4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
26 #include <sys/types.h>
27 #include <sys/regset.h>
28 #include <sys/privregs.h>
29 #include <sys/pci_impl.h>
30 #include <sys/cpuvar.h>
31 #include <sys/x86_archext.h>
32 #include <sys/cmn_err.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
36 #include <sys/cyclic.h>
37 #include <sys/sysevent.h>
38 #include <sys/smbios.h>
39 #include <sys/mca_x86.h>
40 #include <sys/mca_amd.h>
42 #include <sys/mc_amd.h>
45 #include <sys/sunddi.h>
47 #include <sys/fm/util.h>
48 #include <sys/fm/protocol.h>
49 #include <sys/fm/cpu/AMD.h>
50 #include <sys/fm/smb/fmsmb.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpi/acpi_pci.h>
53 #include <sys/acpica.h>
54 #include <sys/cpu_module.h>
57 #include "ao_mca_disp.h"
59 #define AO_F_REVS_FG (X86_CHIPREV_AMD_F_REV_F | X86_CHIPREV_AMD_F_REV_G)
61 int ao_mca_smi_disable
= 1; /* attempt to disable SMI polling */
63 extern int x86gentopo_legacy
; /* x86 generic topology support */
66 uint32_t ctl_revmask
; /* rev(s) to which this applies */
67 uint64_t ctl_bits
; /* mca ctl reg bitmask to set */
71 * Additional NB MCA ctl initialization for revs F and G
73 static const struct ao_ctl_init ao_nb_ctl_init
[] = {
74 { AO_F_REVS_FG
, AMD_NB_CTL_INIT_REV_FG
},
75 { X86_CHIPREV_UNKNOWN
, 0 }
78 typedef struct ao_bank_cfg
{
79 uint64_t bank_ctl_init_cmn
; /* Common init value */
80 const struct ao_ctl_init
*bank_ctl_init_extra
; /* Extra for each rev */
81 void (*bank_misc_initfunc
)(cmi_hdl_t
, ao_ms_data_t
*, uint32_t);
85 static void nb_mcamisc_init(cmi_hdl_t
, ao_ms_data_t
*, uint32_t);
87 static const ao_bank_cfg_t ao_bank_cfgs
[] = {
88 { AMD_DC_CTL_INIT_CMN
, NULL
, NULL
, AMD_MSR_DC_MASK
},
89 { AMD_IC_CTL_INIT_CMN
, NULL
, NULL
, AMD_MSR_IC_MASK
},
90 { AMD_BU_CTL_INIT_CMN
, NULL
, NULL
, AMD_MSR_BU_MASK
},
91 { AMD_LS_CTL_INIT_CMN
, NULL
, NULL
, AMD_MSR_LS_MASK
},
92 { AMD_NB_CTL_INIT_CMN
, &ao_nb_ctl_init
[0], nb_mcamisc_init
,
96 static int ao_nbanks
= sizeof (ao_bank_cfgs
) / sizeof (ao_bank_cfgs
[0]);
99 * This is quite awful but necessary to work around x86 system vendor's view of
100 * the world. Other operating systems (you know who you are) don't understand
101 * Opteron-specific error handling, so BIOS and system vendors often hide these
102 * conditions from them by using SMI polling to copy out any errors from the
103 * machine-check registers. When Solaris runs on a system with this feature,
104 * we want to disable the SMI polling so we can use FMA instead. Sadly, there
105 * isn't even a standard self-describing way to express the whole situation,
106 * so we have to resort to hard-coded values. This should all be changed to
107 * be a self-describing vendor-specific SMBIOS structure in the future.
