import less(1)
[unleashed/tickless.git] / usr / src / lib / libast / common / uwin / erf.c
blob38aeb6d37d770ba9cc863b4c0dfc3c878b3c8816
1 #include "FEATURE/uwin"
3 #if !_UWIN || _lib_erf
5 void _STUB_erf(){}
7 #else
9 /*-
10 * Copyright (c) 1992, 1993
11 * The Regents of the University of California. All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
38 static char sccsid[] = "@(#)erf.c 8.1 (Berkeley) 6/4/93";
40 /* Modified Nov 30, 1992 P. McILROY:
41 * Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
42 * Replaced even+odd with direct calculation for x < .84375,
43 * to avoid destructive cancellation.
45 * Performance of erfc(x):
46 * In 300000 trials in the range [.83, .84375] the
47 * maximum observed error was 3.6ulp.
49 * In [.84735,1.25] the maximum observed error was <2.5ulp in
50 * 100000 runs in the range [1.2, 1.25].
52 * In [1.25,26] (Not including subnormal results)
53 * the error is < 1.7ulp.
56 /* double erf(double x)
57 * double erfc(double x)
58 * x
59 * 2 |\
60 * erf(x) = --------- | exp(-t*t)dt
61 * sqrt(pi) \|
62 * 0
64 * erfc(x) = 1-erf(x)
66 * Method:
67 * 1. Reduce x to |x| by erf(-x) = -erf(x)
68 * 2. For x in [0, 0.84375]
69 * erf(x) = x + x*P(x^2)
70 * erfc(x) = 1 - erf(x) if x<=0.25
71 * = 0.5 + ((0.5-x)-x*P) if x in [0.25,0.84375]
72 * where
73 * 2 2 4 20
74 * P = P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x )
75 * is an approximation to (erf(x)-x)/x with precision
77 * -56.45
78 * | P - (erf(x)-x)/x | <= 2
81 * Remark. The formula is derived by noting
82 * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
83 * and that
84 * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
85 * is close to one. The interval is chosen because the fixed
86 * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
87 * near 0.6174), and by some experiment, 0.84375 is chosen to
88 * guarantee the error is less than one ulp for erf.
90 * 3. For x in [0.84375,1.25], let s = x - 1, and
91 * c = 0.84506291151 rounded to single (24 bits)
92 * erf(x) = c + P1(s)/Q1(s)
93 * erfc(x) = (1-c) - P1(s)/Q1(s)
94 * |P1/Q1 - (erf(x)-c)| <= 2**-59.06
95 * Remark: here we use the taylor series expansion at x=1.
96 * erf(1+s) = erf(1) + s*Poly(s)
97 * = 0.845.. + P1(s)/Q1(s)
98 * That is, we use rational approximation to approximate
99 * erf(1+s) - (c = (single)0.84506291151)
100 * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
101 * where
102 * P1(s) = degree 6 poly in s
103 * Q1(s) = degree 6 poly in s
105 * 4. For x in [1.25, 2]; [2, 4]
106 * erf(x) = 1.0 - tiny
107 * erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
109 * Where z = 1/(x*x), R is degree 9, and S is degree 3;
111 * 5. For x in [4,28]
112 * erf(x) = 1.0 - tiny
113 * erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
115 * Where P is degree 14 polynomial in 1/(x*x).
