64 #include <rpc/xdr.h>
65 #include <rpc/auth.h>
66 #include <rpc/clnt.h>
67 #include <rpc/rpc_msg.h>
68 #include <rpc/svc.h>
69 #include <inet/ip.h>
72 * Routines exported through ops vector.
74 static bool_t svc_clts_krecv(SVCXPRT *, mblk_t *, struct rpc_msg *);
75 static bool_t svc_clts_ksend(SVCXPRT *, struct rpc_msg *);
76 static bool_t svc_clts_kgetargs(SVCXPRT *, xdrproc_t, caddr_t);
77 static bool_t svc_clts_kfreeargs(SVCXPRT *, xdrproc_t, caddr_t);
78 static void svc_clts_kdestroy(SVCMASTERXPRT *);
79 static int svc_clts_kdup(struct svc_req *, caddr_t, int,
80 struct dupreq **, bool_t *);
81 static void svc_clts_kdupdone(struct dupreq *, caddr_t,
82 void (*)(), int, int);
83 static int32_t *svc_clts_kgetres(SVCXPRT *, int);
84 static void svc_clts_kclone_destroy(SVCXPRT *);
85 static void svc_clts_kfreeres(SVCXPRT *);
86 static void svc_clts_kstart(SVCMASTERXPRT *);
87 static void svc_clts_kclone_xprt(SVCXPRT *, SVCXPRT *);
88 static void svc_clts_ktattrs(SVCXPRT *, int, void **);
91 * Server transport operations vector.
93 struct svc_ops svc_clts_op = {
94 svc_clts_krecv, /* Get requests */
95 svc_clts_kgetargs, /* Deserialize arguments */
96 svc_clts_ksend, /* Send reply */
97 svc_clts_kfreeargs, /* Free argument data space */
98 svc_clts_kdestroy, /* Destroy transport handle */
99 svc_clts_kdup, /* Check entry in dup req cache */
100 svc_clts_kdupdone, /* Mark entry in dup req cache as done */
101 svc_clts_kgetres, /* Get pointer to response buffer */
102 svc_clts_kfreeres, /* Destroy pre-serialized response header */
103 svc_clts_kclone_destroy, /* Destroy a clone xprt */
104 svc_clts_kstart, /* Tell `ready-to-receive' to rpcmod */
105 svc_clts_kclone_xprt, /* transport specific clone xprt function */
106 svc_clts_ktattrs, /* Transport specific attributes */
107 rpcmod_hold, /* Increment transport reference count */
108 rpcmod_release /* Decrement transport reference count */
112 * Transport private data.
113 * Kept in xprt->xp_p2buf.
115 struct udp_data {
116 mblk_t *ud_resp; /* buffer for response */
117 mblk_t *ud_inmp; /* mblk chain of request */
120 #define UD_MAXSIZE 8800
121 #define UD_INITSIZE 2048
124 * Connectionless server statistics
126 static const struct rpc_clts_server {
127 kstat_named_t rscalls;
128 kstat_named_t rsbadcalls;
129 kstat_named_t rsnullrecv;
130 kstat_named_t rsbadlen;
131 kstat_named_t rsxdrcall;
132 kstat_named_t rsdupchecks;
133 kstat_named_t rsdupreqs;
134 } clts_rsstat_tmpl = {
135 { "calls", KSTAT_DATA_UINT64 },
136 { "badcalls", KSTAT_DATA_UINT64 },
137 { "nullrecv", KSTAT_DATA_UINT64 },
138 { "badlen", KSTAT_DATA_UINT64 },
139 { "xdrcall", KSTAT_DATA_UINT64 },
140 { "dupchecks", KSTAT_DATA_UINT64 },
141 { "dupreqs", KSTAT_DATA_UINT64 }
144 static uint_t clts_rsstat_ndata =
145 sizeof (clts_rsstat_tmpl) / sizeof (kstat_named_t);
147 #define CLONE2STATS(clone_xprt) \
148 (struct rpc_clts_server *)(clone_xprt)->xp_master->xp_p2
150 #define RSSTAT_INCR(stats, x) \
151 atomic_inc_64(&(stats)->x.value.ui64)
154 * Create a transport record.
155 * The transport record, output buffer, and private data structure
156 * are allocated. The output buffer is serialized into using xdrmem.
