import less(1)
[unleashed/tickless.git] / usr / src / common / crypto / rsa / rsa_impl.c
bloba76e283f6759b4ae75db6f3a471280d02df1b868
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
27 * This file contains RSA helper routines common to
28 * the PKCS11 soft token code and the kernel RSA code.
31 #include <sys/types.h>
32 #include <bignum.h>
34 #ifdef _KERNEL
35 #include <sys/param.h>
36 #else
37 #include <strings.h>
38 #include <cryptoutil.h>
39 #endif
41 #include <sys/crypto/common.h>
42 #include "rsa_impl.h"
45 * DER encoding T of the DigestInfo values for MD5, SHA1, and SHA2
46 * from PKCS#1 v2.1: RSA Cryptography Standard Section 9.2 Note 1
48 * MD5: (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04 10 || H
49 * SHA-1: (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H
50 * SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20 || H.
51 * SHA-384: (0x)30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00 04 30 || H.
52 * SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00 04 40 || H.
54 * Where H is the digested output from MD5 or SHA1. We define the constant
55 * byte array (the prefix) here and use it rather than doing the DER
56 * encoding of the OID in a separate routine.
58 const CK_BYTE MD5_DER_PREFIX[MD5_DER_PREFIX_Len] = {0x30, 0x20, 0x30, 0x0c,
59 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00,
60 0x04, 0x10};
62 const CK_BYTE SHA1_DER_PREFIX[SHA1_DER_PREFIX_Len] = {0x30, 0x21, 0x30,
63 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14};
65 const CK_BYTE SHA1_DER_PREFIX_OID[SHA1_DER_PREFIX_OID_Len] = {0x30, 0x1f, 0x30,
66 0x07, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x04, 0x14};
68 const CK_BYTE SHA256_DER_PREFIX[SHA2_DER_PREFIX_Len] = {0x30, 0x31, 0x30, 0x0d,
69 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05,
70 0x00, 0x04, 0x20};
72 const CK_BYTE SHA384_DER_PREFIX[SHA2_DER_PREFIX_Len] = {0x30, 0x41, 0x30, 0x0d,
73 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
74 0x00, 0x04, 0x30};
76 const CK_BYTE SHA512_DER_PREFIX[SHA2_DER_PREFIX_Len] = {0x30, 0x51, 0x30, 0x0d,
77 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
78 0x00, 0x04, 0x40};
80 const CK_BYTE DEFAULT_PUB_EXPO[DEFAULT_PUB_EXPO_Len] = { 0x01, 0x00, 0x01 };
83 static CK_RV
84 convert_rv(BIG_ERR_CODE err)
86 switch (err) {
88 case BIG_OK:
89 return (CKR_OK);
91 case BIG_NO_MEM:
92 return (CKR_HOST_MEMORY);
94 case BIG_NO_RANDOM:
95 return (CKR_DEVICE_ERROR);
97 case BIG_INVALID_ARGS:
98 return (CKR_ARGUMENTS_BAD);
100 case BIG_DIV_BY_0:
101 default:
102 return (CKR_GENERAL_ERROR);
106 /* psize and qsize are in bits */
107 static BIG_ERR_CODE
108 RSA_key_init(RSAkey *key, int psize, int qsize)
110 BIG_ERR_CODE err = BIG_OK;
112 int plen, qlen, nlen;
114 plen = BITLEN2BIGNUMLEN(psize);
115 qlen = BITLEN2BIGNUMLEN(qsize);
116 nlen = plen + qlen;
117 key->size = psize + qsize;
118 if ((err = big_init(&(key->p), plen)) != BIG_OK)