117 * Notes:
118 * Here 4 and 5 make use of the asymptotic series
119 * exp(-x*x)
120 * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
121 * x*sqrt(pi)
123 * where for z = 1/(x*x)
124 * P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
126 * Thus we use rational approximation to approximate
127 * erfc*x*exp(x*x) ~ 1/sqrt(pi);
129 * The error bound for the target function, G(z) for
130 * the interval
131 * [4, 28]:
132 * |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
133 * for [2, 4]:
134 * |R(z)/S(z) - G(z)| < 2**(-58.24)
135 * for [1.25, 2]:
136 * |R(z)/S(z) - G(z)| < 2**(-58.12)
138 * 6. For inf > x >= 28
139 * erf(x) = 1 - tiny (raise inexact)
140 * erfc(x) = tiny*tiny (raise underflow)
142 * 7. Special cases:
143 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
144 * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
145 * erfc/erf(NaN) is NaN
148 #if defined(vax) || defined(tahoe)
149 #define _IEEE 0
150 #define TRUNC(x) (double) (float) (x)
151 #else
152 #define _IEEE 1
153 #define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
154 #define infnan(x) 0.0
155 #endif
157 #ifdef _IEEE_LIBM
159 * redefining "___function" to "function" in _IEEE_LIBM mode
161 #include "ieee_libm.h"
162 #endif
163 #include "mathimpl.h"
165 static double
166 tiny = 1e-300,
167 half = 0.5,
168 one = 1.0,
169 two = 2.0,
170 c = 8.45062911510467529297e-01, /* (float)0.84506291151 */
172 * Coefficients for approximation to erf in [0,0.84375]
174 p0t8 = 1.02703333676410051049867154944018394163280,
175 p0 = 1.283791670955125638123339436800229927041e-0001,
176 p1 = -3.761263890318340796574473028946097022260e-0001,
177 p2 = 1.128379167093567004871858633779992337238e-0001,
178 p3 = -2.686617064084433642889526516177508374437e-0002,
179 p4 = 5.223977576966219409445780927846432273191e-0003,
180 p5 = -8.548323822001639515038738961618255438422e-0004,
181 p6 = 1.205520092530505090384383082516403772317e-0004,
182 p7 = -1.492214100762529635365672665955239554276e-0005,
183 p8 = 1.640186161764254363152286358441771740838e-0006,
184 p9 = -1.571599331700515057841960987689515895479e-0007,
185 p10= 1.073087585213621540635426191486561494058e-0008;
187 * Coefficients for approximation to erf in [0.84375,1.25]
189 static double
190 pa0 = -2.362118560752659485957248365514511540287e-0003,
191 pa1 = 4.148561186837483359654781492060070469522e-0001,
192 pa2 = -3.722078760357013107593507594535478633044e-0001,
193 pa3 = 3.183466199011617316853636418691420262160e-0001,
194 pa4 = -1.108946942823966771253985510891237782544e-0001,
195 pa5 = 3.547830432561823343969797140537411825179e-0002,
196 pa6 = -2.166375594868790886906539848893221184820e-0003,
197 qa1 = 1.064208804008442270765369280952419863524e-0001,
198 qa2 = 5.403979177021710663441167681878575087235e-0001,
199 qa3 = 7.182865441419627066207655332170665812023e-0002,
200 qa4 = 1.261712198087616469108438860983447773726e-0001,
201 qa5 = 1.363708391202905087876983523620537833157e-0002,
202 qa6 = 1.198449984679910764099772682882189711364e-0002;
204 * log(sqrt(pi)) for large x expansions.
205 * The tail (lsqrtPI_lo) is included in the rational
206 * approximations.
208 static double
209 lsqrtPI_hi = .5723649429247000819387380943226;
211 * lsqrtPI_lo = .000000000000000005132975581353913;
213 * Coefficients for approximation to erfc in [2, 4]
215 static double
216 rb0 = -1.5306508387410807582e-010, /* includes lsqrtPI_lo */
217 rb1 = 2.15592846101742183841910806188e-008,
218 rb2 = 6.24998557732436510470108714799e-001,
219 rb3 = 8.24849222231141787631258921465e+000,
220 rb4 = 2.63974967372233173534823436057e+001,
221 rb5 = 9.86383092541570505318304640241e+000,
222 rb6 = -7.28024154841991322228977878694e+000,
223 rb7 = 5.96303287280680116566600190708e+000,
224 rb8 = -4.40070358507372993983608466806e+000,
225 rb9 = 2.39923700182518073731330332521e+000,
226 rb10 = -6.89257464785841156285073338950e-001,
227 sb1 = 1.56641558965626774835300238919e+001,
228 sb2 = 7.20522741000949622502957936376e+001,
229 sb3 = 9.60121069770492994166488642804e+001;
231 * Coefficients for approximation to erfc in [1.25, 2]
233 static double
234 rc0 = -2.47925334685189288817e-007, /* includes lsqrtPI_lo */
235 rc1 = 1.28735722546372485255126993930e-005,
236 rc2 = 6.24664954087883916855616917019e-001,
237 rc3 = 4.69798884785807402408863708843e+000,
238 rc4 = 7.61618295853929705430118701770e+000,
239 rc5 = 9.15640208659364240872946538730e-001,
240 rc6 = -3.59753040425048631334448145935e-001,
241 rc7 = 1.42862267989304403403849619281e-001,
