8354 sync regcomp(3C) with upstream (fix make catalog)
[unleashed/tickless.git] / usr / src / uts / sun4u / excalibur / io / xcalppm.c
blobaf2d5b47361eafb2710b866fa4c214010bbae077
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Platform Power Management driver for SUNW,Sun-Blade-1000
29 #include <sys/modctl.h>
30 #include <sys/conf.h>
31 #include <sys/ddi.h>
32 #include <sys/sunddi.h>
33 #include <sys/ddi_impldefs.h>
34 #include <sys/ppmvar.h>
35 #include <sys/ppmio.h>
36 #include <sys/xcalppm_reg.h>
37 #include <sys/xcalppm_var.h>
38 #include <sys/stat.h>
39 #include <sys/epm.h>
40 #include <sys/archsystm.h>
41 #include <sys/cpuvar.h>
42 #include <sys/cheetahregs.h>
43 #include <sys/us3_module.h>
46 * Locking Considerations
48 * To look at and/or modify xcppm_domain fields or elements of its list of
49 * xcppm_dev structures the domain_lock for the affected domain must be held.
51 * When the autopm framework needs to change the power of a component of a
52 * device, it needs to hold the associated power lock (see discussion at
53 * top of uts/common/os/sunpm.c).
55 * If the framework needs to lock a dev/cmpt for a device which this ppm
56 * has claimed, xcppm_ctlops will be called with PMR_PPM_LOCK_POWER. Ppm
57 * needs to be involved because, due to platform constraints, changing the
58 * power of one device may require that other devices be changed in the same
59 * operation.
61 * In some domains (e.g., cpus) the power lock must be acquired for all the
62 * affected devices to avoid possible corruption of the power states. The
63 * joint change must be an atomic operation. Ppm handles this by acquiring
64 * the domain lock, then walking the list of affected devices and acquiring
65 * the power lock for each of them. To unlock, the list is traversed and
66 * each of the power locks is freed, followed by freeing the domain lock.
68 * For other domains ppm will only be changing the power of a single device
69 * that is known to the framework. In these cases, the locking is done by
70 * acquiring the domain lock and directly calling the framework routine for
71 * getting a single power lock.
74 static int xcppm_attach(dev_info_t *, ddi_attach_cmd_t);
75 static int xcppm_detach(dev_info_t *, ddi_detach_cmd_t);
76 static int xcppm_ctlops(dev_info_t *, dev_info_t *,
77 ddi_ctl_enum_t, void *, void *);
78 static void xcppm_dev_init(ppm_dev_t *);
79 static void xcppm_dev_fini(ppm_dev_t *);
80 static void xcppm_iocset(uint8_t);
81 static uint8_t xcppm_iocget(void);
84 * Note: 1394 and pciupa were originally required to be LOCK_ALL domains.
85 * However, the underlying nexus drivers aren't able to do power mgmt
86 * (because of hw implementation issues). The locking protocol for these
87 * domains is changed to LOCK_ONE to simplify other code. The domain
88 * code itself will be removed in the future.
90 static ppm_domain_t xcppm_1394 = { "domain_1394", PPMD_LOCK_ONE };
91 static ppm_domain_t xcppm_cpu = { "domain_cpu", PPMD_LOCK_ALL };
92 static ppm_domain_t xcppm_fet = { "domain_powerfet", PPMD_LOCK_ONE };
93 static ppm_domain_t xcppm_upa = { "domain_pciupa", PPMD_LOCK_ONE };
95 ppm_domain_t *ppm_domains[] = {
96 &xcppm_1394,
97 &xcppm_cpu,
98 &xcppm_fet,
99 &xcppm_upa,
100 NULL
104 struct ppm_funcs ppmf = {
105 xcppm_dev_init, /* dev_init */
106 xcppm_dev_fini, /* dev_fini */
107 xcppm_iocset, /* iocset */
108 xcppm_iocget, /* iocget */
113 * The order of entries must be from slowest to fastest and in
114 * one-to-one correspondence with the cpu_level array.
116 static const uint16_t bbc_estar_control_masks[] = {
117 BBC_ESTAR_SLOW, BBC_ESTAR_MEDIUM, BBC_ESTAR_FAST
120 int bbc_delay = 10; /* microsec */
124 * Configuration data structures
126 static struct cb_ops xcppm_cb_ops = {
127 ppm_open, /* open */
128 ppm_close, /* close */
129 nodev, /* strategy */
130 nodev, /* print */
131 nodev, /* dump */
132 nodev, /* read */
133 nodev, /* write */
134 ppm_ioctl, /* ioctl */
135 nodev, /* devmap */
136 nodev, /* mmap */
137 nodev, /* segmap */
138 nochpoll, /* poll */
139 ddi_prop_op, /* prop_op */
140 NULL, /* streamtab */
141 D_MP | D_NEW, /* driver compatibility flag */
142 CB_REV, /* cb_ops revision */
143 nodev, /* async read */
144 nodev /* async write */
147 static struct bus_ops xcppm_bus_ops = {
148 BUSO_REV,
154 ddi_no_dma_map,
155 ddi_no_dma_allochdl,
156 ddi_no_dma_freehdl,
157 ddi_no_dma_bindhdl,
158 ddi_no_dma_unbindhdl,
159 ddi_no_dma_flush,
160 ddi_no_dma_win,
161 ddi_no_dma_mctl,
162 xcppm_ctlops,
164 0, /* (*bus_get_eventcookie)(); */
165 0, /* (*bus_add_eventcall)(); */
166 0, /* (*bus_remove_eventcall)(); */
167 0 /* (*bus_post_event)(); */
170 static struct dev_ops xcppm_ops = {
171 DEVO_REV, /* devo_rev */
172 0, /* refcnt */
173 ppm_getinfo, /* info */
174 nulldev, /* identify */
175 nulldev, /* probe */
176 xcppm_attach, /* attach */
177 xcppm_detach, /* detach */
178 nodev, /* reset */
179 &xcppm_cb_ops, /* driver operations */
180 &xcppm_bus_ops, /* bus operations */
181 NULL, /* power */
182 ddi_quiesce_not_supported, /* devo_quiesce */
185 extern struct mod_ops mod_driverops;
187 static struct modldrv modldrv = {
188 &mod_driverops, /* type of module - pseudo */
189 "platform pm driver",
190 &xcppm_ops
193 static struct modlinkage modlinkage = {
194 MODREV_1,
195 &modldrv,
196 NULL
201 _init(void)
203 return (ppm_init(&modlinkage, sizeof (xcppm_unit_t), "xc"));
208 _fini(void)
210 return (EBUSY);
215 _info(struct modinfo *modinfop)
217 return (mod_info(&modlinkage, modinfop));
221 static int
222 xcppm_map_all_regs(dev_info_t *dip)
224 ddi_device_acc_attr_t attr_be, attr_le;
225 int rv0, rv1, rv2, rv3;
226 xcppm_unit_t *unitp;
227 caddr_t base_addr;
228 uint8_t data8;
230 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
231 attr_be.devacc_attr_version = DDI_DEVICE_ATTR_V0;
232 attr_be.devacc_attr_endian_flags = DDI_STRUCTURE_BE_ACC;
233 attr_be.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
235 attr_le.devacc_attr_version = DDI_DEVICE_ATTR_V0;
236 attr_le.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;
237 attr_le.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
239 rv0 = ddi_regs_map_setup(dip, 0, &base_addr, 0, 0, &attr_be,
