import less(1)
[unleashed/tickless.git] / usr / src / common / crypto / ecc / ec.c
blob547dc67f2d3db5da3ed0e7a9ca188d3236c23951
1 /*
2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
15 * The Original Code is the Elliptic Curve Cryptography library.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
22 * Contributor(s):
23 * Dr Vipul Gupta <vipul.gupta@sun.com> and
24 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
26 * Alternatively, the contents of this file may be used under the terms of
27 * either the GNU General Public License Version 2 or later (the "GPL"), or
28 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29 * in which case the provisions of the GPL or the LGPL are applicable instead
30 * of those above. If you wish to allow use of your version of this file only
31 * under the terms of either the GPL or the LGPL, and not to allow others to
32 * use your version of this file under the terms of the MPL, indicate your
33 * decision by deleting the provisions above and replace them with the notice
34 * and other provisions required by the GPL or the LGPL. If you do not delete
35 * the provisions above, a recipient may use your version of this file under
36 * the terms of any one of the MPL, the GPL or the LGPL.
38 * ***** END LICENSE BLOCK ***** */
40 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
41 * Use is subject to license terms.
43 * Sun elects to use this software under the MPL license.
47 #include "mplogic.h"
48 #include "ec.h"
49 #include "ecl.h"
51 #include <sys/types.h>
52 #ifndef _KERNEL
53 #include <stdlib.h>
54 #include <string.h>
55 #include <strings.h>
56 #endif
57 #include "ecl-exp.h"
58 #include "mpi.h"
59 #include "ecc_impl.h"
61 #ifdef _KERNEL
62 #define PORT_ZFree(p, l) bzero((p), (l)); kmem_free((p), (l))
63 #else
64 #define PORT_ZFree(p, l) bzero((p), (l)); free((p))
65 #endif
67 /*
68 * Returns true if pointP is the point at infinity, false otherwise
70 PRBool
71 ec_point_at_infinity(SECItem *pointP)
73 unsigned int i;
75 for (i = 1; i < pointP->len; i++) {
76 if (pointP->data[i] != 0x00) return PR_FALSE;
79 return PR_TRUE;
82 /*
83 * Computes scalar point multiplication pointQ = k1 * G + k2 * pointP for
84 * the curve whose parameters are encoded in params with base point G.
86 SECStatus
87 ec_points_mul(const ECParams *params, const mp_int *k1, const mp_int *k2,
88 const SECItem *pointP, SECItem *pointQ, int kmflag)
90 mp_int Px, Py, Qx, Qy;
91 mp_int Gx, Gy, order, irreducible, a, b;
92 #if 0 /* currently don't support non-named curves */
93 unsigned int irr_arr[5];
94 #endif
95 ECGroup *group = NULL;
96 SECStatus rv = SECFailure;
97 mp_err err = MP_OKAY;
98 int len;
100 #if EC_DEBUG
101 int i;
102 char mpstr[256];
104 printf("ec_points_mul: params [len=%d]:", params->DEREncoding.len);
105 for (i = 0; i < params->DEREncoding.len; i++)
106 printf("%02x:", params->DEREncoding.data[i]);
107 printf("\n");
109 if (k1 != NULL) {
110 mp_tohex(k1, mpstr);
111 printf("ec_points_mul: scalar k1: %s\n", mpstr);
112 mp_todecimal(k1, mpstr);
113 printf("ec_points_mul: scalar k1: %s (dec)\n", mpstr);
116 if (k2 != NULL) {
117 mp_tohex(k2, mpstr);
118 printf("ec_points_mul: scalar k2: %s\n", mpstr);
119 mp_todecimal(k2, mpstr);
120 printf("ec_points_mul: scalar k2: %s (dec)\n", mpstr);
123 if (pointP != NULL) {
124 printf("ec_points_mul: pointP [len=%d]:", pointP->len);
125 for (i = 0; i < pointP->len; i++)
126 printf("%02x:", pointP->data[i]);
127 printf("\n");
129 #endif
131 /* NOTE: We only support uncompressed points for now */
132 len = (params->fieldID.size + 7) >> 3;
133 if (pointP != NULL) {
134 if ((pointP->data[0] != EC_POINT_FORM_UNCOMPRESSED) ||
135 (pointP->len != (2 * len + 1))) {
136 return SECFailure;
140 MP_DIGITS(&Px) = 0;
141 MP_DIGITS(&Py) = 0;
142 MP_DIGITS(&Qx) = 0;
143 MP_DIGITS(&Qy) = 0;
144 MP_DIGITS(&Gx) = 0;
145 MP_DIGITS(&Gy) = 0;
146 MP_DIGITS(&order) = 0;
147 MP_DIGITS(&irreducible) = 0;
148 MP_DIGITS(&a) = 0;
149 MP_DIGITS(&b) = 0;
150 CHECK_MPI_OK( mp_init(&Px, kmflag) );
151 CHECK_MPI_OK( mp_init(&Py, kmflag) );
