4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
32 * Table look-up algorithm by K.C. Ng, November, 1989.
35 * __k_sincosl ... sin and cos function on [-pi/4,pi/4]
36 * __rem_pio2l ... argument reduction routine
39 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
40 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
41 * [-pi/2 , +pi/2], and let n = k mod 4.
42 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
44 * n sin(x) cos(x) tan(x)
45 * ----------------------------------------------------------
50 * ----------------------------------------------------------
53 * Let trig be any of sin, cos, or tan.
54 * trig(+-INF) is NaN, with signals;
55 * trig(NaN) is that NaN;
58 * computer TRIG(x) returns trig(x) nearly rounded.
61 #pragma weak __sincosl = sincosl
64 #include "longdouble.h"
67 sincosl(long double x
, long double *s
, long double *c
) {
68 long double y
[2], z
= 0.0L;
71 ix
= *(int *) &x
; /* High word of x */
76 *s
= __k_sincosl(x
, z
, c
);
77 else if (ix
>= 0x7fff0000)
78 *s
= *c
= x
- x
; /* trig(Inf or NaN) is NaN */
79 else { /* argument reduction needed */
80 n
= __rem_pio2l(x
, y
);
83 *s
= __k_sincosl(y
[0], y
[1], c
);
86 *c
= -__k_sincosl(y
[0], y
[1], s
);
89 *s
= -__k_sincosl(y
[0], y
[1], c
);
93 *c
= __k_sincosl(y
[0], y
[1], s
);