4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
32 * Table look-up algorithm by K.C. Ng, November, 1989.
35 * __k_sinl ... sin function on [-pi/4,pi/4]
36 * __k_cosl ... cos function on [-pi/4,pi/4]
37 * __rem_pio2l ... argument reduction routine
40 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
41 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
42 * [-pi/2 , +pi/2], and let n = k mod 4.
43 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
45 * n sin(x) cos(x) tan(x)
46 * ----------------------------------------------------------
51 * ----------------------------------------------------------
54 * Let trig be any of sin, cos, or tan.
55 * trig(+-INF) is NaN, with signals;
56 * trig(NaN) is that NaN;
59 * computer TRIG(x) returns trig(x) nearly rounded.
62 #pragma weak __sinl = sinl
65 #include "longdouble.h"
69 long double y
[2], z
= 0.0L;
72 ix
= *(int *) &x
; /* High word of x */
74 if (ix
<= 0x3ffe9220) /* |x| ~< pi/4 */
75 return (__k_sinl(x
, z
));
76 else if (ix
>= 0x7fff0000) /* sin(Inf or NaN) is NaN */
78 else { /* argument reduction needed */
79 n
= __rem_pio2l(x
, y
);
82 return (__k_sinl(y
[0], y
[1]));
84 return (__k_cosl(y
[0], y
[1]));
86 return (-__k_sinl(y
[0], y
[1]));
88 return (-__k_cosl(y
[0], y
[1]));