152 CHECK_MPI_OK( mp_init(&Qx, kmflag) );
153 CHECK_MPI_OK( mp_init(&Qy, kmflag) );
154 CHECK_MPI_OK( mp_init(&Gx, kmflag) );
155 CHECK_MPI_OK( mp_init(&Gy, kmflag) );
156 CHECK_MPI_OK( mp_init(&order, kmflag) );
157 CHECK_MPI_OK( mp_init(&irreducible, kmflag) );
158 CHECK_MPI_OK( mp_init(&a, kmflag) );
159 CHECK_MPI_OK( mp_init(&b, kmflag) );
161 if ((k2 != NULL) && (pointP != NULL)) {
162 /* Initialize Px and Py */
163 CHECK_MPI_OK( mp_read_unsigned_octets(&Px, pointP->data + 1, (mp_size) len) );
164 CHECK_MPI_OK( mp_read_unsigned_octets(&Py, pointP->data + 1 + len, (mp_size) len) );
167 /* construct from named params, if possible */
168 if (params->name != ECCurve_noName) {
169 group = ECGroup_fromName(params->name, kmflag);
172 #if 0 /* currently don't support non-named curves */
173 if (group == NULL) {
174 /* Set up mp_ints containing the curve coefficients */
175 CHECK_MPI_OK( mp_read_unsigned_octets(&Gx, params->base.data + 1,
176 (mp_size) len) );
177 CHECK_MPI_OK( mp_read_unsigned_octets(&Gy, params->base.data + 1 + len,
178 (mp_size) len) );
179 SECITEM_TO_MPINT( params->order, &order );
180 SECITEM_TO_MPINT( params->curve.a, &a );
181 SECITEM_TO_MPINT( params->curve.b, &b );
182 if (params->fieldID.type == ec_field_GFp) {
183 SECITEM_TO_MPINT( params->fieldID.u.prime, &irreducible );
184 group = ECGroup_consGFp(&irreducible, &a, &b, &Gx, &Gy, &order, params->cofactor);
185 } else {
186 SECITEM_TO_MPINT( params->fieldID.u.poly, &irreducible );
187 irr_arr[0] = params->fieldID.size;
188 irr_arr[1] = params->fieldID.k1;
189 irr_arr[2] = params->fieldID.k2;
190 irr_arr[3] = params->fieldID.k3;
191 irr_arr[4] = 0;
192 group = ECGroup_consGF2m(&irreducible, irr_arr, &a, &b, &Gx, &Gy, &order, params->cofactor);
195 #endif
196 if (group == NULL)
197 goto cleanup;
199 if ((k2 != NULL) && (pointP != NULL)) {
200 CHECK_MPI_OK( ECPoints_mul(group, k1, k2, &Px, &Py, &Qx, &Qy) );
201 } else {
202 CHECK_MPI_OK( ECPoints_mul(group, k1, NULL, NULL, NULL, &Qx, &Qy) );
205 /* Construct the SECItem representation of point Q */
206 pointQ->data[0] = EC_POINT_FORM_UNCOMPRESSED;
207 CHECK_MPI_OK( mp_to_fixlen_octets(&Qx, pointQ->data + 1,
208 (mp_size) len) );
209 CHECK_MPI_OK( mp_to_fixlen_octets(&Qy, pointQ->data + 1 + len,
210 (mp_size) len) );
212 rv = SECSuccess;
214 #if EC_DEBUG
215 printf("ec_points_mul: pointQ [len=%d]:", pointQ->len);
216 for (i = 0; i < pointQ->len; i++)
217 printf("%02x:", pointQ->data[i]);
218 printf("\n");
219 #endif
221 cleanup:
222 ECGroup_free(group);
223 mp_clear(&Px);
224 mp_clear(&Py);
225 mp_clear(&Qx);
226 mp_clear(&Qy);
227 mp_clear(&Gx);
228 mp_clear(&Gy);
229 mp_clear(&order);
230 mp_clear(&irreducible);
231 mp_clear(&a);
232 mp_clear(&b);
233 if (err) {
234 MP_TO_SEC_ERROR(err);
235 rv = SECFailure;
238 return rv;
241 /* Generates a new EC key pair. The private key is a supplied
242 * value and the public key is the result of performing a scalar
243 * point multiplication of that value with the curve's base point.
245 SECStatus
246 ec_NewKey(ECParams *ecParams, ECPrivateKey **privKey,
247 const unsigned char *privKeyBytes, int privKeyLen, int kmflag)
249 SECStatus rv = SECFailure;
250 PRArenaPool *arena;
251 ECPrivateKey *key;
252 mp_int k;
253 mp_err err = MP_OKAY;
254 int len;
256 #if EC_DEBUG
257 printf("ec_NewKey called\n");
258 #endif
260 int printf();
261 if (!ecParams || !privKey || !privKeyBytes || (privKeyLen < 0)) {
262 PORT_SetError(SEC_ERROR_INVALID_ARGS);
263 return SECFailure;
266 /* Initialize an arena for the EC key. */
267 if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE)))
268 return SECFailure;
270 key = (ECPrivateKey *)PORT_ArenaZAlloc(arena, sizeof(ECPrivateKey),
271 kmflag);
272 if (!key) {
273 PORT_FreeArena(arena, PR_TRUE);
274 return SECFailure;
277 /* Set the version number (SEC 1 section C.4 says it should be 1) */
278 SECITEM_AllocItem(arena, &key->version, 1, kmflag);
279 key->version.data[0] = 1;
281 /* Copy all of the fields from the ECParams argument to the
282 * ECParams structure within the private key.