157 * There is one transport record per user process which implements a
158 * set of services.
160 /* ARGSUSED */
162 svc_clts_kcreate(file_t *fp, uint_t sendsz, struct T_info_ack *tinfo,
163 SVCMASTERXPRT **nxprt)
165 SVCMASTERXPRT *xprt;
166 struct rpcstat *rpcstat;
168 if (nxprt == NULL)
169 return (EINVAL);
171 rpcstat = zone_getspecific(rpcstat_zone_key, curproc->p_zone);
172 ASSERT(rpcstat != NULL);
174 xprt = kmem_zalloc(sizeof (*xprt), KM_SLEEP);
175 xprt->xp_lcladdr.buf = kmem_zalloc(sizeof (sin6_t), KM_SLEEP);
176 xprt->xp_p2 = (caddr_t)rpcstat->rpc_clts_server;
177 xprt->xp_ops = &svc_clts_op;
178 xprt->xp_msg_size = tinfo->TSDU_size;
180 xprt->xp_rtaddr.buf = NULL;
181 xprt->xp_rtaddr.maxlen = tinfo->ADDR_size;
182 xprt->xp_rtaddr.len = 0;
184 *nxprt = xprt;
186 return (0);
190 * Destroy a transport record.
191 * Frees the space allocated for a transport record.
193 static void
194 svc_clts_kdestroy(SVCMASTERXPRT *xprt)
196 if (xprt->xp_netid)
197 kmem_free(xprt->xp_netid, strlen(xprt->xp_netid) + 1);
198 if (xprt->xp_addrmask.maxlen)
199 kmem_free(xprt->xp_addrmask.buf, xprt->xp_addrmask.maxlen);
201 mutex_destroy(&xprt->xp_req_lock);
202 mutex_destroy(&xprt->xp_thread_lock);
204 kmem_free(xprt->xp_lcladdr.buf, sizeof (sin6_t));
205 kmem_free(xprt, sizeof (SVCMASTERXPRT));
209 * Transport-type specific part of svc_xprt_cleanup().
210 * Frees the message buffer space allocated for a clone of a transport record
212 static void
213 svc_clts_kclone_destroy(SVCXPRT *clone_xprt)
215 /* LINTED pointer alignment */
216 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
218 if (ud->ud_resp) {
220 * There should not be any left over results buffer.
222 ASSERT(ud->ud_resp->b_cont == NULL);
225 * Free the T_UNITDATA_{REQ/IND} that svc_clts_krecv
226 * saved.
228 freeb(ud->ud_resp);
230 if (ud->ud_inmp)
231 freemsg(ud->ud_inmp);
235 * svc_tli_kcreate() calls this function at the end to tell
236 * rpcmod that the transport is ready to receive requests.
238 /* ARGSUSED */
239 static void
240 svc_clts_kstart(SVCMASTERXPRT *xprt)
244 static void
245 svc_clts_kclone_xprt(SVCXPRT *src_xprt, SVCXPRT *dst_xprt)
247 struct udp_data *ud_src =
248 (struct udp_data *)src_xprt->xp_p2buf;
249 struct udp_data *ud_dst =
250 (struct udp_data *)dst_xprt->xp_p2buf;
252 if (ud_src->ud_resp)
253 ud_dst->ud_resp = dupb(ud_src->ud_resp);
257 static void
258 svc_clts_ktattrs(SVCXPRT *clone_xprt, int attrflag, void **tattr)
260 *tattr = NULL;
262 switch (attrflag) {
263 case SVC_TATTR_ADDRMASK:
264 *tattr = (void *)&clone_xprt->xp_master->xp_addrmask;
269 * Receive rpc requests.
270 * Pulls a request in off the socket, checks if the packet is intact,
271 * and deserializes the call packet.
273 static bool_t
274 svc_clts_krecv(SVCXPRT *clone_xprt, mblk_t *mp, struct rpc_msg *msg)
276 /* LINTED pointer alignment */
277 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
278 XDR *xdrs = &clone_xprt->xp_xdrin;
279 struct rpc_clts_server *stats = CLONE2STATS(clone_xprt);
280 union T_primitives *pptr;
281 int hdrsz;
282 cred_t *cr;
284 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_START,
285 "svc_clts_krecv_start:");
287 RSSTAT_INCR(stats, rscalls);
290 * The incoming request should start with an M_PROTO message.