242 rc8 = -4.74392758811439801958087514322e-002,
243 rc9 = 1.09964787987580810135757047874e-002,
244 rc10 = -1.28856240494889325194638463046e-003,
245 sc1 = 9.97395106984001955652274773456e+000,
246 sc2 = 2.80952153365721279953959310660e+001,
247 sc3 = 2.19826478142545234106819407316e+001;
249 * Coefficients for approximation to erfc in [4,28]
251 static double
252 rd0 = -2.1491361969012978677e-016, /* includes lsqrtPI_lo */
253 rd1 = -4.99999999999640086151350330820e-001,
254 rd2 = 6.24999999772906433825880867516e-001,
255 rd3 = -1.54166659428052432723177389562e+000,
256 rd4 = 5.51561147405411844601985649206e+000,
257 rd5 = -2.55046307982949826964613748714e+001,
258 rd6 = 1.43631424382843846387913799845e+002,
259 rd7 = -9.45789244999420134263345971704e+002,
260 rd8 = 6.94834146607051206956384703517e+003,
261 rd9 = -5.27176414235983393155038356781e+004,
262 rd10 = 3.68530281128672766499221324921e+005,
263 rd11 = -2.06466642800404317677021026611e+006,
264 rd12 = 7.78293889471135381609201431274e+006,
265 rd13 = -1.42821001129434127360582351685e+007;
267 extern double erf(x)
268 double x;
270 double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
271 if(!finite(x)) { /* erf(nan)=nan */
272 if (isnan(x))
273 return(x);
274 return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
276 if ((ax = x) < 0)
277 ax = - ax;
278 if (ax < .84375) {
279 if (ax < 3.7e-09) {
280 if (ax < 1.0e-308)
281 return 0.125*(8.0*x+p0t8*x); /*avoid underflow */
282 return x + p0*x;
284 y = x*x;
285 r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
286 y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
287 return x + x*(p0+r);
289 if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
290 s = fabs(x)-one;
291 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
292 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
293 if (x>=0)
294 return (c + P/Q);
295 else
296 return (-c - P/Q);
298 if (ax >= 6.0) { /* inf>|x|>=6 */
299 if (x >= 0.0)
300 return (one-tiny);
301 else
302 return (tiny-one);
304 /* 1.25 <= |x| < 6 */
305 z = -ax*ax;
306 s = -one/z;
307 if (ax < 2.0) {
308 R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
309 s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
310 S = one+s*(sc1+s*(sc2+s*sc3));
311 } else {
312 R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
313 s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
314 S = one+s*(sb1+s*(sb2+s*sb3));
316 y = (R/S -.5*s) - lsqrtPI_hi;
317 z += y;
318 z = exp(z)/ax;
319 if (x >= 0)
320 return (one-z);
321 else
322 return (z-one);
325 extern double erfc(x)
326 double x;
328 double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
329 if (!finite(x)) {
330 if (isnan(x)) /* erfc(NaN) = NaN */
331 return(x);
332 else if (x > 0) /* erfc(+-inf)=0,2 */
333 return 0.0;
334 else
335 return 2.0;
337 if ((ax = x) < 0)
338 ax = -ax;
339 if (ax < .84375) { /* |x|<0.84375 */
340 if (ax < 1.38777878078144568e-17) /* |x|<2**-56 */
341 return one-x;
342 y = x*x;
343 r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
344 y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
345 if (ax < .0625) { /* |x|<2**-4 */
346 return (one-(x+x*(p0+r)));
347 } else {
348 r = x*(p0+r);
349 r += (x-half);
350 return (half - r);
353 if (ax < 1.25) { /* 0.84375 <= |x| < 1.25 */
354 s = ax-one;
355 P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
356 Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
357 if (x>=0) {
358 z = one-c; return z - P/Q;
359 } else {
360 z = c+P/Q; return one+z;
363 if (ax >= 28) /* Out of range */
364 if (x>0)
365 return (tiny*tiny);
366 else
367 return (two-tiny);
368 z = ax;
369 TRUNC(z);
370 y = z - ax; y *= (ax+z);
371 z *= -z; /* Here z + y = -x^2 */
372 s = one/(-z-y); /* 1/(x*x) */
373 if (ax >= 4) { /* 6 <= ax */
374 R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
375 s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
376 +s*(rd11+s*(rd12+s*rd13))))))))))));
377 y += rd0;
378 } else if (ax >= 2) {
379 R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
380 s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
381 S = one+s*(sb1+s*(sb2+s*sb3));
382 y += R/S;
383 R = -.5*s;
384 } else {
385 R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
386 s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
387 S = one+s*(sc1+s*(sc2+s*sc3));
388 y += R/S;
389 R = -.5*s;
391 /* return exp(-x^2 - lsqrtPI_hi + R + y)/x; */
392 s = ((R + y) - lsqrtPI_hi) + z;
393 y = (((z-s) - lsqrtPI_hi) + R) + y;
394 r = __exp__D(s, y)/x;
395 if (x>0)
396 return r;
397 else
398 return two-r;
401 #endif