240 &unitp->hndls.bbc_estar_ctrl);
242 unitp->regs.bbc_estar_ctrl = (uint16_t *)(base_addr +
243 BBC_ESTAR_CTRL_OFFSET);
244 unitp->regs.bbc_assert_change = (uint32_t *)(base_addr +
245 BBC_ASSERT_CHANGE_OFFSET);
246 unitp->regs.bbc_pll_settle = (uint32_t *)(base_addr +
247 BBC_PLL_SETTLE_OFFSET);
249 rv1 = ddi_regs_map_setup(dip, 1,
250 (caddr_t *)&unitp->regs.rio_mode_auxio,
251 0, 0, &attr_le, &unitp->hndls.rio_mode_auxio);
253 rv2 = ddi_regs_map_setup(dip, 2, &base_addr,
254 0, 0, &attr_le, &unitp->hndls.gpio_bank_select);
256 unitp->regs.gpio_bank_sel_index = (uint8_t *)(base_addr +
257 GPIO_BANK_SEL_INDEX_OFFSET);
258 unitp->regs.gpio_bank_sel_data = (uint8_t *)(base_addr +
259 GPIO_BANK_SEL_DATA_OFFSET);
261 rv3 = ddi_regs_map_setup(dip, 3, &base_addr, 0, 0, &attr_le,
262 &unitp->hndls.gpio_data_ports);
264 unitp->regs.gpio_port1_data = (uint8_t *)(base_addr +
265 GPIO_PORT1_DATA_OFFSET);
266 unitp->regs.gpio_port2_data = (uint8_t *)(base_addr +
267 GPIO_PORT2_DATA_OFFSET);
269 if (rv0 != DDI_SUCCESS || rv1 != DDI_SUCCESS ||
270 rv2 != DDI_SUCCESS || rv3 != DDI_SUCCESS) {
271 if (rv0 == DDI_SUCCESS)
272 ddi_regs_map_free(&unitp->hndls.bbc_estar_ctrl);
273 if (rv1 == DDI_SUCCESS)
274 ddi_regs_map_free(&unitp->hndls.rio_mode_auxio);
275 if (rv2 == DDI_SUCCESS)
276 ddi_regs_map_free(&unitp->hndls.gpio_bank_select);
277 if (rv3 == DDI_SUCCESS)
278 ddi_regs_map_free(&unitp->hndls.gpio_data_ports);
279 return (DDI_FAILURE);
283 * Ppm uses GPIO bits in Bank 0. Make sure Bank 0 is selected.
285 data8 = SIO_CONFIG2_INDEX;
286 XCPPM_SETGET8(unitp->hndls.gpio_bank_select,
287 unitp->regs.gpio_bank_sel_index, data8);
288 data8 = XCPPM_GET8(unitp->hndls.gpio_bank_select,
289 unitp->regs.gpio_bank_sel_data);
291 data8 &= 0x7f; /* Set Bit7 to zero */
292 XCPPM_SETGET8(unitp->hndls.gpio_bank_select,
293 unitp->regs.gpio_bank_sel_data, data8);
295 return (DDI_SUCCESS);
299 static int
300 xcppm_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
302 #ifdef DEBUG
303 char *str = "xcppm_attach";
304 #endif
305 xcppm_unit_t *unitp;
306 ppm_domain_t **dompp;
307 int retval;
309 DPRINTF(D_ATTACH, ("%s: attach cmd %d\n", str, cmd));
310 retval = DDI_SUCCESS;
312 switch (cmd) {
313 case DDI_ATTACH:
314 if (ppm_inst != -1) {
315 DPRINTF(D_ERROR,
316 ("%s: instance already attached\n", str));
317 return (DDI_FAILURE);
319 ppm_inst = ddi_get_instance(dip);
322 * Allocate and initialize soft state structure
324 if (ddi_soft_state_zalloc(ppm_statep, ppm_inst) != 0)
325 return (DDI_FAILURE);
326 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
327 mutex_init(&unitp->unit_lock, NULL, MUTEX_DRIVER, NULL);
328 mutex_init(&unitp->creator_lock, NULL, MUTEX_DRIVER, NULL);
330 if (ddi_create_minor_node(dip, "ppm", S_IFCHR,
331 ppm_inst, "ddi_ppm", 0) == DDI_FAILURE) {
332 ddi_soft_state_free(ppm_statep, ppm_inst);
333 DPRINTF(D_ERROR,
334 ("%s: Can't create minor for 0x%p\n", str,
335 (void *)dip));
336 return (DDI_FAILURE);
338 ddi_report_dev(dip);
339 unitp->dip = dip;
341 if (retval = ppm_create_db(dip))
342 return (retval);
345 * Map all of the registers under the ppm node.
347 if (xcppm_map_all_regs(dip) != DDI_SUCCESS)
348 return (DDI_FAILURE);
350 if ((retval =
351 pm_register_ppm(ppm_claim_dev, dip)) != DDI_SUCCESS) {
352 DPRINTF(D_ERROR,
353 ("%s: can't register ppm handler\n", str));
354 return (retval);
357 for (dompp = ppm_domains; *dompp; dompp++)
358 mutex_init(&(*dompp)->lock, NULL, MUTEX_DRIVER, NULL);
360 break;
362 case DDI_RESUME:
363 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
364 mutex_enter(&unitp->unit_lock);
365 unitp->state &= ~XCPPM_ST_SUSPENDED;
366 mutex_exit(&unitp->unit_lock);
367 break;
369 default:
370 cmn_err(CE_CONT, "xcppm_attach: unknown "
371 "attach command %d, dip 0x%p\n", cmd, (void *)dip);
372 retval = DDI_FAILURE;
375 return (retval);
380 * set the front panel LED:
381 * PPM_LEDON turns it on, PPM_LEDOFF turns it off.
382 * for GPIO register: 0x0 means led-on, 0x2 means led-off.
384 static void
385 xcppm_set_led(int action)
387 xcppm_unit_t *unitp;
388 uint8_t reg;
390 ASSERT(action == PPM_LEDON || action == PPM_LEDOFF);
391 DPRINTF(D_LED, ("xcppm_set_led: Turn LED %s\n",
392 (action == PPM_LEDON) ? "on" : "off"));
394 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
395 reg = XCPPM_GET8(unitp->hndls.gpio_data_ports,
396 unitp->regs.gpio_port1_data);
397 if (action == PPM_LEDON)
398 reg &= ~LED;
399 else
400 reg |= LED;
401 XCPPM_SETGET8(unitp->hndls.gpio_data_ports,
402 unitp->regs.gpio_port1_data, reg);
406 static void
407 xcppm_blink_led(void *action)
409 xcppm_unit_t *unitp;
410 int new_action;
411 clock_t intvl;
413 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
414 mutex_enter(&unitp->unit_lock);
415 if (unitp->led_tid == 0) {
416 mutex_exit(&unitp->unit_lock);
417 return;
420 if ((int)(uintptr_t)action == PPM_LEDON) {
421 new_action = PPM_LEDOFF;
422 intvl = PPM_LEDOFF_INTERVAL;
423 } else {
424 ASSERT((int)(uintptr_t)action == PPM_LEDOFF);
425 new_action = PPM_LEDON;
426 intvl = PPM_LEDON_INTERVAL;
429 xcppm_set_led(new_action);
430 unitp->led_tid = timeout(xcppm_blink_led, (void *)(uintptr_t)new_action,
431 intvl);
432 mutex_exit(&unitp->unit_lock);
436 static void
437 xcppm_freeze_led(void *action)
439 xcppm_unit_t *unitp;
440 timeout_id_t tid;
442 DPRINTF(D_LOWEST, ("xcppm_freeze_led: action %d\n",
443 (int)(uintptr_t)action));
444 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
445 mutex_enter(&unitp->unit_lock);
446 tid = unitp->led_tid;
447 unitp->led_tid = 0;
448 mutex_exit(&unitp->unit_lock);
449 (void) untimeout(tid);
450 mutex_enter(&unitp->unit_lock);
451 xcppm_set_led((int)(uintptr_t)action);
452 mutex_exit(&unitp->unit_lock);
456 /* ARGSUSED */
457 static int
458 xcppm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
460 xcppm_unit_t *unitp;
462 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
463 DPRINTF(D_DETACH, ("xcppm_detach: cmd %d\n", cmd));
465 switch (cmd) {
466 case DDI_DETACH:
467 return (DDI_FAILURE);
469 case DDI_SUSPEND:
470 mutex_enter(&unitp->unit_lock);
471 unitp->state |= XCPPM_ST_SUSPENDED;
472 mutex_exit(&unitp->unit_lock);
475 * Suspend requires that timeout callouts to be canceled.
