2 tdefine ciplus % "\(pl\h'-\w'\(pl\^'u'\v'.3n'\(ci\v'-.3n'" %
3 ndefine ciplus % O
\b+ %
4 tdefine citimes % "\(mu\h'-\w'\(mu\^'u'\v'.3n'\(ci\v'-.3n'" %
5 ndefine citimes % O
\bx %
6 tdefine =wig % "\(~=" %
7 ndefine =wig % =
\b"~" %
8 tdefine bigstar %{ roman "\v'.5n'\s+4*\s-4\v'-.5n'"}%
9 ndefine bigstar % X
\b|
\b- %
10 tdefine =dot % "\z\s+2\(eq\s-2\v'-.6m'\h'.2m'\s+2.\s-2\v'.6m'\h'.1m'" %
11 ndefine =dot % = dot %
12 tdefine orsign % "\e\s+1\(sl\s-1" %
13 ndefine orsign % \e/ %
14 tdefine andsign % "\s+1\(sl\s-1\e" %
15 ndefine andsign % /\e %
16 tdefine =del % "\v'.3m'\z=\v'-.6m'\h'.3n'\s-2\(*D\s+2\v'.3m'" %
17 ndefine =del % = to DELTA %
18 tdefine oppA % "\v'-.3n'\z\(mi\v'.3n'\e\s+1\(sl\s-1" %
20 tdefine oppE %"\s-3\v'.2m'\z\(em\v'-.5m'\z\(em\v'-.5m'\z\(em\v'.55m'\h'.9m'\z\(br\z\(br\v'.25m'\s+3" %
22 tdefine incl % "\s-2\(or\v'-.4m'\z\(em\v'.75m'\z\(em\v'.2m'\(em\v'-.55m'\s+2" %
24 tdefine nomem % "\o'\(mo\(sl'" %
25 ndefine nomem % C
\b-
\b/ %
26 tdefine angstrom % "\fR\zA\v'-.3m'\h'.2m'\(de\v'.3m'\fP\h'.2m'" %
27 ndefine angstrom % A to o %
28 tdefine star %{ roman "\v'.5n'\s+2*\s-2\v'-.5n'"}%
30 tdefine || % \(or\(or %
31 tdefine <wig % "\z<\v'.4m'\(ap\v'-.4m'" %
32 ndefine <wig %{ < from "~" }%
33 tdefine >wig % "\z>\v'.4m'\(ap\v'-.4m'" %
34 ndefine >wig %{ > from "~" }%
35 tdefine langle % "\v'-.3n'\s-1\z\(sl\s-1\v'1n'\e\v'-1n'\s+2\v'.3n'" %
37 tdefine rangle % "\v'-.3n'\s-2\z\e\s+1\v'1n'\(sl\v'-1n'\s+1\v'.3n'" %
39 tdefine hbar % "\zh\v'-.6m'\h'.05m'\(ru\v'.6m'" %
40 ndefine hbar % h
\b\u-\d %
41 tdefine ppd % "\o'\(ru\s-3\(or\s+3'" %
43 tdefine <-> % "\z\(<-\|\(->" %
44 ndefine <-> % "<-->" %
45 tdefine <=> % "\z\(lh\|\(rh" %
47 tdefine |< % "\o'<\(or'" %
49 tdefine |> % "\o'>\(or'" %
51 tdefine ang % "\z\(sl\v'-.1n'\(ru\v'.1n'" %
53 tdefine rang % "\v'-.2n'\(or\v'.1n'\(ru\v'.1n'" %
55 tdefine 3dot % "\v'-.7m'\z.\v'.4m'\z.\v'.4m'.\v'-.1m'" %
56 ndefine 3dot % .
\b\u.
\b\u.\d\d %
57 tdefine thf % ".\v'-.5m'.\v'.5m'." %
58 ndefine thf % ..
\b\u.\d %
59 tdefine quarter % roman \(14 %
60 ndefine quarter % 1/4 %
61 tdefine 3quarter % roman \(34 %
62 ndefine 3quarter % 3/4 %
63 tdefine degree % \(de %
64 ndefine degree % nothing sup o %
65 tdefine square % \(sq %
67 tdefine circle % \(ci %
69 tdefine blot % "\fB\(sq\fP" %
70 ndefine blot % H
\bI
\bX %
71 tdefine bullet % \(bu %
72 ndefine bullet % o
\bx
\be %
73 tdefine -wig % "\(mi\h'-\w'\(mi'u-\w'\(ap'u/2u'\v'-.4n'\(ap\v'.4n'\h'\w'\(mi'u-\w'\(ap'u/2u'" %
74 ndefine -wig % - to "~" %
79 tdefine empty % \(es %
80 ndefine empty % O
\b/ %
81 tdefine member % \(mo %
82 ndefine member % C
\b- %
86 define subset % \(sb %
87 define supset % \(sp %
88 define !subset % \(ib %
89 define !supset % \(ip %