109 static const struct ao_smi_disable
{
110 const char *asd_sys_vendor
; /* SMB_TYPE_SYSTEM vendor prefix */
111 const char *asd_sys_product
; /* SMB_TYPE_SYSTEM product prefix */
112 const char *asd_bios_vendor
; /* SMB_TYPE_BIOS vendor prefix */
113 uint8_t asd_code
; /* output code for SMI disable */
114 } ao_smi_disable
[] = {
115 { "Sun Microsystems", "Galaxy12",
116 "American Megatrends", 0x59 },
117 { "Sun Microsystems", "Sun Fire X4100 Server",
118 "American Megatrends", 0x59 },
119 { "Sun Microsystems", "Sun Fire X4200 Server",
120 "American Megatrends", 0x59 },
121 { NULL
, NULL
, NULL
, 0 }
125 ao_disp_match_r4(uint16_t ref
, uint8_t r4
)
127 static const uint16_t ao_r4_map
[] = {
128 AO_MCA_R4_BIT_ERR
, /* MCAX86_ERRCODE_RRRR_ERR */
129 AO_MCA_R4_BIT_RD
, /* MCAX86_ERRCODE_RRRR_RD */
130 AO_MCA_R4_BIT_WR
, /* MCAX86_ERRCODE_RRRR_WR */
131 AO_MCA_R4_BIT_DRD
, /* MCAX86_ERRCODE_RRRR_DRD */
132 AO_MCA_R4_BIT_DWR
, /* MCAX86_ERRCODE_RRRR_DWR */
133 AO_MCA_R4_BIT_IRD
, /* MCAX86_ERRCODE_RRRR_IRD */
134 AO_MCA_R4_BIT_PREFETCH
, /* MCAX86_ERRCODE_RRRR_PREFETCH */
135 AO_MCA_R4_BIT_EVICT
, /* MCAX86_ERRCODE_RRRR_EVICT */
136 AO_MCA_R4_BIT_SNOOP
/* MCAX86_ERRCODE_RRRR_SNOOP */
139 ASSERT(r4
< sizeof (ao_r4_map
) / sizeof (uint16_t));
141 return ((ref
& ao_r4_map
[r4
]) != 0);
145 ao_disp_match_pp(uint8_t ref
, uint8_t pp
)
147 static const uint8_t ao_pp_map
[] = {
148 AO_MCA_PP_BIT_SRC
, /* MCAX86_ERRCODE_PP_SRC */
149 AO_MCA_PP_BIT_RES
, /* MCAX86_ERRCODE_PP_RES */
150 AO_MCA_PP_BIT_OBS
, /* MCAX86_ERRCODE_PP_OBS */
151 AO_MCA_PP_BIT_GEN
/* MCAX86_ERRCODE_PP_GEN */
154 ASSERT(pp
< sizeof (ao_pp_map
) / sizeof (uint8_t));
156 return ((ref
& ao_pp_map
[pp
]) != 0);
160 ao_disp_match_ii(uint8_t ref
, uint8_t ii
)
162 static const uint8_t ao_ii_map
[] = {
163 AO_MCA_II_BIT_MEM
, /* MCAX86_ERRCODE_II_MEM */
165 AO_MCA_II_BIT_IO
, /* MCAX86_ERRCODE_II_IO */
166 AO_MCA_II_BIT_GEN
/* MCAX86_ERRCODE_II_GEN */
169 ASSERT(ii
< sizeof (ao_ii_map
) / sizeof (uint8_t));
171 return ((ref
& ao_ii_map
[ii
]) != 0);
175 bit_strip(uint16_t *codep
, uint16_t mask
, uint16_t shift
)
177 uint8_t val
= (*codep
& mask
) >> shift
;
182 #define BIT_STRIP(codep, name) \
183 bit_strip(codep, MCAX86_ERRCODE_##name##_MASK, \
184 MCAX86_ERRCODE_##name##_SHIFT)
188 ao_disp_match_one(const ao_error_disp_t
*aed
, uint64_t status
, uint32_t rev
,
191 uint16_t code
= MCAX86_ERRCODE(status
);
192 uint8_t extcode
= AMD_EXT_ERRCODE(status
);
193 uint64_t stat_mask
= aed
->aed_stat_mask
;
194 uint64_t stat_mask_res
= aed
->aed_stat_mask_res
;
197 * If the bank's status register indicates overflow, then we can no
198 * longer rely on the value of CECC: our experience with actual fault
199 * injection has shown that multiple CE's overwriting each other shows
200 * AMD_BANK_STAT_CECC and AMD_BANK_STAT_UECC both set to zero. This
201 * should be clarified in a future BKDG or by the Revision Guide.
202 * This behaviour is fixed in revision F.
204 if (bankno
== AMD_MCA_BANK_NB
&&
205 !X86_CHIPREV_ATLEAST(rev
, X86_CHIPREV_AMD_F_REV_F
) &&
206 status
& MSR_MC_STATUS_OVER
) {
207 stat_mask
&= ~AMD_BANK_STAT_CECC
;
208 stat_mask_res
&= ~AMD_BANK_STAT_CECC
;
211 if ((status
& stat_mask
) != stat_mask_res
)
215 * r4 and pp bits are stored separately, so we mask off and compare them
216 * for the code types that use them. Once we've taken the r4 and pp
217 * bits out of the equation, we can directly compare the resulting code
218 * with the one stored in the ao_error_disp_t.
