import less(1)
[unleashed/tickless.git] / usr / src / common / crypto / sha1 / sha1.c
blob941400273abea225e46fc5f1c8652bbfd426cab0
1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
6 /*
7 * The basic framework for this code came from the reference
8 * implementation for MD5. That implementation is Copyright (C)
9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
11 * License to copy and use this software is granted provided that it
12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
13 * Algorithm" in all material mentioning or referencing this software
14 * or this function.
16 * License is also granted to make and use derivative works provided
17 * that such works are identified as "derived from the RSA Data
18 * Security, Inc. MD5 Message-Digest Algorithm" in all material
19 * mentioning or referencing the derived work.
21 * RSA Data Security, Inc. makes no representations concerning either
22 * the merchantability of this software or the suitability of this
23 * software for any particular purpose. It is provided "as is"
24 * without express or implied warranty of any kind.
26 * These notices must be retained in any copies of any part of this
27 * documentation and/or software.
29 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
30 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
31 * Not as fast as one would like -- further optimizations are encouraged
32 * and appreciated.
35 #if !defined(_KERNEL) && !defined(_BOOT)
36 #include <stdint.h>
37 #include <strings.h>
38 #include <stdlib.h>
39 #include <errno.h>
40 #include <sys/systeminfo.h>
41 #endif /* !_KERNEL && !_BOOT */
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/sha1.h>
48 #include <sys/sha1_consts.h>
50 #ifdef _LITTLE_ENDIAN
51 #include <sys/byteorder.h>
52 #define HAVE_HTONL
53 #endif
55 #ifdef _BOOT
56 #define bcopy(_s, _d, _l) ((void) memcpy((_d), (_s), (_l)))
57 #define bzero(_m, _l) ((void) memset((_m), 0, (_l)))
58 #endif
60 static void Encode(uint8_t *, const uint32_t *, size_t);
62 #if defined(__sparc)
64 #define SHA1_TRANSFORM(ctx, in) \
65 SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
66 (ctx)->state[3], (ctx)->state[4], (ctx), (in))
68 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
69 SHA1_CTX *, const uint8_t *);
71 #elif defined(__amd64)
73 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
74 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
75 (in), (num))
77 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
79 #else
81 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
83 static void SHA1Transform(SHA1_CTX *, const uint8_t *);
85 #endif
88 static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
91 * F, G, and H are the basic SHA1 functions.
93 #define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
94 #define G(b, c, d) ((b) ^ (c) ^ (d))
95 #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
98 * ROTATE_LEFT rotates x left n bits.
101 #if defined(__GNUC__) && defined(_LP64)
102 static __inline__ uint64_t
103 ROTATE_LEFT(uint64_t value, uint32_t n)
105 uint32_t t32;
107 t32 = (uint32_t)value;
108 return ((t32 << n) | (t32 >> (32 - n)));
111 #else
113 #define ROTATE_LEFT(x, n) \
114 (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
116 #endif
120 * SHA1Init()
122 * purpose: initializes the sha1 context and begins and sha1 digest operation
123 * input: SHA1_CTX * : the context to initializes.
124 * output: void
127 void
128 SHA1Init(SHA1_CTX *ctx)
130 ctx->count[0] = ctx->count[1] = 0;
133 * load magic initialization constants. Tell lint
134 * that these constants are unsigned by using U.
137 ctx->state[0] = 0x67452301U;
138 ctx->state[1] = 0xefcdab89U;
139 ctx->state[2] = 0x98badcfeU;
140 ctx->state[3] = 0x10325476U;
141 ctx->state[4] = 0xc3d2e1f0U;
144 #ifdef VIS_SHA1
145 #ifdef _KERNEL
147 #include <sys/regset.h>
148 #include <sys/vis.h>
149 #include <sys/fpu/fpusystm.h>
151 /* the alignment for block stores to save fp registers */
152 #define VIS_ALIGN (64)
154 extern int sha1_savefp(kfpu_t *, int);
155 extern void sha1_restorefp(kfpu_t *);
157 uint32_t vis_sha1_svfp_threshold = 128;
159 #endif /* _KERNEL */
162 * VIS SHA-1 consts.
164 static uint64_t VIS[] = {
165 0x8000000080000000ULL,
166 0x0002000200020002ULL,
167 0x5a8279996ed9eba1ULL,
168 0x8f1bbcdcca62c1d6ULL,
169 0x012389ab456789abULL};
171 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *);
175 * SHA1Update()
177 * purpose: continues an sha1 digest operation, using the message block
178 * to update the context.
