import less(1)
[unleashed/tickless.git] / usr / src / common / crypto / sha2 / amd64 / sha512-x86_64.pl
blobeed50c6b32b2dfccac095219ddad814ceb176660
1 #!/usr/bin/env perl
3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
9 # sha256/512_block procedure for x86_64.
11 # 40% improvement over compiler-generated code on Opteron. On EM64T
12 # sha256 was observed to run >80% faster and sha512 - >40%. No magical
13 # tricks, just straight implementation... I really wonder why gcc
14 # [being armed with inline assembler] fails to generate as fast code.
15 # The only thing which is cool about this module is that it's very
16 # same instruction sequence used for both SHA-256 and SHA-512. In
17 # former case the instructions operate on 32-bit operands, while in
18 # latter - on 64-bit ones. All I had to do is to get one flavor right,
19 # the other one passed the test right away:-)
21 # sha256_block runs in ~1005 cycles on Opteron, which gives you
22 # asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
23 # frequency in GHz. sha512_block runs in ~1275 cycles, which results
24 # in 128*1000/1275=100MBps per GHz. Is there room for improvement?
25 # Well, if you compare it to IA-64 implementation, which maintains
26 # X[16] in register bank[!], tends to 4 instructions per CPU clock
27 # cycle and runs in 1003 cycles, 1275 is very good result for 3-way
28 # issue Opteron pipeline and X[16] maintained in memory. So that *if*
29 # there is a way to improve it, *then* the only way would be to try to
30 # offload X[16] updates to SSE unit, but that would require "deeper"
31 # loop unroll, which in turn would naturally cause size blow-up, not
32 # to mention increased complexity! And once again, only *if* it's
33 # actually possible to noticeably improve overall ILP, instruction
34 # level parallelism, on a given CPU implementation in this case.
36 # Special note on Intel EM64T. While Opteron CPU exhibits perfect
37 # perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
38 # [currently available] EM64T CPUs apparently are far from it. On the
39 # contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
40 # sha256_block:-( This is presumably because 64-bit shifts/rotates
41 # apparently are not atomic instructions, but implemented in microcode.
44 # OpenSolaris OS modifications
46 # Sun elects to use this software under the BSD license.
48 # This source originates from OpenSSL file sha512-x86_64.pl at
49 # ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz
50 # (presumably for future OpenSSL release 0.9.8h), with these changes:
52 # 1. Added perl "use strict" and declared variables.
54 # 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
55 # /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards.
57 # 3. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1)
58 # assemblers). Replaced the .picmeup macro with assembler code.
60 # 4. Added 8 to $ctx, as OpenSolaris OS has an extra 4-byte field, "algotype",
61 # at the beginning of SHA2_CTX (the next field is 8-byte aligned).
64 use strict;
65 my ($code, $func, $TABLE, $SZ, @Sigma0, @Sigma1, @sigma0, @sigma1, $rounds,
66 @ROT, $A, $B, $C, $D, $E, $F, $G, $H, $T1, $a0, $a1, $a2, $i,
67 $ctx, $round, $inp, $Tbl, $_ctx, $_inp, $_end, $_rsp, $framesz);
68 my $output = shift;
69 open STDOUT,">$output";
72 # OpenSSL library:
73 # void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
74 # void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
76 # OpenSolaris OS:
77 # void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
78 # void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
79 # Note: the OpenSolaris SHA2 structure has an extra 8 byte field at the
80 # beginning (over OpenSSL's SHA512 or SHA256 structure).
