sd: remove 'ssd' driver support
[unleashed/tickless.git] / usr / src / cmd / zpool / zpool_vdev.c
blob206e152e15e72c5368992e4dbf5d51a44078a9e4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
29 * Functions to convert between a list of vdevs and an nvlist representing the
30 * configuration. Each entry in the list can be one of:
32 * Device vdevs
33 * disk=(path=..., devid=...)
34 * file=(path=...)
36 * Group vdevs
37 * raidz[1|2]=(...)
38 * mirror=(...)
40 * Hot spares
42 * While the underlying implementation supports it, group vdevs cannot contain
43 * other group vdevs. All userland verification of devices is contained within
44 * this file. If successful, the nvlist returned can be passed directly to the
45 * kernel; we've done as much verification as possible in userland.
47 * Hot spares are a special case, and passed down as an array of disk vdevs, at
48 * the same level as the root of the vdev tree.
50 * The only function exported by this file is 'make_root_vdev'. The
51 * function performs several passes:
53 * 1. Construct the vdev specification. Performs syntax validation and
54 * makes sure each device is valid.
55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no
56 * devices are also in use. Some can be overridden using the 'force'
57 * flag, others cannot.
58 * 3. Check for replication errors if the 'force' flag is not specified.
59 * validates that the replication level is consistent across the
60 * entire pool.
61 * 4. Call libzfs to label any whole disks with an EFI label.
64 #include <assert.h>
65 #include <devid.h>
66 #include <errno.h>
67 #include <fcntl.h>
68 #include <libdiskmgt.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <limits.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
80 #include "zpool_util.h"
82 #define BACKUP_SLICE "s2"
85 * For any given vdev specification, we can have multiple errors. The
86 * vdev_error() function keeps track of whether we have seen an error yet, and
87 * prints out a header if its the first error we've seen.
89 boolean_t error_seen;
90 boolean_t is_force;
92 /*PRINTFLIKE1*/
93 static void
94 vdev_error(const char *fmt, ...)
96 va_list ap;
98 if (!error_seen) {
99 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 if (!is_force)
101 (void) fprintf(stderr, gettext("use '-f' to override "
102 "the following errors:\n"));
103 else
104 (void) fprintf(stderr, gettext("the following errors "
105 "must be manually repaired:\n"));
106 error_seen = B_TRUE;
109 va_start(ap, fmt);
110 (void) vfprintf(stderr, fmt, ap);
111 va_end(ap);
114 static void
115 libdiskmgt_error(int error)
118 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 * /dev/dsk. Don't bother printing an error message in this case.
121 if (error == ENXIO || error == ENODEV)
122 return;
124 (void) fprintf(stderr, gettext("warning: device in use checking "
125 "failed: %s\n"), strerror(error));
129 * Validate a device, passing the bulk of the work off to libdiskmgt.
131 static int
132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
134 char *msg;
135 int error = 0;
136 dm_who_type_t who;
138 if (force)
139 who = DM_WHO_ZPOOL_FORCE;
140 else if (isspare)
141 who = DM_WHO_ZPOOL_SPARE;
142 else
143 who = DM_WHO_ZPOOL;
145 if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 if (error != 0) {
147 libdiskmgt_error(error);
148 return (0);
149 } else {
150 vdev_error("%s", msg);
151 free(msg);
152 return (-1);
157 * If we're given a whole disk, ignore overlapping slices since we're
158 * about to label it anyway.
160 error = 0;
161 if (!wholedisk && !force &&
162 (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 if (error == 0) {
164 /* dm_isoverlapping returned -1 */
165 vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 free(msg);
167 return (-1);
168 } else if (error != ENODEV) {
169 /* libdiskmgt's devcache only handles physical drives */
170 libdiskmgt_error(error);
171 return (0);
175 return (0);
180 * Validate a whole disk. Iterate over all slices on the disk and make sure
181 * that none is in use by calling check_slice().
183 static int
184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
186 dm_descriptor_t *drive, *media, *slice;
187 int err = 0;
188 int i;
189 int ret;
192 * Get the drive associated with this disk. This should never fail,
193 * because we already have an alias handle open for the device.
195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 &err)) == NULL || *drive == 0) {
197 if (err)
198 libdiskmgt_error(err);
199 return (0);
202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 &err)) == NULL) {
204 dm_free_descriptors(drive);
205 if (err)
206 libdiskmgt_error(err);
207 return (0);
210 dm_free_descriptors(drive);
213 * It is possible that the user has specified a removable media drive,
214 * and the media is not present.
216 if (*media == 0) {
217 dm_free_descriptors(media);
218 vdev_error(gettext("'%s' has no media in drive\n"), name);
219 return (-1);
222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 &err)) == NULL) {
224 dm_free_descriptors(media);
225 if (err)
226 libdiskmgt_error(err);
227 return (0);
230 dm_free_descriptors(media);
232 ret = 0;
235 * Iterate over all slices and report any errors. We don't care about
236 * overlapping slices because we are using the whole disk.