292 if (mp->b_datap->db_type != M_PROTO) {
293 goto bad;
297 * The incoming request should be an T_UNITDTA_IND. There
298 * might be other messages coming up the stream, but we can
299 * ignore them.
301 pptr = (union T_primitives *)mp->b_rptr;
302 if (pptr->type != T_UNITDATA_IND) {
303 goto bad;
306 * Do some checking to make sure that the header at least looks okay.
308 hdrsz = (int)(mp->b_wptr - mp->b_rptr);
309 if (hdrsz < TUNITDATAINDSZ ||
310 hdrsz < (pptr->unitdata_ind.OPT_offset +
311 pptr->unitdata_ind.OPT_length) ||
312 hdrsz < (pptr->unitdata_ind.SRC_offset +
313 pptr->unitdata_ind.SRC_length)) {
314 goto bad;
318 * Make sure that the transport provided a usable address.
320 if (pptr->unitdata_ind.SRC_length <= 0) {
321 goto bad;
324 * Point the remote transport address in the service_transport
325 * handle at the address in the request.
327 clone_xprt->xp_rtaddr.buf = (char *)mp->b_rptr +
328 pptr->unitdata_ind.SRC_offset;
329 clone_xprt->xp_rtaddr.len = pptr->unitdata_ind.SRC_length;
332 * Copy the local transport address in the service_transport
333 * handle at the address in the request. We will have only
334 * the local IP address in options.
336 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family = AF_UNSPEC;
337 if (pptr->unitdata_ind.OPT_length && pptr->unitdata_ind.OPT_offset) {
338 char *dstopt = (char *)mp->b_rptr +
339 pptr->unitdata_ind.OPT_offset;
340 struct T_opthdr *toh = (struct T_opthdr *)dstopt;
342 if (toh->level == IPPROTO_IPV6 && toh->status == 0 &&
343 toh->name == IPV6_PKTINFO) {
344 struct in6_pktinfo *pkti;
346 dstopt += sizeof (struct T_opthdr);
347 pkti = (struct in6_pktinfo *)dstopt;
348 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_addr
349 = pkti->ipi6_addr;
350 ((sin6_t *)(clone_xprt->xp_lcladdr.buf))->sin6_family
351 = AF_INET6;
352 } else if (toh->level == IPPROTO_IP && toh->status == 0 &&
353 toh->name == IP_RECVDSTADDR) {
354 dstopt += sizeof (struct T_opthdr);
355 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr
356 = *(struct in_addr *)dstopt;
357 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family
358 = AF_INET;
363 * Save the first mblk which contains the T_unidata_ind in
364 * ud_resp. It will be used to generate the T_unitdata_req
365 * during the reply.
366 * We reuse any options in the T_unitdata_ind for the T_unitdata_req
367 * since we must pass any SCM_UCRED across in order for TX to
368 * work. We also make sure any cred_t is carried across.
370 if (ud->ud_resp) {
371 if (ud->ud_resp->b_cont != NULL) {
372 cmn_err(CE_WARN, "svc_clts_krecv: ud_resp %p, "
373 "b_cont %p", (void *)ud->ud_resp,
374 (void *)ud->ud_resp->b_cont);
376 freeb(ud->ud_resp);
378 /* Move any cred_t to the first mblk in the message */
379 cr = msg_getcred(mp, NULL);
380 if (cr != NULL)
381 mblk_setcred(mp, cr, NOPID);
383 ud->ud_resp = mp;
384 mp = mp->b_cont;
385 ud->ud_resp->b_cont = NULL;
387 xdrmblk_init(xdrs, mp, XDR_DECODE, 0);
389 TRACE_0(TR_FAC_KRPC, TR_XDR_CALLMSG_START,
390 "xdr_callmsg_start:");
391 if (! xdr_callmsg(xdrs, msg)) {
392 XDR_DESTROY(xdrs);
393 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
394 "xdr_callmsg_end:(%S)", "bad");
395 RSSTAT_INCR(stats, rsxdrcall);
396 goto bad;
398 TRACE_1(TR_FAC_KRPC, TR_XDR_CALLMSG_END,
399 "xdr_callmsg_end:(%S)", "good");
401 clone_xprt->xp_xid = msg->rm_xid;
402 ud->ud_inmp = mp;
404 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
405 "svc_clts_krecv_end:(%S)", "good");
406 return (TRUE);
408 bad:
409 freemsg(mp);
410 if (ud->ud_resp) {
412 * There should not be any left over results buffer.
