4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
29 * Copyright (c) 2015 by Delphix. All rights reserved.
33 * based on kernel/os/kmem.c r1.64 from 2001/12/18
35 * The slab allocator, as described in the following two papers:
38 * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
39 * Proceedings of the Summer 1994 Usenix Conference.
40 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
42 * Jeff Bonwick and Jonathan Adams,
43 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
44 * Arbitrary Resources.
45 * Proceedings of the 2001 Usenix Conference.
46 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
50 * umem is very close to kmem in implementation. There are seven major
51 * areas of divergence:
59 * * KM_SLEEP v.s. UMEM_NOFAIL
63 * * changing UMEM_MAXBUF
65 * * Per-thread caching for malloc/free
69 * kmem is initialized early on in boot, and knows that no one will call
70 * into it before it is ready. umem does not have these luxuries. Instead,
71 * initialization is divided into two phases:
73 * * library initialization, and
77 * umem's full initialization happens at the time of the first allocation
78 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
79 * or the first call to umem_cache_create().
81 * umem_free(), and umem_cache_alloc() do not require special handling,
82 * since the only way to get valid arguments for them is to successfully
83 * call a function from the first group.
85 * 2.1. Library Initialization: umem_startup()
86 * -------------------------------------------
87 * umem_startup() is libumem.so's .init section. It calls pthread_atfork()
88 * to install the handlers necessary for umem's Fork1-Safety. Because of
89 * race condition issues, all other pre-umem_init() initialization is done
90 * statically (i.e. by the dynamic linker).
92 * For standalone use, umem_startup() returns everything to its initial
95 * 2.2. First use: umem_init()
96 * ------------------------------
97 * The first time any memory allocation function is used, we have to
98 * create the backing caches and vmem arenas which are needed for it.
99 * umem_init() is the central point for that task. When it completes,
100 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
101 * to initialize, probably due to lack of memory).
103 * There are four different paths from which umem_init() is called:
105 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
107 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
109 * * from umem_cache_create(), and
111 * * from memalign(), with align > UMEM_ALIGN.
113 * The last three just check if umem is initialized, and call umem_init()
114 * if it is not. For performance reasons, the first case is more complicated.
116 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
117 * -----------------------------------------------------------------
118 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
119 * There is special case code in which causes any allocation on
120 * &umem_null_cache to fail by returning (NULL), regardless of the
123 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
124 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation
125 * was agains &umem_null_cache, and calls umem_init().
127 * If initialization is successful, umem_alloc_retry() returns 1, which
128 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
129 * the (now valid) cache pointer from umem_alloc_table.
131 * 2.2.2. Dealing with race conditions
132 * -----------------------------------
133 * There are a couple race conditions resulting from the initialization
134 * code that we have to guard against:
136 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag
137 * that is passed for caches created during initialization. It
138 * is illegal for a user to try to create a UMC_INTERNAL cache.
139 * This allows initialization to proceed, but any other
140 * umem_cache_create()s will block by calling umem_init().
142 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
143 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to
144 * mask the cpu number. This prevents a race between grabbing a
145 * cache pointer out of umem_alloc_table and growing the cpu array.
150 * kmem uses the CPU's sequence number to determine which "cpu cache" to
151 * use for an allocation. Currently, there is no way to get the sequence
152 * number in userspace.
154 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
155 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask
156 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
157 * The mechanics of this is all in the CPU(mask) macro.
159 * Currently, umem uses _lwp_self() as its hint.
162 * 4. The update thread
163 * --------------------
164 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
165 * every kmem cache. vmem has a periodic timeout for hash table resizing.
166 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
167 * to be done in, avoiding issues of the context of kmem_reap() callers.
169 * Instead, umem has the concept of "updates", which are asynchronous requests
170 * for work attached to single caches. All caches with pending work are
171 * on a doubly linked list rooted at the umem_null_cache. All update state
172 * is protected by the umem_update_lock mutex, and the umem_update_cv is used
173 * for notification between threads.
175 * 4.1. Cache states with regards to updates
176 * -----------------------------------------
177 * A given cache is in one of three states:
179 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL
181 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set),
182 * cache_u{next,prev} link the cache onto the global
185 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
186 * are NULL, and either umem_update_thr or
187 * umem_st_update_thr are actively doing work on the
190 * An update can be added to any cache in any state -- if the cache is
191 * Inactive, it transitions to being Work Requested. If the cache is
192 * Active, the worker will notice the new update and act on it before
193 * transitioning the cache to the Inactive state.
195 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
196 * the worker to broadcast the umem_update_cv when it has finished.
198 * 4.2. Update interface
199 * ---------------------
200 * umem_add_update() adds an update to a particular cache.
201 * umem_updateall() adds an update to all caches.
202 * umem_remove_updates() returns a cache to the Inactive state.
204 * umem_process_updates() process all caches in the Work Requested state.
208 * When umem_reap() is called (at the time of heap growth), it schedule
209 * UMU_REAP updates on every cache. It then checks to see if the update
210 * thread exists (umem_update_thr != 0). If it is, it broadcasts
211 * the umem_update_cv to wake the update thread up, and returns.
213 * If the update thread does not exist (umem_update_thr == 0), and the
214 * program currently has multiple threads, umem_reap() attempts to create
215 * a new update thread.
217 * If the process is not multithreaded, or the creation fails, umem_reap()
218 * calls umem_st_update() to do an inline update.
220 * 4.4. The update thread
221 * ----------------------
222 * The update thread spends most of its time in cond_timedwait() on the
223 * umem_update_cv. It wakes up under two conditions:
225 * * The timedwait times out, in which case it needs to run a global
228 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case
229 * it needs to check if there are any caches in the Work Requested
232 * When it is time for another global update, umem calls umem_cache_update()
233 * on every cache, then calls vmem_update(), which tunes the vmem structures.
234 * umem_cache_update() can request further work using umem_add_update().
236 * After any work from the global update completes, the update timer is
237 * reset to umem_reap_interval seconds in the future. This makes the
238 * updates self-throttling.
240 * Reaps are similarly self-throttling. After a UMU_REAP update has
241 * been scheduled on all caches, umem_reap() sets a flag and wakes up the
242 * update thread. The update thread notices the flag, and resets the
245 * 4.5. Inline updates
246 * -------------------
247 * If the update thread is not running, umem_st_update() is used instead. It
248 * immediately does a global update (as above), then calls
249 * umem_process_updates() to process both the reaps that umem_reap() added and
250 * any work generated by the global update. Afterwards, it resets the reap
253 * While the umem_st_update() is running, umem_st_update_thr holds the thread
254 * id of the thread performing the update.
256 * 4.6. Updates and fork1()
257 * ------------------------
258 * umem has fork1() pre- and post-handlers which lock up (and release) every
259 * mutex in every cache. They also lock up the umem_update_lock. Since
260 * fork1() only copies over a single lwp, other threads (including the update
261 * thread) could have been actively using a cache in the parent. This
262 * can lead to inconsistencies in the child process.
264 * Because we locked all of the mutexes, the only possible inconsistancies are:
266 * * a umem_cache_alloc() could leak its buffer.
268 * * a caller of umem_depot_alloc() could leak a magazine, and all the
269 * buffers contained in it.
271 * * a cache could be in the Active update state. In the child, there
272 * would be no thread actually working on it.
274 * * a umem_hash_rescale() could leak the new hash table.
276 * * a umem_magazine_resize() could be in progress.
278 * * a umem_reap() could be in progress.
280 * The memory leaks we can't do anything about. umem_release_child() resets
281 * the update state, moves any caches in the Active state to the Work Requested
282 * state. This might cause some updates to be re-run, but UMU_REAP and
283 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
284 * happen from umem_magazine_resize() is resizing the magazine twice in close
287 * Much of the cleanup in umem_release_child() is skipped if
288 * umem_st_update_thr == thr_self(). This is so that applications which call
289 * fork1() from a cache callback does not break. Needless to say, any such
290 * application is tremendously broken.
293 * 5. KM_SLEEP v.s. UMEM_NOFAIL
294 * ----------------------------
295 * Allocations against kmem and vmem have two basic modes: SLEEP and
296 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for
297 * more memory) instead of failing (returning NULL).
299 * SLEEP allocations presume an extremely multithreaded model, with
300 * a lot of allocation and deallocation activity. umem cannot presume
301 * that its clients have any particular type of behavior. Instead,
302 * it provides two types of allocations:
304 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
307 * * UMEM_NOFAIL, which, on failure, calls an optional callback
308 * (registered with umem_nofail_callback()).
310 * The callback is invoked with no locks held, and can do an arbitrary
311 * amount of work. It then has a choice between:
313 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation
316 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
317 * to be invoked with status. If multiple threads attempt to do
318 * this simultaneously, only one will call exit(2).
320 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
323 * The default callback returns UMEM_CALLBACK_EXIT(255).
325 * To have these callbacks without risk of state corruption (in the case of
326 * a non-local exit), we have to ensure that the callbacks get invoked
327 * close to the original allocation, with no inconsistent state or held
328 * locks. The following steps are taken:
330 * * All invocations of vmem are VM_NOSLEEP.
332 * * All constructor callbacks (which can themselves to allocations)
333 * are passed UMEM_DEFAULT as their required allocation argument. This
334 * way, the constructor will fail, allowing the highest-level allocation
335 * invoke the nofail callback.
337 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
338 * the nofail callback does a non-local exit, we will leak the
339 * partially-constructed buffer.
344 * umem has a few more locks than kmem does, mostly in the update path. The
345 * overall lock ordering (earlier locks must be acquired first) is:
350 * vmem_nosleep_lock.vmpl_mutex
359 * cache_cpu[*].cc_lock
362 * umem_log_header_t's:
366 * 7. Changing UMEM_MAXBUF
367 * -----------------------
369 * When changing UMEM_MAXBUF extra care has to be taken. It is not sufficient to
370 * simply increase this number. First, one must update the umem_alloc_table to
371 * have the appropriate number of entires based upon the new size. If this is
372 * not done, this will lead to libumem blowing an assertion.
374 * The second place to update, which is not required, is the umem_alloc_sizes.
375 * These determine the default cache sizes that we're going to support.
377 * 8. Per-thread caching for malloc/free
378 * -------------------------------------
380 * "Time is an illusion. Lunchtime doubly so." -- Douglas Adams
382 * Time may be an illusion, but CPU cycles aren't. While libumem is designed
383 * to be a highly scalable allocator, that scalability comes with a fixed cycle
384 * penalty even in the absence of contention: libumem must acquire (and release
385 * a per-CPU lock for each allocation. When contention is low and malloc(3C)
386 * frequency is high, this overhead can dominate execution time. To alleviate
387 * this, we allow for per-thread caching, a lock-free means of caching recent
388 * deallocations on a per-thread basis for use in satisfying subsequent calls
390 * In addition to improving performance, we also want to:
391 * * Minimize fragmentation
392 * * Not add additional memory overhead (no larger malloc tags)
394 * In the ulwp_t of each thread there is a private data structure called a
395 * umem_t that looks like:
399 * void *tm_roots[NTMEMBASE]; (Currently 16)
402 * Each of the roots is treated as the head of a linked list. Each entry in the
403 * list can be thought of as a void ** which points to the next entry, until one
404 * of them points to NULL. If the head points to NULL, the list is empty.
406 * Each head corresponds to a umem_cache. Currently there is a linear mapping
407 * where the first root corresponds to the first cache, second root to the
408 * second cache, etc. This works because every allocation that malloc makes to
409 * umem_alloc that can be satisified by a umem_cache will actually return a
410 * number of bytes equal to the size of that cache. Because of this property and
411 * a one to one mapping between caches and roots we can guarantee that every
412 * entry in a given root's list will be able to satisfy the same requests as the
413 * corresponding cache.
415 * The choice of sixteen roots is based on where we believe we get the biggest
416 * bang for our buck. The per-thread caches will cache up to 256 byte and 448
417 * byte allocations on ILP32 and LP64 respectively. Generally applications plan
418 * more carefully how they do larger allocations than smaller ones. Therefore
419 * sixteen roots is a reasonable compromise between the amount of additional
420 * overhead per thread, and the likelihood of a program to benefit from it.
422 * The maximum amount of memory that can be cached in each thread is determined
423 * by the perthread_cache UMEM_OPTION. It corresponds to the umem_ptc_size
424 * value. The default value for this is currently 1 MB. Once umem_init() has
425 * finished this cannot be directly tuned without directly modifying the
426 * instruction text. If, upon calling free(3C), the amount cached would exceed
427 * this maximum, we instead actually return the buffer to the umem_cache instead
428 * of holding onto it in the thread.
430 * When a thread calls malloc(3C) it first determines which umem_cache it
431 * would be serviced by. If the allocation is not covered by ptcumem it goes to
432 * the normal malloc instead. Next, it checks if the tmem_root's list is empty
433 * or not. If it is empty, we instead go and allocate the memory from
434 * umem_alloc. If it is not empty, we remove the head of the list, set the
435 * appropriate malloc tags, and return that buffer.
437 * When a thread calls free(3C) it first looks at the malloc tag and if it is
438 * invalid or the allocation exceeds the largest cache in ptcumem and sends it
439 * off to the original free() to handle and clean up appropriately. Next, it
440 * checks if the allocation size is covered by one of the per-thread roots and
441 * if it isn't, it passes it off to the original free() to be released. Finally,
442 * before it inserts this buffer as the head, it checks if adding this buffer
443 * would put the thread over its maximum cache size. If it would, it frees the
444 * buffer back to the umem_cache. Otherwise it increments the threads total
445 * cached amount and makes the buffer the new head of the appropriate tm_root.
447 * When a thread exits, all of the buffers that it has in its per-thread cache
448 * will be passed to umem_free() and returned to the appropriate umem_cache.
450 * 8.1 Handling addition and removal of umem_caches
451 * ------------------------------------------------
453 * The set of umem_caches that are used to back calls to umem_alloc() and
454 * ultimately malloc() are determined at program execution time. The default set
455 * of caches is defined below in umem_alloc_sizes[]. Various umem_options exist
456 * that modify the set of caches: size_add, size_clear, and size_remove. Because
457 * the set of caches can only be determined once umem_init() has been called and
458 * we have the additional goals of minimizing additional fragmentation and
459 * metadata space overhead in the malloc tags, this forces our hand to go down a
460 * slightly different path: the one tread by fasttrap and trapstat.
462 * During umem_init we're going to dynamically construct a new version of
463 * malloc(3C) and free(3C) that utilizes the known cache sizes and then ensure
464 * that ptcmalloc and ptcfree replace malloc and free as entries in the plt. If
465 * ptcmalloc and ptcfree cannot handle a request, they simply jump to the
466 * original libumem implementations.
468 * After creating all of the umem_caches, but before making them visible,
469 * umem_cache_init checks that umem_genasm_supported is non-zero. This value is
470 * set by each architecture in $ARCH/umem_genasm.c to indicate whether or not
471 * they support this. If the value is zero, then this process is skipped.
472 * Similarly, if the cache size has been tuned to zero by UMEM_OPTIONS, then
473 * this is also skipped.