284 key->ecParams.arena = arena;
285 key->ecParams.type = ecParams->type;
286 key->ecParams.fieldID.size = ecParams->fieldID.size;
287 key->ecParams.fieldID.type = ecParams->fieldID.type;
288 if (ecParams->fieldID.type == ec_field_GFp) {
289 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.prime,
290 &ecParams->fieldID.u.prime, kmflag));
291 } else {
292 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.fieldID.u.poly,
293 &ecParams->fieldID.u.poly, kmflag));
295 key->ecParams.fieldID.k1 = ecParams->fieldID.k1;
296 key->ecParams.fieldID.k2 = ecParams->fieldID.k2;
297 key->ecParams.fieldID.k3 = ecParams->fieldID.k3;
298 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.a,
299 &ecParams->curve.a, kmflag));
300 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.b,
301 &ecParams->curve.b, kmflag));
302 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curve.seed,
303 &ecParams->curve.seed, kmflag));
304 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.base,
305 &ecParams->base, kmflag));
306 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.order,
307 &ecParams->order, kmflag));
308 key->ecParams.cofactor = ecParams->cofactor;
309 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.DEREncoding,
310 &ecParams->DEREncoding, kmflag));
311 key->ecParams.name = ecParams->name;
312 CHECK_SEC_OK(SECITEM_CopyItem(arena, &key->ecParams.curveOID,
313 &ecParams->curveOID, kmflag));
315 len = (ecParams->fieldID.size + 7) >> 3;
316 SECITEM_AllocItem(arena, &key->publicValue, 2*len + 1, kmflag);
317 len = ecParams->order.len;
318 SECITEM_AllocItem(arena, &key->privateValue, len, kmflag);
320 /* Copy private key */
321 if (privKeyLen >= len) {
322 memcpy(key->privateValue.data, privKeyBytes, len);
323 } else {
324 memset(key->privateValue.data, 0, (len - privKeyLen));
325 memcpy(key->privateValue.data + (len - privKeyLen), privKeyBytes, privKeyLen);
328 /* Compute corresponding public key */
329 MP_DIGITS(&k) = 0;
330 CHECK_MPI_OK( mp_init(&k, kmflag) );
331 CHECK_MPI_OK( mp_read_unsigned_octets(&k, key->privateValue.data,
332 (mp_size) len) );
334 rv = ec_points_mul(ecParams, &k, NULL, NULL, &(key->publicValue), kmflag);
335 if (rv != SECSuccess) goto cleanup;
336 *privKey = key;
338 cleanup:
339 mp_clear(&k);
340 if (rv)
341 PORT_FreeArena(arena, PR_TRUE);
343 #if EC_DEBUG
344 printf("ec_NewKey returning %s\n",
345 (rv == SECSuccess) ? "success" : "failure");
346 #endif
348 return rv;
352 /* Generates a new EC key pair. The private key is a supplied
353 * random value (in seed) and the public key is the result of
354 * performing a scalar point multiplication of that value with
355 * the curve's base point.
357 SECStatus
358 EC_NewKeyFromSeed(ECParams *ecParams, ECPrivateKey **privKey,
359 const unsigned char *seed, int seedlen, int kmflag)
361 SECStatus rv = SECFailure;
362 rv = ec_NewKey(ecParams, privKey, seed, seedlen, kmflag);
363 return rv;
366 /* Generate a random private key using the algorithm A.4.1 of ANSI X9.62,
367 * modified a la FIPS 186-2 Change Notice 1 to eliminate the bias in the
368 * random number generator.
370 * Parameters
371 * - order: a buffer that holds the curve's group order
372 * - len: the length in octets of the order buffer
374 * Return Value
375 * Returns a buffer of len octets that holds the private key. The caller
376 * is responsible for freeing the buffer with PORT_ZFree.
378 static unsigned char *
379 ec_GenerateRandomPrivateKey(const unsigned char *order, int len, int kmflag)
381 SECStatus rv = SECSuccess;
382 mp_err err;
383 unsigned char *privKeyBytes = NULL;
384 mp_int privKeyVal, order_1, one;
386 MP_DIGITS(&privKeyVal) = 0;
387 MP_DIGITS(&order_1) = 0;
388 MP_DIGITS(&one) = 0;
389 CHECK_MPI_OK( mp_init(&privKeyVal, kmflag) );
390 CHECK_MPI_OK( mp_init(&order_1, kmflag) );
391 CHECK_MPI_OK( mp_init(&one, kmflag) );
393 /* Generates 2*len random bytes using the global random bit generator
394 * (which implements Algorithm 1 of FIPS 186-2 Change Notice 1) then
395 * reduces modulo the group order.
