import less(1)
[unleashed/tickless.git] / usr / src / common / crypto / sha2 / sha2.c
blob66389c070412604b4e588b855f0bf50c475f44c6
1 /*
2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
3 * Use is subject to license terms.
4 */
5 /*
6 * Copyright 2013 Saso Kiselkov. All rights reserved.
7 */
9 /*
10 * The basic framework for this code came from the reference
11 * implementation for MD5. That implementation is Copyright (C)
12 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
14 * License to copy and use this software is granted provided that it
15 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
16 * Algorithm" in all material mentioning or referencing this software
17 * or this function.
19 * License is also granted to make and use derivative works provided
20 * that such works are identified as "derived from the RSA Data
21 * Security, Inc. MD5 Message-Digest Algorithm" in all material
22 * mentioning or referencing the derived work.
24 * RSA Data Security, Inc. makes no representations concerning either
25 * the merchantability of this software or the suitability of this
26 * software for any particular purpose. It is provided "as is"
27 * without express or implied warranty of any kind.
29 * These notices must be retained in any copies of any part of this
30 * documentation and/or software.
32 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
33 * standard, available at
34 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
35 * Not as fast as one would like -- further optimizations are encouraged
36 * and appreciated.
39 #ifndef _KERNEL
40 #include <stdint.h>
41 #include <strings.h>
42 #include <stdlib.h>
43 #include <errno.h>
44 #endif /* _KERNEL */
46 #include <sys/types.h>
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/sysmacros.h>
50 #define _SHA2_IMPL
51 #include <sys/sha2.h>
52 #include <sys/sha2_consts.h>
54 #ifdef _KERNEL
55 #include <sys/cmn_err.h>
57 #else
58 #pragma weak SHA256Update = SHA2Update
59 #pragma weak SHA384Update = SHA2Update
60 #pragma weak SHA512Update = SHA2Update
62 #pragma weak SHA256Final = SHA2Final
63 #pragma weak SHA384Final = SHA2Final
64 #pragma weak SHA512Final = SHA2Final
66 #endif /* _KERNEL */
68 #ifdef _LITTLE_ENDIAN
69 #include <sys/byteorder.h>
70 #define HAVE_HTONL
71 #endif
73 static void Encode(uint8_t *, uint32_t *, size_t);
74 static void Encode64(uint8_t *, uint64_t *, size_t);
76 #if defined(__amd64)
77 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
78 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
80 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
81 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
83 #else
84 static void SHA256Transform(SHA2_CTX *, const uint8_t *);
85 static void SHA512Transform(SHA2_CTX *, const uint8_t *);
86 #endif /* __amd64 */
88 static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
90 /* Ch and Maj are the basic SHA2 functions. */
91 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
92 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
94 /* Rotates x right n bits. */
95 #define ROTR(x, n) \
96 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
98 /* Shift x right n bits */
99 #define SHR(x, n) ((x) >> (n))
101 /* SHA256 Functions */
102 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
103 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
104 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
105 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
107 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \
108 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \
109 d += T1; \
110 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
111 h = T1 + T2
113 /* SHA384/512 Functions */
114 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
115 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
116 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
117 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
118 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
119 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
120 d += T1; \
121 T2 = BIGSIGMA0(a) + Maj(a, b, c); \
122 h = T1 + T2
125 * sparc optimization:
127 * on the sparc, we can load big endian 32-bit data easily. note that
128 * special care must be taken to ensure the address is 32-bit aligned.
129 * in the interest of speed, we don't check to make sure, since
130 * careful programming can guarantee this for us.