476 * Turning off the LED blinking will cancel the timeout.
478 xcppm_freeze_led((void *)PPM_LEDON);
479 return (DDI_SUCCESS);
481 default:
482 return (DDI_FAILURE);
488 * Device we claimed has detached. We must get rid of
489 * our state which was used to track this device.
491 static void
492 xcppm_detach_ctlop(dev_info_t *dip, power_req_t *reqp)
494 ppm_dev_t *ppmd;
496 ppmd = PPM_GET_PRIVATE(dip);
497 if (ppmd == NULL || reqp->req.ppm_config_req.result != DDI_SUCCESS)
498 return;
500 ppm_rem_dev(dip);
505 * The system is being resumed from a cpr suspend operation and this
506 * device's attach entry will be called shortly. The driver will set
507 * the device's power to a conventional starting value, and we need to
508 * stay in sync and set our private copy to the same value.
510 /* ARGSUSED */
511 static void
512 xcppm_resume_ctlop(dev_info_t *dip, power_req_t *reqp)
514 ppm_domain_t *domp;
515 ppm_dev_t *ppmd;
516 int powered;
518 ppmd = PPM_GET_PRIVATE(dip);
519 if (ppmd == NULL)
520 return;
523 * Maintain correct powered count for domain which cares
525 powered = 0;
526 domp = ppmd->domp;
527 mutex_enter(&domp->lock);
528 if (domp == &xcppm_fet) {
529 for (ppmd = domp->devlist; ppmd; ppmd = ppmd->next) {
530 if (ppmd->dip == dip && ppmd->level)
531 powered++;
535 * If this device was powered off when the system was
536 * suspended, this resume acts like a power-on transition,
537 * so we adjust the count.
539 if (powered == 0)
540 domp->pwr_cnt++;
543 for (ppmd = domp->devlist; ppmd; ppmd = ppmd->next) {
544 if (ppmd->dip == dip)
545 ppmd->level = ppmd->rplvl = PM_LEVEL_UNKNOWN;
547 mutex_exit(&domp->lock);
552 * Change the power level for a component of a device. If the change
553 * arg is true, we call the framework to actually change the device's
554 * power; otherwise, we just update our own copy of the power level.
556 static int
557 xcppm_set_level(ppm_dev_t *ppmd, int cmpt, int level, boolean_t change)
559 #ifdef DEBUG
560 char *str = "xcppm_set_level";
561 #endif
562 int ret;
564 ret = DDI_SUCCESS;
565 if (change)
566 ret = pm_power(ppmd->dip, cmpt, level);
568 DPRINTF(D_SETLVL, ("%s: \"%s\" change=%d, old %d, new %d, ret %d\n",
569 str, ppmd->path, change, ppmd->level, level, ret));
571 if (ret == DDI_SUCCESS) {
572 ppmd->level = level;
573 ppmd->rplvl = PM_LEVEL_UNKNOWN;
576 return (ret);
580 static int
581 xcppm_change_power_level(ppm_dev_t *ppmd, int cmpt, int level)
583 return (xcppm_set_level(ppmd, cmpt, level, B_TRUE));
587 static int
588 xcppm_record_level_change(ppm_dev_t *ppmd, int cmpt, int level)
590 return (xcppm_set_level(ppmd, cmpt, level, B_FALSE));
594 static uint8_t
595 xcppm_gpio_port2(int action, uint8_t pos)
597 #ifdef DEBUG
598 char *str = "xcppm_gpio_port2";
599 #endif
600 xcppm_unit_t *unitp;
601 uint8_t data8, buf8;
602 uint8_t ret;
604 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
605 mutex_enter(&unitp->gpio_lock);
607 data8 = buf8 = XCPPM_GET8(unitp->hndls.gpio_data_ports,
608 unitp->regs.gpio_port2_data);
610 switch (action) {
611 case XCPPM_GETBIT:
612 ret = data8 & pos;
613 DPRINTF(D_GPIO, ("%s: READ: GPIO Bank2 value 0x%x\n",
614 str, buf8));
615 break;
617 case XCPPM_SETBIT:
618 case XCPPM_CLRBIT:
619 if (action == XCPPM_SETBIT)
620 data8 |= pos;
621 else
622 data8 &= ~pos;
623 XCPPM_SETGET8(unitp->hndls.gpio_data_ports,
624 unitp->regs.gpio_port2_data, data8);
625 ret = data8 & pos;
626 DPRINTF(D_GPIO, ("%s: %s: GPIO Bank2 "
627 "bit 0x%x changed from 0x%x to 0x%x\n",
628 str, (action == XCPPM_SETBIT) ? "UP" : "DOWN",
629 pos, buf8, data8));
630 break;
632 default:
633 cmn_err(CE_PANIC, "xcalppm: unrecognized register "
634 "IO command %d\n", action);
635 break;
637 mutex_exit(&unitp->gpio_lock);
639 return (ret);
644 * Raise the power level of a subrange of cpus. Used when cpu driver
645 * failed an attempt to lower the power of a cpu (probably because
646 * it got busy). Need to revert the ones we already changed.
648 * ecpup = the ppm_dev_t for the cpu which failed to lower power
649 * level = power level to reset prior cpus to
651 static void
652 xcppm_revert_cpu_power(ppm_dev_t *ecpup, int level)
654 ppm_dev_t *cpup;
656 for (cpup = xcppm_cpu.devlist; cpup != ecpup; cpup = cpup->next) {
657 DPRINTF(D_CPU, ("xrcp: \"%s\", revert to level %d\n",
658 cpup->path, level));
659 (void) xcppm_change_power_level(cpup, 0, level);
664 * Switch the DC/DC converter. Clearing the GPIO bit in SuperI/O puts
665 * the converter in low power mode and setting the bit puts it back in
666 * normal mode.
668 static void
669 xcppm_switch_dcdc_converter(int action)
671 int tries = XCPPM_VCL_TRIES;
672 uint_t spl;
673 uint64_t stick_begin, stick_end;
674 uint64_t tick_begin, tick_end;
675 uint64_t cur_speed_ratio, full_speed_ratio;
676 static int xcppm_dcdc_lpm;
678 switch (action) {
679 case XCPPM_SETBIT:
680 if (xcppm_dcdc_lpm) {
681 DPRINTF(D_CPU, ("xcppm_switch_dcdc_converter: "
682 "switch to normal power mode.\n"));
683 (void) xcppm_gpio_port2(action, HIGHPWR);
684 xcppm_dcdc_lpm = 0;
686 break;
687 case XCPPM_CLRBIT:
689 * In some fast CPU configurations, DC/DC converter was
690 * put in low power mode before CPUs made the transition
691 * to 1/32 of clock speed. In those cases, system was
692 * shut down by hardware for protection. To resolve that
693 * problem, we make sure CPUs have made the clock transition
694 * before the DC/DC converter has been put to low power mode.