475 * In umem_genasm.c, each architecture's implementation implements a single
476 * function called umem_genasm() that is responsible for generating the
477 * appropriate versions of ptcmalloc() and ptcfree(), placing them in the
478 * appropriate memory location, and finally doing the switch from malloc() and
479 * free() to ptcmalloc() and ptcfree(). Once the change has been made, there is
480 * no way to switch back, short of restarting the program or modifying program
483 * 8.2 Modifying the Procedure Linkage Table (PLT)
484 * -----------------------------------------------
486 * The last piece of this puzzle is how we actually jam ptcmalloc() into the
487 * PLT. To handle this, we have defined two functions, _malloc and _free and
488 * used a special mapfile directive to place them into the a readable,
489 * writeable, and executable segment. Next we use a standard #pragma weak for
490 * malloc and free and direct them to those symbols. By default, those symbols
491 * have text defined as nops for our generated functions and when they're
492 * invoked, they jump to the default malloc and free functions.
494 * When umem_genasm() is called, it goes through and generates new malloc() and
495 * free() functions in the text provided for by _malloc and _free just after the
496 * jump. Once both have been successfully generated, umem_genasm() nops over the
497 * original jump so that we now call into the genasm versions of these
503 * umem_genasm() is currently implemented for i386 and amd64. This section
504 * describes the theory behind the construction. For specific byte code to
505 * assembly instructions and niceish C and asm versions of ptcmalloc and
506 * ptcfree, see the individual umem_genasm.c files. The layout consists of the
507 * following sections:
509 * o. function-specfic prologue
510 * o. function-generic cache-selecting elements
511 * o. function-specific epilogue
513 * There are three different generic cache elements that exist:
515 * o. the last or only cache
516 * o. the intermediary caches if more than two
517 * o. the first one if more than one cache
519 * The malloc and free prologues and epilogues mimic the necessary portions of
520 * libumem's malloc and free. This includes things like checking for size
521 * overflow, setting and verifying the malloc tags.
523 * It is an important constraint that these functions do not make use of the
524 * call instruction. The only jmp outside of the individual functions is to the
525 * original libumem malloc and free respectively. Because doing things like
526 * setting errno or raising an internal umem error on improper malloc tags would
527 * require using calls into the PLT, whenever we encounter one of those cases we
528 * just jump to the original malloc and free functions reusing the same stack
531 * Each of the above sections, the three caches, and the malloc and free
532 * prologue and epilogue are implemented as blocks of machine code with the
533 * corresponding assembly in comments. There are known offsets into each block
534 * that corresponds to locations of data and addresses that we only know at run
535 * time. These blocks are copied as necessary and the blanks filled in
538 * As mentioned in section 8.2, the trampoline library uses specifically named
539 * variables to communicate the buffers and size to use. These variables are:
541 * o. umem_genasm_mptr: The buffer for ptcmalloc
542 * o. umem_genasm_msize: The size in bytes of the above buffer
543 * o. umem_genasm_fptr: The buffer for ptcfree
544 * o. umem_genasm_fsize: The size in bytes of the above buffer
546 * Finally, to enable the generated assembly we need to remove the previous jump
547 * to the actual malloc that exists at the start of these buffers. On x86, this
548 * is a five byte region. We could zero out the jump offset to be a jmp +0, but
549 * using nops can be faster. We specifically use a single five byte nop on x86
550 * as it is faster. When porting ptcumem to other architectures, the various
551 * opcode changes and options should be analyzed.
553 * 8.4 Interface with libc.so
554 * --------------------------
556 * The tmem_t structure as described in the beginning of section 8, is part of a
557 * private interface with libc. There are three functions that exist to cover
558 * this. They are not documented in man pages or header files. They are in the
559 * SUNWprivate part of libc's mapfile.
561 * o. _tmem_get_base(void)
563 * Returns the offset from the ulwp_t (curthread) to the tmem_t structure.
564 * This is a constant for all threads and is effectively a way to to do
565 * ::offsetof ulwp_t ul_tmem without having to know the specifics of the
566 * structure outside of libc.
568 * o. _tmem_get_nentries(void)
570 * Returns the number of roots that exist in the tmem_t. This is one part
571 * of the cap on the number of umem_caches that we can back with tmem.
573 * o. _tmem_set_cleanup(void (*)(void *, int))
575 * This sets a clean up handler that gets called back when a thread exits.
576 * There is one call per buffer, the void * is a pointer to the buffer on
577 * the list, the int is the index into the roots array for this buffer.
579 * 8.5 Tuning and disabling per-thread caching
580 * -------------------------------------------
582 * There is only one tunable for per-thread caching: the amount of memory each
583 * thread should be able to cache. This is specified via the perthread_cache
584 * UMEM_OPTION option. No attempt is made to to sanity check the specified
585 * value; the limit is simply the maximum value of a size_t.
587 * If the perthread_cache UMEM_OPTION is set to zero, nomagazines was requested,
588 * or UMEM_DEBUG has been turned on then we will never call into umem_genasm;
589 * however, the trampoline audit library and jump will still be in place.
591 * 8.6 Observing efficacy of per-thread caching
592 * --------------------------------------------
594 * To understand the efficacy of per-thread caching, use the ::umastat dcmd
595 * to see the percentage of capacity consumed on a per-thread basis, the
596 * degree to which each umem cache contributes to per-thread cache consumption,
597 * and the number of buffers in per-thread caches on a per-umem cache basis.
598 * If more detail is required, the specific buffers in a per-thread cache can
599 * be iterated over with the umem_ptc_* walkers. (These walkers allow an
600 * optional ulwp_t to be specified to iterate only over a particular thread's
604 #include <umem_impl.h>
605 #include <sys/vmem_impl_user.h>
606 #include "umem_base.h"
607 #include "vmem_base.h"
609 #include <sys/processor.h>
610 #include <sys/sysmacros.h>
625 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP)
630 * The default set of caches to back umem_alloc().
631 * These sizes should be reevaluated periodically.
633 * We want allocations that are multiples of the coherency granularity
634 * (64 bytes) to be satisfied from a cache which is a multiple of 64
635 * bytes, so that it will be 64-byte aligned. For all multiples of 64,
636 * the next kmem_cache_size greater than or equal to it must be a
639 * This table must be in sorted order, from smallest to highest. The
640 * highest slot must be UMEM_MAXBUF, and every slot afterwards must be
643 static int umem_alloc_sizes
[] = {
653 4 * 8, 5 * 8, 6 * 8, 7 * 8,
655 4 * 16, 5 * 16, 6 * 16, 7 * 16,
656 4 * 32, 5 * 32, 6 * 32, 7 * 32,
657 4 * 64, 5 * 64, 6 * 64, 7 * 64,
658 4 * 128, 5 * 128, 6 * 128, 7 * 128,
659 P2ALIGN(8192 / 7, 64),
660 P2ALIGN(8192 / 6, 64),
661 P2ALIGN(8192 / 5, 64),
662 P2ALIGN(8192 / 4, 64), 2304,
663 P2ALIGN(8192 / 3, 64),
664 P2ALIGN(8192 / 2, 64), 4544,
665 P2ALIGN(8192 / 1, 64), 9216,
667 8192 * 2, /* = 8192 * 2 */
668 24576, 32768, 40960, 49152, 57344, 65536, 73728, 81920,
669 90112, 98304, 106496, 114688, 122880, UMEM_MAXBUF
, /* 128k */
670 /* 24 slots for user expansion */
671 0, 0, 0, 0, 0, 0, 0, 0,
672 0, 0, 0, 0, 0, 0, 0, 0,
673 0, 0, 0, 0, 0, 0, 0, 0,
675 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
677 static umem_magtype_t umem_magtype
[] = {
678 { 1, 8, 3200, 65536 },
679 { 3, 16, 256, 32768 },
680 { 7, 32, 64, 16384 },
692 uint32_t umem_max_ncpus
; /* # of CPU caches. */
694 uint32_t umem_stack_depth
= 15; /* # stack frames in a bufctl_audit */
695 uint32_t umem_reap_interval
= 10; /* max reaping rate (seconds) */
696 uint_t umem_depot_contention
= 2; /* max failed trylocks per real interval */
697 uint_t umem_abort
= 1; /* whether to abort on error */
698 uint_t umem_output
= 0; /* whether to write to standard error */
699 uint_t umem_logging
= 0; /* umem_log_enter() override */
700 uint32_t umem_mtbf
= 0; /* mean time between failures [default: off] */
701 size_t umem_transaction_log_size
; /* size of transaction log */
702 size_t umem_content_log_size
; /* size of content log */
703 size_t umem_failure_log_size
; /* failure log [4 pages per CPU] */
704 size_t umem_slab_log_size
; /* slab create log [4 pages per CPU] */
705 size_t umem_content_maxsave
= 256; /* UMF_CONTENTS max bytes to log */
706 size_t umem_lite_minsize
= 0; /* minimum buffer size for UMF_LITE */
707 size_t umem_lite_maxalign
= 1024; /* maximum buffer alignment for UMF_LITE */
708 size_t umem_maxverify
; /* maximum bytes to inspect in debug routines */
709 size_t umem_minfirewall
; /* hardware-enforced redzone threshold */
710 size_t umem_ptc_size
= 1048576; /* size of per-thread cache (in bytes) */
712 uint_t umem_flags
= 0;
713 uintptr_t umem_tmem_off
;
715 mutex_t umem_init_lock
; /* locks initialization */
716 cond_t umem_init_cv
; /* initialization CV */
717 thread_t umem_init_thr
; /* thread initializing */
718 int umem_init_env_ready
; /* environ pre-initted */
719 int umem_ready
= UMEM_READY_STARTUP
;
721 int umem_ptc_enabled
; /* per-thread caching enabled */
723 static umem_nofail_callback_t
*nofail_callback
;
724 static mutex_t umem_nofail_exit_lock
;
725 static thread_t umem_nofail_exit_thr
;
727 static umem_cache_t
*umem_slab_cache
;
728 static umem_cache_t
*umem_bufctl_cache
;
729 static umem_cache_t
*umem_bufctl_audit_cache
;
731 mutex_t umem_flags_lock
;
733 static vmem_t
*heap_arena
;
734 static vmem_alloc_t
*heap_alloc
;
735 static vmem_free_t
*heap_free
;
737 static vmem_t
*umem_internal_arena
;
738 static vmem_t
*umem_cache_arena
;
739 static vmem_t
*umem_hash_arena
;
740 static vmem_t
*umem_log_arena
;
741 static vmem_t
*umem_oversize_arena
;
742 static vmem_t
*umem_va_arena
;
743 static vmem_t
*umem_default_arena
;
744 static vmem_t
*umem_firewall_va_arena
;
745 static vmem_t
*umem_firewall_arena
;
747 vmem_t
*umem_memalign_arena
;
749 umem_log_header_t
*umem_transaction_log
;
750 umem_log_header_t
*umem_content_log
;
751 umem_log_header_t
*umem_failure_log
;
752 umem_log_header_t
*umem_slab_log
;
754 #define CPUHINT() (thr_self())
755 #define CPUHINT_MAX() INT_MAX
757 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask)))
758 static umem_cpu_t umem_startup_cpu
= { /* initial, single, cpu */
763 static uint32_t umem_cpu_mask
= 0; /* global cpu mask */
764 static umem_cpu_t
*umem_cpus
= &umem_startup_cpu
; /* cpu list */
766 volatile uint32_t umem_reaping
;
768 thread_t umem_update_thr
;
769 struct timeval umem_update_next
; /* timeofday of next update */
770 volatile thread_t umem_st_update_thr
; /* only used when single-thd */
772 #define IN_UPDATE() (thr_self() == umem_update_thr || \
773 thr_self() == umem_st_update_thr)
774 #define IN_REAP() IN_UPDATE()
776 mutex_t umem_update_lock
; /* cache_u{next,prev,flags} */
777 cond_t umem_update_cv
;
779 volatile hrtime_t umem_reap_next
; /* min hrtime of next reap */
781 mutex_t umem_cache_lock
; /* inter-cache linkage only */
783 #ifdef UMEM_STANDALONE
784 umem_cache_t umem_null_cache
;
785 static const umem_cache_t umem_null_cache_template
= {
787 umem_cache_t umem_null_cache
= {
795 NULL
, NULL
, NULL
, NULL
,
798 &umem_null_cache
, &umem_null_cache
,
799 &umem_null_cache
, &umem_null_cache
,
801 DEFAULTMUTEX
, /* start of slab layer */
802 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
803 &umem_null_cache
.cache_nullslab
,
807 &umem_null_cache
.cache_nullslab
,
808 &umem_null_cache
.cache_nullslab
,
815 DEFAULTMUTEX
, /* start of depot layer */
822 DEFAULTMUTEX
, /* start of CPU cache */
823 0, 0, NULL
, NULL
, -1, -1, 0
828 #define ALLOC_TABLE_4 \
829 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
831 #define ALLOC_TABLE_64 \
832 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
833 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
834 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
835 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
837 #define ALLOC_TABLE_1024 \
838 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
839 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
840 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
841 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
843 static umem_cache_t
*umem_alloc_table
[UMEM_MAXBUF
>> UMEM_ALIGN_SHIFT
] = {
863 /* Used to constrain audit-log stack traces */
864 caddr_t umem_min_stack
;
865 caddr_t umem_max_stack
;
868 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */
869 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */
870 #define UMERR_DUPFREE 2 /* freed a buffer twice */
871 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */
872 #define UMERR_BADBUFTAG 4 /* buftag corrupted */
873 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */
874 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
875 #define UMERR_BADSIZE 7 /* alloc size != free size */
876 #define UMERR_BADBASE 8 /* buffer base address wrong */
879 hrtime_t ump_timestamp
; /* timestamp of error */
880 int ump_error
; /* type of umem error (UMERR_*) */
881 void *ump_buffer
; /* buffer that induced abort */
882 void *ump_realbuf
; /* real start address for buffer */
883 umem_cache_t
*ump_cache
; /* buffer's cache according to client */
884 umem_cache_t
*ump_realcache
; /* actual cache containing buffer */
885 umem_slab_t
*ump_slab
; /* slab accoring to umem_findslab() */
886 umem_bufctl_t
*ump_bufctl
; /* bufctl */
890 copy_pattern(uint64_t pattern
, void *buf_arg
, size_t size
)
892 uint64_t *bufend
= (uint64_t *)((char *)buf_arg
+ size
);
893 uint64_t *buf
= buf_arg
;
900 verify_pattern(uint64_t pattern
, void *buf_arg
, size_t size
)
902 uint64_t *bufend
= (uint64_t *)((char *)buf_arg
+ size
);
905 for (buf
= buf_arg
; buf
< bufend
; buf
++)
912 verify_and_copy_pattern(uint64_t old
, uint64_t new, void *buf_arg
, size_t size
)
914 uint64_t *bufend
= (uint64_t *)((char *)buf_arg
+ size
);
917 for (buf
= buf_arg
; buf
< bufend
; buf
++) {
919 copy_pattern(old
, buf_arg
,
920 (char *)buf
- (char *)buf_arg
);
930 umem_cache_applyall(void (*func
)(umem_cache_t
*))
934 (void) mutex_lock(&umem_cache_lock
);
935 for (cp
= umem_null_cache
.cache_next
; cp
!= &umem_null_cache
;
938 (void) mutex_unlock(&umem_cache_lock
);
942 umem_add_update_unlocked(umem_cache_t
*cp
, int flags
)
944 umem_cache_t
*cnext
, *cprev
;
946 flags
&= ~UMU_ACTIVE
;
951 if (cp
->cache_uflags
& UMU_ACTIVE
) {
952 cp
->cache_uflags
|= flags
;
954 if (cp
->cache_unext
!= NULL
) {
955 ASSERT(cp
->cache_uflags
!= 0);
956 cp
->cache_uflags
|= flags
;
958 ASSERT(cp
->cache_uflags
== 0);
959 cp
->cache_uflags
= flags
;
960 cp
->cache_unext
= cnext
= &umem_null_cache
;
961 cp
->cache_uprev
= cprev
= umem_null_cache
.cache_uprev
;
962 cnext
->cache_uprev
= cp
;
963 cprev
->cache_unext
= cp
;
969 umem_add_update(umem_cache_t
*cp
, int flags
)
971 (void) mutex_lock(&umem_update_lock
);
973 umem_add_update_unlocked(cp
, flags
);
976 (void) cond_broadcast(&umem_update_cv
);
978 (void) mutex_unlock(&umem_update_lock
);
982 * Remove a cache from the update list, waiting for any in-progress work to
986 umem_remove_updates(umem_cache_t
*cp
)
988 (void) mutex_lock(&umem_update_lock
);
991 * Get it out of the active state
993 while (cp
->cache_uflags
& UMU_ACTIVE
) {
996 ASSERT(cp
->cache_unext
== NULL
);
998 cp
->cache_uflags
|= UMU_NOTIFY
;
1001 * Make sure the update state is sane, before we wait
1003 ASSERT(umem_update_thr
!= 0 || umem_st_update_thr
!= 0);
1004 ASSERT(umem_update_thr
!= thr_self() &&
1005 umem_st_update_thr
!= thr_self());
1007 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE
,
1009 (void) cond_wait(&umem_update_cv
, &umem_update_lock
);
1010 (void) pthread_setcancelstate(cancel_state
, NULL
);
1013 * Get it out of the Work Requested state
1015 if (cp
->cache_unext
!= NULL
) {
1016 cp
->cache_uprev
->cache_unext
= cp
->cache_unext
;
1017 cp
->cache_unext
->cache_uprev
= cp
->cache_uprev
;
1018 cp
->cache_uprev
= cp
->cache_unext
= NULL
;
1019 cp
->cache_uflags
= 0;
1022 * Make sure it is in the Inactive state
1024 ASSERT(cp
->cache_unext
== NULL
&& cp
->cache_uflags
== 0);
1025 (void) mutex_unlock(&umem_update_lock
);
1029 umem_updateall(int flags
)
1034 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first.