133 #if defined(_BIG_ENDIAN)
134 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
135 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr))
137 #elif defined(HAVE_HTONL)
138 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
139 #define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
141 #else
142 /* little endian -- will work on big endian, but slowly */
143 #define LOAD_BIG_32(addr) \
144 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
145 #define LOAD_BIG_64(addr) \
146 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \
147 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \
148 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \
149 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
150 #endif /* _BIG_ENDIAN */
153 #if !defined(__amd64)
154 /* SHA256 Transform */
156 static void
157 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
159 uint32_t a = ctx->state.s32[0];
160 uint32_t b = ctx->state.s32[1];
161 uint32_t c = ctx->state.s32[2];
162 uint32_t d = ctx->state.s32[3];
163 uint32_t e = ctx->state.s32[4];
164 uint32_t f = ctx->state.s32[5];
165 uint32_t g = ctx->state.s32[6];
166 uint32_t h = ctx->state.s32[7];
168 uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
169 uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
170 uint32_t T1, T2;
172 #if defined(__sparc)
173 static const uint32_t sha256_consts[] = {
174 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
175 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
176 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
177 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
178 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
179 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
180 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
181 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
182 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
183 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
184 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
185 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
186 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
187 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
188 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
189 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
190 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
191 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
192 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
193 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
194 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
195 SHA256_CONST_63
197 #endif /* __sparc */
199 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
200 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
201 blk = (uint8_t *)ctx->buf_un.buf32;
204 /* LINTED E_BAD_PTR_CAST_ALIGN */
205 w0 = LOAD_BIG_32(blk + 4 * 0);
206 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
207 /* LINTED E_BAD_PTR_CAST_ALIGN */
208 w1 = LOAD_BIG_32(blk + 4 * 1);
209 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
210 /* LINTED E_BAD_PTR_CAST_ALIGN */
211 w2 = LOAD_BIG_32(blk + 4 * 2);
212 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
213 /* LINTED E_BAD_PTR_CAST_ALIGN */
214 w3 = LOAD_BIG_32(blk + 4 * 3);
215 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
216 /* LINTED E_BAD_PTR_CAST_ALIGN */
217 w4 = LOAD_BIG_32(blk + 4 * 4);
218 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
219 /* LINTED E_BAD_PTR_CAST_ALIGN */
220 w5 = LOAD_BIG_32(blk + 4 * 5);
221 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
222 /* LINTED E_BAD_PTR_CAST_ALIGN */
223 w6 = LOAD_BIG_32(blk + 4 * 6);
224 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
225 /* LINTED E_BAD_PTR_CAST_ALIGN */
226 w7 = LOAD_BIG_32(blk + 4 * 7);
227 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
228 /* LINTED E_BAD_PTR_CAST_ALIGN */
229 w8 = LOAD_BIG_32(blk + 4 * 8);
230 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
231 /* LINTED E_BAD_PTR_CAST_ALIGN */
232 w9 = LOAD_BIG_32(blk + 4 * 9);
233 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
234 /* LINTED E_BAD_PTR_CAST_ALIGN */
235 w10 = LOAD_BIG_32(blk + 4 * 10);
236 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
237 /* LINTED E_BAD_PTR_CAST_ALIGN */
238 w11 = LOAD_BIG_32(blk + 4 * 11);
239 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
240 /* LINTED E_BAD_PTR_CAST_ALIGN */
241 w12 = LOAD_BIG_32(blk + 4 * 12);
242 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
243 /* LINTED E_BAD_PTR_CAST_ALIGN */
244 w13 = LOAD_BIG_32(blk + 4 * 13);
245 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
246 /* LINTED E_BAD_PTR_CAST_ALIGN */
247 w14 = LOAD_BIG_32(blk + 4 * 14);
248 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
249 /* LINTED E_BAD_PTR_CAST_ALIGN */
250 w15 = LOAD_BIG_32(blk + 4 * 15);
251 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
253 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
254 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
255 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
256 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
257 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
258 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
259 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
260 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
261 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
262 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
263 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
264 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
265 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
266 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
267 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
268 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
269 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
270 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
271 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
272 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
273 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
274 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
275 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
276 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
277 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
278 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
279 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
280 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
281 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
282 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
283 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
284 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
286 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
287 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
288 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
289 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
290 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
291 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
292 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