414 ASSERT(ud->ud_resp->b_cont == NULL);
415 freeb(ud->ud_resp);
416 ud->ud_resp = NULL;
419 RSSTAT_INCR(stats, rsbadcalls);
420 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KRECV_END,
421 "svc_clts_krecv_end:(%S)", "bad");
422 return (FALSE);
426 * Send rpc reply.
427 * Serialize the reply packet into the output buffer then
428 * call t_ksndudata to send it.
430 static bool_t
431 svc_clts_ksend(SVCXPRT *clone_xprt, struct rpc_msg *msg)
433 /* LINTED pointer alignment */
434 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
435 XDR *xdrs = &clone_xprt->xp_xdrout;
436 int stat = FALSE;
437 mblk_t *mp;
438 int msgsz;
439 struct T_unitdata_req *udreq;
440 xdrproc_t xdr_results;
441 caddr_t xdr_location;
442 bool_t has_args;
444 TRACE_0(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_START,
445 "svc_clts_ksend_start:");
447 ASSERT(ud->ud_resp != NULL);
450 * If there is a result procedure specified in the reply message,
451 * it will be processed in the xdr_replymsg and SVCAUTH_WRAP.
452 * We need to make sure it won't be processed twice, so we null
453 * it for xdr_replymsg here.
455 has_args = FALSE;
456 if (msg->rm_reply.rp_stat == MSG_ACCEPTED &&
457 msg->rm_reply.rp_acpt.ar_stat == SUCCESS) {
458 if ((xdr_results = msg->acpted_rply.ar_results.proc) != NULL) {
459 has_args = TRUE;
460 xdr_location = msg->acpted_rply.ar_results.where;
461 msg->acpted_rply.ar_results.proc = xdr_void;
462 msg->acpted_rply.ar_results.where = NULL;
466 if (ud->ud_resp->b_cont == NULL) {
468 * Allocate an initial mblk for the response data.
470 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
471 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
472 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
473 "svc_clts_ksend_end:(%S)", "strwaitbuf");
474 return (FALSE);
479 * Initialize the XDR encode stream. Additional mblks
480 * will be allocated if necessary. They will be UD_MAXSIZE
481 * sized.
483 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
486 * Leave some space for protocol headers.
488 (void) XDR_SETPOS(xdrs, 512);
489 mp->b_rptr += 512;
491 msg->rm_xid = clone_xprt->xp_xid;
493 ud->ud_resp->b_cont = mp;
495 TRACE_0(TR_FAC_KRPC, TR_XDR_REPLYMSG_START,
496 "xdr_replymsg_start:");
497 if (!(xdr_replymsg(xdrs, msg) &&
498 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
499 xdr_results, xdr_location)))) {
500 XDR_DESTROY(xdrs);
501 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
502 "xdr_replymsg_end:(%S)", "bad");
503 RPCLOG0(1, "xdr_replymsg/SVCAUTH_WRAP failed\n");
504 goto out;
506 TRACE_1(TR_FAC_KRPC, TR_XDR_REPLYMSG_END,
507 "xdr_replymsg_end:(%S)", "good");
509 } else if (!(xdr_replymsg_body(xdrs, msg) &&
510 (!has_args || SVCAUTH_WRAP(&clone_xprt->xp_auth, xdrs,
511 xdr_results, xdr_location)))) {
512 XDR_DESTROY(xdrs);
513 RPCLOG0(1, "xdr_replymsg_body/SVCAUTH_WRAP failed\n");
514 goto out;
517 XDR_DESTROY(xdrs);
519 msgsz = (int)xmsgsize(ud->ud_resp->b_cont);
521 if (msgsz <= 0 || (clone_xprt->xp_msg_size != -1 &&
522 msgsz > clone_xprt->xp_msg_size)) {
523 #ifdef DEBUG
524 cmn_err(CE_NOTE,
525 "KRPC: server response message of %d bytes; transport limits are [0, %d]",
526 msgsz, clone_xprt->xp_msg_size);
527 #endif
528 goto out;
532 * Construct the T_unitdata_req. We take advantage of the fact that
533 * T_unitdata_ind looks just like T_unitdata_req, except for the
534 * primitive type. Reusing it means we preserve the SCM_UCRED, and
535 * we must preserve it for TX to work.