1036 * (umem_add_update is called from things run via umem_cache_applyall)
1038 (void) mutex_lock(&umem_cache_lock
);
1039 (void) mutex_lock(&umem_update_lock
);
1041 for (cp
= umem_null_cache
.cache_next
; cp
!= &umem_null_cache
;
1042 cp
= cp
->cache_next
)
1043 umem_add_update_unlocked(cp
, flags
);
1046 (void) cond_broadcast(&umem_update_cv
);
1048 (void) mutex_unlock(&umem_update_lock
);
1049 (void) mutex_unlock(&umem_cache_lock
);
1053 * Debugging support. Given a buffer address, find its slab.
1055 static umem_slab_t
*
1056 umem_findslab(umem_cache_t
*cp
, void *buf
)
1060 (void) mutex_lock(&cp
->cache_lock
);
1061 for (sp
= cp
->cache_nullslab
.slab_next
;
1062 sp
!= &cp
->cache_nullslab
; sp
= sp
->slab_next
) {
1063 if (UMEM_SLAB_MEMBER(sp
, buf
)) {
1064 (void) mutex_unlock(&cp
->cache_lock
);
1068 (void) mutex_unlock(&cp
->cache_lock
);
1074 umem_error(int error
, umem_cache_t
*cparg
, void *bufarg
)
1076 umem_buftag_t
*btp
= NULL
;
1077 umem_bufctl_t
*bcp
= NULL
;
1078 umem_cache_t
*cp
= cparg
;
1083 int old_logging
= umem_logging
;
1085 umem_logging
= 0; /* stop logging when a bad thing happens */
1087 umem_abort_info
.ump_timestamp
= gethrtime();
1089 sp
= umem_findslab(cp
, buf
);
1091 for (cp
= umem_null_cache
.cache_prev
; cp
!= &umem_null_cache
;
1092 cp
= cp
->cache_prev
) {
1093 if ((sp
= umem_findslab(cp
, buf
)) != NULL
)
1100 error
= UMERR_BADADDR
;
1103 error
= UMERR_BADCACHE
;
1105 buf
= (char *)bufarg
- ((uintptr_t)bufarg
-
1106 (uintptr_t)sp
->slab_base
) % cp
->cache_chunksize
;
1108 error
= UMERR_BADBASE
;
1109 if (cp
->cache_flags
& UMF_BUFTAG
)
1110 btp
= UMEM_BUFTAG(cp
, buf
);
1111 if (cp
->cache_flags
& UMF_HASH
) {
1112 (void) mutex_lock(&cp
->cache_lock
);
1113 for (bcp
= *UMEM_HASH(cp
, buf
); bcp
; bcp
= bcp
->bc_next
)
1114 if (bcp
->bc_addr
== buf
)
1116 (void) mutex_unlock(&cp
->cache_lock
);
1117 if (bcp
== NULL
&& btp
!= NULL
)
1118 bcp
= btp
->bt_bufctl
;
1119 if (umem_findslab(cp
->cache_bufctl_cache
, bcp
) ==
1120 NULL
|| P2PHASE((uintptr_t)bcp
, UMEM_ALIGN
) ||
1121 bcp
->bc_addr
!= buf
) {
1122 error
= UMERR_BADBUFCTL
;
1128 umem_abort_info
.ump_error
= error
;
1129 umem_abort_info
.ump_buffer
= bufarg
;
1130 umem_abort_info
.ump_realbuf
= buf
;
1131 umem_abort_info
.ump_cache
= cparg
;
1132 umem_abort_info
.ump_realcache
= cp
;
1133 umem_abort_info
.ump_slab
= sp
;
1134 umem_abort_info
.ump_bufctl
= bcp
;
1136 umem_printf("umem allocator: ");
1140 case UMERR_MODIFIED
:
1141 umem_printf("buffer modified after being freed\n");
1142 off
= verify_pattern(UMEM_FREE_PATTERN
, buf
, cp
->cache_verify
);
1143 if (off
== NULL
) /* shouldn't happen */
1145 umem_printf("modification occurred at offset 0x%lx "
1146 "(0x%llx replaced by 0x%llx)\n",
1147 (uintptr_t)off
- (uintptr_t)buf
,
1148 (longlong_t
)UMEM_FREE_PATTERN
, (longlong_t
)*off
);
1152 umem_printf("redzone violation: write past end of buffer\n");
1156 umem_printf("invalid free: buffer not in cache\n");
1160 umem_printf("duplicate free: buffer freed twice\n");
1163 case UMERR_BADBUFTAG
:
1164 umem_printf("boundary tag corrupted\n");
1165 umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
1166 (intptr_t)btp
->bt_bufctl
^ btp
->bt_bxstat
,
1170 case UMERR_BADBUFCTL
:
1171 umem_printf("bufctl corrupted\n");
1174 case UMERR_BADCACHE
:
1175 umem_printf("buffer freed to wrong cache\n");
1176 umem_printf("buffer was allocated from %s,\n", cp
->cache_name
);
1177 umem_printf("caller attempting free to %s.\n",
1182 umem_printf("bad free: free size (%u) != alloc size (%u)\n",
1183 UMEM_SIZE_DECODE(((uint32_t *)btp
)[0]),
1184 UMEM_SIZE_DECODE(((uint32_t *)btp
)[1]));
1188 umem_printf("bad free: free address (%p) != alloc address "
1189 "(%p)\n", bufarg
, buf
);
1193 umem_printf("buffer=%p bufctl=%p cache: %s\n",
1194 bufarg
, (void *)bcp
, cparg
->cache_name
);
1196 if (bcp
!= NULL
&& (cp
->cache_flags
& UMF_AUDIT
) &&
1197 error
!= UMERR_BADBUFCTL
) {
1201 umem_bufctl_audit_t
*bcap
= (umem_bufctl_audit_t
*)bcp
;
1203 diff
= umem_abort_info
.ump_timestamp
- bcap
->bc_timestamp
;
1204 ts
.tv_sec
= diff
/ NANOSEC
;
1205 ts
.tv_nsec
= diff
% NANOSEC
;
1207 umem_printf("previous transaction on buffer %p:\n", buf
);
1208 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
1209 (void *)(intptr_t)bcap
->bc_thread
, ts
.tv_sec
, ts
.tv_nsec
,
1210 (void *)sp
, cp
->cache_name
);
1211 for (d
= 0; d
< MIN(bcap
->bc_depth
, umem_stack_depth
); d
++) {
1212 (void) print_sym((void *)bcap
->bc_stack
[d
]);
1217 umem_err_recoverable("umem: heap corruption detected");
1219 umem_logging
= old_logging
; /* resume logging */
1223 umem_nofail_callback(umem_nofail_callback_t
*cb
)
1225 nofail_callback
= cb
;
1229 umem_alloc_retry(umem_cache_t
*cp
, int umflag
)
1231 if (cp
== &umem_null_cache
) {
1233 return (1); /* retry */
1235 * Initialization failed. Do normal failure processing.
1238 if (umem_flags
& UMF_CHECKNULL
) {
1239 umem_err_recoverable("umem: out of heap space");
1241 if (umflag
& UMEM_NOFAIL
) {
1242 int def_result
= UMEM_CALLBACK_EXIT(255);
1243 int result
= def_result
;
1244 umem_nofail_callback_t
*callback
= nofail_callback
;
1246 if (callback
!= NULL
)
1247 result
= callback();
1249 if (result
== UMEM_CALLBACK_RETRY
)
1252 if ((result
& ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
1253 log_message("nofail callback returned %x\n", result
);
1254 result
= def_result
;
1258 * only one thread will call exit
1260 if (umem_nofail_exit_thr
== thr_self())
1261 umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
1263 (void) mutex_lock(&umem_nofail_exit_lock
);
1264 umem_nofail_exit_thr
= thr_self();
1265 exit(result
& 0xFF);
1271 static umem_log_header_t
*
1272 umem_log_init(size_t logsize
)
1274 umem_log_header_t
*lhp
;
1275 int nchunks
= 4 * umem_max_ncpus
;
1276 size_t lhsize
= offsetof(umem_log_header_t
, lh_cpu
[umem_max_ncpus
]);
1283 * Make sure that lhp->lh_cpu[] is nicely aligned
1284 * to prevent false sharing of cache lines.
1286 lhsize
= P2ROUNDUP(lhsize
, UMEM_ALIGN
);
1287 lhp
= vmem_xalloc(umem_log_arena
, lhsize
, 64, P2NPHASE(lhsize
, 64), 0,
1288 NULL
, NULL
, VM_NOSLEEP
);
1294 (void) mutex_init(&lhp
->lh_lock
, USYNC_THREAD
, NULL
);
1295 lhp
->lh_nchunks
= nchunks
;
1296 lhp
->lh_chunksize
= P2ROUNDUP(logsize
/ nchunks
, PAGESIZE
);
1297 if (lhp
->lh_chunksize
== 0)
1298 lhp
->lh_chunksize
= PAGESIZE
;
1300 lhp
->lh_base
= vmem_alloc(umem_log_arena
,
1301 lhp
->lh_chunksize
* nchunks
, VM_NOSLEEP
);
1302 if (lhp
->lh_base
== NULL
)
1305 lhp
->lh_free
= vmem_alloc(umem_log_arena
,
1306 nchunks
* sizeof (int), VM_NOSLEEP
);
1307 if (lhp
->lh_free
== NULL
)
1310 bzero(lhp
->lh_base
, lhp
->lh_chunksize
* nchunks
);
1312 for (i
= 0; i
< umem_max_ncpus
; i
++) {
1313 umem_cpu_log_header_t
*clhp
= &lhp
->lh_cpu
[i
];
1314 (void) mutex_init(&clhp
->clh_lock
, USYNC_THREAD
, NULL
);
1315 clhp
->clh_chunk
= i
;
1318 for (i
= umem_max_ncpus
; i
< nchunks
; i
++)
1319 lhp
->lh_free
[i
] = i
;
1321 lhp
->lh_head
= umem_max_ncpus
;
1328 if (lhp
->lh_base
!= NULL
)
1329 vmem_free(umem_log_arena
, lhp
->lh_base
,
1330 lhp
->lh_chunksize
* nchunks
);
1332 vmem_xfree(umem_log_arena
, lhp
, lhsize
);
1338 umem_log_enter(umem_log_header_t
*lhp
, void *data
, size_t size
)
1341 umem_cpu_log_header_t
*clhp
=
1342 &lhp
->lh_cpu
[CPU(umem_cpu_mask
)->cpu_number
];
1344 if (lhp
== NULL
|| umem_logging
== 0)
1347 (void) mutex_lock(&clhp
->clh_lock
);
1349 if (size
> clhp
->clh_avail
) {
1350 (void) mutex_lock(&lhp
->lh_lock
);
1352 lhp
->lh_free
[lhp
->lh_tail
] = clhp
->clh_chunk
;
1353 lhp
->lh_tail
= (lhp
->lh_tail
+ 1) % lhp
->lh_nchunks
;
1354 clhp
->clh_chunk
= lhp
->lh_free
[lhp
->lh_head
];
1355 lhp
->lh_head
= (lhp
->lh_head
+ 1) % lhp
->lh_nchunks
;
1356 clhp
->clh_current
= lhp
->lh_base
+
1357 clhp
->clh_chunk
* lhp
->lh_chunksize
;
1358 clhp
->clh_avail
= lhp
->lh_chunksize
;
1359 if (size
> lhp
->lh_chunksize
)
1360 size
= lhp
->lh_chunksize
;
1361 (void) mutex_unlock(&lhp
->lh_lock
);
1363 logspace
= clhp
->clh_current
;
1364 clhp
->clh_current
+= size
;
1365 clhp
->clh_avail
-= size
;
1366 bcopy(data
, logspace
, size
);
1367 (void) mutex_unlock(&clhp
->clh_lock
);
1371 #define UMEM_AUDIT(lp, cp, bcp) \
1373 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \
1374 _bcp->bc_timestamp = gethrtime(); \
1375 _bcp->bc_thread = thr_self(); \
1376 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \
1377 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \
1378 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \
1379 UMEM_BUFCTL_AUDIT_SIZE); \
1383 umem_log_event(umem_log_header_t
*lp
, umem_cache_t
*cp
,
1384 umem_slab_t
*sp
, void *addr
)
1386 umem_bufctl_audit_t
*bcp
;
1387 UMEM_LOCAL_BUFCTL_AUDIT(&bcp
);
1389 bzero(bcp
, UMEM_BUFCTL_AUDIT_SIZE
);
1390 bcp
->bc_addr
= addr
;
1393 UMEM_AUDIT(lp
, cp
, bcp
);
1397 * Create a new slab for cache cp.