238 for (i = 0; slice[i] != (uintptr_t)NULL; i++) {
239 char *name = dm_get_name(slice[i], &err);
241 if (check_slice(name, force, B_TRUE, isspare) != 0)
242 ret = -1;
244 dm_free_name(name);
247 dm_free_descriptors(slice);
248 return (ret);
252 * Validate a device.
254 static int
255 check_device(const char *path, boolean_t force, boolean_t isspare)
257 dm_descriptor_t desc;
258 int err;
259 char *dev;
262 * For whole disks, libdiskmgt does not include the leading dev path.
264 dev = strrchr(path, '/');
265 assert(dev != NULL);
266 dev++;
267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err))
268 != (uintptr_t)NULL) {
269 err = check_disk(path, desc, force, isspare);
270 dm_free_descriptor(desc);
271 return (err);
274 return (check_slice(path, force, B_FALSE, isspare));
278 * Check that a file is valid. All we can do in this case is check that it's
279 * not in use by another pool, and not in use by swap.
281 static int
282 check_file(const char *file, boolean_t force, boolean_t isspare)
284 char *name;
285 int fd;
286 int ret = 0;
287 int err;
288 pool_state_t state;
289 boolean_t inuse;
291 if (dm_inuse_swap(file, &err)) {
292 if (err)
293 libdiskmgt_error(err);
294 else
295 vdev_error(gettext("%s is currently used by swap. "
296 "Please see swap(1M).\n"), file);
297 return (-1);
300 if ((fd = open(file, O_RDONLY)) < 0)
301 return (0);
303 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
304 const char *desc;
306 switch (state) {
307 case POOL_STATE_ACTIVE:
308 desc = gettext("active");
309 break;
311 case POOL_STATE_EXPORTED:
312 desc = gettext("exported");
313 break;
315 case POOL_STATE_POTENTIALLY_ACTIVE:
316 desc = gettext("potentially active");
317 break;
319 default:
320 desc = gettext("unknown");
321 break;
325 * Allow hot spares to be shared between pools.
327 if (state == POOL_STATE_SPARE && isspare)
328 return (0);
330 if (state == POOL_STATE_ACTIVE ||
331 state == POOL_STATE_SPARE || !force) {
332 switch (state) {
333 case POOL_STATE_SPARE:
334 vdev_error(gettext("%s is reserved as a hot "
335 "spare for pool %s\n"), file, name);
336 break;
337 default:
338 vdev_error(gettext("%s is part of %s pool "
339 "'%s'\n"), file, desc, name);
340 break;
342 ret = -1;
345 free(name);
348 (void) close(fd);
349 return (ret);
354 * By "whole disk" we mean an entire physical disk (something we can
355 * label, toggle the write cache on, etc.) as opposed to the full
356 * capacity of a pseudo-device such as lofi or did. We act as if we
357 * are labeling the disk, which should be a pretty good test of whether
358 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
359 * it isn't.
361 static boolean_t
362 is_whole_disk(const char *arg)
364 struct dk_gpt *label;
365 int fd;
366 char path[MAXPATHLEN];
368 (void) snprintf(path, sizeof (path), "%s%s%s",
369 ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
370 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
371 return (B_FALSE);
372 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
373 (void) close(fd);
374 return (B_FALSE);
376 efi_free(label);
377 (void) close(fd);
378 return (B_TRUE);
382 * Create a leaf vdev. Determine if this is a file or a device. If it's a
383 * device, fill in the device id to make a complete nvlist. Valid forms for a
384 * leaf vdev are:
386 * /dev/dsk/xxx Complete disk path
387 * /xxx Full path to file
388 * xxx Shorthand for /dev/dsk/xxx
390 static nvlist_t *
391 make_leaf_vdev(const char *arg, uint64_t is_log)
393 char path[MAXPATHLEN];
394 struct stat64 statbuf;
395 nvlist_t *vdev = NULL;
396 char *type = NULL;
397 boolean_t wholedisk = B_FALSE;
400 * Determine what type of vdev this is, and put the full path into
401 * 'path'. We detect whether this is a device of file afterwards by
402 * checking the st_mode of the file.
404 if (arg[0] == '/') {
406 * Complete device or file path. Exact type is determined by
407 * examining the file descriptor afterwards.
409 wholedisk = is_whole_disk(arg);
410 if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
411 (void) fprintf(stderr,
412 gettext("cannot open '%s': %s\n"),
413 arg, strerror(errno));
414 return (NULL);
417 (void) strlcpy(path, arg, sizeof (path));
418 } else {
420 * This may be a short path for a device, or it could be total
421 * gibberish. Check to see if it's a known device in
422 * /dev/dsk/. As part of this check, see if we've been given a
423 * an entire disk (minus the slice number).