119 return (err);
120 if ((err = big_init(&(key->q), qlen)) != BIG_OK)
121 goto ret1;
122 if ((err = big_init(&(key->n), nlen)) != BIG_OK)
123 goto ret2;
124 if ((err = big_init(&(key->d), nlen)) != BIG_OK)
125 goto ret3;
126 if ((err = big_init(&(key->e), nlen)) != BIG_OK)
127 goto ret4;
128 if ((err = big_init(&(key->dmodpminus1), plen)) != BIG_OK)
129 goto ret5;
130 if ((err = big_init(&(key->dmodqminus1), qlen)) != BIG_OK)
131 goto ret6;
132 if ((err = big_init(&(key->pinvmodq), qlen)) != BIG_OK)
133 goto ret7;
134 if ((err = big_init(&(key->p_rr), plen)) != BIG_OK)
135 goto ret8;
136 if ((err = big_init(&(key->q_rr), qlen)) != BIG_OK)
137 goto ret9;
138 if ((err = big_init(&(key->n_rr), nlen)) != BIG_OK)
139 goto ret10;
141 return (BIG_OK);
143 ret10:
144 big_finish(&(key->q_rr));
145 ret9:
146 big_finish(&(key->p_rr));
147 ret8:
148 big_finish(&(key->pinvmodq));
149 ret7:
150 big_finish(&(key->dmodqminus1));
151 ret6:
152 big_finish(&(key->dmodpminus1));
153 ret5:
154 big_finish(&(key->e));
155 ret4:
156 big_finish(&(key->d));
157 ret3:
158 big_finish(&(key->n));
159 ret2:
160 big_finish(&(key->q));
161 ret1:
162 big_finish(&(key->p));
164 return (err);
167 static void
168 RSA_key_finish(RSAkey *key)
170 big_finish(&(key->n_rr));
171 big_finish(&(key->q_rr));
172 big_finish(&(key->p_rr));
173 big_finish(&(key->pinvmodq));
174 big_finish(&(key->dmodqminus1));
175 big_finish(&(key->dmodpminus1));
176 big_finish(&(key->e));
177 big_finish(&(key->d));
178 big_finish(&(key->n));
179 big_finish(&(key->q));
180 big_finish(&(key->p));
184 * Generate RSA key
186 static CK_RV
187 generate_rsa_key(RSAkey *key, int psize, int qsize, BIGNUM *pubexp,
188 int (*rfunc)(void *, size_t))
190 CK_RV rv = CKR_OK;
192 int (*rf)(void *, size_t);
193 BIGNUM a, b, c, d, e, f, g, h;
194 int len, keylen, size;
195 BIG_ERR_CODE brv = BIG_OK;
197 size = psize + qsize;
198 keylen = BITLEN2BIGNUMLEN(size);
199 len = keylen * 2 + 1;
200 key->size = size;
203 * Note: It is not really necessary to compute e, it is in pubexp:
204 * (void) big_copy(&(key->e), pubexp);
207 a.malloced = 0;
208 b.malloced = 0;
209 c.malloced = 0;
210 d.malloced = 0;
211 e.malloced = 0;
212 f.malloced = 0;
213 g.malloced = 0;
214 h.malloced = 0;
216 if ((big_init(&a, len) != BIG_OK) ||
217 (big_init(&b, len) != BIG_OK) ||
218 (big_init(&c, len) != BIG_OK) ||
219 (big_init(&d, len) != BIG_OK) ||
220 (big_init(&e, len) != BIG_OK) ||
221 (big_init(&f, len) != BIG_OK) ||
222 (big_init(&g, len) != BIG_OK) ||
223 (big_init(&h, len) != BIG_OK)) {
224 big_finish(&h);
225 big_finish(&g);
226 big_finish(&f);
227 big_finish(&e);
228 big_finish(&d);
229 big_finish(&c);
230 big_finish(&b);
231 big_finish(&a);
233 return (CKR_HOST_MEMORY);
236 rf = rfunc;
237 if (rf == NULL) {
238 #ifdef _KERNEL
239 rf = (int (*)(void *, size_t))random_get_pseudo_bytes;
240 #else
241 rf = pkcs11_get_urandom;