1399 static umem_slab_t
*
1400 umem_slab_create(umem_cache_t
*cp
, int umflag
)
1402 size_t slabsize
= cp
->cache_slabsize
;
1403 size_t chunksize
= cp
->cache_chunksize
;
1404 int cache_flags
= cp
->cache_flags
;
1405 size_t color
, chunks
;
1409 vmem_t
*vmp
= cp
->cache_arena
;
1411 color
= cp
->cache_color
+ cp
->cache_align
;
1412 if (color
> cp
->cache_maxcolor
)
1413 color
= cp
->cache_mincolor
;
1414 cp
->cache_color
= color
;
1416 slab
= vmem_alloc(vmp
, slabsize
, UMEM_VMFLAGS(umflag
));
1419 goto vmem_alloc_failure
;
1421 ASSERT(P2PHASE((uintptr_t)slab
, vmp
->vm_quantum
) == 0);
1423 if (!(cp
->cache_cflags
& UMC_NOTOUCH
) &&
1424 (cp
->cache_flags
& UMF_DEADBEEF
))
1425 copy_pattern(UMEM_UNINITIALIZED_PATTERN
, slab
, slabsize
);
1427 if (cache_flags
& UMF_HASH
) {
1428 if ((sp
= _umem_cache_alloc(umem_slab_cache
, umflag
)) == NULL
)
1429 goto slab_alloc_failure
;
1430 chunks
= (slabsize
- color
) / chunksize
;
1432 sp
= UMEM_SLAB(cp
, slab
);
1433 chunks
= (slabsize
- sizeof (umem_slab_t
) - color
) / chunksize
;
1436 sp
->slab_cache
= cp
;
1437 sp
->slab_head
= NULL
;
1438 sp
->slab_refcnt
= 0;
1439 sp
->slab_base
= buf
= slab
+ color
;
1440 sp
->slab_chunks
= chunks
;
1443 while (chunks
-- != 0) {
1444 if (cache_flags
& UMF_HASH
) {
1445 bcp
= _umem_cache_alloc(cp
->cache_bufctl_cache
, umflag
);
1447 goto bufctl_alloc_failure
;
1448 if (cache_flags
& UMF_AUDIT
) {
1449 umem_bufctl_audit_t
*bcap
=
1450 (umem_bufctl_audit_t
*)bcp
;
1451 bzero(bcap
, UMEM_BUFCTL_AUDIT_SIZE
);
1452 bcap
->bc_cache
= cp
;
1457 bcp
= UMEM_BUFCTL(cp
, buf
);
1459 if (cache_flags
& UMF_BUFTAG
) {
1460 umem_buftag_t
*btp
= UMEM_BUFTAG(cp
, buf
);
1461 btp
->bt_redzone
= UMEM_REDZONE_PATTERN
;
1462 btp
->bt_bufctl
= bcp
;
1463 btp
->bt_bxstat
= (intptr_t)bcp
^ UMEM_BUFTAG_FREE
;
1464 if (cache_flags
& UMF_DEADBEEF
) {
1465 copy_pattern(UMEM_FREE_PATTERN
, buf
,
1469 bcp
->bc_next
= sp
->slab_head
;
1470 sp
->slab_head
= bcp
;
1474 umem_log_event(umem_slab_log
, cp
, sp
, slab
);
1478 bufctl_alloc_failure
:
1480 while ((bcp
= sp
->slab_head
) != NULL
) {
1481 sp
->slab_head
= bcp
->bc_next
;
1482 _umem_cache_free(cp
->cache_bufctl_cache
, bcp
);
1484 _umem_cache_free(umem_slab_cache
, sp
);
1488 vmem_free(vmp
, slab
, slabsize
);
1492 umem_log_event(umem_failure_log
, cp
, NULL
, NULL
);
1493 atomic_add_64(&cp
->cache_alloc_fail
, 1);
1502 umem_slab_destroy(umem_cache_t
*cp
, umem_slab_t
*sp
)
1504 vmem_t
*vmp
= cp
->cache_arena
;
1505 void *slab
= (void *)P2ALIGN((uintptr_t)sp
->slab_base
, vmp
->vm_quantum
);
1507 if (cp
->cache_flags
& UMF_HASH
) {
1509 while ((bcp
= sp
->slab_head
) != NULL
) {
1510 sp
->slab_head
= bcp
->bc_next
;
1511 _umem_cache_free(cp
->cache_bufctl_cache
, bcp
);
1513 _umem_cache_free(umem_slab_cache
, sp
);
1515 vmem_free(vmp
, slab
, cp
->cache_slabsize
);
1519 * Allocate a raw (unconstructed) buffer from cp's slab layer.
1522 umem_slab_alloc(umem_cache_t
*cp
, int umflag
)
1524 umem_bufctl_t
*bcp
, **hash_bucket
;
1528 (void) mutex_lock(&cp
->cache_lock
);
1529 cp
->cache_slab_alloc
++;
1530 sp
= cp
->cache_freelist
;
1531 ASSERT(sp
->slab_cache
== cp
);
1532 if (sp
->slab_head
== NULL
) {
1534 * The freelist is empty. Create a new slab.
1536 (void) mutex_unlock(&cp
->cache_lock
);
1537 if (cp
== &umem_null_cache
)
1539 if ((sp
= umem_slab_create(cp
, umflag
)) == NULL
)
1541 (void) mutex_lock(&cp
->cache_lock
);
1542 cp
->cache_slab_create
++;
1543 if ((cp
->cache_buftotal
+= sp
->slab_chunks
) > cp
->cache_bufmax
)
1544 cp
->cache_bufmax
= cp
->cache_buftotal
;
1545 sp
->slab_next
= cp
->cache_freelist
;
1546 sp
->slab_prev
= cp
->cache_freelist
->slab_prev
;
1547 sp
->slab_next
->slab_prev
= sp
;
1548 sp
->slab_prev
->slab_next
= sp
;
1549 cp
->cache_freelist
= sp
;
1553 ASSERT(sp
->slab_refcnt
<= sp
->slab_chunks
);
1556 * If we're taking the last buffer in the slab,
1557 * remove the slab from the cache's freelist.
1559 bcp
= sp
->slab_head
;
1560 if ((sp
->slab_head
= bcp
->bc_next
) == NULL
) {
1561 cp
->cache_freelist
= sp
->slab_next
;
1562 ASSERT(sp
->slab_refcnt
== sp
->slab_chunks
);
1565 if (cp
->cache_flags
& UMF_HASH
) {
1567 * Add buffer to allocated-address hash table.
1570 hash_bucket
= UMEM_HASH(cp
, buf
);
1571 bcp
->bc_next
= *hash_bucket
;
1573 if ((cp
->cache_flags
& (UMF_AUDIT
| UMF_BUFTAG
)) == UMF_AUDIT
) {
1574 UMEM_AUDIT(umem_transaction_log
, cp
, bcp
);
1577 buf
= UMEM_BUF(cp
, bcp
);
1580 ASSERT(UMEM_SLAB_MEMBER(sp
, buf
));
1582 (void) mutex_unlock(&cp
->cache_lock
);
1588 * Free a raw (unconstructed) buffer to cp's slab layer.
1591 umem_slab_free(umem_cache_t
*cp
, void *buf
)
1594 umem_bufctl_t
*bcp
, **prev_bcpp
;
1596 ASSERT(buf
!= NULL
);
1598 (void) mutex_lock(&cp
->cache_lock
);
1599 cp
->cache_slab_free
++;
1601 if (cp
->cache_flags
& UMF_HASH
) {
1603 * Look up buffer in allocated-address hash table.
1605 prev_bcpp
= UMEM_HASH(cp
, buf
);
1606 while ((bcp
= *prev_bcpp
) != NULL
) {
1607 if (bcp
->bc_addr
== buf
) {
1608 *prev_bcpp
= bcp
->bc_next
;
1612 cp
->cache_lookup_depth
++;
1613 prev_bcpp
= &bcp
->bc_next
;
1616 bcp
= UMEM_BUFCTL(cp
, buf
);
1617 sp
= UMEM_SLAB(cp
, buf
);
1620 if (bcp
== NULL
|| sp
->slab_cache
!= cp
|| !UMEM_SLAB_MEMBER(sp
, buf
)) {
1621 (void) mutex_unlock(&cp
->cache_lock
);
1622 umem_error(UMERR_BADADDR
, cp
, buf
);
1626 if ((cp
->cache_flags
& (UMF_AUDIT
| UMF_BUFTAG
)) == UMF_AUDIT
) {
1627 if (cp
->cache_flags
& UMF_CONTENTS
)
1628 ((umem_bufctl_audit_t
*)bcp
)->bc_contents
=
1629 umem_log_enter(umem_content_log
, buf
,
1630 cp
->cache_contents
);
1631 UMEM_AUDIT(umem_transaction_log
, cp
, bcp
);
1635 * If this slab isn't currently on the freelist, put it there.
1637 if (sp
->slab_head
== NULL
) {
1638 ASSERT(sp
->slab_refcnt
== sp
->slab_chunks
);
1639 ASSERT(cp
->cache_freelist
!= sp
);
1640 sp
->slab_next
->slab_prev
= sp
->slab_prev
;
1641 sp
->slab_prev
->slab_next
= sp
->slab_next
;
1642 sp
->slab_next
= cp
->cache_freelist
;
1643 sp
->slab_prev
= cp
->cache_freelist
->slab_prev
;
1644 sp
->slab_next
->slab_prev
= sp
;
1645 sp
->slab_prev
->slab_next
= sp
;
1646 cp
->cache_freelist
= sp
;
1649 bcp
->bc_next
= sp
->slab_head
;
1650 sp
->slab_head
= bcp
;
1652 ASSERT(sp
->slab_refcnt
>= 1);
1653 if (--sp
->slab_refcnt
== 0) {
1655 * There are no outstanding allocations from this slab,
1656 * so we can reclaim the memory.
1658 sp
->slab_next
->slab_prev
= sp
->slab_prev
;
1659 sp
->slab_prev
->slab_next
= sp
->slab_next
;
1660 if (sp
== cp
->cache_freelist
)
1661 cp
->cache_freelist
= sp
->slab_next
;
1662 cp
->cache_slab_destroy
++;
1663 cp
->cache_buftotal
-= sp
->slab_chunks
;
1664 (void) mutex_unlock(&cp
->cache_lock
);
1665 umem_slab_destroy(cp
, sp
);
1668 (void) mutex_unlock(&cp
->cache_lock
);
1672 umem_cache_alloc_debug(umem_cache_t
*cp
, void *buf
, int umflag
)
1674 umem_buftag_t
*btp
= UMEM_BUFTAG(cp
, buf
);
1675 umem_bufctl_audit_t
*bcp
= (umem_bufctl_audit_t
*)btp
->bt_bufctl
;
1679 if (btp
->bt_bxstat
!= ((intptr_t)bcp
^ UMEM_BUFTAG_FREE
)) {
1680 umem_error(UMERR_BADBUFTAG
, cp
, buf
);
1684 btp
->bt_bxstat
= (intptr_t)bcp
^ UMEM_BUFTAG_ALLOC
;
1686 if ((cp
->cache_flags
& UMF_HASH
) && bcp
->bc_addr
!= buf
) {
1687 umem_error(UMERR_BADBUFCTL
, cp
, buf
);
1691 btp
->bt_redzone
= UMEM_REDZONE_PATTERN
;
1693 if (cp
->cache_flags
& UMF_DEADBEEF
) {
1694 if (verify_and_copy_pattern(UMEM_FREE_PATTERN
,
1695 UMEM_UNINITIALIZED_PATTERN
, buf
, cp
->cache_verify
)) {
1696 umem_error(UMERR_MODIFIED
, cp
, buf
);
1701 if ((mtbf
= umem_mtbf
| cp
->cache_mtbf
) != 0 &&
1702 gethrtime() % mtbf
== 0 &&
1703 (umflag
& (UMEM_FATAL_FLAGS
)) == 0) {
1704 umem_log_event(umem_failure_log
, cp
, NULL
, NULL
);
1710 * We do not pass fatal flags on to the constructor. This prevents
1711 * leaking buffers in the event of a subordinate constructor failing.
1713 flags_nfatal
= UMEM_DEFAULT
;
1714 if (mtbf
|| (cp
->cache_constructor
!= NULL
&&
1715 cp
->cache_constructor(buf
, cp
->cache_private
, flags_nfatal
) != 0)) {
1716 atomic_add_64(&cp
->cache_alloc_fail
, 1);
1717 btp
->bt_bxstat
= (intptr_t)bcp
^ UMEM_BUFTAG_FREE
;
1718 copy_pattern(UMEM_FREE_PATTERN
, buf
, cp
->cache_verify
);
1719 umem_slab_free(cp
, buf
);
1723 if (cp
->cache_flags
& UMF_AUDIT
) {
1724 UMEM_AUDIT(umem_transaction_log
, cp
, bcp
);
1731 umem_cache_free_debug(umem_cache_t
*cp
, void *buf
)
1733 umem_buftag_t
*btp
= UMEM_BUFTAG(cp
, buf
);
1734 umem_bufctl_audit_t
*bcp
= (umem_bufctl_audit_t
*)btp
->bt_bufctl
;
1737 if (btp
->bt_bxstat
!= ((intptr_t)bcp
^ UMEM_BUFTAG_ALLOC
)) {
1738 if (btp
->bt_bxstat
== ((intptr_t)bcp
^ UMEM_BUFTAG_FREE
)) {
1739 umem_error(UMERR_DUPFREE
, cp
, buf
);
1742 sp
= umem_findslab(cp
, buf
);
1743 if (sp
== NULL
|| sp
->slab_cache
!= cp
)
1744 umem_error(UMERR_BADADDR
, cp
, buf
);
1746 umem_error(UMERR_REDZONE
, cp
, buf
);
1750 btp
->bt_bxstat
= (intptr_t)bcp
^ UMEM_BUFTAG_FREE
;
1752 if ((cp
->cache_flags
& UMF_HASH
) && bcp
->bc_addr
!= buf
) {
1753 umem_error(UMERR_BADBUFCTL
, cp
, buf
);
1757 if (btp
->bt_redzone
!= UMEM_REDZONE_PATTERN
) {
1758 umem_error(UMERR_REDZONE
, cp
, buf
);
1762 if (cp
->cache_flags
& UMF_AUDIT
) {
1763 if (cp
->cache_flags
& UMF_CONTENTS
)
1764 bcp
->bc_contents
= umem_log_enter(umem_content_log
,
1765 buf
, cp
->cache_contents
);
1766 UMEM_AUDIT(umem_transaction_log
, cp
, bcp
);
1769 if (cp
->cache_destructor
!= NULL
)
1770 cp
->cache_destructor(buf
, cp
->cache_private
);
1772 if (cp
->cache_flags
& UMF_DEADBEEF
)
1773 copy_pattern(UMEM_FREE_PATTERN
, buf
, cp
->cache_verify
);
1779 * Free each object in magazine mp to cp's slab layer, and free mp itself.