397 if ((privKeyBytes = PORT_Alloc(2*len, kmflag)) == NULL) goto cleanup;
398 CHECK_SEC_OK( RNG_GenerateGlobalRandomBytes(privKeyBytes, 2*len) );
399 CHECK_MPI_OK( mp_read_unsigned_octets(&privKeyVal, privKeyBytes, 2*len) );
400 CHECK_MPI_OK( mp_read_unsigned_octets(&order_1, order, len) );
401 CHECK_MPI_OK( mp_set_int(&one, 1) );
402 CHECK_MPI_OK( mp_sub(&order_1, &one, &order_1) );
403 CHECK_MPI_OK( mp_mod(&privKeyVal, &order_1, &privKeyVal) );
404 CHECK_MPI_OK( mp_add(&privKeyVal, &one, &privKeyVal) );
405 CHECK_MPI_OK( mp_to_fixlen_octets(&privKeyVal, privKeyBytes, len) );
406 memset(privKeyBytes+len, 0, len);
407 cleanup:
408 mp_clear(&privKeyVal);
409 mp_clear(&order_1);
410 mp_clear(&one);
411 if (err < MP_OKAY) {
412 MP_TO_SEC_ERROR(err);
413 rv = SECFailure;
415 if (rv != SECSuccess && privKeyBytes) {
416 #ifdef _KERNEL
417 kmem_free(privKeyBytes, 2*len);
418 #else
419 free(privKeyBytes);
420 #endif
421 privKeyBytes = NULL;
423 return privKeyBytes;
426 /* Generates a new EC key pair. The private key is a random value and
427 * the public key is the result of performing a scalar point multiplication
428 * of that value with the curve's base point.
430 SECStatus
431 EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey, int kmflag)
433 SECStatus rv = SECFailure;
434 int len;
435 unsigned char *privKeyBytes = NULL;
437 if (!ecParams) {
438 PORT_SetError(SEC_ERROR_INVALID_ARGS);
439 return SECFailure;
442 len = ecParams->order.len;
443 privKeyBytes = ec_GenerateRandomPrivateKey(ecParams->order.data, len,
444 kmflag);
445 if (privKeyBytes == NULL) goto cleanup;
446 /* generate public key */
447 CHECK_SEC_OK( ec_NewKey(ecParams, privKey, privKeyBytes, len, kmflag) );
449 cleanup:
450 if (privKeyBytes) {
451 PORT_ZFree(privKeyBytes, len * 2);
453 #if EC_DEBUG
454 printf("EC_NewKey returning %s\n",
455 (rv == SECSuccess) ? "success" : "failure");
456 #endif
458 return rv;
461 /* Validates an EC public key as described in Section 5.2.2 of
462 * X9.62. The ECDH primitive when used without the cofactor does
463 * not address small subgroup attacks, which may occur when the
464 * public key is not valid. These attacks can be prevented by
465 * validating the public key before using ECDH.
467 SECStatus
468 EC_ValidatePublicKey(ECParams *ecParams, SECItem *publicValue, int kmflag)
470 mp_int Px, Py;
471 ECGroup *group = NULL;
472 SECStatus rv = SECFailure;
473 mp_err err = MP_OKAY;
474 int len;
476 if (!ecParams || !publicValue) {
477 PORT_SetError(SEC_ERROR_INVALID_ARGS);
478 return SECFailure;
481 /* NOTE: We only support uncompressed points for now */
482 len = (ecParams->fieldID.size + 7) >> 3;
483 if (publicValue->data[0] != EC_POINT_FORM_UNCOMPRESSED) {
484 PORT_SetError(SEC_ERROR_UNSUPPORTED_EC_POINT_FORM);
485 return SECFailure;
486 } else if (publicValue->len != (2 * len + 1)) {
487 PORT_SetError(SEC_ERROR_BAD_KEY);
488 return SECFailure;
491 MP_DIGITS(&Px) = 0;
492 MP_DIGITS(&Py) = 0;
493 CHECK_MPI_OK( mp_init(&Px, kmflag) );
494 CHECK_MPI_OK( mp_init(&Py, kmflag) );
496 /* Initialize Px and Py */
497 CHECK_MPI_OK( mp_read_unsigned_octets(&Px, publicValue->data + 1, (mp_size) len) );
498 CHECK_MPI_OK( mp_read_unsigned_octets(&Py, publicValue->data + 1 + len, (mp_size) len) );
500 /* construct from named params */
501 group = ECGroup_fromName(ecParams->name, kmflag);
502 if (group == NULL) {
504 * ECGroup_fromName fails if ecParams->name is not a valid
505 * ECCurveName value, or if we run out of memory, or perhaps
506 * for other reasons. Unfortunately if ecParams->name is a
507 * valid ECCurveName value, we don't know what the right error
508 * code should be because ECGroup_fromName doesn't return an
509 * error code to the caller. Set err to MP_UNDEF because
510 * that's what ECGroup_fromName uses internally.
512 if ((ecParams->name <= ECCurve_noName) ||
513 (ecParams->name >= ECCurve_pastLastCurve)) {
514 err = MP_BADARG;
515 } else {
516 err = MP_UNDEF;
518 goto cleanup;
521 /* validate public point */
522 if ((err = ECPoint_validate(group, &Px, &Py)) < MP_YES) {
523 if (err == MP_NO) {
524 PORT_SetError(SEC_ERROR_BAD_KEY);
525 rv = SECFailure;
526 err = MP_OKAY; /* don't change the error code */
528 goto cleanup;
531 rv = SECSuccess;
533 cleanup:
534 ECGroup_free(group);
535 mp_clear(&Px);
536 mp_clear(&Py);
537 if (err) {
538 MP_TO_SEC_ERROR(err);
539 rv = SECFailure;
541 return rv;
545 ** Performs an ECDH key derivation by computing the scalar point
546 ** multiplication of privateValue and publicValue (with or without the
547 ** cofactor) and returns the x-coordinate of the resulting elliptic
548 ** curve point in derived secret. If successful, derivedSecret->data
549 ** is set to the address of the newly allocated buffer containing the
550 ** derived secret, and derivedSecret->len is the size of the secret
551 ** produced. It is the caller's responsibility to free the allocated
552 ** buffer containing the derived secret.