425 (void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT,
426 arg);
427 wholedisk = is_whole_disk(path);
428 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
430 * If we got ENOENT, then the user gave us
431 * gibberish, so try to direct them with a
432 * reasonable error message. Otherwise,
433 * regurgitate strerror() since it's the best we
434 * can do.
436 if (errno == ENOENT) {
437 (void) fprintf(stderr,
438 gettext("cannot open '%s': no such "
439 "device in %s\n"), arg, ZFS_DISK_ROOT);
440 (void) fprintf(stderr,
441 gettext("must be a full path or "
442 "shorthand device name\n"));
443 return (NULL);
444 } else {
445 (void) fprintf(stderr,
446 gettext("cannot open '%s': %s\n"),
447 path, strerror(errno));
448 return (NULL);
454 * Determine whether this is a device or a file.
456 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
457 type = VDEV_TYPE_DISK;
458 } else if (S_ISREG(statbuf.st_mode)) {
459 type = VDEV_TYPE_FILE;
460 } else {
461 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
462 "block device or regular file\n"), path);
463 return (NULL);
467 * Finally, we have the complete device or file, and we know that it is
468 * acceptable to use. Construct the nvlist to describe this vdev. All
469 * vdevs have a 'path' element, and devices also have a 'devid' element.
471 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
473 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
474 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
475 if (strcmp(type, VDEV_TYPE_DISK) == 0)
476 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
477 (uint64_t)wholedisk) == 0);
480 * For a whole disk, defer getting its devid until after labeling it.
482 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
484 * Get the devid for the device.
486 int fd;
487 ddi_devid_t devid;
488 char *minor = NULL, *devid_str = NULL;
490 if ((fd = open(path, O_RDONLY)) < 0) {
491 (void) fprintf(stderr, gettext("cannot open '%s': "
492 "%s\n"), path, strerror(errno));
493 nvlist_free(vdev);
494 return (NULL);
497 if (devid_get(fd, &devid) == 0) {
498 if (devid_get_minor_name(fd, &minor) == 0 &&
499 (devid_str = devid_str_encode(devid, minor)) !=
500 NULL) {
501 verify(nvlist_add_string(vdev,
502 ZPOOL_CONFIG_DEVID, devid_str) == 0);
504 if (devid_str != NULL)
505 devid_str_free(devid_str);
506 if (minor != NULL)
507 devid_str_free(minor);
508 devid_free(devid);
511 (void) close(fd);
514 return (vdev);
518 * Go through and verify the replication level of the pool is consistent.
519 * Performs the following checks:
521 * For the new spec, verifies that devices in mirrors and raidz are the
522 * same size.
524 * If the current configuration already has inconsistent replication
525 * levels, ignore any other potential problems in the new spec.
527 * Otherwise, make sure that the current spec (if there is one) and the new
528 * spec have consistent replication levels.
530 typedef struct replication_level {
531 char *zprl_type;
532 uint64_t zprl_children;
533 uint64_t zprl_parity;
534 } replication_level_t;
536 #define ZPOOL_FUZZ (16 * 1024 * 1024)
539 * Given a list of toplevel vdevs, return the current replication level. If
540 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
541 * an error message will be displayed for each self-inconsistent vdev.
543 static replication_level_t *
544 get_replication(nvlist_t *nvroot, boolean_t fatal)
546 nvlist_t **top;
547 uint_t t, toplevels;
548 nvlist_t **child;
549 uint_t c, children;
550 nvlist_t *nv;
551 char *type;
552 replication_level_t lastrep = {0};
553 replication_level_t rep;
554 replication_level_t *ret;
555 boolean_t dontreport;
557 ret = safe_malloc(sizeof (replication_level_t));
559 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
560 &top, &toplevels) == 0);
562 for (t = 0; t < toplevels; t++) {
563 uint64_t is_log = B_FALSE;
565 nv = top[t];
568 * For separate logs we ignore the top level vdev replication
569 * constraints.
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
572 if (is_log)
573 continue;
575 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
576 &type) == 0);
577 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
578 &child, &children) != 0) {
580 * This is a 'file' or 'disk' vdev.
582 rep.zprl_type = type;
583 rep.zprl_children = 1;
584 rep.zprl_parity = 0;
585 } else {
586 uint64_t vdev_size;
589 * This is a mirror or RAID-Z vdev. Go through and make
590 * sure the contents are all the same (files vs. disks),
591 * keeping track of the number of elements in the
592 * process.
594 * We also check that the size of each vdev (if it can
595 * be determined) is the same.