696 ASSERT(xcppm_dcdc_lpm == 0);
697 kpreempt_disable();
698 full_speed_ratio = cpunodes[CPU->cpu_id].clock_freq /
699 sys_tick_freq;
700 while (tries) {
701 spl = ddi_enter_critical();
702 tick_begin = gettick_counter();
703 stick_timestamp((int64_t *)&stick_begin);
704 ddi_exit_critical(spl);
705 drv_usecwait(XCPPM_VCL_DELAY);
706 spl = ddi_enter_critical();
707 tick_end = gettick_counter();
708 stick_timestamp((int64_t *)&stick_end);
709 ddi_exit_critical(spl);
710 cur_speed_ratio = (tick_end - tick_begin) /
711 (stick_end - stick_begin);
714 * tick/stick at current speed should at most be
715 * equal to full-speed tick/stick, adjusted with
716 * full/lowest clock speed ratio. If not, speed
717 * transition has not happened yet.
719 if (cur_speed_ratio <= ((full_speed_ratio /
720 XCPPM_VCL_DIVISOR) + 1)) {
721 DPRINTF(D_CPU, ("xcppm_switch_dcdc_converter: "
722 "switch to low power mode.\n"));
723 (void) xcppm_gpio_port2(action, HIGHPWR);
724 xcppm_dcdc_lpm = 1;
725 break;
727 DPRINTF(D_CPU, ("xcppm_switch_dcdc_converter: CPU "
728 "has not made transition to lowest speed yet "
729 "(%d)\n", tries));
730 tries--;
732 kpreempt_enable();
733 break;
737 static void
738 xcppm_rio_mode(xcppm_unit_t *unitp, int mode)
740 uint32_t data32, buf32;
742 mutex_enter(&unitp->gpio_lock);
743 data32 = buf32 = XCPPM_GET32(unitp->hndls.rio_mode_auxio,
744 unitp->regs.rio_mode_auxio);
745 if (mode == XCPPM_SETBIT)
746 data32 |= RIO_BBC_ESTAR_MODE;
747 else
748 data32 &= ~RIO_BBC_ESTAR_MODE;
749 XCPPM_SETGET32(unitp->hndls.rio_mode_auxio,
750 unitp->regs.rio_mode_auxio, data32);
751 mutex_exit(&unitp->gpio_lock);
753 DPRINTF(D_CPU, ("xcppm_rio_mode: %s: change from 0x%x to 0x%x\n",
754 (mode == XCPPM_SETBIT) ? "DOWN" : "UP", buf32, data32));
759 * change the power level of all cpus to the arg value;
760 * the caller needs to ensure that a legal transition is requested.
762 static int
763 xcppm_change_cpu_power(int newlevel)
765 #ifdef DEBUG
766 char *str = "xcppm_ccp";
767 #endif
768 int index, level, oldlevel;
769 int lowest, highest;
770 int undo_flag, ret;
771 int speedup, incr;
772 uint32_t data32;
773 uint16_t data16;
774 xcppm_unit_t *unitp;
775 ppm_dev_t *cpup;
776 dev_info_t *dip;
777 char *chstr;
779 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
780 ASSERT(unitp);
781 cpup = xcppm_cpu.devlist;
782 lowest = cpup->lowest;
783 highest = cpup->highest;
786 * not all cpus may have transitioned to a known level by this time
788 oldlevel = (cpup->level == PM_LEVEL_UNKNOWN) ? highest : cpup->level;
789 dip = cpup->dip;
790 ASSERT(dip);
792 DPRINTF(D_CPU, ("%s: old %d, new %d, highest %d, lowest %d\n",
793 str, oldlevel, newlevel, highest, lowest));
795 if (newlevel > oldlevel) {
796 chstr = "UP";
797 speedup = 1;
798 incr = 1;
799 } else if (newlevel < oldlevel) {
800 chstr = "DOWN";
801 speedup = 0;
802 incr = -1;
803 } else
804 return (DDI_SUCCESS);
806 undo_flag = 0;
807 if (speedup) {
809 * If coming up from lowest power level, set the E*
810 * mode bit in GPIO to make power supply efficient
811 * at normal power.
813 if (oldlevel == cpup->lowest) {
814 xcppm_switch_dcdc_converter(XCPPM_SETBIT);
815 undo_flag = 1;
817 } else {
819 * set BBC Estar mode bit in RIO AUXIO register
821 if (oldlevel == highest) {
822 xcppm_rio_mode(unitp, XCPPM_SETBIT);
823 undo_flag = 1;
828 * this loop will execute 1x or 2x depending on
829 * number of times we need to change clock rates
831 for (level = oldlevel+incr; level != newlevel+incr; level += incr) {
832 for (cpup = xcppm_cpu.devlist; cpup; cpup = cpup->next) {
833 if (cpup->level == level)
834 continue;
835 ret = xcppm_change_power_level(cpup, 0, level);
836 DPRINTF(D_CPU, ("%s: \"%s\", %s to level %d, ret %d\n",
837 str, cpup->path, chstr, cpup->level, ret));
838 if (ret == DDI_SUCCESS)
839 continue;
842 * if the driver was unable to lower cpu speed,
843 * the cpu probably got busy; set the previous
844 * cpus back to the original level
846 if (speedup == 0)
847 xcppm_revert_cpu_power(cpup, level + 1);
849 if (undo_flag) {
850 if (speedup)
851 xcppm_switch_dcdc_converter(
852 XCPPM_CLRBIT);
853 else
854 xcppm_rio_mode(unitp, XCPPM_CLRBIT);
856 return (ret);
859 index = level - 1;
860 spm_change_schizo_speed(index);
861 DPRINTF(D_CPU, ("%s: safari config reg changed\n", str));
864 * set the delay times for changing to this rate
866 data32 = XCPPM_BBC_DELAY(index);
867 XCPPM_SETGET32(unitp->hndls.bbc_estar_ctrl,
868 (caddr_t)unitp->regs.bbc_assert_change, data32);
869 DPRINTF(D_CPU, ("%s: %s: Wrote E* Assert Change Time "
870 "(t1) = 0x%x\n", str, chstr, data32));
872 data32 = XCPPM_BBC_DELAY(index);
873 XCPPM_SETGET32(unitp->hndls.bbc_estar_ctrl,
874 (caddr_t)unitp->regs.bbc_pll_settle, data32);
875 DPRINTF(D_CPU, ("%s: %s: Wrote E* PLL Settle Time "
876 "(t4) = 0x%x\n", str, chstr, data32));
878 data16 = bbc_estar_control_masks[index];
879 XCPPM_SETGET16(unitp->hndls.bbc_estar_ctrl,
880 (caddr_t)unitp->regs.bbc_estar_ctrl, data16);
881 DPRINTF(D_CPU, ("%s: %s: Wrote BCC E* Control = 0x%x\n",
882 str, chstr, data16));
886 * clear CPU Estar Mode bit in the gpio register
888 if (speedup) {
889 if (newlevel == highest)
890 xcppm_rio_mode(unitp, XCPPM_CLRBIT);
891 } else {
892 if (newlevel == lowest)
893 xcppm_switch_dcdc_converter(XCPPM_CLRBIT);
896 return (DDI_SUCCESS);
901 * Process a request to change the power level of a cpu. If all cpus
902 * don't want to be at the same power yet, or if we are currently
903 * refusing slowdown requests due to thermal stress, just cache the
904 * request. Otherwise, make the change for all cpus.