554 SECStatus
555 ECDH_Derive(SECItem *publicValue,
556 ECParams *ecParams,
557 SECItem *privateValue,
558 PRBool withCofactor,
559 SECItem *derivedSecret,
560 int kmflag)
562 SECStatus rv = SECFailure;
563 unsigned int len = 0;
564 SECItem pointQ = {siBuffer, NULL, 0};
565 mp_int k; /* to hold the private value */
566 mp_int cofactor;
567 mp_err err = MP_OKAY;
568 #if EC_DEBUG
569 int i;
570 #endif
572 if (!publicValue || !ecParams || !privateValue ||
573 !derivedSecret) {
574 PORT_SetError(SEC_ERROR_INVALID_ARGS);
575 return SECFailure;
578 memset(derivedSecret, 0, sizeof *derivedSecret);
579 len = (ecParams->fieldID.size + 7) >> 3;
580 pointQ.len = 2*len + 1;
581 if ((pointQ.data = PORT_Alloc(2*len + 1, kmflag)) == NULL) goto cleanup;
583 MP_DIGITS(&k) = 0;
584 CHECK_MPI_OK( mp_init(&k, kmflag) );
585 CHECK_MPI_OK( mp_read_unsigned_octets(&k, privateValue->data,
586 (mp_size) privateValue->len) );
588 if (withCofactor && (ecParams->cofactor != 1)) {
589 /* multiply k with the cofactor */
590 MP_DIGITS(&cofactor) = 0;
591 CHECK_MPI_OK( mp_init(&cofactor, kmflag) );
592 mp_set(&cofactor, ecParams->cofactor);
593 CHECK_MPI_OK( mp_mul(&k, &cofactor, &k) );
596 /* Multiply our private key and peer's public point */
597 if ((ec_points_mul(ecParams, NULL, &k, publicValue, &pointQ, kmflag) != SECSuccess) ||
598 ec_point_at_infinity(&pointQ))
599 goto cleanup;
601 /* Allocate memory for the derived secret and copy
602 * the x co-ordinate of pointQ into it.
604 SECITEM_AllocItem(NULL, derivedSecret, len, kmflag);
605 memcpy(derivedSecret->data, pointQ.data + 1, len);
607 rv = SECSuccess;
609 #if EC_DEBUG
610 printf("derived_secret:\n");
611 for (i = 0; i < derivedSecret->len; i++)
612 printf("%02x:", derivedSecret->data[i]);
613 printf("\n");
614 #endif
616 cleanup:
617 mp_clear(&k);
619 if (pointQ.data) {
620 PORT_ZFree(pointQ.data, 2*len + 1);
623 return rv;
626 /* Computes the ECDSA signature (a concatenation of two values r and s)
627 * on the digest using the given key and the random value kb (used in
628 * computing s).
630 SECStatus
631 ECDSA_SignDigestWithSeed(ECPrivateKey *key, SECItem *signature,
632 const SECItem *digest, const unsigned char *kb, const int kblen, int kmflag)
634 SECStatus rv = SECFailure;
635 mp_int x1;
636 mp_int d, k; /* private key, random integer */
637 mp_int r, s; /* tuple (r, s) is the signature */
638 mp_int n;
639 mp_err err = MP_OKAY;
640 ECParams *ecParams = NULL;
641 SECItem kGpoint = { siBuffer, NULL, 0};
642 int flen = 0; /* length in bytes of the field size */
643 unsigned olen; /* length in bytes of the base point order */
645 #if EC_DEBUG
646 char mpstr[256];
647 #endif
649 /* Initialize MPI integers. */
650 /* must happen before the first potential call to cleanup */
651 MP_DIGITS(&x1) = 0;
652 MP_DIGITS(&d) = 0;
653 MP_DIGITS(&k) = 0;
654 MP_DIGITS(&r) = 0;
655 MP_DIGITS(&s) = 0;
656 MP_DIGITS(&n) = 0;
658 /* Check args */
659 if (!key || !signature || !digest || !kb || (kblen < 0)) {
660 PORT_SetError(SEC_ERROR_INVALID_ARGS);
661 goto cleanup;
664 ecParams = &(key->ecParams);
665 flen = (ecParams->fieldID.size + 7) >> 3;
666 olen = ecParams->order.len;
667 if (signature->data == NULL) {
668 /* a call to get the signature length only */
669 goto finish;
671 if (signature->len < 2*olen) {
672 PORT_SetError(SEC_ERROR_OUTPUT_LEN);
673 rv = SECBufferTooSmall;
674 goto cleanup;
678 CHECK_MPI_OK( mp_init(&x1, kmflag) );
679 CHECK_MPI_OK( mp_init(&d, kmflag) );
680 CHECK_MPI_OK( mp_init(&k, kmflag) );