220 if (AMD_ERRCODE_ISMEM(code
)) {
221 uint8_t r4
= BIT_STRIP(&code
, RRRR
);
223 if (!ao_disp_match_r4(aed
->aed_stat_r4_bits
, r4
))
226 } else if (AMD_ERRCODE_ISBUS(code
)) {
227 uint8_t r4
= BIT_STRIP(&code
, RRRR
);
228 uint8_t pp
= BIT_STRIP(&code
, PP
);
229 uint8_t ii
= BIT_STRIP(&code
, II
);
231 if (!ao_disp_match_r4(aed
->aed_stat_r4_bits
, r4
) ||
232 !ao_disp_match_pp(aed
->aed_stat_pp_bits
, pp
) ||
233 !ao_disp_match_ii(aed
->aed_stat_ii_bits
, ii
))
237 return (code
== aed
->aed_stat_code
&& extcode
== aed
->aed_stat_extcode
);
242 ao_ms_disp_match(cmi_hdl_t hdl
, int ismc
, int banknum
, uint64_t status
,
243 uint64_t addr
, uint64_t misc
, void *mslogout
)
245 ao_ms_data_t
*ao
= cms_hdl_getcmsdata(hdl
);
246 uint32_t rev
= ao
->ao_ms_shared
->aos_chiprev
;
247 const ao_error_disp_t
*aed
;
249 for (aed
= ao_error_disp
[banknum
]; aed
->aed_stat_mask
!= 0; aed
++) {
250 if (ao_disp_match_one(aed
, status
, rev
, banknum
))
251 return ((cms_cookie_t
)aed
);
259 ao_ms_ereport_class(cmi_hdl_t hdl
, cms_cookie_t mscookie
,
260 const char **cpuclsp
, const char **leafclsp
)
262 const ao_error_disp_t
*aed
= mscookie
;
265 *cpuclsp
= FM_EREPORT_CPU_AMD
;
266 *leafclsp
= aed
->aed_class
;
271 ao_chip_once(ao_ms_data_t
*ao
, enum ao_cfgonce_bitnum what
)
273 return (atomic_set_long_excl(&ao
->ao_ms_shared
->aos_cfgonce
,
274 what
) == 0 ? B_TRUE
: B_FALSE
);
278 * This knob exists in case any platform has a problem with our default
279 * policy of disabling any interrupt registered in the NB MC4_MISC
280 * register. Setting this may cause Solaris and external entities
281 * who also have an interest in this register to argue over available
282 * telemetry (so setting it is generally not recommended).
284 int ao_nb_cfg_mc4misc_noseize
= 0;
287 * The BIOS may have setup to receive SMI on counter overflow. It may also
288 * have locked various fields or made them read-only. We will clear any
289 * SMI request and leave the register locked. We will also clear the
290 * counter and enable counting - while we don't use the counter it is nice
291 * to have it enabled for verification and debug work.
294 nb_mcamisc_init(cmi_hdl_t hdl
, ao_ms_data_t
*ao
, uint32_t rev
)
298 if (!X86_CHIPREV_MATCH(rev
, AO_F_REVS_FG
))
301 if (cmi_hdl_rdmsr(hdl
, AMD_MSR_NB_MISC
, &val
) != CMI_SUCCESS
)
304 ao
->ao_ms_shared
->aos_bcfg_nb_misc
= val
;
306 if (ao_nb_cfg_mc4misc_noseize
)
307 return; /* stash BIOS value, but no changes */
311 * The Valid bit tells us whether the CtrP bit is defined; if it
312 * is the CtrP bit tells us whether an ErrCount field is present.
313 * If not then there is nothing for us to do.
315 if (!(val
& AMD_NB_MISC_VALID
) || !(val
& AMD_NB_MISC_CTRP
))
320 nval
|= AMD_NB_MISC_CNTEN
; /* enable ECC error counting */
321 nval
&= ~AMD_NB_MISC_ERRCOUNT_MASK
; /* clear ErrCount */
322 nval
&= ~AMD_NB_MISC_OVRFLW
; /* clear Ovrflw */
323 nval
&= ~AMD_NB_MISC_INTTYPE_MASK
; /* no interrupt on overflow */
324 nval
|= AMD_NB_MISC_LOCKED
;
327 uint64_t locked
= val
& AMD_NB_MISC_LOCKED
;
330 ao_bankstatus_prewrite(hdl
, ao
);
332 (void) cmi_hdl_wrmsr(hdl
, AMD_MSR_NB_MISC
, nval
);
335 ao_bankstatus_postwrite(hdl
, ao
);
340 * NorthBridge (NB) MCA Configuration.
342 * We add and remove bits from the BIOS-configured value, rather than
343 * writing an absolute value. The variables ao_nb_cfg_{add,remove}_cmn and
344 * ap_nb_cfg_{add,remove}_revFG are available for modification via kmdb
345 * and /etc/system. The revision-specific adds and removes are applied
346 * after the common changes, and one write is made to the config register.
347 * These are not intended for watchdog configuration via these variables -
348 * use the watchdog policy below.
352 * Bits to be added to the NB configuration register - all revs.