179 * input: SHA1_CTX * : the context to update
180 * void * : the message block
181 * size_t : the length of the message block in bytes
182 * output: void
185 void
186 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
188 uint32_t i, buf_index, buf_len;
189 uint64_t X0[40], input64[8];
190 const uint8_t *input = inptr;
191 #ifdef _KERNEL
192 int usevis = 0;
193 #else
194 int usevis = 1;
195 #endif /* _KERNEL */
197 /* check for noop */
198 if (input_len == 0)
199 return;
201 /* compute number of bytes mod 64 */
202 buf_index = (ctx->count[1] >> 3) & 0x3F;
204 /* update number of bits */
205 if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
206 ctx->count[0]++;
208 ctx->count[0] += (input_len >> 29);
210 buf_len = 64 - buf_index;
212 /* transform as many times as possible */
213 i = 0;
214 if (input_len >= buf_len) {
215 #ifdef _KERNEL
216 kfpu_t *fpu;
217 if (fpu_exists) {
218 uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN];
219 uint32_t len = (input_len + buf_index) & ~0x3f;
220 int svfp_ok;
222 fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64);
223 svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0);
224 usevis = fpu_exists && sha1_savefp(fpu, svfp_ok);
225 } else {
226 usevis = 0;
228 #endif /* _KERNEL */
231 * general optimization:
233 * only do initial bcopy() and SHA1Transform() if
234 * buf_index != 0. if buf_index == 0, we're just
235 * wasting our time doing the bcopy() since there
236 * wasn't any data left over from a previous call to
237 * SHA1Update().
240 if (buf_index) {
241 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
242 if (usevis) {
243 SHA1TransformVIS(X0,
244 ctx->buf_un.buf32,
245 &ctx->state[0], VIS);
246 } else {
247 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
249 i = buf_len;
253 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate
254 * SHA-1 processing. This is achieved by "offloading" the
255 * computation of the message schedule (MS) to the VIS units.
256 * This allows the VIS computation of the message schedule
257 * to be performed in parallel with the standard integer
258 * processing of the remainder of the SHA-1 computation.
259 * performance by up to around 1.37X, compared to an optimized
260 * integer-only implementation.
262 * The VIS implementation of SHA1Transform has a different API
263 * to the standard integer version:
265 * void SHA1TransformVIS(
266 * uint64_t *, // Pointer to MS for ith block
267 * uint32_t *, // Pointer to ith block of message data
268 * uint32_t *, // Pointer to SHA state i.e ctx->state
269 * uint64_t *, // Pointer to various VIS constants
272 * Note: the message data must by 4-byte aligned.
274 * Function requires VIS 1.0 support.
276 * Handling is provided to deal with arbitrary byte alingment
277 * of the input data but the performance gains are reduced
278 * for alignments other than 4-bytes.
280 if (usevis) {
281 if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) {
283 * Main processing loop - input misaligned
285 for (; i + 63 < input_len; i += 64) {
286 bcopy(&input[i], input64, 64);
287 SHA1TransformVIS(X0,
288 (uint32_t *)input64,
289 &ctx->state[0], VIS);
291 } else {
293 * Main processing loop - input 8-byte aligned
295 for (; i + 63 < input_len; i += 64) {
296 SHA1TransformVIS(X0,
297 /* LINTED E_BAD_PTR_CAST_ALIGN */
298 (uint32_t *)&input[i], /* CSTYLED */
299 &ctx->state[0], VIS);
303 #ifdef _KERNEL
304 sha1_restorefp(fpu);
305 #endif /* _KERNEL */
306 } else {
307 for (; i + 63 < input_len; i += 64) {
308 SHA1_TRANSFORM(ctx, &input[i]);
313 * general optimization:
315 * if i and input_len are the same, return now instead
316 * of calling bcopy(), since the bcopy() in this case
317 * will be an expensive nop.