242 #endif
245 nextp:
246 if ((brv = big_random(&a, psize, rf)) != BIG_OK) {
247 goto ret;
250 if ((brv = big_nextprime_pos(&b, &a)) != BIG_OK) {
251 goto ret;
253 /* b now contains the potential prime p */
255 (void) big_sub_pos(&a, &b, &big_One);
256 if ((brv = big_ext_gcd_pos(&f, &d, &g, pubexp, &a)) != BIG_OK) {
257 goto ret;
259 if (big_cmp_abs(&f, &big_One) != 0) {
260 goto nextp;
263 if ((brv = big_random(&c, qsize, rf)) != BIG_OK) {
264 goto ret;
267 nextq:
268 (void) big_add(&a, &c, &big_Two);
270 if (big_bitlength(&a) != qsize) {
271 goto nextp;
273 if (big_cmp_abs(&a, &b) == 0) {
274 goto nextp;
276 if ((brv = big_nextprime_pos(&c, &a)) != BIG_OK) {
277 goto ret;
279 /* c now contains the potential prime q */
281 if ((brv = big_mul(&g, &b, &c)) != BIG_OK) {
282 goto ret;
284 if (big_bitlength(&g) != size) {
285 goto nextp;
287 /* g now contains the potential modulus n */
289 (void) big_sub_pos(&a, &b, &big_One);
290 (void) big_sub_pos(&d, &c, &big_One);
292 if ((brv = big_mul(&a, &a, &d)) != BIG_OK) {
293 goto ret;
295 if ((brv = big_ext_gcd_pos(&f, &d, &h, pubexp, &a)) != BIG_OK) {
296 goto ret;
298 if (big_cmp_abs(&f, &big_One) != 0) {
299 goto nextq;
300 } else {
301 (void) big_copy(&e, pubexp);
303 if (d.sign == -1) {
304 if ((brv = big_add(&d, &d, &a)) != BIG_OK) {
305 goto ret;
308 (void) big_copy(&(key->p), &b);
309 (void) big_copy(&(key->q), &c);
310 (void) big_copy(&(key->n), &g);
311 (void) big_copy(&(key->d), &d);
312 (void) big_copy(&(key->e), &e);
314 if ((brv = big_ext_gcd_pos(&a, &f, &h, &b, &c)) != BIG_OK) {
315 goto ret;
317 if (f.sign == -1) {
318 if ((brv = big_add(&f, &f, &c)) != BIG_OK) {
319 goto ret;
322 (void) big_copy(&(key->pinvmodq), &f);
324 (void) big_sub(&a, &b, &big_One);
325 if ((brv = big_div_pos(&a, &f, &d, &a)) != BIG_OK) {
326 goto ret;
328 (void) big_copy(&(key->dmodpminus1), &f);
329 (void) big_sub(&a, &c, &big_One);
330 if ((brv = big_div_pos(&a, &f, &d, &a)) != BIG_OK) {
331 goto ret;
333 (void) big_copy(&(key->dmodqminus1), &f);
335 /* pairwise consistency check: decrypt and encrypt restores value */
336 if ((brv = big_random(&h, size, rf)) != BIG_OK) {
337 goto ret;
339 if ((brv = big_div_pos(&a, &h, &h, &g)) != BIG_OK) {
340 goto ret;
342 if ((brv = big_modexp(&a, &h, &d, &g, NULL)) != BIG_OK) {
343 goto ret;
346 if ((brv = big_modexp(&b, &a, &e, &g, NULL)) != BIG_OK) {
347 goto ret;
350 if (big_cmp_abs(&b, &h) != 0) {
351 /* this should not happen */
352 rv = generate_rsa_key(key, psize, qsize, pubexp, rf);
353 goto ret1;
354 } else {
355 brv = BIG_OK;
358 ret:
359 rv = convert_rv(brv);
360 ret1:
361 big_finish(&h);
362 big_finish(&g);
363 big_finish(&f);
364 big_finish(&e);
365 big_finish(&d);
366 big_finish(&c);
367 big_finish(&b);
368 big_finish(&a);
370 return (rv);
373 CK_RV
374 rsa_genkey_pair(RSAbytekey *bkey)
377 * NOTE: Whomever originally wrote this function swapped p and q.