1782 umem_magazine_destroy(umem_cache_t
*cp
, umem_magazine_t
*mp
, int nrounds
)
1786 ASSERT(cp
->cache_next
== NULL
|| IN_UPDATE());
1788 for (round
= 0; round
< nrounds
; round
++) {
1789 void *buf
= mp
->mag_round
[round
];
1791 if ((cp
->cache_flags
& UMF_DEADBEEF
) &&
1792 verify_pattern(UMEM_FREE_PATTERN
, buf
,
1793 cp
->cache_verify
) != NULL
) {
1794 umem_error(UMERR_MODIFIED
, cp
, buf
);
1798 if (!(cp
->cache_flags
& UMF_BUFTAG
) &&
1799 cp
->cache_destructor
!= NULL
)
1800 cp
->cache_destructor(buf
, cp
->cache_private
);
1802 umem_slab_free(cp
, buf
);
1804 ASSERT(UMEM_MAGAZINE_VALID(cp
, mp
));
1805 _umem_cache_free(cp
->cache_magtype
->mt_cache
, mp
);
1809 * Allocate a magazine from the depot.
1811 static umem_magazine_t
*
1812 umem_depot_alloc(umem_cache_t
*cp
, umem_maglist_t
*mlp
)
1814 umem_magazine_t
*mp
;
1817 * If we can't get the depot lock without contention,
1818 * update our contention count. We use the depot
1819 * contention rate to determine whether we need to
1820 * increase the magazine size for better scalability.
1822 if (mutex_trylock(&cp
->cache_depot_lock
) != 0) {
1823 (void) mutex_lock(&cp
->cache_depot_lock
);
1824 cp
->cache_depot_contention
++;
1827 if ((mp
= mlp
->ml_list
) != NULL
) {
1828 ASSERT(UMEM_MAGAZINE_VALID(cp
, mp
));
1829 mlp
->ml_list
= mp
->mag_next
;
1830 if (--mlp
->ml_total
< mlp
->ml_min
)
1831 mlp
->ml_min
= mlp
->ml_total
;
1835 (void) mutex_unlock(&cp
->cache_depot_lock
);
1841 * Free a magazine to the depot.
1844 umem_depot_free(umem_cache_t
*cp
, umem_maglist_t
*mlp
, umem_magazine_t
*mp
)
1846 (void) mutex_lock(&cp
->cache_depot_lock
);
1847 ASSERT(UMEM_MAGAZINE_VALID(cp
, mp
));
1848 mp
->mag_next
= mlp
->ml_list
;
1851 (void) mutex_unlock(&cp
->cache_depot_lock
);
1855 * Update the working set statistics for cp's depot.
1858 umem_depot_ws_update(umem_cache_t
*cp
)
1860 (void) mutex_lock(&cp
->cache_depot_lock
);
1861 cp
->cache_full
.ml_reaplimit
= cp
->cache_full
.ml_min
;
1862 cp
->cache_full
.ml_min
= cp
->cache_full
.ml_total
;
1863 cp
->cache_empty
.ml_reaplimit
= cp
->cache_empty
.ml_min
;
1864 cp
->cache_empty
.ml_min
= cp
->cache_empty
.ml_total
;
1865 (void) mutex_unlock(&cp
->cache_depot_lock
);
1869 * Reap all magazines that have fallen out of the depot's working set.
1872 umem_depot_ws_reap(umem_cache_t
*cp
)
1875 umem_magazine_t
*mp
;
1877 ASSERT(cp
->cache_next
== NULL
|| IN_REAP());
1879 reap
= MIN(cp
->cache_full
.ml_reaplimit
, cp
->cache_full
.ml_min
);
1880 while (reap
-- && (mp
= umem_depot_alloc(cp
, &cp
->cache_full
)) != NULL
)
1881 umem_magazine_destroy(cp
, mp
, cp
->cache_magtype
->mt_magsize
);
1883 reap
= MIN(cp
->cache_empty
.ml_reaplimit
, cp
->cache_empty
.ml_min
);
1884 while (reap
-- && (mp
= umem_depot_alloc(cp
, &cp
->cache_empty
)) != NULL
)
1885 umem_magazine_destroy(cp
, mp
, 0);
1889 umem_cpu_reload(umem_cpu_cache_t
*ccp
, umem_magazine_t
*mp
, int rounds
)
1891 ASSERT((ccp
->cc_loaded
== NULL
&& ccp
->cc_rounds
== -1) ||
1892 (ccp
->cc_loaded
&& ccp
->cc_rounds
+ rounds
== ccp
->cc_magsize
));
1893 ASSERT(ccp
->cc_magsize
> 0);
1895 ccp
->cc_ploaded
= ccp
->cc_loaded
;
1896 ccp
->cc_prounds
= ccp
->cc_rounds
;
1897 ccp
->cc_loaded
= mp
;
1898 ccp
->cc_rounds
= rounds
;
1902 * Allocate a constructed object from cache cp.
1904 #pragma weak umem_cache_alloc = _umem_cache_alloc
1906 _umem_cache_alloc(umem_cache_t
*cp
, int umflag
)
1908 umem_cpu_cache_t
*ccp
;
1909 umem_magazine_t
*fmp
;
1914 ccp
= UMEM_CPU_CACHE(cp
, CPU(cp
->cache_cpu_mask
));
1915 (void) mutex_lock(&ccp
->cc_lock
);
1918 * If there's an object available in the current CPU's
1919 * loaded magazine, just take it and return.
1921 if (ccp
->cc_rounds
> 0) {
1922 buf
= ccp
->cc_loaded
->mag_round
[--ccp
->cc_rounds
];
1924 (void) mutex_unlock(&ccp
->cc_lock
);
1925 if ((ccp
->cc_flags
& UMF_BUFTAG
) &&
1926 umem_cache_alloc_debug(cp
, buf
, umflag
) == -1) {
1927 if (umem_alloc_retry(cp
, umflag
)) {
1937 * The loaded magazine is empty. If the previously loaded
1938 * magazine was full, exchange them and try again.
1940 if (ccp
->cc_prounds
> 0) {
1941 umem_cpu_reload(ccp
, ccp
->cc_ploaded
, ccp
->cc_prounds
);
1946 * If the magazine layer is disabled, break out now.
1948 if (ccp
->cc_magsize
== 0)
1952 * Try to get a full magazine from the depot.
1954 fmp
= umem_depot_alloc(cp
, &cp
->cache_full
);
1956 if (ccp
->cc_ploaded
!= NULL
)
1957 umem_depot_free(cp
, &cp
->cache_empty
,
1959 umem_cpu_reload(ccp
, fmp
, ccp
->cc_magsize
);
1964 * There are no full magazines in the depot,
1965 * so fall through to the slab layer.
1969 (void) mutex_unlock(&ccp
->cc_lock
);
1972 * We couldn't allocate a constructed object from the magazine layer,
1973 * so get a raw buffer from the slab layer and apply its constructor.
1975 buf
= umem_slab_alloc(cp
, umflag
);
1978 if (cp
== &umem_null_cache
)
1980 if (umem_alloc_retry(cp
, umflag
)) {
1987 if (cp
->cache_flags
& UMF_BUFTAG
) {
1989 * Let umem_cache_alloc_debug() apply the constructor for us.
1991 if (umem_cache_alloc_debug(cp
, buf
, umflag
) == -1) {
1992 if (umem_alloc_retry(cp
, umflag
)) {
2001 * We do not pass fatal flags on to the constructor. This prevents
2002 * leaking buffers in the event of a subordinate constructor failing.
2004 flags_nfatal
= UMEM_DEFAULT
;
2005 if (cp
->cache_constructor
!= NULL
&&
2006 cp
->cache_constructor(buf
, cp
->cache_private
, flags_nfatal
) != 0) {
2007 atomic_add_64(&cp
->cache_alloc_fail
, 1);
2008 umem_slab_free(cp
, buf
);
2010 if (umem_alloc_retry(cp
, umflag
)) {
2020 * Free a constructed object to cache cp.
2022 #pragma weak umem_cache_free = _umem_cache_free
2024 _umem_cache_free(umem_cache_t
*cp
, void *buf
)
2026 umem_cpu_cache_t
*ccp
= UMEM_CPU_CACHE(cp
, CPU(cp
->cache_cpu_mask
));
2027 umem_magazine_t
*emp
;
2028 umem_magtype_t
*mtp
;
2030 if (ccp
->cc_flags
& UMF_BUFTAG
)
2031 if (umem_cache_free_debug(cp
, buf
) == -1)
2034 (void) mutex_lock(&ccp
->cc_lock
);
2037 * If there's a slot available in the current CPU's
2038 * loaded magazine, just put the object there and return.
2040 if ((uint_t
)ccp
->cc_rounds
< ccp
->cc_magsize
) {
2041 ccp
->cc_loaded
->mag_round
[ccp
->cc_rounds
++] = buf
;
2043 (void) mutex_unlock(&ccp
->cc_lock
);
2048 * The loaded magazine is full. If the previously loaded
2049 * magazine was empty, exchange them and try again.
2051 if (ccp
->cc_prounds
== 0) {
2052 umem_cpu_reload(ccp
, ccp
->cc_ploaded
, ccp
->cc_prounds
);
2057 * If the magazine layer is disabled, break out now.
2059 if (ccp
->cc_magsize
== 0)
2063 * Try to get an empty magazine from the depot.
2065 emp
= umem_depot_alloc(cp
, &cp
->cache_empty
);
2067 if (ccp
->cc_ploaded
!= NULL
)
2068 umem_depot_free(cp
, &cp
->cache_full
,
2070 umem_cpu_reload(ccp
, emp
, 0);
2075 * There are no empty magazines in the depot,
2076 * so try to allocate a new one. We must drop all locks
2077 * across umem_cache_alloc() because lower layers may
2078 * attempt to allocate from this cache.
2080 mtp
= cp
->cache_magtype
;
2081 (void) mutex_unlock(&ccp
->cc_lock
);
2082 emp
= _umem_cache_alloc(mtp
->mt_cache
, UMEM_DEFAULT
);
2083 (void) mutex_lock(&ccp
->cc_lock
);
2087 * We successfully allocated an empty magazine.
2088 * However, we had to drop ccp->cc_lock to do it,
2089 * so the cache's magazine size may have changed.
2090 * If so, free the magazine and try again.
2092 if (ccp
->cc_magsize
!= mtp
->mt_magsize
) {
2093 (void) mutex_unlock(&ccp
->cc_lock
);
2094 _umem_cache_free(mtp
->mt_cache
, emp
);
2095 (void) mutex_lock(&ccp
->cc_lock
);
2100 * We got a magazine of the right size. Add it to
2101 * the depot and try the whole dance again.
2103 umem_depot_free(cp
, &cp
->cache_empty
, emp
);
2108 * We couldn't allocate an empty magazine,
2109 * so fall through to the slab layer.
2113 (void) mutex_unlock(&ccp
->cc_lock
);
2116 * We couldn't free our constructed object to the magazine layer,
2117 * so apply its destructor and free it to the slab layer.
2118 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
2119 * will have already applied the destructor.
2121 if (!(cp
->cache_flags
& UMF_BUFTAG
) && cp
->cache_destructor
!= NULL
)
2122 cp
->cache_destructor(buf
, cp
->cache_private
);
2124 umem_slab_free(cp
, buf
);
2127 #pragma weak umem_zalloc = _umem_zalloc
2129 _umem_zalloc(size_t size
, int umflag
)
2131 size_t index
= (size
- 1) >> UMEM_ALIGN_SHIFT
;
2135 if (index
< UMEM_MAXBUF
>> UMEM_ALIGN_SHIFT
) {
2136 umem_cache_t
*cp
= umem_alloc_table
[index
];
2137 buf
= _umem_cache_alloc(cp
, umflag
);
2139 if (cp
->cache_flags
& UMF_BUFTAG
) {
2140 umem_buftag_t
*btp
= UMEM_BUFTAG(cp
, buf
);
2141 ((uint8_t *)buf
)[size
] = UMEM_REDZONE_BYTE
;
2142 ((uint32_t *)btp
)[1] = UMEM_SIZE_ENCODE(size
);
2145 } else if (umem_alloc_retry(cp
, umflag
))
2148 buf
= _umem_alloc(size
, umflag
); /* handles failure */
2155 #pragma weak umem_alloc = _umem_alloc
2157 _umem_alloc(size_t size
, int umflag
)
2159 size_t index
= (size
- 1) >> UMEM_ALIGN_SHIFT
;
2162 if (index
< UMEM_MAXBUF
>> UMEM_ALIGN_SHIFT
) {
2163 umem_cache_t
*cp
= umem_alloc_table
[index
];
2164 buf
= _umem_cache_alloc(cp
, umflag
);
2165 if ((cp
->cache_flags
& UMF_BUFTAG
) && buf
!= NULL
) {
2166 umem_buftag_t
*btp
= UMEM_BUFTAG(cp
, buf
);
2167 ((uint8_t *)buf
)[size
] = UMEM_REDZONE_BYTE
;
2168 ((uint32_t *)btp
)[1] = UMEM_SIZE_ENCODE(size
);
2170 if (buf
== NULL
&& umem_alloc_retry(cp
, umflag
))
2171 goto umem_alloc_retry
;
2176 if (umem_oversize_arena
== NULL
) {
2178 ASSERT(umem_oversize_arena
!= NULL
);
2182 buf
= vmem_alloc(umem_oversize_arena
, size
, UMEM_VMFLAGS(umflag
));
2184 umem_log_event(umem_failure_log
, NULL
, NULL
, (void *)size
);
2185 if (umem_alloc_retry(NULL
, umflag
))
2186 goto umem_alloc_retry
;
2191 #pragma weak umem_alloc_align = _umem_alloc_align
2193 _umem_alloc_align(size_t size
, size_t align
, int umflag
)
2199 if ((align
& (align
- 1)) != 0)
2201 if (align
< UMEM_ALIGN
)
2204 umem_alloc_align_retry
:
2205 if (umem_memalign_arena
== NULL
) {
2207 ASSERT(umem_oversize_arena
!= NULL
);
2211 buf
= vmem_xalloc(umem_memalign_arena
, size
, align
, 0, 0, NULL
, NULL
,
2212 UMEM_VMFLAGS(umflag
));
2214 umem_log_event(umem_failure_log
, NULL
, NULL
, (void *)size
);
2215 if (umem_alloc_retry(NULL
, umflag
))
2216 goto umem_alloc_align_retry
;
2221 #pragma weak umem_free = _umem_free
2223 _umem_free(void *buf
, size_t size
)
2225 size_t index
= (size
- 1) >> UMEM_ALIGN_SHIFT
;
2227 if (index
< UMEM_MAXBUF
>> UMEM_ALIGN_SHIFT
) {
2228 umem_cache_t
*cp
= umem_alloc_table
[index
];
2229 if (cp
->cache_flags
& UMF_BUFTAG
) {
2230 umem_buftag_t
*btp
= UMEM_BUFTAG(cp
, buf
);
2231 uint32_t *ip
= (uint32_t *)btp
;
2232 if (ip
[1] != UMEM_SIZE_ENCODE(size
)) {
2233 if (*(uint64_t *)buf
== UMEM_FREE_PATTERN
) {
2234 umem_error(UMERR_DUPFREE
, cp
, buf
);
2237 if (UMEM_SIZE_VALID(ip
[1])) {
2238 ip
[0] = UMEM_SIZE_ENCODE(size
);
2239 umem_error(UMERR_BADSIZE
, cp
, buf
);
2241 umem_error(UMERR_REDZONE
, cp
, buf
);
2245 if (((uint8_t *)buf
)[size
] != UMEM_REDZONE_BYTE
) {
2246 umem_error(UMERR_REDZONE
, cp
, buf
);
2249 btp
->bt_redzone
= UMEM_REDZONE_PATTERN
;
2251 _umem_cache_free(cp
, buf
);
2253 if (buf
== NULL
&& size
== 0)
2255 vmem_free(umem_oversize_arena
, buf
, size
);
2259 #pragma weak umem_free_align = _umem_free_align
2261 _umem_free_align(void *buf
, size_t size
)
2263 if (buf
== NULL
&& size
== 0)
2265 vmem_xfree(umem_memalign_arena
, buf
, size
);
2269 umem_firewall_va_alloc(vmem_t
*vmp
, size_t size
, int vmflag
)
2271 size_t realsize
= size
+ vmp
->vm_quantum
;
2274 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2275 * vm_quantum will cause integer wraparound. Check for this, and
2276 * blow off the firewall page in this case. Note that such a
2277 * giant allocation (the entire address space) can never be
2278 * satisfied, so it will either fail immediately (VM_NOSLEEP)
2279 * or sleep forever (VM_SLEEP). Thus, there is no need for a
2280 * corresponding check in umem_firewall_va_free().