354 uint32_t ao_nb_cfg_add_cmn
= AMD_NB_CFG_ADD_CMN
;
357 * Bits to be cleared from the NB configuration register - all revs.
359 uint32_t ao_nb_cfg_remove_cmn
= AMD_NB_CFG_REMOVE_CMN
;
362 * Bits to be added to the NB configuration register - revs F and G.
364 uint32_t ao_nb_cfg_add_revFG
= AMD_NB_CFG_ADD_REV_FG
;
367 * Bits to be cleared from the NB configuration register - revs F and G.
369 uint32_t ao_nb_cfg_remove_revFG
= AMD_NB_CFG_REMOVE_REV_FG
;
372 uint32_t cfg_revmask
;
374 uint32_t *cfg_remove_p
;
377 static const struct ao_nb_cfg ao_cfg_extra
[] = {
378 { AO_F_REVS_FG
, &ao_nb_cfg_add_revFG
, &ao_nb_cfg_remove_revFG
},
379 { X86_CHIPREV_UNKNOWN
, NULL
, NULL
}
383 * Bits to be used if we configure the NorthBridge (NB) Watchdog. The watchdog
384 * triggers a machine check exception when no response to an NB system access
385 * occurs within a specified time interval.
387 uint32_t ao_nb_cfg_wdog
=
388 AMD_NB_CFG_WDOGTMRCNTSEL_4095
|
389 AMD_NB_CFG_WDOGTMRBASESEL_1MS
;
392 * The default watchdog policy is to enable it (at the above rate) if it
393 * is disabled; if it is enabled then we leave it enabled at the rate
394 * chosen by the BIOS.
397 AO_NB_WDOG_LEAVEALONE
, /* Don't touch watchdog config */
398 AO_NB_WDOG_DISABLE
, /* Always disable watchdog */
399 AO_NB_WDOG_ENABLE_IF_DISABLED
, /* If disabled, enable at our rate */
400 AO_NB_WDOG_ENABLE_FORCE_RATE
/* Enable and set our rate */
401 } ao_nb_watchdog_policy
= AO_NB_WDOG_ENABLE_IF_DISABLED
;
404 ao_nb_cfg(ao_ms_data_t
*ao
, uint32_t rev
)
406 const struct ao_nb_cfg
*nbcp
= &ao_cfg_extra
[0];
407 uint_t procnodeid
= pg_plat_hw_instance_id(CPU
, PGHW_PROCNODE
);
411 * Read the NorthBridge (NB) configuration register in PCI space,
412 * modify the settings accordingly, and store the new value back.
413 * Note that the stashed BIOS config value aos_bcfg_nb_cfg is used
414 * in ereport payload population to determine ECC syndrome type for
417 ao
->ao_ms_shared
->aos_bcfg_nb_cfg
= val
=
418 ao_pcicfg_read(procnodeid
, MC_FUNC_MISCCTL
, MC_CTL_REG_NBCFG
);
420 switch (ao_nb_watchdog_policy
) {
421 case AO_NB_WDOG_LEAVEALONE
:
424 case AO_NB_WDOG_DISABLE
:
425 val
&= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK
;
426 val
&= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK
;
427 val
|= AMD_NB_CFG_WDOGTMRDIS
;
431 cmn_err(CE_NOTE
, "ao_nb_watchdog_policy=%d unrecognised, "
432 "using default policy", ao_nb_watchdog_policy
);
435 case AO_NB_WDOG_ENABLE_IF_DISABLED
:
436 if (!(val
& AMD_NB_CFG_WDOGTMRDIS
))
437 break; /* if enabled leave rate intact */
440 case AO_NB_WDOG_ENABLE_FORCE_RATE
:
441 val
&= ~AMD_NB_CFG_WDOGTMRBASESEL_MASK
;
442 val
&= ~AMD_NB_CFG_WDOGTMRCNTSEL_MASK
;
443 val
&= ~AMD_NB_CFG_WDOGTMRDIS
;
444 val
|= ao_nb_cfg_wdog
;
449 * Now apply bit adds and removes, first those common to all revs
450 * and then the revision-specific ones.