537 * This has the side effect that we can also pass certain receive-side
538 * options like IPV6_PKTINFO back down the send side. This implies
539 * that we can not ASSERT on a non-NULL db_credp when we have send-side
540 * options in UDP.
542 ASSERT(MBLKL(ud->ud_resp) >= TUNITDATAREQSZ);
543 udreq = (struct T_unitdata_req *)ud->ud_resp->b_rptr;
544 ASSERT(udreq->PRIM_type == T_UNITDATA_IND);
545 udreq->PRIM_type = T_UNITDATA_REQ;
548 * If the local IPv4 transport address is known use it as a source
549 * address for the outgoing UDP packet.
551 if (((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_family == AF_INET) {
552 struct T_opthdr *opthdr;
553 in_pktinfo_t *pktinfo;
554 size_t size;
556 if (udreq->DEST_length == 0)
557 udreq->OPT_offset = _TPI_ALIGN_TOPT(TUNITDATAREQSZ);
558 else
559 udreq->OPT_offset = _TPI_ALIGN_TOPT(udreq->DEST_offset +
560 udreq->DEST_length);
562 udreq->OPT_length = sizeof (struct T_opthdr) +
563 sizeof (in_pktinfo_t);
565 size = udreq->OPT_length + udreq->OPT_offset;
567 /* make sure we have enough space for the option data */
568 mp = reallocb(ud->ud_resp, size, 1);
569 if (mp == NULL)
570 goto out;
571 ud->ud_resp = mp;
572 udreq = (struct T_unitdata_req *)mp->b_rptr;
574 /* set desired option header */
575 opthdr = (struct T_opthdr *)(mp->b_rptr + udreq->OPT_offset);
576 opthdr->len = udreq->OPT_length;
577 opthdr->level = IPPROTO_IP;
578 opthdr->name = IP_PKTINFO;
581 * 1. set source IP of outbound packet
582 * 2. value '0' for index means IP layer uses this as source
583 * address
585 pktinfo = (in_pktinfo_t *)(opthdr + 1);
586 (void) memset(pktinfo, 0, sizeof (in_pktinfo_t));
587 pktinfo->ipi_spec_dst.s_addr =
588 ((sin_t *)(clone_xprt->xp_lcladdr.buf))->sin_addr.s_addr;
589 pktinfo->ipi_ifindex = 0;
591 /* adjust the end of active data */
592 mp->b_wptr = mp->b_rptr + size;
595 put(clone_xprt->xp_wq, ud->ud_resp);
596 stat = TRUE;
597 ud->ud_resp = NULL;
599 out:
600 if (stat == FALSE) {
601 freemsg(ud->ud_resp);
602 ud->ud_resp = NULL;
606 * This is completely disgusting. If public is set it is
607 * a pointer to a structure whose first field is the address
608 * of the function to free that structure and any related
609 * stuff. (see rrokfree in nfs_xdr.c).
611 if (xdrs->x_public) {
612 /* LINTED pointer alignment */
613 (**((int (**)())xdrs->x_public))(xdrs->x_public);
616 TRACE_1(TR_FAC_KRPC, TR_SVC_CLTS_KSEND_END,
617 "svc_clts_ksend_end:(%S)", "done");
618 return (stat);
622 * Deserialize arguments.
624 static bool_t
625 svc_clts_kgetargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
626 caddr_t args_ptr)
629 /* LINTED pointer alignment */
630 return (SVCAUTH_UNWRAP(&clone_xprt->xp_auth, &clone_xprt->xp_xdrin,
631 xdr_args, args_ptr));
635 static bool_t
636 svc_clts_kfreeargs(SVCXPRT *clone_xprt, xdrproc_t xdr_args,
637 caddr_t args_ptr)
639 /* LINTED pointer alignment */
640 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
641 XDR *xdrs = &clone_xprt->xp_xdrin;
642 bool_t retval;
644 if (args_ptr) {
645 xdrs->x_op = XDR_FREE;
646 retval = (*xdr_args)(xdrs, args_ptr);
647 } else
648 retval = TRUE;
650 XDR_DESTROY(xdrs);
652 if (ud->ud_inmp) {
653 freemsg(ud->ud_inmp);
654 ud->ud_inmp = NULL;
657 return (retval);
660 static int32_t *
661 svc_clts_kgetres(SVCXPRT *clone_xprt, int size)
663 /* LINTED pointer alignment */
664 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
665 XDR *xdrs = &clone_xprt->xp_xdrout;
666 mblk_t *mp;
667 int32_t *buf;
668 struct rpc_msg rply;
671 * Allocate an initial mblk for the response data.