293 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
294 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
295 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
296 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
297 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
298 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
299 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
300 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
301 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
302 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
303 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
304 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
305 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
306 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
307 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
308 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
309 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
310 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
311 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
312 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
313 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
314 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
315 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
316 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
317 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
319 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
320 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
321 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
322 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
323 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
324 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
325 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
326 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
327 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
328 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
329 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
330 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
331 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
332 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
333 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
334 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
335 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
336 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
337 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
338 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
339 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
340 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
341 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
342 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
343 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
344 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
345 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
346 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
347 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
348 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
349 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
350 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
352 ctx->state.s32[0] += a;
353 ctx->state.s32[1] += b;
354 ctx->state.s32[2] += c;
355 ctx->state.s32[3] += d;
356 ctx->state.s32[4] += e;
357 ctx->state.s32[5] += f;
358 ctx->state.s32[6] += g;
359 ctx->state.s32[7] += h;
363 /* SHA384 and SHA512 Transform */
365 static void
366 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
369 uint64_t a = ctx->state.s64[0];
370 uint64_t b = ctx->state.s64[1];
371 uint64_t c = ctx->state.s64[2];
372 uint64_t d = ctx->state.s64[3];
373 uint64_t e = ctx->state.s64[4];
374 uint64_t f = ctx->state.s64[5];
375 uint64_t g = ctx->state.s64[6];
376 uint64_t h = ctx->state.s64[7];
378 uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
379 uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
380 uint64_t T1, T2;
382 #if defined(__sparc)
383 static const uint64_t sha512_consts[] = {
384 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
385 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
386 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
387 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
388 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
389 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
390 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
391 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
392 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
393 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
394 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
395 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
396 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
397 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
398 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
399 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
400 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
401 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
402 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
403 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
404 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
405 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
406 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
407 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
408 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
409 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
410 SHA512_CONST_78, SHA512_CONST_79
412 #endif /* __sparc */
415 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
416 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64));
417 blk = (uint8_t *)ctx->buf_un.buf64;
420 /* LINTED E_BAD_PTR_CAST_ALIGN */
421 w0 = LOAD_BIG_64(blk + 8 * 0);
422 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
423 /* LINTED E_BAD_PTR_CAST_ALIGN */
424 w1 = LOAD_BIG_64(blk + 8 * 1);
425 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
426 /* LINTED E_BAD_PTR_CAST_ALIGN */
427 w2 = LOAD_BIG_64(blk + 8 * 2);
428 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
429 /* LINTED E_BAD_PTR_CAST_ALIGN */
430 w3 = LOAD_BIG_64(blk + 8 * 3);
431 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
432 /* LINTED E_BAD_PTR_CAST_ALIGN */
433 w4 = LOAD_BIG_64(blk + 8 * 4);
434 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
435 /* LINTED E_BAD_PTR_CAST_ALIGN */
436 w5 = LOAD_BIG_64(blk + 8 * 5);
437 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
438 /* LINTED E_BAD_PTR_CAST_ALIGN */
439 w6 = LOAD_BIG_64(blk + 8 * 6);
440 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
441 /* LINTED E_BAD_PTR_CAST_ALIGN */
442 w7 = LOAD_BIG_64(blk + 8 * 7);
443 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
444 /* LINTED E_BAD_PTR_CAST_ALIGN */
445 w8 = LOAD_BIG_64(blk + 8 * 8);
446 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
447 /* LINTED E_BAD_PTR_CAST_ALIGN */
448 w9 = LOAD_BIG_64(blk + 8 * 9);
449 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