83 if ($output =~ /512/) {
84 $func="SHA512TransformBlocks";
85 $TABLE="K512";
86 $SZ=8;
87 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",
88 "%r8", "%r9", "%r10","%r11");
89 ($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15");
90 @Sigma0=(28,34,39);
91 @Sigma1=(14,18,41);
92 @sigma0=(1, 8, 7);
93 @sigma1=(19,61, 6);
94 $rounds=80;
95 } else {
96 $func="SHA256TransformBlocks";
97 $TABLE="K256";
98 $SZ=4;
99 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
100 "%r8d","%r9d","%r10d","%r11d");
101 ($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d");
102 @Sigma0=( 2,13,22);
103 @Sigma1=( 6,11,25);
104 @sigma0=( 7,18, 3);
105 @sigma1=(17,19,10);
106 $rounds=64;
109 $ctx="%rdi"; # 1st arg
110 $round="%rdi"; # zaps $ctx
111 $inp="%rsi"; # 2nd arg
112 $Tbl="%rbp";
114 $_ctx="16*$SZ+0*8(%rsp)";
115 $_inp="16*$SZ+1*8(%rsp)";
116 $_end="16*$SZ+2*8(%rsp)";
117 $_rsp="16*$SZ+3*8(%rsp)";
118 $framesz="16*$SZ+4*8";
121 sub ROUND_00_15()
122 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
124 $code.=<<___;
125 mov $e,$a0
126 mov $e,$a1
127 mov $f,$a2
129 ror \$$Sigma1[0],$a0
130 ror \$$Sigma1[1],$a1
131 xor $g,$a2 # f^g
133 xor $a1,$a0
134 ror \$`$Sigma1[2]-$Sigma1[1]`,$a1
135 and $e,$a2 # (f^g)&e
136 mov $T1,`$SZ*($i&0xf)`(%rsp)
138 xor $a1,$a0 # Sigma1(e)
139 xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g
140 add $h,$T1 # T1+=h
142 mov $a,$h
143 add $a0,$T1 # T1+=Sigma1(e)
145 add $a2,$T1 # T1+=Ch(e,f,g)
146 mov $a,$a0
147 mov $a,$a1
149 ror \$$Sigma0[0],$h
150 ror \$$Sigma0[1],$a0
151 mov $a,$a2
152 add ($Tbl,$round,$SZ),$T1 # T1+=K[round]
154 xor $a0,$h
155 ror \$`$Sigma0[2]-$Sigma0[1]`,$a0
156 or $c,$a1 # a|c
158 xor $a0,$h # h=Sigma0(a)
159 and $c,$a2 # a&c
160 add $T1,$d # d+=T1
162 and $b,$a1 # (a|c)&b
163 add $T1,$h # h+=T1
165 or $a2,$a1 # Maj(a,b,c)=((a|c)&b)|(a&c)
166 lea 1($round),$round # round++
168 add $a1,$h # h+=Maj(a,b,c)
172 sub ROUND_16_XX()
173 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
175 $code.=<<___;
176 mov `$SZ*(($i+1)&0xf)`(%rsp),$a0
177 mov `$SZ*(($i+14)&0xf)`(%rsp),$T1
179 mov $a0,$a2
181 shr \$$sigma0[2],$a0
182 ror \$$sigma0[0],$a2
184 xor $a2,$a0
185 ror \$`$sigma0[1]-$sigma0[0]`,$a2
187 xor $a2,$a0 # sigma0(X[(i+1)&0xf])
188 mov $T1,$a1
190 shr \$$sigma1[2],$T1
191 ror \$$sigma1[0],$a1
193 xor $a1,$T1
194 ror \$`$sigma1[1]-$sigma1[0]`,$a1
196 xor $a1,$T1 # sigma1(X[(i+14)&0xf])
198 add $a0,$T1
200 add `$SZ*(($i+9)&0xf)`(%rsp),$T1
202 add `$SZ*($i&0xf)`(%rsp),$T1
204 &ROUND_00_15(@_);
208 # Execution begins here
211 $code=<<___;
212 #include <sys/asm_linkage.h>
214 ENTRY_NP($func)
215 push %rbx
216 push %rbp
217 push %r12
218 push %r13
219 push %r14
220 push %r15
221 mov %rsp,%rbp # copy %rsp
222 shl \$4,%rdx # num*16
223 sub \$$framesz,%rsp
224 lea ($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
225 and \$-64,%rsp # align stack frame
226 add \$8,$ctx # Skip OpenSolaris field, "algotype"
227 mov $ctx,$_ctx # save ctx, 1st arg
228 mov $inp,$_inp # save inp, 2nd arg
229 mov %rdx,$_end # save end pointer, "3rd" arg
230 mov %rbp,$_rsp # save copy of %rsp
232 /.picmeup $Tbl
233 / The .picmeup pseudo-directive, from perlasm/x86_64_xlate.pl, puts
234 / the address of the "next" instruction into the target register
235 / ($Tbl). This generates these 2 instructions:
236 lea .Llea(%rip),$Tbl
237 /nop / .picmeup generates a nop for mod 8 alignment--not needed here
239 .Llea:
240 lea $TABLE-.($Tbl),$Tbl
242 mov $SZ*0($ctx),$A
243 mov $SZ*1($ctx),$B
244 mov $SZ*2($ctx),$C
245 mov $SZ*3($ctx),$D
246 mov $SZ*4($ctx),$E
247 mov $SZ*5($ctx),$F
248 mov $SZ*6($ctx),$G
249 mov $SZ*7($ctx),$H
250 jmp .Lloop
252 .align 16
253 .Lloop:
254 xor $round,$round
256 for($i=0;$i<16;$i++) {
257 $code.=" mov $SZ*$i($inp),$T1\n";
258 $code.=" bswap $T1\n";
259 &ROUND_00_15($i,@ROT);
260 unshift(@ROT,pop(@ROT));
262 $code.=<<___;
263 jmp .Lrounds_16_xx
264 .align 16
265 .Lrounds_16_xx:
267 for(;$i<32;$i++) {
268 &ROUND_16_XX($i,@ROT);
269 unshift(@ROT,pop(@ROT));
272 $code.=<<___;
273 cmp \$$rounds,$round