673 while ((mp = allocb(UD_INITSIZE, BPRI_LO)) == NULL) {
674 if (strwaitbuf(UD_INITSIZE, BPRI_LO)) {
675 return (NULL);
679 mp->b_cont = NULL;
682 * Initialize the XDR encode stream. Additional mblks
683 * will be allocated if necessary. They will be UD_MAXSIZE
684 * sized.
686 xdrmblk_init(xdrs, mp, XDR_ENCODE, UD_MAXSIZE);
689 * Leave some space for protocol headers.
691 (void) XDR_SETPOS(xdrs, 512);
692 mp->b_rptr += 512;
695 * Assume a successful RPC since most of them are.
697 rply.rm_xid = clone_xprt->xp_xid;
698 rply.rm_direction = REPLY;
699 rply.rm_reply.rp_stat = MSG_ACCEPTED;
700 rply.acpted_rply.ar_verf = clone_xprt->xp_verf;
701 rply.acpted_rply.ar_stat = SUCCESS;
703 if (!xdr_replymsg_hdr(xdrs, &rply)) {
704 XDR_DESTROY(xdrs);
705 freeb(mp);
706 return (NULL);
709 buf = XDR_INLINE(xdrs, size);
711 if (buf == NULL) {
712 XDR_DESTROY(xdrs);
713 freeb(mp);
714 } else {
715 ud->ud_resp->b_cont = mp;
718 return (buf);
721 static void
722 svc_clts_kfreeres(SVCXPRT *clone_xprt)
724 /* LINTED pointer alignment */
725 struct udp_data *ud = (struct udp_data *)clone_xprt->xp_p2buf;
727 if (ud->ud_resp == NULL || ud->ud_resp->b_cont == NULL)
728 return;
730 XDR_DESTROY(&clone_xprt->xp_xdrout);
733 * SVC_FREERES() is called whenever the server decides not to
734 * send normal reply. Thus, we expect only one mblk to be allocated,
735 * because we have not attempted any XDR encoding.
736 * If we do any XDR encoding and we get an error, then SVC_REPLY()
737 * will freemsg(ud->ud_resp);
739 ASSERT(ud->ud_resp->b_cont->b_cont == NULL);
740 freeb(ud->ud_resp->b_cont);
741 ud->ud_resp->b_cont = NULL;
745 * the dup cacheing routines below provide a cache of non-failure
746 * transaction id's. rpc service routines can use this to detect
747 * retransmissions and re-send a non-failure response.
751 * MAXDUPREQS is the number of cached items. It should be adjusted
752 * to the service load so that there is likely to be a response entry
753 * when the first retransmission comes in.
755 #define MAXDUPREQS 8192
758 * This should be appropriately scaled to MAXDUPREQS. To produce as less as
759 * possible collisions it is suggested to set this to a prime.
761 #define DRHASHSZ 2053
763 #define XIDHASH(xid) ((xid) % DRHASHSZ)
764 #define DRHASH(dr) XIDHASH((dr)->dr_xid)
765 #define REQTOXID(req) ((req)->rq_xprt->xp_xid)
767 static int ndupreqs = 0;
768 int maxdupreqs = MAXDUPREQS;
769 static kmutex_t dupreq_lock;
770 static struct dupreq *drhashtbl[DRHASHSZ];
771 static int drhashstat[DRHASHSZ];
773 static void unhash(struct dupreq *);
776 * drmru points to the head of a circular linked list in lru order.
777 * drmru->dr_next == drlru
779 struct dupreq *drmru;
782 * PSARC 2003/523 Contract Private Interface
783 * svc_clts_kdup
784 * Changes must be reviewed by Solaris File Sharing
785 * Changes must be communicated to contract-2003-523@sun.com
787 * svc_clts_kdup searches the request cache and returns 0 if the
788 * request is not found in the cache. If it is found, then it
789 * returns the state of the request (in progress or done) and
790 * the status or attributes that were part of the original reply.