906 /* ARGSUSED */
907 static int
908 xcppm_manage_cpus(dev_info_t *dip, power_req_t *reqp, int *result)
910 #ifdef DEBUG
911 char *str = "xcppm_manage_cpus";
912 #endif
913 int old, new, ret, kmflag;
914 ppm_dev_t *ppmd;
915 pm_ppm_devlist_t *devlist = NULL, *p;
916 int do_rescan = 0;
917 dev_info_t *rescan_dip;
919 *result = DDI_SUCCESS;
920 switch (reqp->request_type) {
921 case PMR_PPM_SET_POWER:
922 break;
923 case PMR_PPM_POWER_CHANGE_NOTIFY:
924 /* cpu driver can`t change cpu power level by itself */
925 default:
926 return (DDI_FAILURE);
929 ppmd = PPM_GET_PRIVATE(dip);
930 ASSERT(MUTEX_HELD(&ppmd->domp->lock));
931 old = reqp->req.ppm_set_power_req.old_level;
932 new = reqp->req.ppm_set_power_req.new_level;
935 * At power on, the cpus are at full speed. There is no hardware
936 * transition needed for going from unknown to full. However, the
937 * state of the pm framework and cpu driver needs to be adjusted.
939 if (ppmd->level == PM_LEVEL_UNKNOWN && new == ppmd->highest) {
940 *result = ret = xcppm_change_power_level(ppmd, 0, new);
941 if (ret != DDI_SUCCESS) {
942 DPRINTF(D_CPU, ("%s: Failed to change "
943 "power level to %d\n", str, new));
945 return (ret);
948 if (new == ppmd->level) {
949 DPRINTF(D_CPU, ("%s: already at power level %d\n", str, new));
950 return (DDI_SUCCESS);
953 ppmd->rplvl = new;
956 * A request from lower to higher level transition is granted and
957 * made effective on both cpus. For more than two cpu platform model,
958 * the following code needs to be modified to remember the rest of
959 * the unsoliciting cpus to be rescan'ed.
960 * A request from higher to lower must be agreed by all cpus.
962 for (ppmd = xcppm_cpu.devlist; ppmd; ppmd = ppmd->next) {
963 if (ppmd->rplvl == new)
964 continue;
966 if (new < old) {
967 DPRINTF(D_SOME, ("%s: not all cpus want to go down to "
968 "level %d yet\n", str, new));
969 return (DDI_SUCCESS);
973 * If a single cpu requests power up, honor the request
974 * by powering up both cpus.
976 if (new > old) {
977 DPRINTF(D_SOME, ("%s: powering up device(%s@%s, %p) "
978 "because of request from dip(%s@%s, %p), "
979 "need pm_rescan\n", str, PM_NAME(ppmd->dip),
980 PM_ADDR(ppmd->dip), (void *)ppmd->dip,
981 PM_NAME(dip), PM_ADDR(dip), (void *)dip))
982 do_rescan++;
983 rescan_dip = ppmd->dip;
984 break;
988 ret = xcppm_change_cpu_power(new);
989 *result = ret;
991 if (ret == DDI_SUCCESS) {
992 if (reqp->req.ppm_set_power_req.canblock == PM_CANBLOCK_BLOCK)
993 kmflag = KM_SLEEP;
994 else
995 kmflag = KM_NOSLEEP;
997 for (ppmd = xcppm_cpu.devlist; ppmd; ppmd = ppmd->next) {
998 if (ppmd->dip == dip)
999 continue;
1001 if ((p = kmem_zalloc(sizeof (pm_ppm_devlist_t),
1002 kmflag)) == NULL) {
1003 break;
1005 p->ppd_who = ppmd->dip;
1006 p->ppd_cmpt = ppmd->cmpt;
1007 p->ppd_old_level = old;
1008 p->ppd_new_level = new;
1009 p->ppd_next = devlist;
1011 devlist = p;
1013 reqp->req.ppm_set_power_req.cookie = (void *) devlist;
1015 if (do_rescan > 0)
1016 pm_rescan(rescan_dip);
1019 return (ret);
1024 * If powering off and all devices in this domain will now be off,
1025 * shut off common power. If powering up and no devices up yet,
1026 * turn on common power. Always make the requested power level
1027 * change for the target device.
1029 static int
1030 xcppm_manage_fet(dev_info_t *dip, power_req_t *reqp, int *result)
1032 #ifdef DEBUG
1033 char *str = "xcppm_manage_fet";
1034 #endif
1035 int (*pwr_func)(ppm_dev_t *, int, int);
1036 int new, old, cmpt, incr = 0;
1037 ppm_dev_t *ppmd;
1039 ppmd = PPM_GET_PRIVATE(dip);
1040 DPRINTF(D_FET, ("%s: \"%s\", req %s\n", str,
1041 ppmd->path, ppm_get_ctlstr(reqp->request_type, ~0)));
1043 *result = DDI_SUCCESS; /* change later for failures */
1044 switch (reqp->request_type) {
1045 case PMR_PPM_SET_POWER:
1046 pwr_func = xcppm_change_power_level;
1047 old = reqp->req.ppm_set_power_req.old_level;
1048 new = reqp->req.ppm_set_power_req.new_level;
1049 cmpt = reqp->req.ppm_set_power_req.cmpt;
1050 break;
1051 case PMR_PPM_POWER_CHANGE_NOTIFY:
1052 pwr_func = xcppm_record_level_change;
1053 old = reqp->req.ppm_notify_level_req.old_level;
1054 new = reqp->req.ppm_notify_level_req.new_level;
1055 cmpt = reqp->req.ppm_notify_level_req.cmpt;
1056 break;
1057 default:
1058 return (*result = DDI_FAILURE);
1062 /* This is common code for SET_POWER and POWER_CHANGE_NOTIFY cases */
1063 DPRINTF(D_FET, ("%s: \"%s\", old %d, new %d\n",
1064 str, ppmd->path, old, new));
1066 ASSERT(old == ppmd->level);
1067 if (new == ppmd->level)
1068 return (DDI_SUCCESS);
1070 PPM_LOCK_DOMAIN(ppmd->domp);
1072 * Devices in this domain are known to have 0 (off) as their
1073 * lowest power level. We use this fact to simplify the logic.
1075 if (new > 0) {
1076 if (ppmd->domp->pwr_cnt == 0)
1077 (void) xcppm_gpio_port2(XCPPM_SETBIT, DRVON);
1078 if (old == 0) {
1079 ppmd->domp->pwr_cnt++;
1080 incr = 1;
1081 DPRINTF(D_FET, ("%s: UP cnt = %d\n",
1082 str, ppmd->domp->pwr_cnt));
1086 PPM_UNLOCK_DOMAIN(ppmd->domp);
1088 ASSERT(ppmd->domp->pwr_cnt > 0);
1090 if ((*result = (*pwr_func)(ppmd, cmpt, new)) != DDI_SUCCESS) {
1091 DPRINTF(D_FET, ("%s: \"%s\" power change failed \n",
1092 str, ppmd->path));
1095 PPM_LOCK_DOMAIN(ppmd->domp);
1098 * Decr the power count in two cases:
1100 * 1) request was to power device down and was successful
1101 * 2) request was to power up (we pre-incremented count), but failed.