597 rep.zprl_type = type;
598 rep.zprl_children = 0;
600 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
601 verify(nvlist_lookup_uint64(nv,
602 ZPOOL_CONFIG_NPARITY,
603 &rep.zprl_parity) == 0);
604 assert(rep.zprl_parity != 0);
605 } else {
606 rep.zprl_parity = 0;
610 * The 'dontreport' variable indicates that we've
611 * already reported an error for this spec, so don't
612 * bother doing it again.
614 type = NULL;
615 dontreport = 0;
616 vdev_size = -1ULL;
617 for (c = 0; c < children; c++) {
618 nvlist_t *cnv = child[c];
619 char *path;
620 struct stat64 statbuf;
621 uint64_t size = -1ULL;
622 char *childtype;
623 int fd, err;
625 rep.zprl_children++;
627 verify(nvlist_lookup_string(cnv,
628 ZPOOL_CONFIG_TYPE, &childtype) == 0);
631 * If this is a replacing or spare vdev, then
632 * get the real first child of the vdev.
634 if (strcmp(childtype,
635 VDEV_TYPE_REPLACING) == 0 ||
636 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
637 nvlist_t **rchild;
638 uint_t rchildren;
640 verify(nvlist_lookup_nvlist_array(cnv,
641 ZPOOL_CONFIG_CHILDREN, &rchild,
642 &rchildren) == 0);
643 assert(rchildren == 2);
644 cnv = rchild[0];
646 verify(nvlist_lookup_string(cnv,
647 ZPOOL_CONFIG_TYPE,
648 &childtype) == 0);
651 verify(nvlist_lookup_string(cnv,
652 ZPOOL_CONFIG_PATH, &path) == 0);
655 * If we have a raidz/mirror that combines disks
656 * with files, report it as an error.
658 if (!dontreport && type != NULL &&
659 strcmp(type, childtype) != 0) {
660 free(ret);
661 ret = NULL;
662 if (fatal)
663 vdev_error(gettext(
664 "mismatched replication "
665 "level: %s contains both "
666 "files and devices\n"),
667 rep.zprl_type);
668 else
669 return (NULL);
670 dontreport = B_TRUE;
674 * According to stat(2), the value of 'st_size'
675 * is undefined for block devices and character
676 * devices. But there is no effective way to
677 * determine the real size in userland.
679 * Instead, we'll take advantage of an
680 * implementation detail of spec_size(). If the
681 * device is currently open, then we (should)
682 * return a valid size.
684 * If we still don't get a valid size (indicated
685 * by a size of 0 or MAXOFFSET_T), then ignore
686 * this device altogether.
688 if ((fd = open(path, O_RDONLY)) >= 0) {
689 err = fstat64(fd, &statbuf);
690 (void) close(fd);
691 } else {
692 err = stat64(path, &statbuf);
695 if (err != 0 ||
696 statbuf.st_size == 0 ||
697 statbuf.st_size == MAXOFFSET_T)
698 continue;
700 size = statbuf.st_size;
703 * Also make sure that devices and
704 * slices have a consistent size. If
705 * they differ by a significant amount
706 * (~16MB) then report an error.
708 if (!dontreport &&
709 (vdev_size != -1ULL &&
710 (labs(size - vdev_size) >
711 ZPOOL_FUZZ))) {
712 free(ret);
713 ret = NULL;
714 if (fatal)
715 vdev_error(gettext(
716 "%s contains devices of "
717 "different sizes\n"),
718 rep.zprl_type);
719 else
720 return (NULL);
721 dontreport = B_TRUE;
724 type = childtype;
725 vdev_size = size;
730 * At this point, we have the replication of the last toplevel
731 * vdev in 'rep'. Compare it to 'lastrep' to see if its
732 * different.
734 if (lastrep.zprl_type != NULL) {
735 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
736 free(ret);
737 ret = NULL;
738 if (fatal)
739 vdev_error(gettext(
740 "mismatched replication level: "
741 "both %s and %s vdevs are "
742 "present\n"),
743 lastrep.zprl_type, rep.zprl_type);
744 else
745 return (NULL);
746 } else if (lastrep.zprl_parity != rep.zprl_parity) {
747 free(ret);
748 ret = NULL;
749 if (fatal)
750 vdev_error(gettext(
751 "mismatched replication level: "
752 "both %llu and %llu device parity "
753 "%s vdevs are present\n"),
754 lastrep.zprl_parity,
755 rep.zprl_parity,
756 rep.zprl_type);
757 else
758 return (NULL);
759 } else if (lastrep.zprl_children != rep.zprl_children) {
760 free(ret);
761 ret = NULL;
762 if (fatal)
763 vdev_error(gettext(
764 "mismatched replication level: "
765 "both %llu-way and %llu-way %s "
766 "vdevs are present\n"),
767 lastrep.zprl_children,
768 rep.zprl_children,
769 rep.zprl_type);
770 else
771 return (NULL);
774 lastrep = rep;
777 if (ret != NULL)
778 *ret = rep;
780 return (ret);
784 * Check the replication level of the vdev spec against the current pool. Calls
785 * get_replication() to make sure the new spec is self-consistent. If the pool
786 * has a consistent replication level, then we ignore any errors. Otherwise,
787 * report any difference between the two.