450 /* LINTED E_BAD_PTR_CAST_ALIGN */
451 w10 = LOAD_BIG_64(blk + 8 * 10);
452 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
453 /* LINTED E_BAD_PTR_CAST_ALIGN */
454 w11 = LOAD_BIG_64(blk + 8 * 11);
455 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
456 /* LINTED E_BAD_PTR_CAST_ALIGN */
457 w12 = LOAD_BIG_64(blk + 8 * 12);
458 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
459 /* LINTED E_BAD_PTR_CAST_ALIGN */
460 w13 = LOAD_BIG_64(blk + 8 * 13);
461 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
462 /* LINTED E_BAD_PTR_CAST_ALIGN */
463 w14 = LOAD_BIG_64(blk + 8 * 14);
464 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
465 /* LINTED E_BAD_PTR_CAST_ALIGN */
466 w15 = LOAD_BIG_64(blk + 8 * 15);
467 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
469 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
470 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
471 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
472 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
473 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
474 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
475 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
476 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
477 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
478 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
479 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
480 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
481 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
482 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
483 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
484 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
485 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
486 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
487 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
488 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
489 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
490 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
491 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
492 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
493 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
494 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
495 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
496 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
497 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
498 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
499 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
500 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
502 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
503 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
504 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
505 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
506 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
507 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
508 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
509 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
510 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
511 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
512 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
513 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
514 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
515 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
516 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
517 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
518 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
519 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
520 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
521 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
522 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
523 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
524 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
525 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
526 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
527 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
528 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
529 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
530 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
531 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
532 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
533 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
535 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
536 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
537 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
538 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
539 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
540 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
541 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
542 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
543 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
544 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
545 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
546 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
547 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
548 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
549 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
550 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
551 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
552 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
553 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
554 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
555 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
556 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
557 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
558 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
559 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
560 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
561 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
562 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
563 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
564 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
565 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
566 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
568 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
569 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
570 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
571 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
572 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
573 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
574 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
575 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
576 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
577 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
578 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
579 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
580 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
581 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