1103 if ((*result == DDI_SUCCESS && ppmd->level == 0) ||
1104 (*result != DDI_SUCCESS && incr)) {
1105 ASSERT(ppmd->domp->pwr_cnt > 0);
1106 ppmd->domp->pwr_cnt--;
1107 DPRINTF(D_FET, ("%s: DN cnt = %d\n", str, ppmd->domp->pwr_cnt));
1108 if (ppmd->domp->pwr_cnt == 0)
1109 (void) xcppm_gpio_port2(XCPPM_CLRBIT, DRVON);
1112 PPM_UNLOCK_DOMAIN(ppmd->domp);
1113 ASSERT(ppmd->domp->pwr_cnt >= 0);
1114 return (*result == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
1119 * Since UPA64S relies on PCI B staying at nominal 33MHz in order to
1120 * have its interrupt pulse function properly, we ensure
1121 * - Lowering PCI B only if UPA64S is at low power, otherwise defer
1122 * the action until UPA64S goes down; hence right after UPA64S goes
1123 * down, perform the deferred action for PCI B;
1124 * - Always raise PCI B power prior to raising UPA64S power.
1126 * Both UPA64S and PCI B devices are considered each other's dependency
1127 * device whenever actual power transition is handled (PMR_PPM_SET_POWER).
1129 static int
1130 xcppm_manage_pciupa(dev_info_t *dip, power_req_t *reqp, int *result)
1132 #ifdef DEBUG
1133 char *str = "xcppm_manage_pciupa";
1134 #endif
1135 int (*pwr_func)(ppm_dev_t *, int, int);
1136 uint_t flags = 0, co_flags = 0;
1137 ppm_dev_t *ppmd, *codev;
1138 int new, cmpt, retval;
1140 ppmd = PPM_GET_PRIVATE(dip);
1141 DPRINTF(D_PCIUPA, ("%s: \"%s\", req %s\n", str,
1142 ppmd->path, ppm_get_ctlstr(reqp->request_type, ~0)));
1144 *result = DDI_SUCCESS;
1146 switch (reqp->request_type) {
1147 case PMR_PPM_SET_POWER:
1148 pwr_func = xcppm_change_power_level;
1149 new = reqp->req.ppm_set_power_req.new_level;
1150 cmpt = reqp->req.ppm_set_power_req.cmpt;
1151 break;
1152 case PMR_PPM_POWER_CHANGE_NOTIFY:
1153 pwr_func = xcppm_record_level_change;
1154 new = reqp->req.ppm_notify_level_req.new_level;
1155 cmpt = reqp->req.ppm_notify_level_req.cmpt;
1156 break;
1157 default:
1158 *result = DDI_FAILURE;
1159 return (DDI_FAILURE);
1162 /* Common code for SET_POWER and POWER_CHANGE_NOTIFY cases */
1163 ASSERT(ppmd); /* since it should be locked already */
1165 if (new == ppmd->level)
1166 return (DDI_SUCCESS);
1168 DPRINTF(D_PCIUPA, ("%s: \"%s\", levels: current %d, new %d\n",
1169 str, ppmd->path, ppmd->level, new));
1172 * find power-wise co-related device
1174 flags = ppmd->flags;
1176 #ifdef DEBUG
1177 if (flags & ~(XCPPMF_PCIB|XCPPMF_UPA))
1178 DPRINTF(D_ERROR, ("%s: invalid ppmd->flags value 0x%x\n", str,
1179 ppmd->flags));
1180 #endif
1182 if (flags == XCPPMF_UPA)
1183 co_flags = XCPPMF_PCIB;
1184 else if (flags == XCPPMF_PCIB)
1185 co_flags = XCPPMF_UPA;
1187 for (codev = ppmd->domp->devlist; codev; codev = codev->next)
1188 if ((codev->cmpt == 0) && (codev->flags == co_flags))
1189 break;
1191 if (new > ppmd->level) {
1193 * Raise power level -
1194 * pre-raising: upa ensure pci is powered up.
1196 if ((flags == XCPPMF_UPA) && codev &&
1197 (codev->level != codev->highest)) {
1198 if ((retval = xcppm_change_power_level(codev,
1199 0, codev->highest)) != DDI_SUCCESS &&
1200 codev->level != codev->highest) {
1201 *result = retval;
1202 return (DDI_FAILURE);
1205 if ((retval = (*pwr_func)(ppmd, 0, new)) != DDI_SUCCESS) {
1206 *result = retval;
1207 return (DDI_FAILURE);
1209 } else if (new < ppmd->level) {
1211 * Lower power level
1213 * once upa is attached, pci checks upa level:
1214 * if upa is at high level, defer the request and return.
1215 * otherwise, set power level then check and lower pci level.
1217 if ((flags == XCPPMF_PCIB) && codev &&
1218 (codev->level != codev->lowest)) {
1219 ppmd->rplvl = new;
1220 return (DDI_SUCCESS);
1222 if ((retval = (*pwr_func)(ppmd, cmpt, new)) != DDI_SUCCESS &&
1223 ppmd->level != new) {
1224 *result = retval;
1225 return (DDI_FAILURE);
1228 if (flags == XCPPMF_UPA) {
1229 if (codev && (codev->rplvl != PM_LEVEL_UNKNOWN) &&
1230 (codev->rplvl < codev->level)) {
1231 DPRINTF(D_PCIUPA, ("%s: codev \"%s\" "
1232 "rplvl %d level %d\n", str, codev->path,
1233 codev->rplvl, codev->level));
1234 if ((retval = xcppm_change_power_level(
1235 codev, 0, codev->rplvl)) != DDI_SUCCESS) {
1236 *result = retval;
1237 return (DDI_FAILURE);
1243 return (DDI_SUCCESS);
1248 * When all of the children of the 1394 nexus are idle, a call will be
1249 * made to the nexus driver's own power entry point to lower power. Ppm
1250 * intercepts this and kills 1394 cable power (since the driver doesn't
1251 * have access to the required register). Similar logic applies when
1252 * coming up from the state where all the children were off.
1254 static int
1255 xcppm_manage_1394(dev_info_t *dip, power_req_t *reqp, int *result)
1257 #ifdef DEBUG
1258 char *str = "xcppm_manage_1394";
1259 #endif
1260 int (*pwr_func)(ppm_dev_t *, int, int);
1261 int new, old, cmpt;
1262 ppm_dev_t *ppmd;
1264 ppmd = PPM_GET_PRIVATE(dip);
1265 DPRINTF(D_1394, ("%s: \"%s\", req %s\n", str,
1266 ppmd->path, ppm_get_ctlstr(reqp->request_type, ~0)));
1268 switch (reqp->request_type) {
1269 case PMR_PPM_SET_POWER:
1270 pwr_func = xcppm_change_power_level;
1271 old = reqp->req.ppm_set_power_req.old_level;
1272 new = reqp->req.ppm_set_power_req.new_level;
1273 cmpt = reqp->req.ppm_set_power_req.cmpt;
1274 break;
1275 case PMR_PPM_POWER_CHANGE_NOTIFY:
1276 pwr_func = xcppm_record_level_change;
1277 old = reqp->req.ppm_notify_level_req.old_level;
1278 new = reqp->req.ppm_notify_level_req.new_level;
1279 cmpt = reqp->req.ppm_notify_level_req.cmpt;
1280 break;
1281 default:
1282 return (*result = DDI_FAILURE);
1286 /* Common code for SET_POWER and POWER_CHANGE_NOTIFY cases */
1287 DPRINTF(D_1394, ("%s: dev %s@%s, old %d new %d\n", str,
1288 ddi_binding_name(dip), ddi_get_name_addr(dip), old, new));
1290 ASSERT(ppmd); /* since it must already be locked */
1291 ASSERT(old == ppmd->level);
1293 if (new == ppmd->level)
1294 return (*result = DDI_SUCCESS);
1296 /* the reduce power case */
1297 if (cmpt == 0 && new < ppmd->level) {
1298 if ((*result =
1299 (*pwr_func)(ppmd, cmpt, new)) != DDI_SUCCESS) {
1300 return (DDI_FAILURE);
1302 if (new == ppmd->lowest)
1303 (void) xcppm_gpio_port2(XCPPM_CLRBIT, CPEN);
1304 ppmd->level = new;
1305 return (DDI_SUCCESS);
1308 /* the increase power case */
1309 if (cmpt == 0 && new > ppmd->level) {
1310 if (ppmd->level == ppmd->lowest) {
1311 (void) xcppm_gpio_port2(XCPPM_SETBIT, CPEN);
1312 delay(1);
1315 * Even if pwr_func fails we need to check current level again
1316 * because it could have been changed by an intervening
1317 * POWER_CHANGE_NOTIFY operation.