452 val
&= ~ao_nb_cfg_remove_cmn
;
453 val
|= ao_nb_cfg_add_cmn
;
455 while (nbcp
->cfg_revmask
!= X86_CHIPREV_UNKNOWN
) {
456 if (X86_CHIPREV_MATCH(rev
, nbcp
->cfg_revmask
)) {
457 val
&= ~(*nbcp
->cfg_remove_p
);
458 val
|= *nbcp
->cfg_add_p
;
463 ao_pcicfg_write(procnodeid
, MC_FUNC_MISCCTL
, MC_CTL_REG_NBCFG
, val
);
467 ao_dram_cfg(ao_ms_data_t
*ao
, uint32_t rev
)
469 uint_t procnodeid
= pg_plat_hw_instance_id(CPU
, PGHW_PROCNODE
);
470 union mcreg_dramcfg_lo dcfglo
;
472 ao
->ao_ms_shared
->aos_bcfg_dcfg_lo
= MCREG_VAL32(&dcfglo
) =
473 ao_pcicfg_read(procnodeid
, MC_FUNC_DRAMCTL
, MC_DC_REG_DRAMCFGLO
);
474 ao
->ao_ms_shared
->aos_bcfg_dcfg_hi
=
475 ao_pcicfg_read(procnodeid
, MC_FUNC_DRAMCTL
, MC_DC_REG_DRAMCFGHI
);
476 #ifdef OPTERON_ERRATUM_172
477 if (X86_CHIPREV_MATCH(rev
, AO_F_REVS_FG
) &&
478 MCREG_FIELD_F_revFG(&dcfglo
, ParEn
)) {
479 MCREG_FIELD_F_revFG(&dcfglo
, ParEn
) = 0;
480 ao_pcicfg_write(procnodeid
, MC_FUNC_DRAMCTL
,
481 MC_DC_REG_DRAMCFGLO
, MCREG_VAL32(&dcfglo
));
487 * This knob exists in case any platform has a problem with our default
488 * policy of disabling any interrupt registered in the online spare
489 * control register. Setting this may cause Solaris and external entities
490 * who also have an interest in this register to argue over available
491 * telemetry (so setting it is generally not recommended).
493 int ao_nb_cfg_sparectl_noseize
= 0;
496 * Setup the online spare control register (revs F and G). We disable
497 * any interrupt registered by the BIOS and zero all error counts.
500 ao_sparectl_cfg(ao_ms_data_t
*ao
)
502 uint_t procnodeid
= pg_plat_hw_instance_id(CPU
, PGHW_PROCNODE
);
503 union mcreg_sparectl sparectl
;
506 ao
->ao_ms_shared
->aos_bcfg_nb_sparectl
= MCREG_VAL32(&sparectl
) =
507 ao_pcicfg_read(procnodeid
, MC_FUNC_MISCCTL
, MC_CTL_REG_SPARECTL
);
509 if (ao_nb_cfg_sparectl_noseize
)
510 return; /* stash BIOS value, but no changes */
513 * If the BIOS has requested SMI interrupt type for ECC count
514 * overflow for a chip-select or channel force those off.
516 MCREG_FIELD_F_revFG(&sparectl
, EccErrInt
) = 0;
517 MCREG_FIELD_F_revFG(&sparectl
, SwapDoneInt
) = 0;
520 * Zero EccErrCnt and write this back to all chan/cs combinations.
522 MCREG_FIELD_F_revFG(&sparectl
, EccErrCntWrEn
) = 1;
523 MCREG_FIELD_F_revFG(&sparectl
, EccErrCnt
) = 0;
524 for (chan
= 0; chan
< MC_CHIP_NDRAMCHAN
; chan
++) {
525 MCREG_FIELD_F_revFG(&sparectl
, EccErrCntDramChan
) = chan
;
527 for (cs
= 0; cs
< MC_CHIP_NCS
; cs
++) {
528 MCREG_FIELD_F_revFG(&sparectl
, EccErrCntDramCs
) = cs
;
529 ao_pcicfg_write(procnodeid
, MC_FUNC_MISCCTL
,
530 MC_CTL_REG_SPARECTL
, MCREG_VAL32(&sparectl
));
535 int ao_forgive_uc
= 0; /* For test/debug only */
536 int ao_forgive_pcc
= 0; /* For test/debug only */
537 int ao_fake_poison
= 0; /* For test/debug only */
540 ao_ms_error_action(cmi_hdl_t hdl
, int ismc
, int banknum
,
541 uint64_t status
, uint64_t addr
, uint64_t misc
, void *mslogout
)
543 const ao_error_disp_t
*aed
;
549 retval
|= CMS_ERRSCOPE_CLEARED_UC
;
552 retval
|= CMS_ERRSCOPE_CURCONTEXT_OK
;
554 if (ao_fake_poison
&& status
& MSR_MC_STATUS_UC
)
555 retval
|= CMS_ERRSCOPE_POISONED
;
560 aed
= ao_ms_disp_match(hdl
, ismc
, banknum
, status
, addr
, misc
,
564 * If we do not recognise the error let the cpu module apply
565 * the generic criteria to decide how to react.
