8354 sync regcomp(3C) with upstream (fix make catalog)
[unleashed/tickless.git] / usr / src / lib / libc / i386 / fp / _F_cplx_mul.c
blob7c2a1708159856431094780d1a863f10b5a47472
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
20 * CDDL HEADER END
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #pragma ident "%Z%%M% %I% %E% SMI"
30 * _F_cplx_mul(z, w) returns z * w with infinities handled according
31 * to C99.
33 * If z and w are both finite, _F_cplx_mul(z, w) delivers the complex
34 * product according to the usual formula: let a = Re(z), b = Im(z),
35 * c = Re(w), and d = Im(w); then _F_cplx_mul(z, w) delivers x + I * y
36 * where x = a * c - b * d and y = a * d + b * c. This implementation
37 * uses extended precision to form these expressions, so none of the
38 * intermediate products can overflow.
40 * If one of z or w is infinite and the other is either finite nonzero
41 * or infinite, _F_cplx_mul delivers an infinite result. If one factor
42 * is infinite and the other is zero, _F_cplx_mul delivers NaN + I * NaN.
43 * C99 doesn't specify the latter case.
45 * C99 also doesn't specify what should happen if either z or w is a
46 * complex NaN (i.e., neither finite nor infinite). This implementation
47 * delivers NaN + I * NaN in this case.
49 * This implementation can raise spurious invalid operation and inexact
50 * exceptions. C99 allows this.
53 #if !defined(i386) && !defined(__i386) && !defined(__amd64)
54 #error This code is for x86 only
55 #endif
57 static union {
58 int i;
59 float f;
60 } inf = {
61 0x7f800000
65 * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
67 static int
68 testinff(float x)
70 union {
71 int i;
72 float f;
73 } xx;
75 xx.f = x;
76 return ((((xx.i << 1) - 0xff000000) == 0)? (1 | (xx.i >> 31)) : 0);
79 float _Complex
80 _F_cplx_mul(float _Complex z, float _Complex w)
82 float _Complex v;
83 float a, b, c, d;
84 long double x, y;
85 int recalc, i, j;
88 * The following is equivalent to
90 * a = crealf(z); b = cimagf(z);
91 * c = crealf(w); d = cimagf(w);
93 a = ((float *)&z)[0];
94 b = ((float *)&z)[1];
95 c = ((float *)&w)[0];
96 d = ((float *)&w)[1];
98 x = (long double)a * c - (long double)b * d;
99 y = (long double)a * d + (long double)b * c;
101 if (x != x && y != y) {
103 * Both x and y are NaN, so z and w can't both be finite.
104 * If at least one of z or w is a complex NaN, and neither
105 * is infinite, then we might as well deliver NaN + I * NaN.
106 * So the only cases to check are when one of z or w is
107 * infinite.
109 recalc = 0;
110 i = testinff(a);
111 j = testinff(b);
112 if (i | j) { /* z is infinite */
113 /* "factor out" infinity */
114 a = i;
115 b = j;
116 recalc = 1;
118 i = testinff(c);
119 j = testinff(d);
120 if (i | j) { /* w is infinite */
121 /* "factor out" infinity */
122 c = i;
123 d = j;
124 recalc = 1;
126 if (recalc) {
127 x = inf.f * ((long double)a * c - (long double)b * d);
128 y = inf.f * ((long double)a * d + (long double)b * c);
133 * The following is equivalent to
135 * return x + I * y;
137 ((float *)&v)[0] = (float)x;
138 ((float *)&v)[1] = (float)y;
139 return (v);