681 CHECK_MPI_OK( mp_init(&r, kmflag) );
682 CHECK_MPI_OK( mp_init(&s, kmflag) );
683 CHECK_MPI_OK( mp_init(&n, kmflag) );
685 SECITEM_TO_MPINT( ecParams->order, &n );
686 SECITEM_TO_MPINT( key->privateValue, &d );
687 CHECK_MPI_OK( mp_read_unsigned_octets(&k, kb, kblen) );
688 /* Make sure k is in the interval [1, n-1] */
689 if ((mp_cmp_z(&k) <= 0) || (mp_cmp(&k, &n) >= 0)) {
690 #if EC_DEBUG
691 printf("k is outside [1, n-1]\n");
692 mp_tohex(&k, mpstr);
693 printf("k : %s \n", mpstr);
694 mp_tohex(&n, mpstr);
695 printf("n : %s \n", mpstr);
696 #endif
697 PORT_SetError(SEC_ERROR_NEED_RANDOM);
698 goto cleanup;
702 ** ANSI X9.62, Section 5.3.2, Step 2
704 ** Compute kG
706 kGpoint.len = 2*flen + 1;
707 kGpoint.data = PORT_Alloc(2*flen + 1, kmflag);
708 if ((kGpoint.data == NULL) ||
709 (ec_points_mul(ecParams, &k, NULL, NULL, &kGpoint, kmflag)
710 != SECSuccess))
711 goto cleanup;
714 ** ANSI X9.62, Section 5.3.3, Step 1
716 ** Extract the x co-ordinate of kG into x1
718 CHECK_MPI_OK( mp_read_unsigned_octets(&x1, kGpoint.data + 1,
719 (mp_size) flen) );
722 ** ANSI X9.62, Section 5.3.3, Step 2
724 ** r = x1 mod n NOTE: n is the order of the curve
726 CHECK_MPI_OK( mp_mod(&x1, &n, &r) );
729 ** ANSI X9.62, Section 5.3.3, Step 3
731 ** verify r != 0
733 if (mp_cmp_z(&r) == 0) {
734 PORT_SetError(SEC_ERROR_NEED_RANDOM);
735 goto cleanup;
739 ** ANSI X9.62, Section 5.3.3, Step 4
741 ** s = (k**-1 * (HASH(M) + d*r)) mod n
743 SECITEM_TO_MPINT(*digest, &s); /* s = HASH(M) */
745 /* In the definition of EC signing, digests are truncated
746 * to the length of n in bits.
747 * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/
748 if (digest->len*8 > ecParams->fieldID.size) {
749 mpl_rsh(&s,&s,digest->len*8 - ecParams->fieldID.size);
752 #if EC_DEBUG
753 mp_todecimal(&n, mpstr);
754 printf("n : %s (dec)\n", mpstr);
755 mp_todecimal(&d, mpstr);
756 printf("d : %s (dec)\n", mpstr);
757 mp_tohex(&x1, mpstr);
758 printf("x1: %s\n", mpstr);
759 mp_todecimal(&s, mpstr);
760 printf("digest: %s (decimal)\n", mpstr);
761 mp_todecimal(&r, mpstr);
762 printf("r : %s (dec)\n", mpstr);
763 mp_tohex(&r, mpstr);
764 printf("r : %s\n", mpstr);
765 #endif
767 CHECK_MPI_OK( mp_invmod(&k, &n, &k) ); /* k = k**-1 mod n */
768 CHECK_MPI_OK( mp_mulmod(&d, &r, &n, &d) ); /* d = d * r mod n */
769 CHECK_MPI_OK( mp_addmod(&s, &d, &n, &s) ); /* s = s + d mod n */
770 CHECK_MPI_OK( mp_mulmod(&s, &k, &n, &s) ); /* s = s * k mod n */
772 #if EC_DEBUG
773 mp_todecimal(&s, mpstr);
774 printf("s : %s (dec)\n", mpstr);
775 mp_tohex(&s, mpstr);
776 printf("s : %s\n", mpstr);
777 #endif
780 ** ANSI X9.62, Section 5.3.3, Step 5
782 ** verify s != 0
784 if (mp_cmp_z(&s) == 0) {
785 PORT_SetError(SEC_ERROR_NEED_RANDOM);
786 goto cleanup;
791 ** Signature is tuple (r, s)
793 CHECK_MPI_OK( mp_to_fixlen_octets(&r, signature->data, olen) );
794 CHECK_MPI_OK( mp_to_fixlen_octets(&s, signature->data + olen, olen) );
795 finish:
796 signature->len = 2*olen;
798 rv = SECSuccess;
799 err = MP_OKAY;
800 cleanup:
801 mp_clear(&x1);
802 mp_clear(&d);
803 mp_clear(&k);
804 mp_clear(&r);
805 mp_clear(&s);
806 mp_clear(&n);
808 if (kGpoint.data) {
809 PORT_ZFree(kGpoint.data, 2*flen + 1);
812 if (err) {
813 MP_TO_SEC_ERROR(err);
814 rv = SECFailure;
817 #if EC_DEBUG
818 printf("ECDSA signing with seed %s\n",
819 (rv == SECSuccess) ? "succeeded" : "failed");
820 #endif
822 return rv;
826 ** Computes the ECDSA signature on the digest using the given key
827 ** and a random seed.
