3 # ====================================================================
4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5 # project. Rights for redistribution and usage in source and binary
6 # forms are granted according to the OpenSSL license.
7 # ====================================================================
9 # sha256/512_block procedure for x86_64.
11 # 40% improvement over compiler-generated code on Opteron. On EM64T
12 # sha256 was observed to run >80% faster and sha512 - >40%. No magical
13 # tricks, just straight implementation... I really wonder why gcc
14 # [being armed with inline assembler] fails to generate as fast code.
15 # The only thing which is cool about this module is that it's very
16 # same instruction sequence used for both SHA-256 and SHA-512. In
17 # former case the instructions operate on 32-bit operands, while in
18 # latter - on 64-bit ones. All I had to do is to get one flavor right,
19 # the other one passed the test right away:-)
21 # sha256_block runs in ~1005 cycles on Opteron, which gives you
22 # asymptotic performance of 64*1000/1005=63.7MBps times CPU clock
23 # frequency in GHz. sha512_block runs in ~1275 cycles, which results
24 # in 128*1000/1275=100MBps per GHz. Is there room for improvement?
25 # Well, if you compare it to IA-64 implementation, which maintains
26 # X[16] in register bank[!], tends to 4 instructions per CPU clock
27 # cycle and runs in 1003 cycles, 1275 is very good result for 3-way
28 # issue Opteron pipeline and X[16] maintained in memory. So that *if*
29 # there is a way to improve it, *then* the only way would be to try to
30 # offload X[16] updates to SSE unit, but that would require "deeper"
31 # loop unroll, which in turn would naturally cause size blow-up, not
32 # to mention increased complexity! And once again, only *if* it's
33 # actually possible to noticeably improve overall ILP, instruction
34 # level parallelism, on a given CPU implementation in this case.
36 # Special note on Intel EM64T. While Opteron CPU exhibits perfect
37 # perfromance ratio of 1.5 between 64- and 32-bit flavors [see above],
38 # [currently available] EM64T CPUs apparently are far from it. On the
39 # contrary, 64-bit version, sha512_block, is ~30% *slower* than 32-bit
40 # sha256_block:-( This is presumably because 64-bit shifts/rotates
41 # apparently are not atomic instructions, but implemented in microcode.
44 # OpenSolaris OS modifications
46 # Sun elects to use this software under the BSD license.
48 # This source originates from OpenSSL file sha512-x86_64.pl at
49 # ftp://ftp.openssl.org/snapshot/openssl-0.9.8-stable-SNAP-20080131.tar.gz
50 # (presumably for future OpenSSL release 0.9.8h), with these changes:
52 # 1. Added perl "use strict" and declared variables.
54 # 2. Added OpenSolaris ENTRY_NP/SET_SIZE macros from
55 # /usr/include/sys/asm_linkage.h, .ident keywords, and lint(1B) guards.
57 # 3. Removed x86_64-xlate.pl script (not needed for as(1) or gas(1)
58 # assemblers). Replaced the .picmeup macro with assembler code.
60 # 4. Added 8 to $ctx, as OpenSolaris OS has an extra 4-byte field, "algotype",
61 # at the beginning of SHA2_CTX (the next field is 8-byte aligned).
65 my ($code, $func, $TABLE, $SZ, @Sigma0, @Sigma1, @sigma0, @sigma1, $rounds,
66 @ROT, $A, $B, $C, $D, $E, $F, $G, $H, $T1, $a0, $a1, $a2, $i,
67 $ctx, $round, $inp, $Tbl, $_ctx, $_inp, $_end, $_rsp, $framesz);
69 open STDOUT
,">$output";
73 # void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
74 # void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
77 # void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
78 # void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
79 # Note: the OpenSolaris SHA2 structure has an extra 8 byte field at the
80 # beginning (over OpenSSL's SHA512 or SHA256 structure).
83 if ($output =~ /512/) {
84 $func="SHA512TransformBlocks";
87 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%rax","%rbx","%rcx","%rdx",
88 "%r8", "%r9", "%r10","%r11");
89 ($T1,$a0,$a1,$a2)=("%r12","%r13","%r14","%r15");
96 $func="SHA256TransformBlocks";
99 @ROT=($A,$B,$C,$D,$E,$F,$G,$H)=("%eax","%ebx","%ecx","%edx",
100 "%r8d","%r9d","%r10d","%r11d");
101 ($T1,$a0,$a1,$a2)=("%r12d","%r13d","%r14d","%r15d");
109 $ctx="%rdi"; # 1st arg
110 $round="%rdi"; # zaps $ctx
111 $inp="%rsi"; # 2nd arg
114 $_ctx="16*$SZ+0*8(%rsp)";
115 $_inp="16*$SZ+1*8(%rsp)";
116 $_end="16*$SZ+2*8(%rsp)";
117 $_rsp="16*$SZ+3*8(%rsp)";
118 $framesz="16*$SZ+4*8";
122 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
134 ror \
$`$Sigma1[2]-$Sigma1[1]`,$a1
136 mov
$T1,`$SZ*($i&0xf)`(%rsp)
138 xor $a1,$a0 # Sigma1(e)
139 xor $g,$a2 # Ch(e,f,g)=((f^g)&e)^g
143 add
$a0,$T1 # T1+=Sigma1(e)
145 add
$a2,$T1 # T1+=Ch(e,f,g)