320 if (input_len == i)
321 return;
323 buf_index = 0;
326 /* buffer remaining input */
327 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
330 #else /* VIS_SHA1 */
332 void
333 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
335 uint32_t i, buf_index, buf_len;
336 const uint8_t *input = inptr;
337 #if defined(__amd64)
338 uint32_t block_count;
339 #endif /* __amd64 */
341 /* check for noop */
342 if (input_len == 0)
343 return;
345 /* compute number of bytes mod 64 */
346 buf_index = (ctx->count[1] >> 3) & 0x3F;
348 /* update number of bits */
349 if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
350 ctx->count[0]++;
352 ctx->count[0] += (input_len >> 29);
354 buf_len = 64 - buf_index;
356 /* transform as many times as possible */
357 i = 0;
358 if (input_len >= buf_len) {
361 * general optimization:
363 * only do initial bcopy() and SHA1Transform() if
364 * buf_index != 0. if buf_index == 0, we're just
365 * wasting our time doing the bcopy() since there
366 * wasn't any data left over from a previous call to
367 * SHA1Update().
370 if (buf_index) {
371 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
372 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
373 i = buf_len;
376 #if !defined(__amd64)
377 for (; i + 63 < input_len; i += 64)
378 SHA1_TRANSFORM(ctx, &input[i]);
379 #else
380 block_count = (input_len - i) >> 6;
381 if (block_count > 0) {
382 SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
383 i += block_count << 6;
385 #endif /* !__amd64 */
388 * general optimization:
390 * if i and input_len are the same, return now instead
391 * of calling bcopy(), since the bcopy() in this case
392 * will be an expensive nop.
395 if (input_len == i)
396 return;
398 buf_index = 0;
401 /* buffer remaining input */
402 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
405 #endif /* VIS_SHA1 */
408 * SHA1Final()
410 * purpose: ends an sha1 digest operation, finalizing the message digest and
411 * zeroing the context.
412 * input: uchar_t * : A buffer to store the digest.
413 * : The function actually uses void* because many
414 * : callers pass things other than uchar_t here.
415 * SHA1_CTX * : the context to finalize, save, and zero
416 * output: void
419 void
420 SHA1Final(void *digest, SHA1_CTX *ctx)
422 uint8_t bitcount_be[sizeof (ctx->count)];
423 uint32_t index = (ctx->count[1] >> 3) & 0x3f;
425 /* store bit count, big endian */
426 Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
428 /* pad out to 56 mod 64 */
429 SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
431 /* append length (before padding) */
432 SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
434 /* store state in digest */
435 Encode(digest, ctx->state, sizeof (ctx->state));
437 /* zeroize sensitive information */
438 bzero(ctx, sizeof (*ctx));
442 #if !defined(__amd64)
444 typedef uint32_t sha1word;
447 * sparc optimization:
449 * on the sparc, we can load big endian 32-bit data easily. note that
450 * special care must be taken to ensure the address is 32-bit aligned.
451 * in the interest of speed, we don't check to make sure, since
452 * careful programming can guarantee this for us.
455 #if defined(_BIG_ENDIAN)
456 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
458 #elif defined(HAVE_HTONL)
459 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
461 #else
462 /* little endian -- will work on big endian, but slowly */
463 #define LOAD_BIG_32(addr) \
464 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
465 #endif /* _BIG_ENDIAN */
468 * SHA1Transform()
470 #if defined(W_ARRAY)
471 #define W(n) w[n]
472 #else /* !defined(W_ARRAY) */
473 #define W(n) w_ ## n
474 #endif /* !defined(W_ARRAY) */
477 #if defined(__sparc)
480 * sparc register window optimization:
482 * `a', `b', `c', `d', and `e' are passed into SHA1Transform
483 * explicitly since it increases the number of registers available to
484 * the compiler. under this scheme, these variables can be held in
485 * %i0 - %i4, which leaves more local and out registers available.
487 * purpose: sha1 transformation -- updates the digest based on `block'
488 * input: uint32_t : bytes 1 - 4 of the digest
489 * uint32_t : bytes 5 - 8 of the digest
490 * uint32_t : bytes 9 - 12 of the digest
491 * uint32_t : bytes 12 - 16 of the digest
492 * uint32_t : bytes 16 - 20 of the digest
493 * SHA1_CTX * : the context to update
494 * uint8_t [64]: the block to use to update the digest
495 * output: void
498 void
499 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
500 SHA1_CTX *ctx, const uint8_t blk[64])
503 * sparc optimization:
505 * while it is somewhat counter-intuitive, on sparc, it is
506 * more efficient to place all the constants used in this
507 * function in an array and load the values out of the array
508 * than to manually load the constants. this is because
509 * setting a register to a 32-bit value takes two ops in most
510 * cases: a `sethi' and an `or', but loading a 32-bit value
511 * from memory only takes one `ld' (or `lduw' on v9). while
512 * this increases memory usage, the compiler can find enough
513 * other things to do while waiting to keep the pipeline does
514 * not stall. additionally, it is likely that many of these
515 * constants are cached so that later accesses do not even go
516 * out to the bus.