829 SECStatus
830 ECDSA_SignDigest(ECPrivateKey *key, SECItem *signature, const SECItem *digest,
831 int kmflag)
833 SECStatus rv = SECFailure;
834 int len;
835 unsigned char *kBytes= NULL;
837 if (!key) {
838 PORT_SetError(SEC_ERROR_INVALID_ARGS);
839 return SECFailure;
842 /* Generate random value k */
843 len = key->ecParams.order.len;
844 kBytes = ec_GenerateRandomPrivateKey(key->ecParams.order.data, len,
845 kmflag);
846 if (kBytes == NULL) goto cleanup;
848 /* Generate ECDSA signature with the specified k value */
849 rv = ECDSA_SignDigestWithSeed(key, signature, digest, kBytes, len, kmflag);
851 cleanup:
852 if (kBytes) {
853 PORT_ZFree(kBytes, len * 2);
856 #if EC_DEBUG
857 printf("ECDSA signing %s\n",
858 (rv == SECSuccess) ? "succeeded" : "failed");
859 #endif
861 return rv;
865 ** Checks the signature on the given digest using the key provided.
867 SECStatus
868 ECDSA_VerifyDigest(ECPublicKey *key, const SECItem *signature,
869 const SECItem *digest, int kmflag)
871 SECStatus rv = SECFailure;
872 mp_int r_, s_; /* tuple (r', s') is received signature) */
873 mp_int c, u1, u2, v; /* intermediate values used in verification */
874 mp_int x1;
875 mp_int n;
876 mp_err err = MP_OKAY;
877 ECParams *ecParams = NULL;
878 SECItem pointC = { siBuffer, NULL, 0 };
879 int slen; /* length in bytes of a half signature (r or s) */
880 int flen; /* length in bytes of the field size */
881 unsigned olen; /* length in bytes of the base point order */
883 #if EC_DEBUG
884 char mpstr[256];
885 printf("ECDSA verification called\n");
886 #endif
888 /* Initialize MPI integers. */
889 /* must happen before the first potential call to cleanup */
890 MP_DIGITS(&r_) = 0;
891 MP_DIGITS(&s_) = 0;
892 MP_DIGITS(&c) = 0;
893 MP_DIGITS(&u1) = 0;
894 MP_DIGITS(&u2) = 0;
895 MP_DIGITS(&x1) = 0;
896 MP_DIGITS(&v) = 0;
897 MP_DIGITS(&n) = 0;
899 /* Check args */
900 if (!key || !signature || !digest) {
901 PORT_SetError(SEC_ERROR_INVALID_ARGS);
902 goto cleanup;
905 ecParams = &(key->ecParams);
906 flen = (ecParams->fieldID.size + 7) >> 3;
907 olen = ecParams->order.len;
908 if (signature->len == 0 || signature->len%2 != 0 ||
909 signature->len > 2*olen) {
910 PORT_SetError(SEC_ERROR_INPUT_LEN);
911 goto cleanup;
913 slen = signature->len/2;
915 SECITEM_AllocItem(NULL, &pointC, 2*flen + 1, kmflag);
916 if (pointC.data == NULL)
917 goto cleanup;
919 CHECK_MPI_OK( mp_init(&r_, kmflag) );
920 CHECK_MPI_OK( mp_init(&s_, kmflag) );
921 CHECK_MPI_OK( mp_init(&c, kmflag) );
922 CHECK_MPI_OK( mp_init(&u1, kmflag) );
923 CHECK_MPI_OK( mp_init(&u2, kmflag) );
924 CHECK_MPI_OK( mp_init(&x1, kmflag) );
925 CHECK_MPI_OK( mp_init(&v, kmflag) );
926 CHECK_MPI_OK( mp_init(&n, kmflag) );
929 ** Convert received signature (r', s') into MPI integers.
931 CHECK_MPI_OK( mp_read_unsigned_octets(&r_, signature->data, slen) );
932 CHECK_MPI_OK( mp_read_unsigned_octets(&s_, signature->data + slen, slen) );
935 ** ANSI X9.62, Section 5.4.2, Steps 1 and 2
937 ** Verify that 0 < r' < n and 0 < s' < n
939 SECITEM_TO_MPINT(ecParams->order, &n);
940 if (mp_cmp_z(&r_) <= 0 || mp_cmp_z(&s_) <= 0 ||
941 mp_cmp(&r_, &n) >= 0 || mp_cmp(&s_, &n) >= 0) {
942 PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
943 goto cleanup; /* will return rv == SECFailure */
947 ** ANSI X9.62, Section 5.4.2, Step 3
949 ** c = (s')**-1 mod n
951 CHECK_MPI_OK( mp_invmod(&s_, &n, &c) ); /* c = (s')**-1 mod n */
954 ** ANSI X9.62, Section 5.4.2, Step 4
956 ** u1 = ((HASH(M')) * c) mod n
958 SECITEM_TO_MPINT(*digest, &u1); /* u1 = HASH(M) */
960 /* In the definition of EC signing, digests are truncated
961 * to the length of n in bits.