2282 if (realsize
< size
)
2285 return (vmem_alloc(vmp
, realsize
, vmflag
| VM_NEXTFIT
));
2289 umem_firewall_va_free(vmem_t
*vmp
, void *addr
, size_t size
)
2291 vmem_free(vmp
, addr
, size
+ vmp
->vm_quantum
);
2295 * Reclaim all unused memory from a cache.
2298 umem_cache_reap(umem_cache_t
*cp
)
2301 * Ask the cache's owner to free some memory if possible.
2302 * The idea is to handle things like the inode cache, which
2303 * typically sits on a bunch of memory that it doesn't truly
2304 * *need*. Reclaim policy is entirely up to the owner; this
2305 * callback is just an advisory plea for help.
2307 if (cp
->cache_reclaim
!= NULL
)
2308 cp
->cache_reclaim(cp
->cache_private
);
2310 umem_depot_ws_reap(cp
);
2314 * Purge all magazines from a cache and set its magazine limit to zero.
2315 * All calls are serialized by being done by the update thread, except for
2316 * the final call from umem_cache_destroy().
2319 umem_cache_magazine_purge(umem_cache_t
*cp
)
2321 umem_cpu_cache_t
*ccp
;
2322 umem_magazine_t
*mp
, *pmp
;
2323 int rounds
, prounds
, cpu_seqid
;
2325 ASSERT(cp
->cache_next
== NULL
|| IN_UPDATE());
2327 for (cpu_seqid
= 0; cpu_seqid
< umem_max_ncpus
; cpu_seqid
++) {
2328 ccp
= &cp
->cache_cpu
[cpu_seqid
];
2330 (void) mutex_lock(&ccp
->cc_lock
);
2331 mp
= ccp
->cc_loaded
;
2332 pmp
= ccp
->cc_ploaded
;
2333 rounds
= ccp
->cc_rounds
;
2334 prounds
= ccp
->cc_prounds
;
2335 ccp
->cc_loaded
= NULL
;
2336 ccp
->cc_ploaded
= NULL
;
2337 ccp
->cc_rounds
= -1;
2338 ccp
->cc_prounds
= -1;
2339 ccp
->cc_magsize
= 0;
2340 (void) mutex_unlock(&ccp
->cc_lock
);
2343 umem_magazine_destroy(cp
, mp
, rounds
);
2345 umem_magazine_destroy(cp
, pmp
, prounds
);
2349 * Updating the working set statistics twice in a row has the
2350 * effect of setting the working set size to zero, so everything
2351 * is eligible for reaping.
2353 umem_depot_ws_update(cp
);
2354 umem_depot_ws_update(cp
);
2356 umem_depot_ws_reap(cp
);
2360 * Enable per-cpu magazines on a cache.
2363 umem_cache_magazine_enable(umem_cache_t
*cp
)
2367 if (cp
->cache_flags
& UMF_NOMAGAZINE
)
2370 for (cpu_seqid
= 0; cpu_seqid
< umem_max_ncpus
; cpu_seqid
++) {
2371 umem_cpu_cache_t
*ccp
= &cp
->cache_cpu
[cpu_seqid
];
2372 (void) mutex_lock(&ccp
->cc_lock
);
2373 ccp
->cc_magsize
= cp
->cache_magtype
->mt_magsize
;
2374 (void) mutex_unlock(&ccp
->cc_lock
);
2380 * Recompute a cache's magazine size. The trade-off is that larger magazines
2381 * provide a higher transfer rate with the depot, while smaller magazines
2382 * reduce memory consumption. Magazine resizing is an expensive operation;
2383 * it should not be done frequently.
2385 * Changes to the magazine size are serialized by only having one thread
2386 * doing updates. (the update thread)
2388 * Note: at present this only grows the magazine size. It might be useful
2389 * to allow shrinkage too.
2392 umem_cache_magazine_resize(umem_cache_t
*cp
)
2394 umem_magtype_t
*mtp
= cp
->cache_magtype
;
2396 ASSERT(IN_UPDATE());
2398 if (cp
->cache_chunksize
< mtp
->mt_maxbuf
) {
2399 umem_cache_magazine_purge(cp
);
2400 (void) mutex_lock(&cp
->cache_depot_lock
);
2401 cp
->cache_magtype
= ++mtp
;
2402 cp
->cache_depot_contention_prev
=
2403 cp
->cache_depot_contention
+ INT_MAX
;
2404 (void) mutex_unlock(&cp
->cache_depot_lock
);
2405 umem_cache_magazine_enable(cp
);
2410 * Rescale a cache's hash table, so that the table size is roughly the
2411 * cache size. We want the average lookup time to be extremely small.
2414 umem_hash_rescale(umem_cache_t
*cp
)
2416 umem_bufctl_t
**old_table
, **new_table
, *bcp
;
2417 size_t old_size
, new_size
, h
;
2419 ASSERT(IN_UPDATE());
2421 new_size
= MAX(UMEM_HASH_INITIAL
,
2422 1 << (highbit(3 * cp
->cache_buftotal
+ 4) - 2));
2423 old_size
= cp
->cache_hash_mask
+ 1;
2425 if ((old_size
>> 1) <= new_size
&& new_size
<= (old_size
<< 1))
2428 new_table
= vmem_alloc(umem_hash_arena
, new_size
* sizeof (void *),
2430 if (new_table
== NULL
)
2432 bzero(new_table
, new_size
* sizeof (void *));
2434 (void) mutex_lock(&cp
->cache_lock
);
2436 old_size
= cp
->cache_hash_mask
+ 1;
2437 old_table
= cp
->cache_hash_table
;
2439 cp
->cache_hash_mask
= new_size
- 1;
2440 cp
->cache_hash_table
= new_table
;
2441 cp
->cache_rescale
++;
2443 for (h
= 0; h
< old_size
; h
++) {
2445 while (bcp
!= NULL
) {
2446 void *addr
= bcp
->bc_addr
;
2447 umem_bufctl_t
*next_bcp
= bcp
->bc_next
;
2448 umem_bufctl_t
**hash_bucket
= UMEM_HASH(cp
, addr
);
2449 bcp
->bc_next
= *hash_bucket
;
2455 (void) mutex_unlock(&cp
->cache_lock
);
2457 vmem_free(umem_hash_arena
, old_table
, old_size
* sizeof (void *));
2461 * Perform periodic maintenance on a cache: hash rescaling,
2462 * depot working-set update, and magazine resizing.
2465 umem_cache_update(umem_cache_t
*cp
)
2467 int update_flags
= 0;
2469 ASSERT(MUTEX_HELD(&umem_cache_lock
));
2472 * If the cache has become much larger or smaller than its hash table,
2473 * fire off a request to rescale the hash table.
2475 (void) mutex_lock(&cp
->cache_lock
);
2477 if ((cp
->cache_flags
& UMF_HASH
) &&
2478 (cp
->cache_buftotal
> (cp
->cache_hash_mask
<< 1) ||
2479 (cp
->cache_buftotal
< (cp
->cache_hash_mask
>> 1) &&
2480 cp
->cache_hash_mask
> UMEM_HASH_INITIAL
)))
2481 update_flags
|= UMU_HASH_RESCALE
;
2483 (void) mutex_unlock(&cp
->cache_lock
);
2486 * Update the depot working set statistics.
2488 umem_depot_ws_update(cp
);
2491 * If there's a lot of contention in the depot,
2492 * increase the magazine size.
2494 (void) mutex_lock(&cp
->cache_depot_lock
);
2496 if (cp
->cache_chunksize
< cp
->cache_magtype
->mt_maxbuf
&&
2497 (int)(cp
->cache_depot_contention
-
2498 cp
->cache_depot_contention_prev
) > umem_depot_contention
)
2499 update_flags
|= UMU_MAGAZINE_RESIZE
;
2501 cp
->cache_depot_contention_prev
= cp
->cache_depot_contention
;
2503 (void) mutex_unlock(&cp
->cache_depot_lock
);
2506 umem_add_update(cp
, update_flags
);
2510 * Runs all pending updates.
2512 * The update lock must be held on entrance, and will be held on exit.
2515 umem_process_updates(void)
2517 ASSERT(MUTEX_HELD(&umem_update_lock
));
2519 while (umem_null_cache
.cache_unext
!= &umem_null_cache
) {
2521 umem_cache_t
*cp
= umem_null_cache
.cache_unext
;
2523 cp
->cache_uprev
->cache_unext
= cp
->cache_unext
;
2524 cp
->cache_unext
->cache_uprev
= cp
->cache_uprev
;
2525 cp
->cache_uprev
= cp
->cache_unext
= NULL
;
2527 ASSERT(!(cp
->cache_uflags
& UMU_ACTIVE
));
2529 while (cp
->cache_uflags
) {
2530 int uflags
= (cp
->cache_uflags
|= UMU_ACTIVE
);
2531 (void) mutex_unlock(&umem_update_lock
);
2534 * The order here is important. Each step can speed up
2538 if (uflags
& UMU_HASH_RESCALE
)
2539 umem_hash_rescale(cp
);
2541 if (uflags
& UMU_MAGAZINE_RESIZE
)
2542 umem_cache_magazine_resize(cp
);
2544 if (uflags
& UMU_REAP
)
2545 umem_cache_reap(cp
);
2547 (void) mutex_lock(&umem_update_lock
);
2550 * check if anyone has requested notification
2552 if (cp
->cache_uflags
& UMU_NOTIFY
) {
2553 uflags
|= UMU_NOTIFY
;
2556 cp
->cache_uflags
&= ~uflags
;
2559 (void) cond_broadcast(&umem_update_cv
);
2563 #ifndef UMEM_STANDALONE
2565 umem_st_update(void)
2567 ASSERT(MUTEX_HELD(&umem_update_lock
));
2568 ASSERT(umem_update_thr
== 0 && umem_st_update_thr
== 0);
2570 umem_st_update_thr
= thr_self();
2572 (void) mutex_unlock(&umem_update_lock
);
2575 umem_cache_applyall(umem_cache_update
);
2577 (void) mutex_lock(&umem_update_lock
);
2579 umem_process_updates(); /* does all of the requested work */
2581 umem_reap_next
= gethrtime() +
2582 (hrtime_t
)umem_reap_interval
* NANOSEC
;
2584 umem_reaping
= UMEM_REAP_DONE
;
2586 umem_st_update_thr
= 0;
2591 * Reclaim all unused memory from all caches. Called from vmem when memory
2592 * gets tight. Must be called with no locks held.
2594 * This just requests a reap on all caches, and notifies the update thread.
2599 #ifndef UMEM_STANDALONE
2600 extern int __nthreads(void);
2603 if (umem_ready
!= UMEM_READY
|| umem_reaping
!= UMEM_REAP_DONE
||
2604 gethrtime() < umem_reap_next
)
2607 (void) mutex_lock(&umem_update_lock
);
2609 if (umem_reaping
!= UMEM_REAP_DONE
|| gethrtime() < umem_reap_next
) {
2610 (void) mutex_unlock(&umem_update_lock
);
2613 umem_reaping
= UMEM_REAP_ADDING
; /* lock out other reaps */
2615 (void) mutex_unlock(&umem_update_lock
);
2617 umem_updateall(UMU_REAP
);
2619 (void) mutex_lock(&umem_update_lock
);
2621 umem_reaping
= UMEM_REAP_ACTIVE
;
2623 /* Standalone is single-threaded */
2624 #ifndef UMEM_STANDALONE
2625 if (umem_update_thr
== 0) {
2627 * The update thread does not exist. If the process is
2628 * multi-threaded, create it. If not, or the creation fails,
2629 * do the update processing inline.
2631 ASSERT(umem_st_update_thr
== 0);
2633 if (__nthreads() <= 1 || umem_create_update_thread() == 0)
2637 (void) cond_broadcast(&umem_update_cv
); /* wake up the update thread */
2640 (void) mutex_unlock(&umem_update_lock
);
2645 char *name
, /* descriptive name for this cache */
2646 size_t bufsize
, /* size of the objects it manages */
2647 size_t align
, /* required object alignment */
2648 umem_constructor_t
*constructor
, /* object constructor */
2649 umem_destructor_t
*destructor
, /* object destructor */
2650 umem_reclaim_t
*reclaim
, /* memory reclaim callback */
2651 void *private, /* pass-thru arg for constr/destr/reclaim */
2652 vmem_t
*vmp
, /* vmem source for slab allocation */
2653 int cflags
) /* cache creation flags */
2657 umem_cache_t
*cp
, *cnext
, *cprev
;
2658 umem_magtype_t
*mtp
;
2663 * The init thread is allowed to create internal and quantum caches.
2665 * Other threads must wait until until initialization is complete.
2667 if (umem_init_thr
== thr_self())
2668 ASSERT((cflags
& (UMC_INTERNAL
| UMC_QCACHE
)) != 0);
2670 ASSERT(!(cflags
& UMC_INTERNAL
));
2671 if (umem_ready
!= UMEM_READY
&& umem_init() == 0) {
2677 csize
= UMEM_CACHE_SIZE(umem_max_ncpus
);
2678 phase
= P2NPHASE(csize
, UMEM_CPU_CACHE_SIZE
);
2681 vmp
= umem_default_arena
;
2683 ASSERT(P2PHASE(phase
, UMEM_ALIGN
) == 0);
2686 * Check that the arguments are reasonable
2688 if ((align
& (align
- 1)) != 0 || align
> vmp
->vm_quantum
||
2689 ((cflags
& UMC_NOHASH
) && (cflags
& UMC_NOTOUCH
)) ||
2690 name
== NULL
|| bufsize
== 0) {
2696 * If align == 0, we set it to the minimum required alignment.
2698 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
2699 * UMC_NOTOUCH was passed.
2702 if (P2ROUNDUP(bufsize
, UMEM_ALIGN
) >= UMEM_SECOND_ALIGN
)
2703 align
= UMEM_SECOND_ALIGN
;
2706 } else if (align
< UMEM_ALIGN
&& (cflags
& UMC_NOTOUCH
) == 0)
2711 * Get a umem_cache structure. We arrange that cp->cache_cpu[]
2712 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
2713 * false sharing of per-CPU data.