1319 if ((*result =
1320 (*pwr_func)(ppmd, cmpt, new)) != DDI_SUCCESS &&
1321 ppmd->level == ppmd->lowest) {
1322 (void) xcppm_gpio_port2(XCPPM_CLRBIT, CPEN);
1323 } else {
1324 ppmd->level = new;
1327 return (*result == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
1331 * We get here if component was non-zero. This is not what we
1332 * expect. Let the device deal with it and just pass back the
1333 * result.
1335 *result = xcppm_change_power_level(ppmd, cmpt, new);
1336 return (*result == DDI_SUCCESS ? DDI_SUCCESS : DDI_FAILURE);
1341 * lock, unlock, or trylock for one power mutex
1343 static void
1344 xcppm_lock_one(ppm_dev_t *ppmd, power_req_t *reqp, int *iresp)
1346 switch (reqp->request_type) {
1347 case PMR_PPM_LOCK_POWER:
1348 pm_lock_power_single(ppmd->dip,
1349 reqp->req.ppm_lock_power_req.circp);
1350 break;
1352 case PMR_PPM_UNLOCK_POWER:
1353 pm_unlock_power_single(ppmd->dip,
1354 reqp->req.ppm_unlock_power_req.circ);
1355 break;
1357 case PMR_PPM_TRY_LOCK_POWER:
1358 *iresp = pm_try_locking_power_single(ppmd->dip,
1359 reqp->req.ppm_lock_power_req.circp);
1360 break;
1366 * lock, unlock, or trylock all devices within a domain.
1368 static void
1369 xcppm_lock_all(ppm_domain_t *domp, power_req_t *reqp, int *iresp)
1372 * To simplify the implementation we let all the devices
1373 * in the domain be represented by a single device (dip).
1374 * We use the first device in the domain's devlist. This
1375 * is safe because we return with the domain lock held
1376 * which prevents the list from changing.
1378 if (reqp->request_type == PMR_PPM_LOCK_POWER) {
1379 if (!MUTEX_HELD(&domp->lock))
1380 mutex_enter(&domp->lock);
1381 domp->refcnt++;
1382 ASSERT(domp->devlist != NULL);
1383 pm_lock_power_single(domp->devlist->dip,
1384 reqp->req.ppm_lock_power_req.circp);
1385 /* domain lock remains held */
1386 return;
1387 } else if (reqp->request_type == PMR_PPM_UNLOCK_POWER) {
1388 ASSERT(MUTEX_HELD(&domp->lock));
1389 ASSERT(domp->devlist != NULL);
1390 pm_unlock_power_single(domp->devlist->dip,
1391 reqp->req.ppm_unlock_power_req.circ);
1392 if (--domp->refcnt == 0)
1393 mutex_exit(&domp->lock);
1394 return;
1397 ASSERT(reqp->request_type == PMR_PPM_TRY_LOCK_POWER);
1398 if (!MUTEX_HELD(&domp->lock))
1399 if (!mutex_tryenter(&domp->lock)) {
1400 *iresp = 0;
1401 return;
1403 *iresp = pm_try_locking_power_single(domp->devlist->dip,
1404 reqp->req.ppm_lock_power_req.circp);
1405 if (*iresp)
1406 domp->refcnt++;
1407 else
1408 mutex_exit(&domp->lock);
1413 * The pm framework calls us here to manage power for a device.
1414 * We maintain state which tells us whether we need to turn off/on
1415 * system board power components based on the status of all the devices
1416 * sharing a component.
1419 /* ARGSUSED */
1420 static int
1421 xcppm_ctlops(dev_info_t *dip, dev_info_t *rdip,
1422 ddi_ctl_enum_t ctlop, void *arg, void *result)
1424 power_req_t *reqp = arg;
1425 xcppm_unit_t *unitp;
1426 ppm_domain_t *domp;
1427 ppm_dev_t *ppmd;
1429 #ifdef DEBUG
1430 char path[MAXPATHLEN], *ctlstr, *str = "xcppm_ctlops";
1431 uint_t mask = ppm_debug & (D_CTLOPS1 | D_CTLOPS2);
1432 if (mask && (ctlstr = ppm_get_ctlstr(reqp->request_type, mask))) {
1433 prom_printf("%s: \"%s\", %s\n", str,
1434 ddi_pathname(rdip, path), ctlstr);
1436 #endif
1438 if (ctlop != DDI_CTLOPS_POWER)
1439 return (DDI_FAILURE);
1441 switch (reqp->request_type) {
1442 case PMR_PPM_UNMANAGE:
1443 case PMR_PPM_PRE_PROBE:
1444 case PMR_PPM_POST_PROBE:
1445 case PMR_PPM_PRE_ATTACH:
1446 case PMR_PPM_PRE_DETACH:
1447 return (DDI_SUCCESS);
1450 * There is no hardware configuration required to be done on this
1451 * platform prior to installing drivers.
1453 case PMR_PPM_INIT_CHILD:
1454 case PMR_PPM_UNINIT_CHILD:
1455 return (DDI_SUCCESS);
1457 case PMR_PPM_ALL_LOWEST:
1458 DPRINTF(D_LOWEST, ("%s: all devices at lowest power = %d\n",
1459 str, reqp->req.ppm_all_lowest_req.mode));
1460 if (reqp->req.ppm_all_lowest_req.mode == PM_ALL_LOWEST) {
1461 unitp = ddi_get_soft_state(ppm_statep, ppm_inst);
1462 mutex_enter(&unitp->unit_lock);
1463 if (unitp->state & XCPPM_ST_SUSPENDED) {
1464 mutex_exit(&unitp->unit_lock);
1465 return (DDI_SUCCESS);
1468 xcppm_set_led(PPM_LEDON);
1469 unitp->led_tid = timeout(xcppm_blink_led,
1470 (void *)PPM_LEDON, PPM_LEDON_INTERVAL);
1471 mutex_exit(&unitp->unit_lock);
1472 DPRINTF(D_LOWEST, ("%s: LED blink started\n", str));
1473 } else {
1474 xcppm_freeze_led((void *)PPM_LEDON);
1475 DPRINTF(D_LOWEST, ("%s: LED freeze ON\n", str));
1477 return (DDI_SUCCESS);
1479 case PMR_PPM_POST_ATTACH:
1481 * After a successful attach, if we haven't already created
1482 * our private data structure for this device, ppm_get_dev()
1483 * will force it to be created.
