1 #include "FEATURE/uwin"
3 #if !_UWIN || _lib_lgamma
10 * Copyright (c) 1992, 1993
11 * The Regents of the University of California. All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 static char sccsid
[] = "@(#)lgamma.c 8.2 (Berkeley) 11/30/93";
41 * Coded by Peter McIlroy, Nov 1992;
43 * The financial support of UUNET Communications Services is greatfully
47 #define gamma ______gamma
48 #define lgamma ______lgamma
57 /* Log gamma function.
58 * Error: x > 0 error < 1.3ulp.
59 * x > 4, error < 1ulp.
60 * x > 9, error < .6ulp.
61 * x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
64 * Use the asymptotic expansion (Stirling's Formula)
66 * Use gamma(x+1) = x*gamma(x) for argument reduction.
67 * Use rational approximation in
69 * Two approximations are used, one centered at the
70 * minimum to ensure monotonicity; one centered at 2
71 * to maintain small relative error.
73 * Use the reflection formula,
74 * G(1-x)G(x) = PI/sin(PI*x)
76 * non-positive integer returns +Inf.
80 #if defined(vax) || defined(tahoe)
82 /* double and float have same size exponent field */
83 #define TRUNC(x) x = (double) (float) (x)
86 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
90 static double small_lgam(double);
91 static double large_lgam(double);
92 static double neg_lgam(double);
93 static double zero
= 0.0, one
= 1.0;
96 #define UNDERFL (1e-1020 * 1e-1020)
98 #define LEFT (1.0 - (x0 + .25))
99 #define RIGHT (x0 - .218)
101 * Constants for approximation in [1.244,1.712]
103 #define x0 0.461632144968362356785
104 #define x0_lo -.000000000000000015522348162858676890521
105 #define a0_hi -0.12148629128932952880859
106 #define a0_lo .0000000007534799204229502
107 #define r0 -2.771227512955130520e-002
108 #define r1 -2.980729795228150847e-001
109 #define r2 -3.257411333183093394e-001
110 #define r3 -1.126814387531706041e-001
111 #define r4 -1.129130057170225562e-002
112 #define r5 -2.259650588213369095e-005
113 #define s0 1.714457160001714442e+000
114 #define s1 2.786469504618194648e+000
115 #define s2 1.564546365519179805e+000
116 #define s3 3.485846389981109850e-001
117 #define s4 2.467759345363656348e-002
119 * Constants for approximation in [1.71, 2.5]
121 #define a1_hi 4.227843350984671344505727574870e-01
122 #define a1_lo 4.670126436531227189e-18
123 #define p0 3.224670334241133695662995251041e-01
124 #define p1 3.569659696950364669021382724168e-01
125 #define p2 1.342918716072560025853732668111e-01
126 #define p3 1.950702176409779831089963408886e-02
127 #define p4 8.546740251667538090796227834289e-04
128 #define q0 1.000000000000000444089209850062e+00
129 #define q1 1.315850076960161985084596381057e+00
130 #define q2 6.274644311862156431658377186977e-01
131 #define q3 1.304706631926259297049597307705e-01
132 #define q4 1.102815279606722369265536798366e-02
133 #define q5 2.512690594856678929537585620579e-04
134 #define q6 -1.003597548112371003358107325598e-06
136 * Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
138 #define lns2pi .418938533204672741780329736405
139 #define pb0 8.33333333333333148296162562474e-02
140 #define pb1 -2.77777777774548123579378966497e-03
141 #define pb2 7.93650778754435631476282786423e-04
142 #define pb3 -5.95235082566672847950717262222e-04
143 #define pb4 8.41428560346653702135821806252e-04
144 #define pb5 -1.89773526463879200348872089421e-03
145 #define pb6 5.69394463439411649408050664078e-03
146 #define pb7 -1.44705562421428915453880392761e-02
148 extern __pure
double lgamma(double x
)
153 endian
= ((*(int *) &one
)) ? 1 : 0;
158 else return (infnan(EDOM
));
163 } else if (x
> 1e-16)
164 return (small_lgam(x
));
165 else if (x
> -1e-16) {
167 signgam
= -1, x
= -x
;
170 return (neg_lgam(x
));
177 struct Double t
, u
, v
;
183 v
.b
= (x
- v
.a
) - 0.5;
185 t
.b
= x
*u
.b
+ v
.b
*u
.a
;
186 if (_IEEE
== 0 && !finite(t
.a
))
187 return(infnan(ERANGE
));
192 p
= pb0
+z
*(pb1
+z
*(pb2
+z
*(pb3
+z
*(pb4
+z
*(pb5
+z
*(pb6
+z
*pb7
))))));
193 /* error in approximation = 2.8e-19 */
195 p
= p
*x1
; /* error < 2.3e-18 absolute */
196 /* 0 < p < 1/64 (at x = 5.5) */
198 TRUNC(v
.a
); /* truncate v.a to 26 bits. */
200 t
.a
= v
.a
*u
.a
; /* t = (x-.5)*(log(x)-1) */
201 t
.b
= v
.b
*u
.a
+ x
*u
.b
;
202 t
.b
+= p
; t
.b
+= lns2pi
; /* return t + lns2pi + p */
210 double y
, z
, t
, r
= 0, p
, q
, hi
, lo
;
212 x_int
= (int)(x
+ .5);
214 if (x_int
<= 2 && y
> RIGHT
) {
218 } else if (y
< -LEFT
) {
222 p
= r0
+z
*(r1
+z
*(r2
+z
*(r3
+z
*(r4
+z
*r5
))));
223 q
= s0
+z
*(s1
+z
*(s2
+z
*(s3
+z
*s4
)));
224 r
= t
*(z
*(p
/q
) - x0_lo
);
229 case 5: z
*= (y
+ 4);
230 case 4: z
*= (y
+ 3);
231 case 3: z
*= (y
+ 2);
233 rr
.b
+= a0_lo
; rr
.a
+= a0_hi
;
234 return(((r
+rr
.b
)+t
+rr
.a
));
235 case 2: return(((r
+a0_lo
)+t
)+a0_hi
);
236 case 0: r
-= log1p(x
);
237 default: rr
= __log__D(x
);
238 rr
.a
-= a0_hi
; rr
.b
-= a0_lo
;
239 return(((r
- rr
.b
) + t
) - rr
.a
);
242 p
= p0
+y
*(p1
+y
*(p2
+y
*(p3
+y
*p4
)));
243 q
= q0
+y
*(q1
+y
*(q2
+y
*(q3
+y
*(q4
+y
*(q5
+y
*q6
)))));
245 t
= (double)(float) y
;
247 hi
= (double)(float) (p
+a1_hi
);
248 lo
= a1_hi
- hi
; lo
+= p
; lo
+= a1_lo
;
249 r
= lo
*y
+ z
*hi
; /* q + r = y*(a0+p/q) */
254 case 5: z
*= (y
+ 4);
255 case 4: z
*= (y
+ 3);
256 case 3: z
*= (y
+ 2);
260 case 2: return (q
+ r
);
261 case 0: rr
= __log__D(x
);
262 r
-= rr
.b
; r
-= log1p(x
);
265 default: rr
= __log__D(x
);
277 double y
, z
, one
= 1.0, zero
= 0.0;
278 extern double gamma();
280 /* avoid destructive cancellation as much as possible */
287 return(infnan(ERANGE
));
290 y
= -y
, signgam
= -1;
294 if (z
== x
) { /* convention: G(-(integer)) -> +Inf */
298 return (infnan(ERANGE
));
304 z
= fabs(x
+ z
); /* 0 < z <= .5 */
308 z
= cos(M_PI
*(0.5-z
));