582 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
583 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
584 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
585 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
586 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
587 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
588 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
589 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
590 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
591 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
592 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
593 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
594 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
595 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
596 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
597 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
598 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
599 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
601 ctx->state.s64[0] += a;
602 ctx->state.s64[1] += b;
603 ctx->state.s64[2] += c;
604 ctx->state.s64[3] += d;
605 ctx->state.s64[4] += e;
606 ctx->state.s64[5] += f;
607 ctx->state.s64[6] += g;
608 ctx->state.s64[7] += h;
611 #endif /* !__amd64 */
615 * Encode()
617 * purpose: to convert a list of numbers from little endian to big endian
618 * input: uint8_t * : place to store the converted big endian numbers
619 * uint32_t * : place to get numbers to convert from
620 * size_t : the length of the input in bytes
621 * output: void
624 static void
625 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
626 size_t len)
628 size_t i, j;
630 for (i = 0, j = 0; j < len; i++, j += 4) {
631 output[j] = (input[i] >> 24) & 0xff;
632 output[j + 1] = (input[i] >> 16) & 0xff;
633 output[j + 2] = (input[i] >> 8) & 0xff;
634 output[j + 3] = input[i] & 0xff;
638 static void
639 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
640 size_t len)
642 size_t i, j;
644 for (i = 0, j = 0; j < len; i++, j += 8) {
646 output[j] = (input[i] >> 56) & 0xff;
647 output[j + 1] = (input[i] >> 48) & 0xff;
648 output[j + 2] = (input[i] >> 40) & 0xff;
649 output[j + 3] = (input[i] >> 32) & 0xff;
650 output[j + 4] = (input[i] >> 24) & 0xff;
651 output[j + 5] = (input[i] >> 16) & 0xff;
652 output[j + 6] = (input[i] >> 8) & 0xff;
653 output[j + 7] = input[i] & 0xff;
658 void
659 SHA2Init(uint64_t mech, SHA2_CTX *ctx)
662 switch (mech) {
663 case SHA256_MECH_INFO_TYPE:
664 case SHA256_HMAC_MECH_INFO_TYPE:
665 case SHA256_HMAC_GEN_MECH_INFO_TYPE:
666 ctx->state.s32[0] = 0x6a09e667U;
667 ctx->state.s32[1] = 0xbb67ae85U;
668 ctx->state.s32[2] = 0x3c6ef372U;
669 ctx->state.s32[3] = 0xa54ff53aU;
670 ctx->state.s32[4] = 0x510e527fU;
671 ctx->state.s32[5] = 0x9b05688cU;
672 ctx->state.s32[6] = 0x1f83d9abU;
673 ctx->state.s32[7] = 0x5be0cd19U;
674 break;
675 case SHA384_MECH_INFO_TYPE:
676 case SHA384_HMAC_MECH_INFO_TYPE:
677 case SHA384_HMAC_GEN_MECH_INFO_TYPE:
678 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
679 ctx->state.s64[1] = 0x629a292a367cd507ULL;
680 ctx->state.s64[2] = 0x9159015a3070dd17ULL;
681 ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
682 ctx->state.s64[4] = 0x67332667ffc00b31ULL;
683 ctx->state.s64[5] = 0x8eb44a8768581511ULL;
684 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
685 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
686 break;
687 case SHA512_MECH_INFO_TYPE:
688 case SHA512_HMAC_MECH_INFO_TYPE:
689 case SHA512_HMAC_GEN_MECH_INFO_TYPE:
690 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
691 ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
692 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
693 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
694 ctx->state.s64[4] = 0x510e527fade682d1ULL;
695 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
696 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
697 ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
698 break;
699 case SHA512_224_MECH_INFO_TYPE:
700 ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
701 ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
702 ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
703 ctx->state.s64[3] = 0x679DD514582F9FCFULL;
704 ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
705 ctx->state.s64[5] = 0x77E36F7304C48942ULL;
706 ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
707 ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
708 break;
709 case SHA512_256_MECH_INFO_TYPE:
710 ctx->state.s64[0] = 0x22312194FC2BF72CULL;
711 ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
712 ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
713 ctx->state.s64[3] = 0x963877195940EABDULL;
714 ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
715 ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
716 ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
717 ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
718 break;
719 #ifdef _KERNEL
720 default:
721 cmn_err(CE_PANIC,
722 "sha2_init: failed to find a supported algorithm: 0x%x",
723 (uint32_t)mech);
725 #endif /* _KERNEL */
728 ctx->algotype = (uint32_t)mech;
729 ctx->count.c64[0] = ctx->count.c64[1] = 0;
732 #ifndef _KERNEL
734 #pragma inline(SHA256Init, SHA384Init, SHA512Init)
735 void
736 SHA256Init(SHA256_CTX *ctx)
738 SHA2Init(SHA256, ctx);
741 void
742 SHA384Init(SHA384_CTX *ctx)
744 SHA2Init(SHA384, ctx);
747 void
748 SHA512Init(SHA512_CTX *ctx)
750 SHA2Init(SHA512, ctx);
753 #endif /* _KERNEL */
756 * SHA2Update()
758 * purpose: continues an sha2 digest operation, using the message block
759 * to update the context.
760 * input: SHA2_CTX * : the context to update
761 * void * : the message block
762 * size_t : the length of the message block, in bytes
763 * output: void
766 void
767 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
769 uint32_t i, buf_index, buf_len, buf_limit;
770 const uint8_t *input = inptr;
771 uint32_t algotype = ctx->algotype;
772 #if defined(__amd64)
773 uint32_t block_count;
774 #endif /* !__amd64 */
777 /* check for noop */
778 if (input_len == 0)
779 return;
781 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
782 buf_limit = 64;
784 /* compute number of bytes mod 64 */
785 buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
787 /* update number of bits */
788 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
789 ctx->count.c32[0]++;
791 ctx->count.c32[0] += (input_len >> 29);
793 } else {
794 buf_limit = 128;
796 /* compute number of bytes mod 128 */
797 buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
799 /* update number of bits */
800 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
801 ctx->count.c64[0]++;
803 ctx->count.c64[0] += (input_len >> 29);
806 buf_len = buf_limit - buf_index;
808 /* transform as many times as possible */
809 i = 0;
810 if (input_len >= buf_len) {
813 * general optimization:
815 * only do initial bcopy() and SHA2Transform() if
816 * buf_index != 0. if buf_index == 0, we're just
817 * wasting our time doing the bcopy() since there
818 * wasn't any data left over from a previous call to
819 * SHA2Update().