792 * If DUP_DONE (there is a duplicate) svc_clts_kdup copies over the
793 * value of the response. In that case, also return in *dupcachedp
794 * whether the response free routine is cached in the dupreq - in which case
795 * the caller should not be freeing it, because it will be done later
796 * in the svc_clts_kdup code when the dupreq is reused.
798 static int
799 svc_clts_kdup(struct svc_req *req, caddr_t res, int size, struct dupreq **drpp,
800 bool_t *dupcachedp)
802 struct rpc_clts_server *stats = CLONE2STATS(req->rq_xprt);
803 struct dupreq *dr;
804 uint32_t xid;
805 uint32_t drhash;
806 int status;
808 xid = REQTOXID(req);
809 mutex_enter(&dupreq_lock);
810 RSSTAT_INCR(stats, rsdupchecks);
812 * Check to see whether an entry already exists in the cache.
814 dr = drhashtbl[XIDHASH(xid)];
815 while (dr != NULL) {
816 if (dr->dr_xid == xid &&
817 dr->dr_proc == req->rq_proc &&
818 dr->dr_prog == req->rq_prog &&
819 dr->dr_vers == req->rq_vers &&
820 dr->dr_addr.len == req->rq_xprt->xp_rtaddr.len &&
821 bcmp(dr->dr_addr.buf, req->rq_xprt->xp_rtaddr.buf,
822 dr->dr_addr.len) == 0) {
823 status = dr->dr_status;
824 if (status == DUP_DONE) {
825 bcopy(dr->dr_resp.buf, res, size);
826 if (dupcachedp != NULL)
827 *dupcachedp = (dr->dr_resfree != NULL);
828 } else {
829 dr->dr_status = DUP_INPROGRESS;
830 *drpp = dr;
832 RSSTAT_INCR(stats, rsdupreqs);
833 mutex_exit(&dupreq_lock);
834 return (status);
836 dr = dr->dr_chain;
840 * There wasn't an entry, either allocate a new one or recycle
841 * an old one.
843 if (ndupreqs < maxdupreqs) {
844 dr = kmem_alloc(sizeof (*dr), KM_NOSLEEP);
845 if (dr == NULL) {
846 mutex_exit(&dupreq_lock);
847 return (DUP_ERROR);
849 dr->dr_resp.buf = NULL;
850 dr->dr_resp.maxlen = 0;
851 dr->dr_addr.buf = NULL;
852 dr->dr_addr.maxlen = 0;
853 if (drmru) {
854 dr->dr_next = drmru->dr_next;
855 drmru->dr_next = dr;
856 } else {
857 dr->dr_next = dr;
859 ndupreqs++;
860 } else {
861 dr = drmru->dr_next;
862 while (dr->dr_status == DUP_INPROGRESS) {
863 dr = dr->dr_next;
864 if (dr == drmru->dr_next) {
865 cmn_err(CE_WARN, "svc_clts_kdup no slots free");
866 mutex_exit(&dupreq_lock);
867 return (DUP_ERROR);
870 unhash(dr);
871 if (dr->dr_resfree) {
872 (*dr->dr_resfree)(dr->dr_resp.buf);
875 dr->dr_resfree = NULL;
876 drmru = dr;
878 dr->dr_xid = REQTOXID(req);
879 dr->dr_prog = req->rq_prog;
880 dr->dr_vers = req->rq_vers;
881 dr->dr_proc = req->rq_proc;
882 if (dr->dr_addr.maxlen < req->rq_xprt->xp_rtaddr.len) {
883 if (dr->dr_addr.buf != NULL)
884 kmem_free(dr->dr_addr.buf, dr->dr_addr.maxlen);
885 dr->dr_addr.maxlen = req->rq_xprt->xp_rtaddr.len;
886 dr->dr_addr.buf = kmem_alloc(dr->dr_addr.maxlen,
887 KM_NOSLEEP);
888 if (dr->dr_addr.buf == NULL) {
889 dr->dr_addr.maxlen = 0;
890 dr->dr_status = DUP_DROP;
891 mutex_exit(&dupreq_lock);
892 return (DUP_ERROR);
895 dr->dr_addr.len = req->rq_xprt->xp_rtaddr.len;
896 bcopy(req->rq_xprt->xp_rtaddr.buf, dr->dr_addr.buf, dr->dr_addr.len);