789 static int
790 check_replication(nvlist_t *config, nvlist_t *newroot)
792 nvlist_t **child;
793 uint_t children;
794 replication_level_t *current = NULL, *new;
795 int ret;
798 * If we have a current pool configuration, check to see if it's
799 * self-consistent. If not, simply return success.
801 if (config != NULL) {
802 nvlist_t *nvroot;
804 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
805 &nvroot) == 0);
806 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
807 return (0);
810 * for spares there may be no children, and therefore no
811 * replication level to check
813 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
814 &child, &children) != 0) || (children == 0)) {
815 free(current);
816 return (0);
820 * If all we have is logs then there's no replication level to check.
822 if (num_logs(newroot) == children) {
823 free(current);
824 return (0);
828 * Get the replication level of the new vdev spec, reporting any
829 * inconsistencies found.
831 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
832 free(current);
833 return (-1);
837 * Check to see if the new vdev spec matches the replication level of
838 * the current pool.
840 ret = 0;
841 if (current != NULL) {
842 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
843 vdev_error(gettext(
844 "mismatched replication level: pool uses %s "
845 "and new vdev is %s\n"),
846 current->zprl_type, new->zprl_type);
847 ret = -1;
848 } else if (current->zprl_parity != new->zprl_parity) {
849 vdev_error(gettext(
850 "mismatched replication level: pool uses %llu "
851 "device parity and new vdev uses %llu\n"),
852 current->zprl_parity, new->zprl_parity);
853 ret = -1;
854 } else if (current->zprl_children != new->zprl_children) {
855 vdev_error(gettext(
856 "mismatched replication level: pool uses %llu-way "
857 "%s and new vdev uses %llu-way %s\n"),
858 current->zprl_children, current->zprl_type,
859 new->zprl_children, new->zprl_type);
860 ret = -1;
864 free(new);
865 free(current);
867 return (ret);
871 * Go through and find any whole disks in the vdev specification, labelling them
872 * as appropriate. When constructing the vdev spec, we were unable to open this
873 * device in order to provide a devid. Now that we have labelled the disk and
874 * know the pool slice is valid, we can construct the devid now.
876 * If the disk was already labeled with an EFI label, we will have gotten the
877 * devid already (because we were able to open the whole disk). Otherwise, we
878 * need to get the devid after we label the disk.
880 static int
881 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type,
882 uint64_t boot_size)
884 nvlist_t **child;
885 uint_t c, children;
886 char *type, *path, *diskname;
887 char buf[MAXPATHLEN];
888 uint64_t wholedisk;
889 int fd;
890 int ret;
891 int slice;
892 ddi_devid_t devid;
893 char *minor = NULL, *devid_str = NULL;
895 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
897 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
898 &child, &children) != 0) {
900 if (strcmp(type, VDEV_TYPE_DISK) != 0)
901 return (0);
904 * We have a disk device. Get the path to the device
905 * and see if it's a whole disk by appending the backup
906 * slice and stat()ing the device.
908 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
910 diskname = strrchr(path, '/');
911 assert(diskname != NULL);
912 diskname++;
914 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
915 &wholedisk) != 0 || !wholedisk) {
917 * This is not whole disk, return error if
918 * boot partition creation was requested
920 if (boot_type == ZPOOL_CREATE_BOOT_LABEL) {
921 (void) fprintf(stderr,
922 gettext("creating boot partition is only "
923 "supported on whole disk vdevs: %s\n"),
924 diskname);
925 return (-1);
927 return (0);
930 ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type,
931 boot_size, &slice);
932 if (ret == -1)
933 return (ret);
936 * Fill in the devid, now that we've labeled the disk.
938 (void) snprintf(buf, sizeof (buf), "%ss%d", path, slice);
939 if ((fd = open(buf, O_RDONLY)) < 0) {
940 (void) fprintf(stderr,
941 gettext("cannot open '%s': %s\n"),
942 buf, strerror(errno));
943 return (-1);
946 if (devid_get(fd, &devid) == 0) {
947 if (devid_get_minor_name(fd, &minor) == 0 &&
948 (devid_str = devid_str_encode(devid, minor)) !=
949 NULL) {
950 verify(nvlist_add_string(nv,
951 ZPOOL_CONFIG_DEVID, devid_str) == 0);
953 if (devid_str != NULL)
954 devid_str_free(devid_str);
955 if (minor != NULL)
956 devid_str_free(minor);
957 devid_free(devid);
961 * Update the path to refer to the pool slice. The presence of
962 * the 'whole_disk' field indicates to the CLI that we should
963 * chop off the slice number when displaying the device in
964 * future output.