378 * This table shows the mapping between name convention used here
379 * versus what is used in most texts that describe RSA key generation.
380 * This function: Standard convention:
381 * -------------- --------------------
382 * modulus, n -same-
383 * prime 1, q prime 1, p
384 * prime 2, p prime 2, q
385 * private exponent, d -same-
386 * public exponent, e -same-
387 * exponent 1, d mod (q-1) d mod (p-1)
388 * exponent 2, d mod (p-1) d mod (q-1)
389 * coefficient, p^-1 mod q q^-1 mod p
391 * Also notice the struct member for coefficient is named .pinvmodq
392 * rather than .qinvmodp, reflecting the switch.
394 * The code here wasn't unswapped, because "it works". Further,
395 * p and q are interchangeable as long as exponent 1 and 2 and
396 * the coefficient are kept straight too. This note is here to
397 * make the reader aware of the switcheroo.
399 CK_RV rv = CKR_OK;
401 BIGNUM public_exponent = {0};
402 RSAkey rsakey;
403 uint32_t modulus_bytes;
405 if (bkey == NULL)
406 return (CKR_ARGUMENTS_BAD);
408 /* Must have modulus bits set */
409 if (bkey->modulus_bits == 0)
410 return (CKR_ARGUMENTS_BAD);
412 /* Must have public exponent set */
413 if (bkey->pubexpo_bytes == 0 || bkey->pubexpo == NULL)
414 return (CKR_ARGUMENTS_BAD);
416 /* Note: modulus_bits may not be same as (8 * sizeof (modulus)) */
417 modulus_bytes = CRYPTO_BITS2BYTES(bkey->modulus_bits);
419 /* Modulus length needs to be between min key size and max key size. */
420 if ((modulus_bytes < MIN_RSA_KEYLENGTH_IN_BYTES) ||
421 (modulus_bytes > MAX_RSA_KEYLENGTH_IN_BYTES)) {
422 return (CKR_KEY_SIZE_RANGE);
426 * Initialize the RSA key.
428 if (RSA_key_init(&rsakey, modulus_bytes * 4, modulus_bytes * 4) !=
429 BIG_OK) {
430 return (CKR_HOST_MEMORY);
433 /* Create a public exponent in bignum format. */
434 if (big_init(&public_exponent,
435 CHARLEN2BIGNUMLEN(bkey->pubexpo_bytes)) != BIG_OK) {
436 rv = CKR_HOST_MEMORY;
437 goto clean1;
439 bytestring2bignum(&public_exponent, bkey->pubexpo, bkey->pubexpo_bytes);
441 /* Generate RSA key pair. */
442 if ((rv = generate_rsa_key(&rsakey,
443 modulus_bytes * 4, modulus_bytes * 4, &public_exponent,
444 bkey->rfunc)) != CKR_OK) {
445 big_finish(&public_exponent);
446 goto clean1;
448 big_finish(&public_exponent);
450 /* modulus_bytes = rsakey.n.len * (int)sizeof (BIG_CHUNK_TYPE); */
451 bignum2bytestring(bkey->modulus, &(rsakey.n), modulus_bytes);
453 bkey->privexpo_bytes = rsakey.d.len * (int)sizeof (BIG_CHUNK_TYPE);
454 bignum2bytestring(bkey->privexpo, &(rsakey.d), bkey->privexpo_bytes);
456 bkey->pubexpo_bytes = rsakey.e.len * (int)sizeof (BIG_CHUNK_TYPE);