570 en
= (status
& MSR_MC_STATUS_EN
) != 0;
572 if ((when
= aed
->aed_panic_when
) == AO_AED_PANIC_NEVER
)
573 retval
|= CMS_ERRSCOPE_IGNORE_ERR
;
575 if ((when
& AO_AED_PANIC_ALWAYS
) ||
576 ((when
& AO_AED_PANIC_IFMCE
) && (en
|| ismc
)))
577 retval
|= CMS_ERRSCOPE_FORCE_FATAL
;
580 * The original AMD implementation would panic on a machine check
581 * (not a poll) if the status overflow bit was set, with an
582 * exception for the case of rev F or later with an NB error
583 * indicating CECC. This came from the perception that the
584 * overflow bit was not correctly managed on rev E and earlier, for
585 * example that repeated correctable memeory errors did not set
586 * OVER but somehow clear CECC.
588 * We will leave the generic support to evaluate overflow errors
589 * and decide to panic on their individual merits, e.g., if PCC
590 * is set and so on. The AMD docs do say (as Intel does) that
591 * the status information is *all* from the higher-priority
592 * error in the case of an overflow, so it is at least as serious
593 * as the original and we can decide panic etc based on it.
600 * Will need to change for family 0x10
603 ao_ereport_synd(ao_ms_data_t
*ao
, uint64_t status
, uint_t
*typep
,
607 if (ao
->ao_ms_shared
->aos_bcfg_nb_cfg
&
608 AMD_NB_CFG_CHIPKILLECCEN
) {
609 *typep
= AMD_SYNDTYPE_CHIPKILL
;
610 return (AMD_NB_STAT_CKSYND(status
));
612 *typep
= AMD_SYNDTYPE_ECC
;
613 return (AMD_BANK_SYND(status
));
616 *typep
= AMD_SYNDTYPE_ECC
;
617 return (AMD_BANK_SYND(status
));
622 ao_ereport_create_resource_elem(cmi_hdl_t hdl
, nv_alloc_t
*nva
,
623 mc_unum_t
*unump
, int dimmnum
)
625 nvlist_t
*nvl
, *snvl
;
626 nvlist_t
*board_list
= NULL
;
628 if ((nvl
= fm_nvlist_create(nva
)) == NULL
) /* freed by caller */
631 if ((snvl
= fm_nvlist_create(nva
)) == NULL
) {
632 fm_nvlist_destroy(nvl
, nva
? FM_NVA_RETAIN
: FM_NVA_FREE
);
636 (void) nvlist_add_uint64(snvl
, FM_FMRI_HC_SPECIFIC_OFFSET
,
639 if (!x86gentopo_legacy
) {
640 board_list
= cmi_hdl_smb_bboard(hdl
);
642 if (board_list
== NULL
) {
643 fm_nvlist_destroy(nvl
,
644 nva
? FM_NVA_RETAIN
: FM_NVA_FREE
);
645 fm_nvlist_destroy(snvl
,
646 nva
? FM_NVA_RETAIN
: FM_NVA_FREE
);
650 fm_fmri_hc_create(nvl
, FM_HC_SCHEME_VERSION
, NULL
, snvl
,
652 "chip", cmi_hdl_smb_chipid(hdl
),
653 "memory-controller", unump
->unum_mc
,
654 "dimm", unump
->unum_dimms
[dimmnum
],
655 "rank", unump
->unum_rank
);
657 fm_fmri_hc_set(nvl
, FM_HC_SCHEME_VERSION
, NULL
, snvl
, 5,
658 "motherboard", unump
->unum_board
,
659 "chip", unump
->unum_chip
,
660 "memory-controller", unump
->unum_mc
,
661 "dimm", unump
->unum_dimms
[dimmnum
],
662 "rank", unump
->unum_rank
);
665 fm_nvlist_destroy(snvl
, nva
? FM_NVA_RETAIN
: FM_NVA_FREE
);
671 ao_ereport_add_resource(cmi_hdl_t hdl
, nvlist_t
*payload
, nv_alloc_t
*nva
,
675 nvlist_t
*elems
[MC_UNUM_NDIMM
];
679 for (i
= 0; i
< MC_UNUM_NDIMM
; i
++) {
680 if (unump
->unum_dimms
[i
] == MC_INVALNUM
)
683 if ((elems
[nelems
] = ao_ereport_create_resource_elem(hdl
, nva
,
693 fm_payload_set(payload
, FM_EREPORT_PAYLOAD_NAME_RESOURCE
,
694 DATA_TYPE_NVLIST_ARRAY
, nelems
, elems
, NULL
);
696 for (i
= 0; i
< nelems
; i
++)
697 fm_nvlist_destroy(elems
[i
], nva
? FM_NVA_RETAIN
: FM_NVA_FREE
);
702 ao_ms_ereport_add_logout(cmi_hdl_t hdl
, nvlist_t
*ereport
,
703 nv_alloc_t
*nva
, int banknum
, uint64_t status
, uint64_t addr
,
704 uint64_t misc
, void *mslogout
, cms_cookie_t mscookie
)
706 ao_ms_data_t
*ao
= cms_hdl_getcmsdata(hdl
);
707 const ao_error_disp_t
*aed
= mscookie
;
708 uint_t synd
, syndtype
;
714 members
= aed
->aed_ereport_members
;
716 synd
= ao_ereport_synd(ao
, status
, &syndtype
,
717 banknum
== AMD_MCA_BANK_NB
);
719 if (members
& FM_EREPORT_PAYLOAD_FLAG_SYND
) {
720 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_NAME_SYND
,
721 DATA_TYPE_UINT16
, synd
, NULL
);
724 if (members
& FM_EREPORT_PAYLOAD_FLAG_SYND_TYPE
) {
725 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_NAME_SYND_TYPE
,
726 DATA_TYPE_STRING
, (syndtype
== AMD_SYNDTYPE_CHIPKILL
?