1485 ppmd = PPM_GET_PRIVATE(rdip);
1486 if (reqp->req.ppm_config_req.result != DDI_SUCCESS) {
1487 if (ppmd)
1488 ppm_rem_dev(rdip);
1489 } else if (!ppmd) {
1490 domp = ppm_lookup_dev(rdip);
1491 ASSERT(domp);
1492 (void) ppm_get_dev(rdip, domp);
1494 return (DDI_SUCCESS);
1496 case PMR_PPM_POST_DETACH:
1497 xcppm_detach_ctlop(rdip, reqp);
1498 *(int *)result = DDI_SUCCESS;
1499 return (DDI_SUCCESS);
1501 case PMR_PPM_PRE_RESUME:
1502 xcppm_resume_ctlop(rdip, reqp);
1503 return (DDI_SUCCESS);
1505 case PMR_PPM_UNLOCK_POWER:
1506 case PMR_PPM_TRY_LOCK_POWER:
1507 case PMR_PPM_LOCK_POWER:
1508 ppmd = PPM_GET_PRIVATE(rdip);
1509 if (ppmd)
1510 domp = ppmd->domp;
1511 else if (reqp->request_type != PMR_PPM_UNLOCK_POWER) {
1512 domp = ppm_lookup_dev(rdip);
1513 ASSERT(domp);
1514 ppmd = ppm_get_dev(rdip, domp);
1517 ASSERT(domp->dflags == PPMD_LOCK_ALL ||
1518 domp->dflags == PPMD_LOCK_ONE);
1519 DPRINTF(D_LOCKS, ("xcppm_lock_%s: \"%s\", %s\n",
1520 (domp->dflags == PPMD_LOCK_ALL) ? "all" : "one",
1521 ppmd->path, ppm_get_ctlstr(reqp->request_type, D_LOCKS)));
1523 if (domp->dflags == PPMD_LOCK_ALL)
1524 xcppm_lock_all(domp, reqp, result);
1525 else
1526 xcppm_lock_one(ppmd, reqp, result);
1527 return (DDI_SUCCESS);
1529 case PMR_PPM_POWER_LOCK_OWNER:
1530 ASSERT(reqp->req.ppm_power_lock_owner_req.who == rdip);
1531 ppmd = PPM_GET_PRIVATE(rdip);
1532 if (ppmd)
1533 domp = ppmd->domp;
1534 else {
1535 domp = ppm_lookup_dev(rdip);
1536 ASSERT(domp);
1537 ppmd = ppm_get_dev(rdip, domp);
1541 * In case of LOCK_ALL, effective owner of the power lock
1542 * is the owner of the domain lock. otherwise, it is the owner
1543 * of the power lock.
1545 if (domp->dflags & PPMD_LOCK_ALL)
1546 reqp->req.ppm_power_lock_owner_req.owner =
1547 mutex_owner(&domp->lock);
1548 else {
1549 reqp->req.ppm_power_lock_owner_req.owner =
1550 DEVI(rdip)->devi_busy_thread;
1552 return (DDI_SUCCESS);
1554 default:
1555 ppmd = PPM_GET_PRIVATE(rdip);
1556 if (ppmd == NULL) {
1557 domp = ppm_lookup_dev(rdip);
1558 ASSERT(domp);
1559 ppmd = ppm_get_dev(rdip, domp);
1562 #ifdef DEBUG
1563 if ((reqp->request_type == PMR_PPM_SET_POWER) &&
1564 (ppm_debug & D_SETPWR)) {
1565 prom_printf("%s: \"%s\", PMR_PPM_SET_POWER\n",
1566 str, ppmd->path);
1568 #endif
1570 if (ppmd->domp == &xcppm_cpu)
1571 return (xcppm_manage_cpus(rdip, reqp, result));
1572 else if (ppmd->domp == &xcppm_fet)
1573 return (xcppm_manage_fet(rdip, reqp, result));
1574 else if (ppmd->domp == &xcppm_upa)
1575 return (xcppm_manage_pciupa(rdip, reqp, result));
1576 else {
1577 ASSERT(ppmd->domp == &xcppm_1394);
1578 return (xcppm_manage_1394(rdip, reqp, result));
1585 * Initialize our private version of real power level
1586 * as well as lowest and highest levels the device supports;
1587 * see ppmf and ppm_add_dev
1589 static void
1590 xcppm_dev_init(ppm_dev_t *ppmd)
1592 struct pm_component *dcomps;
1593 struct pm_comp *pm_comp;
1594 dev_info_t *dip;
1595 int maxi;
1597 ASSERT(MUTEX_HELD(&ppmd->domp->lock));
1598 ppmd->level = PM_LEVEL_UNKNOWN;
1599 ppmd->rplvl = PM_LEVEL_UNKNOWN;
1601 dip = ppmd->dip;
1603 * ppm exists to handle power-manageable devices which require
1604 * special handling on the current platform. However, a
1605 * driver for such a device may choose not to support power
1606 * management on a particular load/attach. In this case we
1607 * we create a structure to represent a single-component device
1608 * for which "level" = PM_LEVEL_UNKNOWN and "lowest" = 0
1609 * are effectively constant.
1611 if (PM_GET_PM_INFO(dip)) {
1612 dcomps = DEVI(dip)->devi_pm_components;
1613 pm_comp = &dcomps[ppmd->cmpt].pmc_comp;
1615 ppmd->lowest = pm_comp->pmc_lvals[0];
1616 ASSERT(ppmd->lowest >= 0);
1617 maxi = pm_comp->pmc_numlevels - 1;
1618 ppmd->highest = pm_comp->pmc_lvals[maxi];
1622 * add any domain-specific initialization here
1624 if (ppmd->domp == &xcppm_fet) {
1626 * when a new device is added to domain_powefet
1627 * it is counted here as being powered up.
1629 ppmd->domp->pwr_cnt++;
1630 DPRINTF(D_FET, ("xcppm_dev_init: UP cnt = %d\n",
1631 ppmd->domp->pwr_cnt));
1632 } else if (ppmd->domp == &xcppm_upa) {
1634 * There may be a better way to determine the device type
1635 * instead of comparing to hard coded string names.
1637 if (strstr(ppmd->path, "pci@8,700000"))
1638 ppmd->flags = XCPPMF_PCIB;
1639 else if (strstr(ppmd->path, "upa@8,480000"))
1640 ppmd->flags = XCPPMF_UPA;
1646 * see ppmf and ppm_rem_dev
1648 static void
1649 xcppm_dev_fini(ppm_dev_t *ppmd)
1651 ASSERT(MUTEX_HELD(&ppmd->domp->lock));
1652 if (ppmd->domp == &xcppm_fet) {
1653 if (ppmd->level != ppmd->lowest) {
1654 ppmd->domp->pwr_cnt--;
1655 DPRINTF(D_FET, ("xcppm_dev_fini: DN cnt = %d\n",
1656 ppmd->domp->pwr_cnt));
1663 * see ppmf and ppm_ioctl, PPMIOCSET
1665 static void
1666 xcppm_iocset(uint8_t value)
1668 int action;
1670 if (value == PPM_IDEV_POWER_ON)
1671 action = XCPPM_SETBIT;
1672 else if (value == PPM_IDEV_POWER_OFF)
1673 action = XCPPM_CLRBIT;
1674 (void) xcppm_gpio_port2(action, DRVON);
1679 * see ppmf and ppm_ioctl, PPMIOCGET
1681 static uint8_t
1682 xcppm_iocget(void)
1684 uint8_t bit;
1686 bit = xcppm_gpio_port2(XCPPM_GETBIT, DRVON);
1687 return ((bit == DRVON) ? PPM_IDEV_POWER_ON : PPM_IDEV_POWER_OFF);