457 bignum2bytestring(bkey->pubexpo, &(rsakey.e), bkey->pubexpo_bytes);
459 bkey->prime1_bytes = rsakey.q.len * (int)sizeof (BIG_CHUNK_TYPE);
460 bignum2bytestring(bkey->prime1, &(rsakey.q), bkey->prime1_bytes);
462 bkey->prime2_bytes = rsakey.p.len * (int)sizeof (BIG_CHUNK_TYPE);
463 bignum2bytestring(bkey->prime2, &(rsakey.p), bkey->prime2_bytes);
465 bkey->expo1_bytes =
466 rsakey.dmodqminus1.len * (int)sizeof (BIG_CHUNK_TYPE);
467 bignum2bytestring(bkey->expo1, &(rsakey.dmodqminus1),
468 bkey->expo1_bytes);
470 bkey->expo2_bytes =
471 rsakey.dmodpminus1.len * (int)sizeof (BIG_CHUNK_TYPE);
472 bignum2bytestring(bkey->expo2,
473 &(rsakey.dmodpminus1), bkey->expo2_bytes);
475 bkey->coeff_bytes =
476 rsakey.pinvmodq.len * (int)sizeof (BIG_CHUNK_TYPE);
477 bignum2bytestring(bkey->coeff, &(rsakey.pinvmodq), bkey->coeff_bytes);
479 clean1:
480 RSA_key_finish(&rsakey);
482 return (rv);
486 * RSA encrypt operation
488 CK_RV
489 rsa_encrypt(RSAbytekey *bkey, uchar_t *in, uint32_t in_len, uchar_t *out)
491 CK_RV rv = CKR_OK;
493 BIGNUM msg;
494 RSAkey rsakey;
495 uint32_t modulus_bytes;
497 if (bkey == NULL)
498 return (CKR_ARGUMENTS_BAD);
500 /* Must have modulus and public exponent set */
501 if (bkey->modulus_bits == 0 || bkey->modulus == NULL ||
502 bkey->pubexpo_bytes == 0 || bkey->pubexpo == NULL)
503 return (CKR_ARGUMENTS_BAD);
505 /* Note: modulus_bits may not be same as (8 * sizeof (modulus)) */
506 modulus_bytes = CRYPTO_BITS2BYTES(bkey->modulus_bits);
508 if (bkey->pubexpo_bytes > modulus_bytes) {
509 return (CKR_KEY_SIZE_RANGE);
512 /* psize and qsize for RSA_key_init is in bits. */
513 if (RSA_key_init(&rsakey, modulus_bytes * 4, modulus_bytes * 4) !=
514 BIG_OK) {
515 return (CKR_HOST_MEMORY);
518 /* Size for big_init is in BIG_CHUNK_TYPE words. */
519 if (big_init(&msg, CHARLEN2BIGNUMLEN(in_len)) != BIG_OK) {
520 rv = CKR_HOST_MEMORY;
521 goto clean2;
523 bytestring2bignum(&msg, in, in_len);
525 /* Convert public exponent and modulus to big integer format. */
526 bytestring2bignum(&(rsakey.e), bkey->pubexpo, bkey->pubexpo_bytes);
527 bytestring2bignum(&(rsakey.n), bkey->modulus, modulus_bytes);
529 if (big_cmp_abs(&msg, &(rsakey.n)) > 0) {
530 rv = CKR_DATA_LEN_RANGE;
531 goto clean3;
534 /* Perform RSA computation on big integer input data. */
535 if (big_modexp(&msg, &msg, &(rsakey.e), &(rsakey.n), NULL) !=
536 BIG_OK) {
537 rv = CKR_HOST_MEMORY;
538 goto clean3;
541 /* Convert the big integer output data to octet string. */
542 bignum2bytestring(out, &msg, modulus_bytes);
544 clean3:
545 big_finish(&msg);
546 clean2:
547 RSA_key_finish(&rsakey);
549 return (rv);
553 * RSA decrypt operation
555 CK_RV