518 * this array is declared `static' to keep the compiler from
519 * having to bcopy() this array onto the stack frame of
520 * SHA1Transform() each time it is called -- which is
521 * unacceptably expensive.
523 * the `const' is to ensure that callers are good citizens and
524 * do not try to munge the array. since these routines are
525 * going to be called from inside multithreaded kernelland,
526 * this is a good safety check. -- `sha1_consts' will end up in
527 * .rodata.
529 * unfortunately, loading from an array in this manner hurts
530 * performance under Intel. So, there is a macro,
531 * SHA1_CONST(), used in SHA1Transform(), that either expands to
532 * a reference to this array, or to the actual constant,
533 * depending on what platform this code is compiled for.
536 static const uint32_t sha1_consts[] = {
537 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
541 * general optimization:
543 * use individual integers instead of using an array. this is a
544 * win, although the amount it wins by seems to vary quite a bit.
547 uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
548 uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
551 * sparc optimization:
553 * if `block' is already aligned on a 4-byte boundary, use
554 * LOAD_BIG_32() directly. otherwise, bcopy() into a
555 * buffer that *is* aligned on a 4-byte boundary and then do
556 * the LOAD_BIG_32() on that buffer. benchmarks have shown
557 * that using the bcopy() is better than loading the bytes
558 * individually and doing the endian-swap by hand.
560 * even though it's quite tempting to assign to do:
562 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
564 * and only have one set of LOAD_BIG_32()'s, the compiler
565 * *does not* like that, so please resist the urge.
568 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
569 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
570 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
571 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
572 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
573 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
574 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
575 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
576 w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9);
577 w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8);
578 w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7);
579 w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6);
580 w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5);
581 w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4);
582 w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3);
583 w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2);
584 w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1);
585 w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0);
586 } else {
587 /* LINTED E_BAD_PTR_CAST_ALIGN */
588 w_15 = LOAD_BIG_32(blk + 60);
589 /* LINTED E_BAD_PTR_CAST_ALIGN */
590 w_14 = LOAD_BIG_32(blk + 56);
591 /* LINTED E_BAD_PTR_CAST_ALIGN */
592 w_13 = LOAD_BIG_32(blk + 52);
593 /* LINTED E_BAD_PTR_CAST_ALIGN */
594 w_12 = LOAD_BIG_32(blk + 48);
595 /* LINTED E_BAD_PTR_CAST_ALIGN */
596 w_11 = LOAD_BIG_32(blk + 44);
597 /* LINTED E_BAD_PTR_CAST_ALIGN */
598 w_10 = LOAD_BIG_32(blk + 40);
599 /* LINTED E_BAD_PTR_CAST_ALIGN */
600 w_9 = LOAD_BIG_32(blk + 36);
601 /* LINTED E_BAD_PTR_CAST_ALIGN */
602 w_8 = LOAD_BIG_32(blk + 32);
603 /* LINTED E_BAD_PTR_CAST_ALIGN */
604 w_7 = LOAD_BIG_32(blk + 28);
605 /* LINTED E_BAD_PTR_CAST_ALIGN */
606 w_6 = LOAD_BIG_32(blk + 24);
607 /* LINTED E_BAD_PTR_CAST_ALIGN */
608 w_5 = LOAD_BIG_32(blk + 20);
609 /* LINTED E_BAD_PTR_CAST_ALIGN */
610 w_4 = LOAD_BIG_32(blk + 16);
611 /* LINTED E_BAD_PTR_CAST_ALIGN */
612 w_3 = LOAD_BIG_32(blk + 12);
613 /* LINTED E_BAD_PTR_CAST_ALIGN */
614 w_2 = LOAD_BIG_32(blk + 8);
615 /* LINTED E_BAD_PTR_CAST_ALIGN */
616 w_1 = LOAD_BIG_32(blk + 4);
617 /* LINTED E_BAD_PTR_CAST_ALIGN */
618 w_0 = LOAD_BIG_32(blk + 0);
620 #else /* !defined(__sparc) */
622 void /* CSTYLED */
623 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
625 /* CSTYLED */
626 sha1word a = ctx->state[0];
627 sha1word b = ctx->state[1];
628 sha1word c = ctx->state[2];
629 sha1word d = ctx->state[3];
630 sha1word e = ctx->state[4];
632 #if defined(W_ARRAY)
633 sha1word w[16];
634 #else /* !defined(W_ARRAY) */
635 sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
636 sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
637 #endif /* !defined(W_ARRAY) */
639 W(0) = LOAD_BIG_32((void *)(blk + 0));
640 W(1) = LOAD_BIG_32((void *)(blk + 4));
641 W(2) = LOAD_BIG_32((void *)(blk + 8));
642 W(3) = LOAD_BIG_32((void *)(blk + 12));
643 W(4) = LOAD_BIG_32((void *)(blk + 16));
644 W(5) = LOAD_BIG_32((void *)(blk + 20));
645 W(6) = LOAD_BIG_32((void *)(blk + 24));
646 W(7) = LOAD_BIG_32((void *)(blk + 28));
647 W(8) = LOAD_BIG_32((void *)(blk + 32));
648 W(9) = LOAD_BIG_32((void *)(blk + 36));
649 W(10) = LOAD_BIG_32((void *)(blk + 40));
650 W(11) = LOAD_BIG_32((void *)(blk + 44));
651 W(12) = LOAD_BIG_32((void *)(blk + 48));
652 W(13) = LOAD_BIG_32((void *)(blk + 52));
653 W(14) = LOAD_BIG_32((void *)(blk + 56));
654 W(15) = LOAD_BIG_32((void *)(blk + 60));
656 #endif /* !defined(__sparc) */
659 * general optimization:
661 * even though this approach is described in the standard as
662 * being slower algorithmically, it is 30-40% faster than the
663 * "faster" version under SPARC, because this version has more
664 * of the constraints specified at compile-time and uses fewer
665 * variables (and therefore has better register utilization)
666 * than its "speedier" brother. (i've tried both, trust me)
668 * for either method given in the spec, there is an "assignment"
669 * phase where the following takes place:
671 * tmp = (main_computation);
672 * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
674 * we can make the algorithm go faster by not doing this work,