152 add
($Tbl,$round,$SZ),$T1 # T1+=K[round]
155 ror \
$`$Sigma0[2]-$Sigma0[1]`,$a0
158 xor $a0,$h # h=Sigma0(a)
165 or $a2,$a1 # Maj(a,b,c)=((a|c)&b)|(a&c)
166 lea
1($round),$round # round++
168 add
$a1,$h # h+=Maj(a,b,c)
173 { my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
176 mov
`$SZ*(($i+1)&0xf)`(%rsp),$a0
177 mov
`$SZ*(($i+14)&0xf)`(%rsp),$T1
185 ror \
$`$sigma0[1]-$sigma0[0]`,$a2
187 xor $a2,$a0 # sigma0(X[(i+1)&0xf])
194 ror \
$`$sigma1[1]-$sigma1[0]`,$a1
196 xor $a1,$T1 # sigma1(X[(i+14)&0xf])
200 add
`$SZ*(($i+9)&0xf)`(%rsp),$T1
202 add
`$SZ*($i&0xf)`(%rsp),$T1
208 # Execution begins here
212 #include <sys/asm_linkage.h>
221 mov
%rsp,%rbp # copy %rsp
222 shl \
$4,%rdx # num*16
224 lea
($inp,%rdx,$SZ),%rdx # inp+num*16*$SZ
225 and \
$-64,%rsp # align stack frame
226 add \
$8,$ctx # Skip OpenSolaris field, "algotype"
227 mov
$ctx,$_ctx # save ctx, 1st arg
228 mov
$inp,$_inp # save inp, 2nd arg
229 mov
%rdx,$_end # save end pointer, "3rd" arg
230 mov
%rbp,$_rsp # save copy of %rsp
233 / The .picmeup pseudo-directive, from perlasm/x86_
64_xlate
.pl
, puts
234 / the address of the
"next" instruction into the target register
235 / ($Tbl). This generates these
2 instructions
:
237 /nop / .picmeup generates a nop
for mod
8 alignment
--not needed here
240 lea
$TABLE-.($Tbl),$Tbl
256 for($i=0;$i<16;$i++) {
257 $code.=" mov $SZ*$i($inp),$T1\n";
258 $code.=" bswap $T1\n";
259 &ROUND_00_15
($i,@ROT);
260 unshift(@ROT,pop(@ROT));
268 &ROUND_16_XX
($i,@ROT);
269 unshift(@ROT,pop(@ROT));
277 lea
16*$SZ($inp),$inp
317 .type
$TABLE,\
@object
319 .long
0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
320 .long
0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
321 .long
0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
322 .long
0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
323 .long
0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
324 .long
0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
325 .long
0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
326 .long
0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
327 .long
0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
328 .long
0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
329 .long
0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
330 .long
0xd192e819,0xd6990624,0xf40e3585,0x106aa070
331 .long
0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
332 .long
0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
333 .long
0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
334 .long
0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
340 .type
$TABLE,\
@object
342 .quad
0x428a2f98d728ae22,0x7137449123ef65cd
343 .quad
0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
344 .quad
0x3956c25bf348b538,0x59f111f1b605d019
345 .quad
0x923f82a4af194f9b,0xab1c5ed5da6d8118
346 .quad
0xd807aa98a3030242,0x12835b0145706fbe
347 .quad
0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
348 .quad
0x72be5d74f27b896f,0x80deb1fe3b1696b1
349 .quad
0x9bdc06a725c71235,0xc19bf174cf692694
350 .quad
0xe49b69c19ef14ad2,0xefbe4786384f25e3
351 .quad
0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
352 .quad
0x2de92c6f592b0275,0x4a7484aa6ea6e483
353 .quad
0x5cb0a9dcbd41fbd4,0x76f988da831153b5
354 .quad
0x983e5152ee66dfab,0xa831c66d2db43210
355 .quad
0xb00327c898fb213f,0xbf597fc7beef0ee4
356 .quad
0xc6e00bf33da88fc2,0xd5a79147930aa725
357 .quad
0x06ca6351e003826f,0x142929670a0e6e70
358 .quad
0x27b70a8546d22ffc,0x2e1b21385c26c926
359 .quad
0x4d2c6dfc5ac42aed,0x53380d139d95b3df
360 .quad
0x650a73548baf63de,0x766a0abb3c77b2a8
361 .quad
0x81c2c92e47edaee6,0x92722c851482353b
362 .quad
0xa2bfe8a14cf10364,0xa81a664bbc423001
363 .quad
0xc24b8b70d0f89791,0xc76c51a30654be30
364 .quad
0xd192e819d6ef5218,0xd69906245565a910
365 .quad
0xf40e35855771202a,0x106aa07032bbd1b8
366 .quad
0x19a4c116b8d2d0c8,0x1e376c085141ab53
367 .quad
0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
368 .quad
0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
369 .quad
0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
370 .quad
0x748f82ee5defb2fc,0x78a5636f43172f60
371 .quad
0x84c87814a1f0ab72,0x8cc702081a6439ec
372 .quad
0x90befffa23631e28,0xa4506cebde82bde9
373 .quad
0xbef9a3f7b2c67915,0xc67178f2e372532b
374 .quad
0xca273eceea26619c,0xd186b8c721c0c207
375 .quad
0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
376 .quad
0x06f067aa72176fba,0x0a637dc5a2c898a6
377 .quad
0x113f9804bef90dae,0x1b710b35131c471b
378 .quad
0x28db77f523047d84,0x32caab7b40c72493
379 .quad
0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
380 .quad
0x4cc5d4becb3e42b6,0x597f299cfc657e2a
381 .quad
0x5fcb6fab3ad6faec,0x6c44198c4a475817
387 $code =~ s/\`([^\`]*)\`/eval $1/gem;