2715 cp
= vmem_xalloc(umem_cache_arena
, csize
, UMEM_CPU_CACHE_SIZE
, phase
,
2716 0, NULL
, NULL
, VM_NOSLEEP
);
2725 (void) mutex_lock(&umem_flags_lock
);
2726 if (umem_flags
& UMF_RANDOMIZE
)
2727 umem_flags
= (((umem_flags
| ~UMF_RANDOM
) + 1) & UMF_RANDOM
) |
2729 cp
->cache_flags
= umem_flags
| (cflags
& UMF_DEBUG
);
2730 (void) mutex_unlock(&umem_flags_lock
);
2733 * Make sure all the various flags are reasonable.
2735 if (cp
->cache_flags
& UMF_LITE
) {
2736 if (bufsize
>= umem_lite_minsize
&&
2737 align
<= umem_lite_maxalign
&&
2738 P2PHASE(bufsize
, umem_lite_maxalign
) != 0) {
2739 cp
->cache_flags
|= UMF_BUFTAG
;
2740 cp
->cache_flags
&= ~(UMF_AUDIT
| UMF_FIREWALL
);
2742 cp
->cache_flags
&= ~UMF_DEBUG
;
2746 if ((cflags
& UMC_QCACHE
) && (cp
->cache_flags
& UMF_AUDIT
))
2747 cp
->cache_flags
|= UMF_NOMAGAZINE
;
2749 if (cflags
& UMC_NODEBUG
)
2750 cp
->cache_flags
&= ~UMF_DEBUG
;
2752 if (cflags
& UMC_NOTOUCH
)
2753 cp
->cache_flags
&= ~UMF_TOUCH
;
2755 if (cflags
& UMC_NOHASH
)
2756 cp
->cache_flags
&= ~(UMF_AUDIT
| UMF_FIREWALL
);
2758 if (cflags
& UMC_NOMAGAZINE
)
2759 cp
->cache_flags
|= UMF_NOMAGAZINE
;
2761 if ((cp
->cache_flags
& UMF_AUDIT
) && !(cflags
& UMC_NOTOUCH
))
2762 cp
->cache_flags
|= UMF_REDZONE
;
2764 if ((cp
->cache_flags
& UMF_BUFTAG
) && bufsize
>= umem_minfirewall
&&
2765 !(cp
->cache_flags
& UMF_LITE
) && !(cflags
& UMC_NOHASH
))
2766 cp
->cache_flags
|= UMF_FIREWALL
;
2768 if (vmp
!= umem_default_arena
|| umem_firewall_arena
== NULL
)
2769 cp
->cache_flags
&= ~UMF_FIREWALL
;
2771 if (cp
->cache_flags
& UMF_FIREWALL
) {
2772 cp
->cache_flags
&= ~UMF_BUFTAG
;
2773 cp
->cache_flags
|= UMF_NOMAGAZINE
;
2774 ASSERT(vmp
== umem_default_arena
);
2775 vmp
= umem_firewall_arena
;
2779 * Set cache properties.
2781 (void) strncpy(cp
->cache_name
, name
, sizeof (cp
->cache_name
) - 1);
2782 cp
->cache_bufsize
= bufsize
;
2783 cp
->cache_align
= align
;
2784 cp
->cache_constructor
= constructor
;
2785 cp
->cache_destructor
= destructor
;
2786 cp
->cache_reclaim
= reclaim
;
2787 cp
->cache_private
= private;
2788 cp
->cache_arena
= vmp
;
2789 cp
->cache_cflags
= cflags
;
2790 cp
->cache_cpu_mask
= umem_cpu_mask
;
2793 * Determine the chunk size.
2795 chunksize
= bufsize
;
2797 if (align
>= UMEM_ALIGN
) {
2798 chunksize
= P2ROUNDUP(chunksize
, UMEM_ALIGN
);
2799 cp
->cache_bufctl
= chunksize
- UMEM_ALIGN
;
2802 if (cp
->cache_flags
& UMF_BUFTAG
) {
2803 cp
->cache_bufctl
= chunksize
;
2804 cp
->cache_buftag
= chunksize
;
2805 chunksize
+= sizeof (umem_buftag_t
);
2808 if (cp
->cache_flags
& UMF_DEADBEEF
) {
2809 cp
->cache_verify
= MIN(cp
->cache_buftag
, umem_maxverify
);
2810 if (cp
->cache_flags
& UMF_LITE
)
2811 cp
->cache_verify
= MIN(cp
->cache_verify
, UMEM_ALIGN
);
2814 cp
->cache_contents
= MIN(cp
->cache_bufctl
, umem_content_maxsave
);
2816 cp
->cache_chunksize
= chunksize
= P2ROUNDUP(chunksize
, align
);
2818 if (chunksize
< bufsize
) {
2824 * Now that we know the chunk size, determine the optimal slab size.
2826 if (vmp
== umem_firewall_arena
) {
2827 cp
->cache_slabsize
= P2ROUNDUP(chunksize
, vmp
->vm_quantum
);
2828 cp
->cache_mincolor
= cp
->cache_slabsize
- chunksize
;
2829 cp
->cache_maxcolor
= cp
->cache_mincolor
;
2830 cp
->cache_flags
|= UMF_HASH
;
2831 ASSERT(!(cp
->cache_flags
& UMF_BUFTAG
));
2832 } else if ((cflags
& UMC_NOHASH
) || (!(cflags
& UMC_NOTOUCH
) &&
2833 !(cp
->cache_flags
& UMF_AUDIT
) &&
2834 chunksize
< vmp
->vm_quantum
/ UMEM_VOID_FRACTION
)) {
2835 cp
->cache_slabsize
= vmp
->vm_quantum
;
2836 cp
->cache_mincolor
= 0;
2837 cp
->cache_maxcolor
=
2838 (cp
->cache_slabsize
- sizeof (umem_slab_t
)) % chunksize
;
2840 if (chunksize
+ sizeof (umem_slab_t
) > cp
->cache_slabsize
) {
2844 ASSERT(!(cp
->cache_flags
& UMF_AUDIT
));
2846 size_t chunks
, bestfit
, waste
, slabsize
;
2847 size_t minwaste
= LONG_MAX
;
2849 for (chunks
= 1; chunks
<= UMEM_VOID_FRACTION
; chunks
++) {
2850 slabsize
= P2ROUNDUP(chunksize
* chunks
,
2853 * check for overflow
2855 if ((slabsize
/ chunks
) < chunksize
) {
2859 chunks
= slabsize
/ chunksize
;
2860 waste
= (slabsize
% chunksize
) / chunks
;
2861 if (waste
< minwaste
) {
2866 if (cflags
& UMC_QCACHE
)
2867 bestfit
= MAX(1 << highbit(3 * vmp
->vm_qcache_max
), 64);
2868 cp
->cache_slabsize
= bestfit
;
2869 cp
->cache_mincolor
= 0;
2870 cp
->cache_maxcolor
= bestfit
% chunksize
;
2871 cp
->cache_flags
|= UMF_HASH
;
2874 if (cp
->cache_flags
& UMF_HASH
) {
2875 ASSERT(!(cflags
& UMC_NOHASH
));
2876 cp
->cache_bufctl_cache
= (cp
->cache_flags
& UMF_AUDIT
) ?
2877 umem_bufctl_audit_cache
: umem_bufctl_cache
;
2880 if (cp
->cache_maxcolor
>= vmp
->vm_quantum
)
2881 cp
->cache_maxcolor
= vmp
->vm_quantum
- 1;
2883 cp
->cache_color
= cp
->cache_mincolor
;
2886 * Initialize the rest of the slab layer.
2888 (void) mutex_init(&cp
->cache_lock
, USYNC_THREAD
, NULL
);
2890 cp
->cache_freelist
= &cp
->cache_nullslab
;
2891 cp
->cache_nullslab
.slab_cache
= cp
;
2892 cp
->cache_nullslab
.slab_refcnt
= -1;
2893 cp
->cache_nullslab
.slab_next
= &cp
->cache_nullslab
;
2894 cp
->cache_nullslab
.slab_prev
= &cp
->cache_nullslab
;
2896 if (cp
->cache_flags
& UMF_HASH
) {
2897 cp
->cache_hash_table
= vmem_alloc(umem_hash_arena
,
2898 UMEM_HASH_INITIAL
* sizeof (void *), VM_NOSLEEP
);
2899 if (cp
->cache_hash_table
== NULL
) {
2903 bzero(cp
->cache_hash_table
,
2904 UMEM_HASH_INITIAL
* sizeof (void *));
2905 cp
->cache_hash_mask
= UMEM_HASH_INITIAL
- 1;
2906 cp
->cache_hash_shift
= highbit((ulong_t
)chunksize
) - 1;
2910 * Initialize the depot.
2912 (void) mutex_init(&cp
->cache_depot_lock
, USYNC_THREAD
, NULL
);
2914 for (mtp
= umem_magtype
; chunksize
<= mtp
->mt_minbuf
; mtp
++)
2917 cp
->cache_magtype
= mtp
;
2920 * Initialize the CPU layer.
2922 for (cpu_seqid
= 0; cpu_seqid
< umem_max_ncpus
; cpu_seqid
++) {
2923 umem_cpu_cache_t
*ccp
= &cp
->cache_cpu
[cpu_seqid
];
2924 (void) mutex_init(&ccp
->cc_lock
, USYNC_THREAD
, NULL
);
2925 ccp
->cc_flags
= cp
->cache_flags
;
2926 ccp
->cc_rounds
= -1;
2927 ccp
->cc_prounds
= -1;
2931 * Add the cache to the global list. This makes it visible
2932 * to umem_update(), so the cache must be ready for business.
2934 (void) mutex_lock(&umem_cache_lock
);
2935 cp
->cache_next
= cnext
= &umem_null_cache
;
2936 cp
->cache_prev
= cprev
= umem_null_cache
.cache_prev
;
2937 cnext
->cache_prev
= cp
;
2938 cprev
->cache_next
= cp
;
2939 (void) mutex_unlock(&umem_cache_lock
);
2941 if (umem_ready
== UMEM_READY
)
2942 umem_cache_magazine_enable(cp
);
2947 (void) mutex_destroy(&cp
->cache_lock
);
2949 vmem_xfree(umem_cache_arena
, cp
, csize
);
2954 umem_cache_destroy(umem_cache_t
*cp
)
2959 * Remove the cache from the global cache list so that no new updates
2960 * will be scheduled on its behalf, wait for any pending tasks to
2961 * complete, purge the cache, and then destroy it.
2963 (void) mutex_lock(&umem_cache_lock
);
2964 cp
->cache_prev
->cache_next
= cp
->cache_next
;
2965 cp
->cache_next
->cache_prev
= cp
->cache_prev
;
2966 cp
->cache_prev
= cp
->cache_next
= NULL
;
2967 (void) mutex_unlock(&umem_cache_lock
);
2969 umem_remove_updates(cp
);
2971 umem_cache_magazine_purge(cp
);
2973 (void) mutex_lock(&cp
->cache_lock
);
2974 if (cp
->cache_buftotal
!= 0)
2975 log_message("umem_cache_destroy: '%s' (%p) not empty\n",
2976 cp
->cache_name
, (void *)cp
);
2977 cp
->cache_reclaim
= NULL
;
2979 * The cache is now dead. There should be no further activity.
2980 * We enforce this by setting land mines in the constructor and
2981 * destructor routines that induce a segmentation fault if invoked.
2983 cp
->cache_constructor
= (umem_constructor_t
*)1;
2984 cp
->cache_destructor
= (umem_destructor_t
*)2;
2985 (void) mutex_unlock(&cp
->cache_lock
);
2987 if (cp
->cache_hash_table
!= NULL
)
2988 vmem_free(umem_hash_arena
, cp
->cache_hash_table
,
2989 (cp
->cache_hash_mask
+ 1) * sizeof (void *));
2991 for (cpu_seqid
= 0; cpu_seqid
< umem_max_ncpus
; cpu_seqid
++)
2992 (void) mutex_destroy(&cp
->cache_cpu
[cpu_seqid
].cc_lock
);
2994 (void) mutex_destroy(&cp
->cache_depot_lock
);
2995 (void) mutex_destroy(&cp
->cache_lock
);
2997 vmem_free(umem_cache_arena
, cp
, UMEM_CACHE_SIZE(umem_max_ncpus
));
3001 umem_alloc_sizes_clear(void)
3005 umem_alloc_sizes
[0] = UMEM_MAXBUF
;
3006 for (i
= 1; i
< NUM_ALLOC_SIZES
; i
++)
3007 umem_alloc_sizes
[i
] = 0;
3011 umem_alloc_sizes_add(size_t size_arg
)
3014 size_t size
= size_arg
;
3017 log_message("size_add: cannot add zero-sized cache\n",
3022 if (size
> UMEM_MAXBUF
) {
3023 log_message("size_add: %ld > %d, cannot add\n", size
,
3028 if (umem_alloc_sizes
[NUM_ALLOC_SIZES
- 1] != 0) {
3029 log_message("size_add: no space in alloc_table for %d\n",
3034 if (P2PHASE(size
, UMEM_ALIGN
) != 0) {
3035 size
= P2ROUNDUP(size
, UMEM_ALIGN
);
3036 log_message("size_add: rounding %d up to %d\n", size_arg
,
3040 for (i
= 0; i
< NUM_ALLOC_SIZES
; i
++) {
3041 int cur
= umem_alloc_sizes
[i
];
3043 log_message("size_add: %ld already in table\n",
3051 for (j
= NUM_ALLOC_SIZES
- 1; j
> i
; j
--)
3052 umem_alloc_sizes
[j
] = umem_alloc_sizes
[j
-1];
3053 umem_alloc_sizes
[i
] = size
;
3057 umem_alloc_sizes_remove(size_t size
)
3061 if (size
== UMEM_MAXBUF
) {
3062 log_message("size_remove: cannot remove %ld\n", size
);
3066 for (i
= 0; i
< NUM_ALLOC_SIZES
; i
++) {
3067 int cur
= umem_alloc_sizes
[i
];
3070 else if (cur
> size
|| cur
== 0) {
3071 log_message("size_remove: %ld not found in table\n",
3077 for (; i
+ 1 < NUM_ALLOC_SIZES
; i
++)
3078 umem_alloc_sizes
[i
] = umem_alloc_sizes
[i
+1];
3079 umem_alloc_sizes
[i
] = 0;
3083 * We've been called back from libc to indicate that thread is terminating and
3084 * that it needs to release the per-thread memory that it has. We get to know
3085 * which entry in the thread's tmem array the allocation came from. Currently
3086 * this refers to first n umem_caches which makes this a pretty simple indexing
3090 umem_cache_tmem_cleanup(void *buf
, int entry
)
3095 size
= umem_alloc_sizes
[entry
];
3096 cp
= umem_alloc_table
[(size
- 1) >> UMEM_ALIGN_SHIFT
];
3097 _umem_cache_free(cp
, buf
);
3101 umem_cache_init(void)
3104 size_t size
, max_size
;
3106 umem_magtype_t
*mtp
;
3107 char name
[UMEM_CACHE_NAMELEN
+ 1];
3108 umem_cache_t
*umem_alloc_caches
[NUM_ALLOC_SIZES
];
3110 for (i
= 0; i
< sizeof (umem_magtype
) / sizeof (*mtp
); i
++) {
3111 mtp
= &umem_magtype
[i
];
3112 (void) snprintf(name
, sizeof (name
), "umem_magazine_%d",
3114 mtp
->mt_cache
= umem_cache_create(name
,
3115 (mtp
->mt_magsize
+ 1) * sizeof (void *),
3116 mtp
->mt_align
, NULL
, NULL
, NULL
, NULL
,
3117 umem_internal_arena
, UMC_NOHASH
| UMC_INTERNAL
);
3118 if (mtp
->mt_cache
== NULL
)
3122 umem_slab_cache
= umem_cache_create("umem_slab_cache",
3123 sizeof (umem_slab_t
), 0, NULL
, NULL
, NULL
, NULL
,
3124 umem_internal_arena
, UMC_NOHASH
| UMC_INTERNAL
);
3126 if (umem_slab_cache
== NULL
)
3129 umem_bufctl_cache
= umem_cache_create("umem_bufctl_cache",
3130 sizeof (umem_bufctl_t
), 0, NULL
, NULL
, NULL
, NULL
,
3131 umem_internal_arena
, UMC_NOHASH
| UMC_INTERNAL
);
3133 if (umem_bufctl_cache
== NULL
)
3137 * The size of the umem_bufctl_audit structure depends upon
3138 * umem_stack_depth. See umem_impl.h for details on the size
3142 size
= UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth
);
3143 max_size
= UMEM_BUFCTL_AUDIT_MAX_SIZE
;
3145 if (size
> max_size
) { /* too large -- truncate */
3146 int max_frames
= UMEM_MAX_STACK_DEPTH
;
3148 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames
) <= max_size
);
3150 umem_stack_depth
= max_frames
;
3151 size
= UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth
);
3154 umem_bufctl_audit_cache
= umem_cache_create("umem_bufctl_audit_cache",
3155 size
, 0, NULL
, NULL
, NULL
, NULL
, umem_internal_arena
,
3156 UMC_NOHASH
| UMC_INTERNAL
);
3158 if (umem_bufctl_audit_cache
== NULL
)
3161 if (vmem_backend
& VMEM_BACKEND_MMAP
)
3162 umem_va_arena
= vmem_create("umem_va",
3164 vmem_alloc
, vmem_free
, heap_arena
,
3165 8 * pagesize
, VM_NOSLEEP
);
3167 umem_va_arena
= heap_arena
;
3169 if (umem_va_arena
== NULL
)
3172 umem_default_arena
= vmem_create("umem_default",
3174 heap_alloc
, heap_free
, umem_va_arena
,
3177 if (umem_default_arena
== NULL
)
3181 * make sure the umem_alloc table initializer is correct
3183 i
= sizeof (umem_alloc_table
) / sizeof (*umem_alloc_table
);
3184 ASSERT(umem_alloc_table
[i
- 1] == &umem_null_cache
);
3187 * Create the default caches to back umem_alloc()
3189 for (i
= 0; i
< NUM_ALLOC_SIZES
; i
++) {
3190 size_t cache_size
= umem_alloc_sizes
[i
];
3193 if (cache_size
== 0)
3194 break; /* 0 terminates the list */
3197 * If they allocate a multiple of the coherency granularity,
3198 * they get a coherency-granularity-aligned address.