675 * but just pretending that `d' is now `e', etc. this works
676 * really well and obviates the need for a temporary variable.
677 * however, we still explicitly perform the rotate action,
678 * since it is cheaper on SPARC to do it once than to have to
679 * do it over and over again.
682 /* round 1 */
683 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
684 b = ROTATE_LEFT(b, 30);
686 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
687 a = ROTATE_LEFT(a, 30);
689 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
690 e = ROTATE_LEFT(e, 30);
692 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
693 d = ROTATE_LEFT(d, 30);
695 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
696 c = ROTATE_LEFT(c, 30);
698 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
699 b = ROTATE_LEFT(b, 30);
701 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
702 a = ROTATE_LEFT(a, 30);
704 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
705 e = ROTATE_LEFT(e, 30);
707 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
708 d = ROTATE_LEFT(d, 30);
710 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
711 c = ROTATE_LEFT(c, 30);
713 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
714 b = ROTATE_LEFT(b, 30);
716 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
717 a = ROTATE_LEFT(a, 30);
719 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
720 e = ROTATE_LEFT(e, 30);
722 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
723 d = ROTATE_LEFT(d, 30);
725 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
726 c = ROTATE_LEFT(c, 30);
728 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
729 b = ROTATE_LEFT(b, 30);
731 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
732 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
733 a = ROTATE_LEFT(a, 30);
735 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
736 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
737 e = ROTATE_LEFT(e, 30);
739 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
740 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
741 d = ROTATE_LEFT(d, 30);
743 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
744 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
745 c = ROTATE_LEFT(c, 30);
747 /* round 2 */
748 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
749 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
750 b = ROTATE_LEFT(b, 30);
752 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
753 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
754 a = ROTATE_LEFT(a, 30);
756 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
757 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
758 e = ROTATE_LEFT(e, 30);
760 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
761 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
762 d = ROTATE_LEFT(d, 30);
764 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
765 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
766 c = ROTATE_LEFT(c, 30);
768 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
769 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
770 b = ROTATE_LEFT(b, 30);
772 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
773 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
774 a = ROTATE_LEFT(a, 30);
776 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
777 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
778 e = ROTATE_LEFT(e, 30);
780 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
781 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
782 d = ROTATE_LEFT(d, 30);
784 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
785 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
786 c = ROTATE_LEFT(c, 30);
788 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
789 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
790 b = ROTATE_LEFT(b, 30);
792 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
793 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
794 a = ROTATE_LEFT(a, 30);
796 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
797 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
798 e = ROTATE_LEFT(e, 30);
800 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
801 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
802 d = ROTATE_LEFT(d, 30);
804 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
805 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
806 c = ROTATE_LEFT(c, 30);
808 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
809 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
810 b = ROTATE_LEFT(b, 30);
812 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
813 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
814 a = ROTATE_LEFT(a, 30);
816 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
817 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
818 e = ROTATE_LEFT(e, 30);
820 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
821 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
822 d = ROTATE_LEFT(d, 30);
824 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
825 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
826 c = ROTATE_LEFT(c, 30);
828 /* round 3 */
829 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
830 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
831 b = ROTATE_LEFT(b, 30);
833 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
834 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
835 a = ROTATE_LEFT(a, 30);
837 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
838 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
839 e = ROTATE_LEFT(e, 30);
841 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
842 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
843 d = ROTATE_LEFT(d, 30);
845 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
846 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
847 c = ROTATE_LEFT(c, 30);