730 if (members
& FM_EREPORT_PAYLOAD_FLAG_RESOURCE
) {
733 if (((aed
->aed_flags
& AO_AED_FLAGS_ADDRTYPE
) ==
734 AO_AED_F_PHYSICAL
) && (status
& MSR_MC_STATUS_ADDRV
) &&
735 cmi_mc_patounum(addr
, aed
->aed_addrvalid_hi
,
736 aed
->aed_addrvalid_lo
, synd
, syndtype
, &unum
) ==
738 ao_ereport_add_resource(hdl
, ereport
, nva
, &unum
);
744 ao_ms_ereport_includestack(cmi_hdl_t hdl
, cms_cookie_t mscookie
)
746 const ao_error_disp_t
*aed
= mscookie
;
751 return ((aed
->aed_ereport_members
&
752 FM_EREPORT_PAYLOAD_FLAG_STACK
) != 0);
756 ao_ms_msrinject(cmi_hdl_t hdl
, uint_t msr
, uint64_t val
)
758 ao_ms_data_t
*ao
= cms_hdl_getcmsdata(hdl
);
759 cms_errno_t rv
= CMSERR_BADMSRWRITE
;
761 ao_bankstatus_prewrite(hdl
, ao
);
762 if (cmi_hdl_wrmsr(hdl
, msr
, val
) == CMI_SUCCESS
)
764 ao_bankstatus_postwrite(hdl
, ao
);
771 ao_ms_mcgctl_val(cmi_hdl_t hdl
, int nbanks
, uint64_t def
)
773 return ((1ULL << nbanks
) - 1);
777 ao_ms_bankctl_skipinit(cmi_hdl_t hdl
, int banknum
)
779 ao_ms_data_t
*ao
= cms_hdl_getcmsdata(hdl
);
781 if (banknum
!= AMD_MCA_BANK_NB
)
785 * If we are the first to atomically set the "I'll do it" bit
786 * then return B_FALSE (do not skip), otherwise skip with B_TRUE.
788 return (ao_chip_once(ao
, AO_CFGONCE_NBMCA
) == B_TRUE
?
793 ao_ms_bankctl_val(cmi_hdl_t hdl
, int banknum
, uint64_t def
)
795 ao_ms_data_t
*ao
= cms_hdl_getcmsdata(hdl
);
796 const struct ao_ctl_init
*extrap
;
797 const ao_bank_cfg_t
*bankcfg
;
799 uint32_t rev
= ao
->ao_ms_shared
->aos_chiprev
;
801 if (banknum
>= sizeof (ao_bank_cfgs
) / sizeof (ao_bank_cfgs
[0]))
804 bankcfg
= &ao_bank_cfgs
[banknum
];
805 extrap
= bankcfg
->bank_ctl_init_extra
;
807 mcictl
= bankcfg
->bank_ctl_init_cmn
;
809 while (extrap
!= NULL
&& extrap
->ctl_revmask
!= X86_CHIPREV_UNKNOWN
) {
810 if (X86_CHIPREV_MATCH(rev
, extrap
->ctl_revmask
))
811 mcictl
|= extrap
->ctl_bits
;
820 ao_bankstatus_prewrite(cmi_hdl_t hdl
, ao_ms_data_t
*ao
)
824 if (cmi_hdl_rdmsr(hdl
, MSR_AMD_HWCR
, &hwcr
) != CMI_SUCCESS
)
827 ao
->ao_ms_hwcr_val
= hwcr
;
829 if (!(hwcr
& AMD_HWCR_MCI_STATUS_WREN
)) {
830 hwcr
|= AMD_HWCR_MCI_STATUS_WREN
;
831 (void) cmi_hdl_wrmsr(hdl
, MSR_AMD_HWCR
, hwcr
);
837 ao_bankstatus_postwrite(cmi_hdl_t hdl
, ao_ms_data_t
*ao
)
839 uint64_t hwcr
= ao
->ao_ms_hwcr_val
;
841 if (!(hwcr
& AMD_HWCR_MCI_STATUS_WREN
)) {
842 hwcr
&= ~AMD_HWCR_MCI_STATUS_WREN
;
843 (void) cmi_hdl_wrmsr(hdl
, MSR_AMD_HWCR
, hwcr
);
848 ao_ms_mca_init(cmi_hdl_t hdl
, int nbanks
)
850 ao_ms_data_t
*ao
= cms_hdl_getcmsdata(hdl
);
851 uint32_t rev
= ao
->ao_ms_shared
->aos_chiprev
;
852 ao_ms_mca_t
*mca
= &ao
->ao_ms_mca
;
856 maskp
= mca
->ao_mca_bios_cfg
.bcfg_bank_mask
= kmem_zalloc(nbanks
*
857 sizeof (uint64_t), KM_SLEEP
);
860 * Read the bank ctl mask MSRs, but only as many as we know
861 * certainly exist - don't calculate the register address.