3200 if (IS_P2ALIGNED(cache_size
, 64))
3202 if (IS_P2ALIGNED(cache_size
, pagesize
))
3204 (void) snprintf(name
, sizeof (name
), "umem_alloc_%lu",
3207 cp
= umem_cache_create(name
, cache_size
, align
,
3208 NULL
, NULL
, NULL
, NULL
, NULL
, UMC_INTERNAL
);
3212 umem_alloc_caches
[i
] = cp
;
3215 umem_tmem_off
= _tmem_get_base();
3216 _tmem_set_cleanup(umem_cache_tmem_cleanup
);
3218 if (umem_genasm_supported
&& !(umem_flags
& UMF_DEBUG
) &&
3219 !(umem_flags
& UMF_NOMAGAZINE
) &&
3220 umem_ptc_size
> 0) {
3221 umem_ptc_enabled
= umem_genasm(umem_alloc_sizes
,
3222 umem_alloc_caches
, i
) == 0 ? 1 : 0;
3226 * Initialization cannot fail at this point. Make the caches
3227 * visible to umem_alloc() and friends.
3230 for (i
= 0; i
< NUM_ALLOC_SIZES
; i
++) {
3231 size_t cache_size
= umem_alloc_sizes
[i
];
3233 if (cache_size
== 0)
3234 break; /* 0 terminates the list */
3236 cp
= umem_alloc_caches
[i
];
3238 while (size
<= cache_size
) {
3239 umem_alloc_table
[(size
- 1) >> UMEM_ALIGN_SHIFT
] = cp
;
3243 ASSERT(size
- UMEM_ALIGN
== UMEM_MAXBUF
);
3248 * umem_startup() is called early on, and must be called explicitly if we're
3249 * the standalone version.
3251 #ifdef UMEM_STANDALONE
3254 #pragma init(umem_startup)
3257 umem_startup(caddr_t start
, size_t len
, size_t pagesize
, caddr_t minstack
,
3260 #ifdef UMEM_STANDALONE
3262 /* Standalone doesn't fork */
3264 umem_forkhandler_init(); /* register the fork handler */
3268 #ifdef UMEM_STANDALONE
3269 umem_ready
= UMEM_READY_STARTUP
;
3270 umem_init_env_ready
= 0;
3272 umem_min_stack
= minstack
;
3273 umem_max_stack
= maxstack
;
3275 nofail_callback
= NULL
;
3276 umem_slab_cache
= NULL
;
3277 umem_bufctl_cache
= NULL
;
3278 umem_bufctl_audit_cache
= NULL
;
3282 umem_internal_arena
= NULL
;
3283 umem_cache_arena
= NULL
;
3284 umem_hash_arena
= NULL
;
3285 umem_log_arena
= NULL
;
3286 umem_oversize_arena
= NULL
;
3287 umem_va_arena
= NULL
;
3288 umem_default_arena
= NULL
;
3289 umem_firewall_va_arena
= NULL
;
3290 umem_firewall_arena
= NULL
;
3291 umem_memalign_arena
= NULL
;
3292 umem_transaction_log
= NULL
;
3293 umem_content_log
= NULL
;
3294 umem_failure_log
= NULL
;
3295 umem_slab_log
= NULL
;
3298 umem_cpus
= &umem_startup_cpu
;
3299 umem_startup_cpu
.cpu_cache_offset
= UMEM_CACHE_SIZE(0);
3300 umem_startup_cpu
.cpu_number
= 0;
3302 bcopy(&umem_null_cache_template
, &umem_null_cache
,
3303 sizeof (umem_cache_t
));
3305 for (idx
= 0; idx
< (UMEM_MAXBUF
>> UMEM_ALIGN_SHIFT
); idx
++)
3306 umem_alloc_table
[idx
] = &umem_null_cache
;
3310 * Perform initialization specific to the way we've been compiled
3311 * (library or standalone)
3313 umem_type_init(start
, len
, pagesize
);
3321 size_t maxverify
, minfirewall
;
3324 umem_cpu_t
*new_cpus
;
3326 vmem_t
*memalign_arena
, *oversize_arena
;
3328 if (thr_self() != umem_init_thr
) {
3330 * The usual case -- non-recursive invocation of umem_init().
3332 (void) mutex_lock(&umem_init_lock
);
3333 if (umem_ready
!= UMEM_READY_STARTUP
) {
3335 * someone else beat us to initializing umem. Wait
3336 * for them to complete, then return.
3338 while (umem_ready
== UMEM_READY_INITING
) {
3341 (void) pthread_setcancelstate(
3342 PTHREAD_CANCEL_DISABLE
, &cancel_state
);
3343 (void) cond_wait(&umem_init_cv
,
3345 (void) pthread_setcancelstate(
3346 cancel_state
, NULL
);
3348 ASSERT(umem_ready
== UMEM_READY
||
3349 umem_ready
== UMEM_READY_INIT_FAILED
);
3350 (void) mutex_unlock(&umem_init_lock
);
3351 return (umem_ready
== UMEM_READY
);
3354 ASSERT(umem_ready
== UMEM_READY_STARTUP
);
3355 ASSERT(umem_init_env_ready
== 0);
3357 umem_ready
= UMEM_READY_INITING
;
3358 umem_init_thr
= thr_self();
3360 (void) mutex_unlock(&umem_init_lock
);
3361 umem_setup_envvars(0); /* can recurse -- see below */
3362 if (umem_init_env_ready
) {
3364 * initialization was completed already
3366 ASSERT(umem_ready
== UMEM_READY
||
3367 umem_ready
== UMEM_READY_INIT_FAILED
);
3368 ASSERT(umem_init_thr
== 0);
3369 return (umem_ready
== UMEM_READY
);
3371 } else if (!umem_init_env_ready
) {
3373 * The umem_setup_envvars() call (above) makes calls into
3374 * the dynamic linker and directly into user-supplied code.
3375 * Since we cannot know what that code will do, we could be
3376 * recursively invoked (by, say, a malloc() call in the code
3377 * itself, or in a (C++) _init section it causes to be fired).
3379 * This code is where we end up if such recursion occurs. We
3380 * first clean up any partial results in the envvar code, then
3381 * proceed to finish initialization processing in the recursive
3382 * call. The original call will notice this, and return
3385 umem_setup_envvars(1); /* clean up any partial state */
3388 "recursive allocation while initializing umem\n");
3390 umem_init_env_ready
= 1;
3393 * From this point until we finish, recursion into umem_init() will
3394 * cause a umem_panic().
3396 maxverify
= minfirewall
= ULONG_MAX
;
3398 /* LINTED constant condition */
3399 if (sizeof (umem_cpu_cache_t
) != UMEM_CPU_CACHE_SIZE
) {
3400 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
3401 sizeof (umem_cpu_cache_t
), UMEM_CPU_CACHE_SIZE
);
3404 umem_max_ncpus
= umem_get_max_ncpus();
3407 * load tunables from environment
3409 umem_process_envvars();
3417 if (!(umem_flags
& UMF_AUDIT
))
3420 heap_arena
= vmem_heap_arena(&heap_alloc
, &heap_free
);
3422 pagesize
= heap_arena
->vm_quantum
;
3424 umem_internal_arena
= vmem_create("umem_internal", NULL
, 0, pagesize
,
3425 heap_alloc
, heap_free
, heap_arena
, 0, VM_NOSLEEP
);
3427 umem_default_arena
= umem_internal_arena
;
3429 if (umem_internal_arena
== NULL
)
3432 umem_cache_arena
= vmem_create("umem_cache", NULL
, 0, UMEM_ALIGN
,
3433 vmem_alloc
, vmem_free
, umem_internal_arena
, 0, VM_NOSLEEP
);
3435 umem_hash_arena
= vmem_create("umem_hash", NULL
, 0, UMEM_ALIGN
,
3436 vmem_alloc
, vmem_free
, umem_internal_arena
, 0, VM_NOSLEEP
);
3438 umem_log_arena
= vmem_create("umem_log", NULL
, 0, UMEM_ALIGN
,
3439 heap_alloc
, heap_free
, heap_arena
, 0, VM_NOSLEEP
);
3441 umem_firewall_va_arena
= vmem_create("umem_firewall_va",
3443 umem_firewall_va_alloc
, umem_firewall_va_free
, heap_arena
,
3446 if (umem_cache_arena
== NULL
|| umem_hash_arena
== NULL
||
3447 umem_log_arena
== NULL
|| umem_firewall_va_arena
== NULL
)
3450 umem_firewall_arena
= vmem_create("umem_firewall", NULL
, 0, pagesize
,
3451 heap_alloc
, heap_free
, umem_firewall_va_arena
, 0,
3454 if (umem_firewall_arena
== NULL
)
3457 oversize_arena
= vmem_create("umem_oversize", NULL
, 0, pagesize
,
3458 heap_alloc
, heap_free
, minfirewall
< ULONG_MAX
?
3459 umem_firewall_va_arena
: heap_arena
, 0, VM_NOSLEEP
);
3461 memalign_arena
= vmem_create("umem_memalign", NULL
, 0, UMEM_ALIGN
,
3462 heap_alloc
, heap_free
, minfirewall
< ULONG_MAX
?
3463 umem_firewall_va_arena
: heap_arena
, 0, VM_NOSLEEP
);
3465 if (oversize_arena
== NULL
|| memalign_arena
== NULL
)
3468 if (umem_max_ncpus
> CPUHINT_MAX())
3469 umem_max_ncpus
= CPUHINT_MAX();
3471 while ((umem_max_ncpus
& (umem_max_ncpus
- 1)) != 0)
3474 if (umem_max_ncpus
== 0)
3477 size
= umem_max_ncpus
* sizeof (umem_cpu_t
);
3478 new_cpus
= vmem_alloc(umem_internal_arena
, size
, VM_NOSLEEP
);
3479 if (new_cpus
== NULL
)
3482 bzero(new_cpus
, size
);
3483 for (idx
= 0; idx
< umem_max_ncpus
; idx
++) {
3484 new_cpus
[idx
].cpu_number
= idx
;
3485 new_cpus
[idx
].cpu_cache_offset
= UMEM_CACHE_SIZE(idx
);
3487 umem_cpus
= new_cpus
;
3488 umem_cpu_mask
= (umem_max_ncpus
- 1);
3490 if (umem_maxverify
== 0)
3491 umem_maxverify
= maxverify
;
3493 if (umem_minfirewall
== 0)
3494 umem_minfirewall
= minfirewall
;
3497 * Set up updating and reaping
3499 umem_reap_next
= gethrtime() + NANOSEC
;
3501 #ifndef UMEM_STANDALONE
3502 (void) gettimeofday(&umem_update_next
, NULL
);
3506 * Set up logging -- failure here is okay, since it will just disable
3510 umem_transaction_log
= umem_log_init(umem_transaction_log_size
);
3511 umem_content_log
= umem_log_init(umem_content_log_size
);
3512 umem_failure_log
= umem_log_init(umem_failure_log_size
);
3513 umem_slab_log
= umem_log_init(umem_slab_log_size
);
3517 * Set up caches -- if successful, initialization cannot fail, since
3518 * allocations from other threads can now succeed.
3520 if (umem_cache_init() == 0) {
3521 log_message("unable to create initial caches\n");
3524 umem_oversize_arena
= oversize_arena
;
3525 umem_memalign_arena
= memalign_arena
;
3527 umem_cache_applyall(umem_cache_magazine_enable
);
3530 * initialization done, ready to go
3532 (void) mutex_lock(&umem_init_lock
);
3533 umem_ready
= UMEM_READY
;
3535 (void) cond_broadcast(&umem_init_cv
);
3536 (void) mutex_unlock(&umem_init_lock
);
3540 log_message("umem initialization failed\n");
3542 (void) mutex_lock(&umem_init_lock
);
3543 umem_ready
= UMEM_READY_INIT_FAILED
;
3545 (void) cond_broadcast(&umem_init_cv
);
3546 (void) mutex_unlock(&umem_init_lock
);