966 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
968 (void) close(fd);
970 return (0);
973 /* illumos kernel does not support booting from multi-vdev pools. */
974 if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) {
975 if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) {
976 (void) fprintf(stderr, gettext("boot pool "
977 "can not have more than one vdev\n"));
978 return (-1);
982 for (c = 0; c < children; c++) {
983 ret = make_disks(zhp, child[c], boot_type, boot_size);
984 if (ret != 0)
985 return (ret);
988 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
989 &child, &children) == 0)
990 for (c = 0; c < children; c++) {
991 ret = make_disks(zhp, child[c], boot_type, boot_size);
992 if (ret != 0)
993 return (ret);
996 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
997 &child, &children) == 0)
998 for (c = 0; c < children; c++) {
999 ret = make_disks(zhp, child[c], boot_type, boot_size);
1000 if (ret != 0)
1001 return (ret);
1004 return (0);
1008 * Determine if the given path is a hot spare within the given configuration.
1010 static boolean_t
1011 is_spare(nvlist_t *config, const char *path)
1013 int fd;
1014 pool_state_t state;
1015 char *name = NULL;
1016 nvlist_t *label;
1017 uint64_t guid, spareguid;
1018 nvlist_t *nvroot;
1019 nvlist_t **spares;
1020 uint_t i, nspares;
1021 boolean_t inuse;
1023 if ((fd = open(path, O_RDONLY)) < 0)
1024 return (B_FALSE);
1026 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1027 !inuse ||
1028 state != POOL_STATE_SPARE ||
1029 zpool_read_label(fd, &label) != 0) {
1030 free(name);
1031 (void) close(fd);
1032 return (B_FALSE);
1034 free(name);
1035 (void) close(fd);
1037 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1038 nvlist_free(label);
1040 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1041 &nvroot) == 0);
1042 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1043 &spares, &nspares) == 0) {
1044 for (i = 0; i < nspares; i++) {
1045 verify(nvlist_lookup_uint64(spares[i],
1046 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1047 if (spareguid == guid)
1048 return (B_TRUE);
1052 return (B_FALSE);
1056 * Go through and find any devices that are in use. We rely on libdiskmgt for
1057 * the majority of this task.
1059 static boolean_t
1060 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1061 boolean_t replacing, boolean_t isspare)
1063 nvlist_t **child;
1064 uint_t c, children;
1065 char *type, *path;
1066 int ret = 0;
1067 char buf[MAXPATHLEN];
1068 uint64_t wholedisk;
1069 boolean_t anyinuse = B_FALSE;
1071 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1073 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1074 &child, &children) != 0) {
1076 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1079 * As a generic check, we look to see if this is a replace of a
1080 * hot spare within the same pool. If so, we allow it
1081 * regardless of what libdiskmgt or zpool_in_use() says.
1083 if (replacing) {
1084 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1085 &wholedisk) == 0 && wholedisk)
1086 (void) snprintf(buf, sizeof (buf), "%ss0",
1087 path);
1088 else
1089 (void) strlcpy(buf, path, sizeof (buf));
1091 if (is_spare(config, buf))
1092 return (B_FALSE);
1095 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1096 ret = check_device(path, force, isspare);
1097 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1098 ret = check_file(path, force, isspare);
1100 return (ret != 0);
1103 for (c = 0; c < children; c++)
1104 if (is_device_in_use(config, child[c], force, replacing,
1105 B_FALSE))
1106 anyinuse = B_TRUE;
1108 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1109 &child, &children) == 0)
1110 for (c = 0; c < children; c++)
1111 if (is_device_in_use(config, child[c], force, replacing,
1112 B_TRUE))
1113 anyinuse = B_TRUE;
1115 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1116 &child, &children) == 0)
1117 for (c = 0; c < children; c++)
1118 if (is_device_in_use(config, child[c], force, replacing,
1119 B_FALSE))
1120 anyinuse = B_TRUE;
1122 return (anyinuse);
1125 static const char *
1126 is_grouping(const char *type, int *mindev, int *maxdev)
1128 if (strncmp(type, "raidz", 5) == 0) {
1129 const char *p = type + 5;
1130 char *end;
1131 long nparity;
1133 if (*p == '\0') {
1134 nparity = 1;
1135 } else if (*p == '0') {
1136 return (NULL); /* no zero prefixes allowed */
1137 } else {
1138 errno = 0;
1139 nparity = strtol(p, &end, 10);
1140 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1141 *end != '\0')
1142 return (NULL);
1145 if (mindev != NULL)
1146 *mindev = nparity + 1;
1147 if (maxdev != NULL)
1148 *maxdev = 255;
1149 return (VDEV_TYPE_RAIDZ);
1152 if (maxdev != NULL)
1153 *maxdev = INT_MAX;
1155 if (strcmp(type, "mirror") == 0) {
1156 if (mindev != NULL)
1157 *mindev = 2;
1158 return (VDEV_TYPE_MIRROR);
1161 if (strcmp(type, "spare") == 0) {
1162 if (mindev != NULL)
1163 *mindev = 1;
1164 return (VDEV_TYPE_SPARE);
1167 if (strcmp(type, "log") == 0) {
1168 if (mindev != NULL)
1169 *mindev = 1;
1170 return (VDEV_TYPE_LOG);
1173 if (strcmp(type, "cache") == 0) {
1174 if (mindev != NULL)
1175 *mindev = 1;
1176 return (VDEV_TYPE_L2CACHE);
1179 return (NULL);
1183 * Construct a syntactically valid vdev specification,
1184 * and ensure that all devices and files exist and can be opened.