862 * Also initialize the MCi_MISC register where required.
864 for (i
= 0; i
< MIN(nbanks
, ao_nbanks
); i
++) {
865 (void) cmi_hdl_rdmsr(hdl
, ao_bank_cfgs
[i
].bank_ctl_mask
,
867 if (ao_bank_cfgs
[i
].bank_misc_initfunc
!= NULL
)
868 ao_bank_cfgs
[i
].bank_misc_initfunc(hdl
, ao
, rev
);
872 if (ao_chip_once(ao
, AO_CFGONCE_NBCFG
) == B_TRUE
) {
875 if (X86_CHIPREV_MATCH(rev
, AO_F_REVS_FG
))
879 if (ao_chip_once(ao
, AO_CFGONCE_DRAMCFG
) == B_TRUE
)
880 ao_dram_cfg(ao
, rev
);
882 ao_procnode_scrubber_enable(hdl
, ao
);
886 * Note that although this cpu module is loaded before the PSMs are
887 * loaded (and hence before acpica is loaded), this function is
888 * called from post_startup(), after PSMs are initialized and acpica
892 ao_acpi_find_smicmd(int *asd_port
)
894 ACPI_TABLE_FADT
*fadt
= NULL
;
897 * AcpiGetTable works even if ACPI is disabled, so a failure
898 * here means we weren't able to retreive a pointer to the FADT.
900 if (AcpiGetTable(ACPI_SIG_FADT
, 1, (ACPI_TABLE_HEADER
**)&fadt
) !=
904 ASSERT(fadt
!= NULL
);
906 *asd_port
= fadt
->SmiCommand
;
912 ao_ms_post_startup(cmi_hdl_t hdl
)
914 const struct ao_smi_disable
*asd
;
916 int rv
= -1, asd_port
;
923 * Fetch the System and BIOS vendor strings from SMBIOS and see if they
924 * match a value in our table. If so, disable SMI error polling. This
925 * is grotesque and should be replaced by self-describing vendor-
926 * specific SMBIOS data or a specification enhancement instead.
928 if (ao_mca_smi_disable
&& ksmbios
!= NULL
&&
929 smbios_info_bios(ksmbios
, &sb
) != SMB_ERR
&&
930 (id
= smbios_info_system(ksmbios
, &sy
)) != SMB_ERR
&&
931 smbios_info_common(ksmbios
, id
, &si
) != SMB_ERR
) {
933 for (asd
= ao_smi_disable
; asd
->asd_sys_vendor
!= NULL
; asd
++) {
934 if (strncmp(asd
->asd_sys_vendor
, si
.smbi_manufacturer
,
935 strlen(asd
->asd_sys_vendor
)) != 0 ||
936 strncmp(asd
->asd_sys_product
, si
.smbi_product
,
937 strlen(asd
->asd_sys_product
)) != 0 ||
938 strncmp(asd
->asd_bios_vendor
, sb
.smbb_vendor
,
939 strlen(asd
->asd_bios_vendor
)) != 0)
943 * Look for the SMI_CMD port in the ACPI FADT,
944 * if the port is 0, this platform doesn't support
945 * SMM, so there is no SMI error polling to disable.
947 if ((rv
= ao_acpi_find_smicmd(&asd_port
)) == 0 &&
949 cmn_err(CE_CONT
, "?SMI polling disabled in "
950 "favor of Solaris Fault Management for "
953 outb(asd_port
, asd
->asd_code
);
956 cmn_err(CE_CONT
, "?Solaris Fault Management "
957 "for AMD Processors could not disable SMI "
958 "polling because an error occurred while "
959 "trying to determine the SMI command port "
960 "from the ACPI FADT table\n");