274 jb .Lrounds_16_xx
276 mov $_ctx,$ctx
277 lea 16*$SZ($inp),$inp
279 add $SZ*0($ctx),$A
280 add $SZ*1($ctx),$B
281 add $SZ*2($ctx),$C
282 add $SZ*3($ctx),$D
283 add $SZ*4($ctx),$E
284 add $SZ*5($ctx),$F
285 add $SZ*6($ctx),$G
286 add $SZ*7($ctx),$H
288 cmp $_end,$inp
290 mov $A,$SZ*0($ctx)
291 mov $B,$SZ*1($ctx)
292 mov $C,$SZ*2($ctx)
293 mov $D,$SZ*3($ctx)
294 mov $E,$SZ*4($ctx)
295 mov $F,$SZ*5($ctx)
296 mov $G,$SZ*6($ctx)
297 mov $H,$SZ*7($ctx)
298 jb .Lloop
300 mov $_rsp,%rsp
301 pop %r15
302 pop %r14
303 pop %r13
304 pop %r12
305 pop %rbp
306 pop %rbx
309 SET_SIZE($func)
313 if ($SZ==4) {
314 # SHA256
315 $code.=<<___;
316 .align 64
317 .type $TABLE,\@object
318 $TABLE:
319 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
320 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
321 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
322 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
323 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
324 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
325 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
326 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
327 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
328 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
329 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
330 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
331 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
332 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
333 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
334 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
336 } else {
337 # SHA512
338 $code.=<<___;
339 .align 64
340 .type $TABLE,\@object
341 $TABLE:
342 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
343 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
344 .quad 0x3956c25bf348b538,0x59f111f1b605d019
345 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
346 .quad 0xd807aa98a3030242,0x12835b0145706fbe
347 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
348 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
349 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
350 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
351 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
352 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
353 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
354 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
355 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
356 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
357 .quad 0x06ca6351e003826f,0x142929670a0e6e70
358 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
359 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
360 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
361 .quad 0x81c2c92e47edaee6,0x92722c851482353b
362 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
363 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
364 .quad 0xd192e819d6ef5218,0xd69906245565a910
365 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
366 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
367 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
368 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
369 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
370 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
371 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
372 .quad 0x90befffa23631e28,0xa4506cebde82bde9
373 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
374 .quad 0xca273eceea26619c,0xd186b8c721c0c207
375 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
376 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
377 .quad 0x113f9804bef90dae,0x1b710b35131c471b
378 .quad 0x28db77f523047d84,0x32caab7b40c72493
379 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
380 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
381 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
384 $code.=<<___;
387 $code =~ s/\`([^\`]*)\`/eval $1/gem;
388 print $code;
389 close STDOUT;