1185 * Note: we don't bother freeing anything in the error paths
1186 * because the program is just going to exit anyway.
1188 nvlist_t *
1189 construct_spec(int argc, char **argv)
1191 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1192 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1193 const char *type;
1194 uint64_t is_log;
1195 boolean_t seen_logs;
1197 top = NULL;
1198 toplevels = 0;
1199 spares = NULL;
1200 l2cache = NULL;
1201 nspares = 0;
1202 nlogs = 0;
1203 nl2cache = 0;
1204 is_log = B_FALSE;
1205 seen_logs = B_FALSE;
1207 while (argc > 0) {
1208 nv = NULL;
1211 * If it's a mirror or raidz, the subsequent arguments are
1212 * its leaves -- until we encounter the next mirror or raidz.
1214 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1215 nvlist_t **child = NULL;
1216 int c, children = 0;
1218 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1219 if (spares != NULL) {
1220 (void) fprintf(stderr,
1221 gettext("invalid vdev "
1222 "specification: 'spare' can be "
1223 "specified only once\n"));
1224 return (NULL);
1226 is_log = B_FALSE;
1229 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1230 if (seen_logs) {
1231 (void) fprintf(stderr,
1232 gettext("invalid vdev "
1233 "specification: 'log' can be "
1234 "specified only once\n"));
1235 return (NULL);
1237 seen_logs = B_TRUE;
1238 is_log = B_TRUE;
1239 argc--;
1240 argv++;
1242 * A log is not a real grouping device.
1243 * We just set is_log and continue.
1245 continue;
1248 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1249 if (l2cache != NULL) {
1250 (void) fprintf(stderr,
1251 gettext("invalid vdev "
1252 "specification: 'cache' can be "
1253 "specified only once\n"));
1254 return (NULL);
1256 is_log = B_FALSE;
1259 if (is_log) {
1260 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1261 (void) fprintf(stderr,
1262 gettext("invalid vdev "
1263 "specification: unsupported 'log' "
1264 "device: %s\n"), type);
1265 return (NULL);
1267 nlogs++;
1270 for (c = 1; c < argc; c++) {
1271 if (is_grouping(argv[c], NULL, NULL) != NULL)
1272 break;
1273 children++;
1274 child = reallocarray(child, children,
1275 sizeof (nvlist_t *));
1276 if (child == NULL)
1277 zpool_no_memory();
1278 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1279 == NULL)
1280 return (NULL);
1281 child[children - 1] = nv;
1284 if (children < mindev) {
1285 (void) fprintf(stderr, gettext("invalid vdev "
1286 "specification: %s requires at least %d "
1287 "devices\n"), argv[0], mindev);
1288 return (NULL);
1291 if (children > maxdev) {
1292 (void) fprintf(stderr, gettext("invalid vdev "
1293 "specification: %s supports no more than "
1294 "%d devices\n"), argv[0], maxdev);
1295 return (NULL);
1298 argc -= c;
1299 argv += c;
1301 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1302 spares = child;
1303 nspares = children;
1304 continue;
1305 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1306 l2cache = child;
1307 nl2cache = children;
1308 continue;
1309 } else {
1310 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1311 0) == 0);
1312 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1313 type) == 0);
1314 verify(nvlist_add_uint64(nv,
1315 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1316 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1317 verify(nvlist_add_uint64(nv,
1318 ZPOOL_CONFIG_NPARITY,
1319 mindev - 1) == 0);
1321 verify(nvlist_add_nvlist_array(nv,
1322 ZPOOL_CONFIG_CHILDREN, child,
1323 children) == 0);
1325 for (c = 0; c < children; c++)
1326 nvlist_free(child[c]);
1327 free(child);
1329 } else {
1331 * We have a device. Pass off to make_leaf_vdev() to
1332 * construct the appropriate nvlist describing the vdev.