849 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
850 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
851 b = ROTATE_LEFT(b, 30);
853 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
854 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
855 a = ROTATE_LEFT(a, 30);
857 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
858 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
859 e = ROTATE_LEFT(e, 30);
861 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
862 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
863 d = ROTATE_LEFT(d, 30);
865 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
866 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
867 c = ROTATE_LEFT(c, 30);
869 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
870 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
871 b = ROTATE_LEFT(b, 30);
873 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
874 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
875 a = ROTATE_LEFT(a, 30);
877 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
878 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
879 e = ROTATE_LEFT(e, 30);
881 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
882 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
883 d = ROTATE_LEFT(d, 30);
885 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
886 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
887 c = ROTATE_LEFT(c, 30);
889 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
890 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
891 b = ROTATE_LEFT(b, 30);
893 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
894 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
895 a = ROTATE_LEFT(a, 30);
897 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
898 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
899 e = ROTATE_LEFT(e, 30);
901 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
902 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
903 d = ROTATE_LEFT(d, 30);
905 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
906 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
907 c = ROTATE_LEFT(c, 30);
909 /* round 4 */
910 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
911 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
912 b = ROTATE_LEFT(b, 30);
914 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
915 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
916 a = ROTATE_LEFT(a, 30);
918 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
919 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
920 e = ROTATE_LEFT(e, 30);
922 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
923 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
924 d = ROTATE_LEFT(d, 30);
926 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
927 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
928 c = ROTATE_LEFT(c, 30);
930 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
931 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
932 b = ROTATE_LEFT(b, 30);
934 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
935 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
936 a = ROTATE_LEFT(a, 30);
938 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
939 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
940 e = ROTATE_LEFT(e, 30);
942 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
943 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
944 d = ROTATE_LEFT(d, 30);
946 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
947 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
948 c = ROTATE_LEFT(c, 30);
950 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
951 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
952 b = ROTATE_LEFT(b, 30);
954 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
955 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
956 a = ROTATE_LEFT(a, 30);
958 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
959 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
960 e = ROTATE_LEFT(e, 30);
962 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
963 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
964 d = ROTATE_LEFT(d, 30);
966 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
967 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
968 c = ROTATE_LEFT(c, 30);
970 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
971 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
972 b = ROTATE_LEFT(b, 30);
974 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
975 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
976 a = ROTATE_LEFT(a, 30);
978 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
979 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
980 e = ROTATE_LEFT(e, 30);
982 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
983 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
984 d = ROTATE_LEFT(d, 30);
986 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
988 ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
989 SHA1_CONST(3);
990 ctx->state[1] += b;
991 ctx->state[2] += ROTATE_LEFT(c, 30);
992 ctx->state[3] += d;
993 ctx->state[4] += e;
995 /* zeroize sensitive information */
996 W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
997 W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
999 #endif /* !__amd64 */
1003 * Encode()
1005 * purpose: to convert a list of numbers from little endian to big endian
1006 * input: uint8_t * : place to store the converted big endian numbers
1007 * uint32_t * : place to get numbers to convert from
1008 * size_t : the length of the input in bytes
1009 * output: void
1012 static void
1013 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
1014 size_t len)
1016 size_t i, j;
1018 for (i = 0, j = 0; j < len; i++, j += 4) {
1019 output[j] = (input[i] >> 24) & 0xff;
1020 output[j + 1] = (input[i] >> 16) & 0xff;
1021 output[j + 2] = (input[i] >> 8) & 0xff;
1022 output[j + 3] = input[i] & 0xff;