4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
33 * Written by K.C. Ng, November 1988.
35 * 1. Argument Reduction: given the input x, find r and integer k
37 * x = (32k+j)*ln2 + r, |r| <= (1/64)*ln2 .
39 * 2. expl(x) = 2^k * (2^(j/32) + 2^(j/32)*expm1(r))
41 * a. expm1(r) = (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
42 * b. 2^(j/32) is represented as
43 * _TBL_expl_hi[j]+_TBL_expl_lo[j]
45 * _TBL_expl_hi[j] = 2^(j/32) rounded
46 * _TBL_expl_lo[j] = 2^(j/32) - _TBL_expl_hi[j].
49 * expl(INF) is INF, expl(NaN) is NaN;
51 * for finite argument, only expl(0)=1 is exact.
54 * according to an error analysis, the error is always less than
55 * an ulp (unit in the last place).
58 * For 113 bit long double
59 * if x > 1.135652340629414394949193107797076342845e+4
60 * then expl(x) overflow;
61 * if x < -1.143346274333629787883724384345262150341e+4
62 * then expl(x) underflow
65 * Only decimal values are given. We assume that the compiler will convert
66 * from decimal to binary accurately enough to produce the correct
70 #pragma weak __expl = expl
74 extern const long double _TBL_expl_hi
[], _TBL_expl_lo
[];
76 static const long double
79 ln2_64
= 1.083042469624914545964425189778400898568e-2L,
80 ovflthreshold
= 1.135652340629414394949193107797076342845e+4L,
81 unflthreshold
= -1.143346274333629787883724384345262150341e+4L,
82 invln2_32
= 4.616624130844682903551758979206054839765e+1L,
83 ln2_32hi
= 2.166084939249829091928849858592451515688e-2L,
84 ln2_32lo
= 5.209643502595475652782654157501186731779e-27L;
86 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
87 static const long double
88 t1
= 1.666666666666666666666666666660876387437e-1L,
89 t2
= -2.777777777777777777777707812093173478756e-3L,
90 t3
= 6.613756613756613482074280932874221202424e-5L,
91 t4
= -1.653439153392139954169609822742235851120e-6L,
92 t5
= 4.175314851769539751387852116610973796053e-8L;
96 int *px
= (int *) &x
, ix
, j
, k
, m
;
99 ix
= px
[0]; /* high word of x */
100 if (ix
>= 0x7fff0000)
101 return (x
+ x
); /* NaN of +inf */
102 if (((unsigned) ix
) >= 0xffff0000)
103 return (-one
/ x
); /* NaN or -inf */
104 if ((ix
& 0x7fffffff) < 0x3fc30000) {
106 return (one
+ x
); /* |x|<2^-60 */
109 if (x
> ovflthreshold
)
110 return (scalbnl(x
, 20000));
111 k
= (int) (invln2_32
* (x
+ ln2_64
));
113 if (x
< unflthreshold
)
114 return (scalbnl(-x
, -40000));
115 k
= (int) (invln2_32
* (x
- ln2_64
));
120 x
= (x
- t
* ln2_32hi
) - t
* ln2_32lo
;
122 r
= (x
- t
* (t1
+ t
* (t2
+ t
* (t3
+ t
* (t4
+ t
* t5
))))) - two
;
123 x
= _TBL_expl_hi
[j
] - ((_TBL_expl_hi
[j
] * (x
+ x
)) / r
-
125 return (scalbnl(x
, m
));