962 * (see SEC 1 "Elliptic Curve Digit Signature Algorithm" section 4.1.*/
963 if (digest->len*8 > ecParams->fieldID.size) { /* u1 = HASH(M') */
964 mpl_rsh(&u1,&u1,digest->len*8- ecParams->fieldID.size);
967 #if EC_DEBUG
968 mp_todecimal(&r_, mpstr);
969 printf("r_: %s (dec)\n", mpstr);
970 mp_todecimal(&s_, mpstr);
971 printf("s_: %s (dec)\n", mpstr);
972 mp_todecimal(&c, mpstr);
973 printf("c : %s (dec)\n", mpstr);
974 mp_todecimal(&u1, mpstr);
975 printf("digest: %s (dec)\n", mpstr);
976 #endif
978 CHECK_MPI_OK( mp_mulmod(&u1, &c, &n, &u1) ); /* u1 = u1 * c mod n */
981 ** ANSI X9.62, Section 5.4.2, Step 4
983 ** u2 = ((r') * c) mod n
985 CHECK_MPI_OK( mp_mulmod(&r_, &c, &n, &u2) );
988 ** ANSI X9.62, Section 5.4.3, Step 1
990 ** Compute u1*G + u2*Q
991 ** Here, A = u1.G B = u2.Q and C = A + B
992 ** If the result, C, is the point at infinity, reject the signature
994 if (ec_points_mul(ecParams, &u1, &u2, &key->publicValue, &pointC, kmflag)
995 != SECSuccess) {
996 rv = SECFailure;
997 goto cleanup;
999 if (ec_point_at_infinity(&pointC)) {
1000 PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
1001 rv = SECFailure;
1002 goto cleanup;
1005 CHECK_MPI_OK( mp_read_unsigned_octets(&x1, pointC.data + 1, flen) );
1008 ** ANSI X9.62, Section 5.4.4, Step 2
1010 ** v = x1 mod n
1012 CHECK_MPI_OK( mp_mod(&x1, &n, &v) );
1014 #if EC_DEBUG
1015 mp_todecimal(&r_, mpstr);
1016 printf("r_: %s (dec)\n", mpstr);
1017 mp_todecimal(&v, mpstr);
1018 printf("v : %s (dec)\n", mpstr);
1019 #endif
1022 ** ANSI X9.62, Section 5.4.4, Step 3
1024 ** Verification: v == r'
1026 if (mp_cmp(&v, &r_)) {
1027 PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
1028 rv = SECFailure; /* Signature failed to verify. */
1029 } else {
1030 rv = SECSuccess; /* Signature verified. */
1033 #if EC_DEBUG
1034 mp_todecimal(&u1, mpstr);
1035 printf("u1: %s (dec)\n", mpstr);
1036 mp_todecimal(&u2, mpstr);
1037 printf("u2: %s (dec)\n", mpstr);
1038 mp_tohex(&x1, mpstr);
1039 printf("x1: %s\n", mpstr);
1040 mp_todecimal(&v, mpstr);
1041 printf("v : %s (dec)\n", mpstr);
1042 #endif
1044 cleanup:
1045 mp_clear(&r_);
1046 mp_clear(&s_);
1047 mp_clear(&c);
1048 mp_clear(&u1);
1049 mp_clear(&u2);
1050 mp_clear(&x1);
1051 mp_clear(&v);
1052 mp_clear(&n);
1054 if (pointC.data) SECITEM_FreeItem(&pointC, PR_FALSE);
1055 if (err) {
1056 MP_TO_SEC_ERROR(err);
1057 rv = SECFailure;
1060 #if EC_DEBUG
1061 printf("ECDSA verification %s\n",
1062 (rv == SECSuccess) ? "succeeded" : "failed");
1063 #endif
1065 return rv;
1069 * Copy all of the fields from srcParams into dstParams
1071 SECStatus
1072 EC_CopyParams(PRArenaPool *arena, ECParams *dstParams,
1073 const ECParams *srcParams)
1075 SECStatus rv = SECFailure;
1077 dstParams->arena = arena;
1078 dstParams->type = srcParams->type;
1079 dstParams->fieldID.size = srcParams->fieldID.size;
1080 dstParams->fieldID.type = srcParams->fieldID.type;
1081 if (srcParams->fieldID.type == ec_field_GFp) {
1082 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->fieldID.u.prime,
1083 &srcParams->fieldID.u.prime, 0));
1084 } else {
1085 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->fieldID.u.poly,
1086 &srcParams->fieldID.u.poly, 0));
1088 dstParams->fieldID.k1 = srcParams->fieldID.k1;
1089 dstParams->fieldID.k2 = srcParams->fieldID.k2;
1090 dstParams->fieldID.k3 = srcParams->fieldID.k3;
1091 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->curve.a,
1092 &srcParams->curve.a, 0));
1093 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->curve.b,
1094 &srcParams->curve.b, 0));
1095 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->curve.seed,
1096 &srcParams->curve.seed, 0));
1097 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->base,
1098 &srcParams->base, 0));
1099 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->order,
1100 &srcParams->order, 0));
1101 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->DEREncoding,
1102 &srcParams->DEREncoding, 0));
1103 dstParams->name = srcParams->name;
1104 CHECK_SEC_OK(SECITEM_CopyItem(arena, &dstParams->curveOID,
1105 &srcParams->curveOID, 0));
1106 dstParams->cofactor = srcParams->cofactor;
1108 return SECSuccess;
1110 cleanup:
1111 return SECFailure;