1334 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1335 return (NULL);
1336 if (is_log)
1337 nlogs++;
1338 argc--;
1339 argv++;
1342 toplevels++;
1343 top = reallocarray(top, toplevels, sizeof (nvlist_t *));
1344 if (top == NULL)
1345 zpool_no_memory();
1346 top[toplevels - 1] = nv;
1349 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1350 (void) fprintf(stderr, gettext("invalid vdev "
1351 "specification: at least one toplevel vdev must be "
1352 "specified\n"));
1353 return (NULL);
1356 if (seen_logs && nlogs == 0) {
1357 (void) fprintf(stderr, gettext("invalid vdev specification: "
1358 "log requires at least 1 device\n"));
1359 return (NULL);
1363 * Finally, create nvroot and add all top-level vdevs to it.
1365 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1366 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1367 VDEV_TYPE_ROOT) == 0);
1368 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1369 top, toplevels) == 0);
1370 if (nspares != 0)
1371 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1372 spares, nspares) == 0);
1373 if (nl2cache != 0)
1374 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1375 l2cache, nl2cache) == 0);
1377 for (t = 0; t < toplevels; t++)
1378 nvlist_free(top[t]);
1379 for (t = 0; t < nspares; t++)
1380 nvlist_free(spares[t]);
1381 for (t = 0; t < nl2cache; t++)
1382 nvlist_free(l2cache[t]);
1383 free(spares);
1384 free(l2cache);
1385 free(top);
1387 return (nvroot);
1390 nvlist_t *
1391 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1392 splitflags_t flags, int argc, char **argv)
1394 nvlist_t *newroot = NULL, **child;
1395 uint_t c, children;
1396 zpool_boot_label_t boot_type;
1398 if (argc > 0) {
1399 if ((newroot = construct_spec(argc, argv)) == NULL) {
1400 (void) fprintf(stderr, gettext("Unable to build a "
1401 "pool from the specified devices\n"));
1402 return (NULL);
1405 if (zpool_is_bootable(zhp))
1406 boot_type = ZPOOL_COPY_BOOT_LABEL;
1407 else
1408 boot_type = ZPOOL_NO_BOOT_LABEL;
1410 if (!flags.dryrun &&
1411 make_disks(zhp, newroot, boot_type, 0) != 0) {
1412 nvlist_free(newroot);
1413 return (NULL);
1416 /* avoid any tricks in the spec */
1417 verify(nvlist_lookup_nvlist_array(newroot,
1418 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1419 for (c = 0; c < children; c++) {
1420 char *path;
1421 const char *type;
1422 int min, max;
1424 verify(nvlist_lookup_string(child[c],
1425 ZPOOL_CONFIG_PATH, &path) == 0);
1426 if ((type = is_grouping(path, &min, &max)) != NULL) {
1427 (void) fprintf(stderr, gettext("Cannot use "
1428 "'%s' as a device for splitting\n"), type);
1429 nvlist_free(newroot);
1430 return (NULL);
1435 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1436 nvlist_free(newroot);
1437 return (NULL);
1440 return (newroot);
1444 * Get and validate the contents of the given vdev specification. This ensures
1445 * that the nvlist returned is well-formed, that all the devices exist, and that
1446 * they are not currently in use by any other known consumer. The 'poolconfig'
1447 * parameter is the current configuration of the pool when adding devices
1448 * existing pool, and is used to perform additional checks, such as changing the
1449 * replication level of the pool. It can be 'NULL' to indicate that this is a
1450 * new pool. The 'force' flag controls whether devices should be forcefully
1451 * added, even if they appear in use.
1453 nvlist_t *
1454 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1455 boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type,
1456 uint64_t boot_size, int argc, char **argv)
1458 nvlist_t *newroot;
1459 nvlist_t *poolconfig = NULL;
1460 is_force = force;
1463 * Construct the vdev specification. If this is successful, we know
1464 * that we have a valid specification, and that all devices can be
1465 * opened.
1467 if ((newroot = construct_spec(argc, argv)) == NULL)
1468 return (NULL);
1470 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1471 return (NULL);
1474 * Validate each device to make sure that its not shared with another
1475 * subsystem. We do this even if 'force' is set, because there are some
1476 * uses (such as a dedicated dump device) that even '-f' cannot
1477 * override.
1479 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1480 nvlist_free(newroot);
1481 return (NULL);
1485 * Check the replication level of the given vdevs and report any errors
1486 * found. We include the existing pool spec, if any, as we need to
1487 * catch changes against the existing replication level.
1489 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1490 nvlist_free(newroot);
1491 return (NULL);
1495 * Run through the vdev specification and label any whole disks found.
1497 if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) {
1498 nvlist_free(newroot);
1499 return (NULL);
1502 return (newroot);