821 if (buf_index) {
822 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
823 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
824 SHA256Transform(ctx, ctx->buf_un.buf8);
825 else
826 SHA512Transform(ctx, ctx->buf_un.buf8);
828 i = buf_len;
831 #if !defined(__amd64)
832 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
833 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
834 SHA256Transform(ctx, &input[i]);
836 } else {
837 for (; i + buf_limit - 1 < input_len; i += buf_limit) {
838 SHA512Transform(ctx, &input[i]);
842 #else
843 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
844 block_count = (input_len - i) >> 6;
845 if (block_count > 0) {
846 SHA256TransformBlocks(ctx, &input[i],
847 block_count);
848 i += block_count << 6;
850 } else {
851 block_count = (input_len - i) >> 7;
852 if (block_count > 0) {
853 SHA512TransformBlocks(ctx, &input[i],
854 block_count);
855 i += block_count << 7;
858 #endif /* !__amd64 */
861 * general optimization:
863 * if i and input_len are the same, return now instead
864 * of calling bcopy(), since the bcopy() in this case
865 * will be an expensive noop.
868 if (input_len == i)
869 return;
871 buf_index = 0;
874 /* buffer remaining input */
875 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
880 * SHA2Final()
882 * purpose: ends an sha2 digest operation, finalizing the message digest and
883 * zeroing the context.
884 * input: uchar_t * : a buffer to store the digest
885 * : The function actually uses void* because many
886 * : callers pass things other than uchar_t here.
887 * SHA2_CTX * : the context to finalize, save, and zero
888 * output: void
891 void
892 SHA2Final(void *digest, SHA2_CTX *ctx)
894 uint8_t bitcount_be[sizeof (ctx->count.c32)];
895 uint8_t bitcount_be64[sizeof (ctx->count.c64)];
896 uint32_t index;
897 uint32_t algotype = ctx->algotype;
899 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
900 index = (ctx->count.c32[1] >> 3) & 0x3f;
901 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
902 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
903 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
904 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
905 } else {
906 index = (ctx->count.c64[1] >> 3) & 0x7f;
907 Encode64(bitcount_be64, ctx->count.c64,
908 sizeof (bitcount_be64));
909 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
910 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
911 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
912 ctx->state.s64[6] = ctx->state.s64[7] = 0;
913 Encode64(digest, ctx->state.s64,
914 sizeof (uint64_t) * 6);
915 } else if (algotype == SHA512_224_MECH_INFO_TYPE) {
916 uint8_t last[sizeof (uint64_t)];
918 * Since SHA-512/224 doesn't align well to 64-bit
919 * boundaries, we must do the encoding in three steps:
920 * 1) encode the three 64-bit words that fit neatly
921 * 2) encode the last 64-bit word to a temp buffer
922 * 3) chop out the lower 32-bits from the temp buffer
923 * and append them to the digest
925 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
926 Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
927 bcopy(last, (uint8_t *)digest + 24, 4);
928 } else if (algotype == SHA512_256_MECH_INFO_TYPE) {
929 Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
930 } else {
931 Encode64(digest, ctx->state.s64,
932 sizeof (ctx->state.s64));
936 /* zeroize sensitive information */
937 bzero(ctx, sizeof (*ctx));