556 rsa_decrypt(RSAbytekey *bkey, uchar_t *in, uint32_t in_len, uchar_t *out)
558 CK_RV rv = CKR_OK;
560 BIGNUM msg;
561 RSAkey rsakey;
562 uint32_t modulus_bytes;
564 if (bkey == NULL)
565 return (CKR_ARGUMENTS_BAD);
567 /* Must have modulus, prime1, prime2, expo1, expo2, and coeff set */
568 if (bkey->modulus_bits == 0 || bkey->modulus == NULL ||
569 bkey->prime1_bytes == 0 || bkey->prime1 == NULL ||
570 bkey->prime2_bytes == 0 || bkey->prime2 == NULL ||
571 bkey->expo1_bytes == 0 || bkey->expo1 == NULL ||
572 bkey->expo2_bytes == 0 || bkey->expo2 == NULL ||
573 bkey->coeff_bytes == 0 || bkey->coeff == NULL)
574 return (CKR_ARGUMENTS_BAD);
576 /* Note: modulus_bits may not be same as (8 * sizeof (modulus)) */
577 modulus_bytes = CRYPTO_BITS2BYTES(bkey->modulus_bits);
579 /* psize and qsize for RSA_key_init is in bits. */
580 if (RSA_key_init(&rsakey, CRYPTO_BYTES2BITS(bkey->prime2_bytes),
581 CRYPTO_BYTES2BITS(bkey->prime1_bytes)) != BIG_OK) {
582 return (CKR_HOST_MEMORY);
585 /* Size for big_init is in BIG_CHUNK_TYPE words. */
586 if (big_init(&msg, CHARLEN2BIGNUMLEN(in_len)) != BIG_OK) {
587 rv = CKR_HOST_MEMORY;
588 goto clean3;
590 /* Convert octet string input data to big integer format. */
591 bytestring2bignum(&msg, in, in_len);
593 /* Convert octet string modulus to big integer format. */
594 bytestring2bignum(&(rsakey.n), bkey->modulus, modulus_bytes);
596 if (big_cmp_abs(&msg, &(rsakey.n)) > 0) {
597 rv = CKR_DATA_LEN_RANGE;
598 goto clean4;
601 /* Convert the rest of private key attributes to big integer format. */
602 bytestring2bignum(&(rsakey.q), bkey->prime1, bkey->prime1_bytes);
603 bytestring2bignum(&(rsakey.p), bkey->prime2, bkey->prime2_bytes);
604 bytestring2bignum(&(rsakey.dmodqminus1),
605 bkey->expo1, bkey->expo1_bytes);
606 bytestring2bignum(&(rsakey.dmodpminus1),
607 bkey->expo2, bkey->expo2_bytes);
608 bytestring2bignum(&(rsakey.pinvmodq),
609 bkey->coeff, bkey->coeff_bytes);
611 if ((big_cmp_abs(&(rsakey.dmodpminus1), &(rsakey.p)) > 0) ||
612 (big_cmp_abs(&(rsakey.dmodqminus1), &(rsakey.q)) > 0) ||
613 (big_cmp_abs(&(rsakey.pinvmodq), &(rsakey.q)) > 0)) {
614 rv = CKR_KEY_SIZE_RANGE;
615 goto clean4;
618 /* Perform RSA computation on big integer input data. */
619 if (big_modexp_crt(&msg, &msg, &(rsakey.dmodpminus1),
620 &(rsakey.dmodqminus1), &(rsakey.p), &(rsakey.q),
621 &(rsakey.pinvmodq), NULL, NULL) != BIG_OK) {
622 rv = CKR_HOST_MEMORY;
623 goto clean4;
626 /* Convert the big integer output data to octet string. */
627 bignum2bytestring(out, &msg, modulus_bytes);
629 clean4:
630 big_finish(&msg);
631 clean3:
632 RSA_key_finish(&rsakey);
634 return (rv);