897 if (dr->dr_resp.maxlen < size) {
898 if (dr->dr_resp.buf != NULL)
899 kmem_free(dr->dr_resp.buf, dr->dr_resp.maxlen);
900 dr->dr_resp.maxlen = (unsigned int)size;
901 dr->dr_resp.buf = kmem_alloc(size, KM_NOSLEEP);
902 if (dr->dr_resp.buf == NULL) {
903 dr->dr_resp.maxlen = 0;
904 dr->dr_status = DUP_DROP;
905 mutex_exit(&dupreq_lock);
906 return (DUP_ERROR);
909 dr->dr_status = DUP_INPROGRESS;
911 drhash = (uint32_t)DRHASH(dr);
912 dr->dr_chain = drhashtbl[drhash];
913 drhashtbl[drhash] = dr;
914 drhashstat[drhash]++;
915 mutex_exit(&dupreq_lock);
916 *drpp = dr;
917 return (DUP_NEW);
921 * PSARC 2003/523 Contract Private Interface
922 * svc_clts_kdupdone
923 * Changes must be reviewed by Solaris File Sharing
924 * Changes must be communicated to contract-2003-523@sun.com
926 * svc_clts_kdupdone marks the request done (DUP_DONE or DUP_DROP)
927 * and stores the response.
929 static void
930 svc_clts_kdupdone(struct dupreq *dr, caddr_t res, void (*dis_resfree)(),
931 int size, int status)
934 ASSERT(dr->dr_resfree == NULL);
935 if (status == DUP_DONE) {
936 bcopy(res, dr->dr_resp.buf, size);
937 dr->dr_resfree = dis_resfree;
939 dr->dr_status = status;
943 * This routine expects that the mutex, dupreq_lock, is already held.
945 static void
946 unhash(struct dupreq *dr)
948 struct dupreq *drt;
949 struct dupreq *drtprev = NULL;
950 uint32_t drhash;
952 ASSERT(MUTEX_HELD(&dupreq_lock));
954 drhash = (uint32_t)DRHASH(dr);
955 drt = drhashtbl[drhash];
956 while (drt != NULL) {
957 if (drt == dr) {
958 drhashstat[drhash]--;
959 if (drtprev == NULL) {
960 drhashtbl[drhash] = drt->dr_chain;
961 } else {
962 drtprev->dr_chain = drt->dr_chain;
964 return;
966 drtprev = drt;
967 drt = drt->dr_chain;
971 void
972 svc_clts_stats_init(zoneid_t zoneid, struct rpc_clts_server **statsp)
974 kstat_t *ksp;
975 kstat_named_t *knp;
977 knp = rpcstat_zone_init_common(zoneid, "unix", "rpc_clts_server",
978 (const kstat_named_t *)&clts_rsstat_tmpl,
979 sizeof (clts_rsstat_tmpl));
981 * Backwards compatibility for old kstat clients
983 ksp = kstat_create_zone("unix", 0, "rpc_server", "rpc",
984 KSTAT_TYPE_NAMED, clts_rsstat_ndata,
985 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid);
986 if (ksp) {
987 ksp->ks_data = knp;
988 kstat_install(ksp);
990 *statsp = (struct rpc_clts_server *)knp;
993 void
994 svc_clts_stats_fini(zoneid_t zoneid, struct rpc_clts_server **statsp)
996 rpcstat_zone_fini_common(zoneid, "unix", "rpc_clts_server");
997 kstat_delete_byname_zone("unix", 0, "rpc_server", zoneid);
998 kmem_free(*statsp, sizeof (clts_rsstat_tmpl));
1001 void
1002 svc_clts_init()
1005 * Check to make sure that the clts private data will fit into
1006 * the stack buffer allocated by svc_run. The compiler should
1007 * remove this check, but it's a safety net if the udp_data
1008 * structure ever changes.
1010 /*CONSTANTCONDITION*/
1011 ASSERT(sizeof (struct udp_data) <= SVC_P2LEN);
1013 mutex_init(&dupreq_lock, NULL, MUTEX_DEFAULT, NULL);