1 #include "FEATURE/uwin"
10 * Copyright (c) 1992, 1993
11 * The Regents of the University of California. All rights reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 static char sccsid
[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
45 /* Table-driven natural logarithm.
47 * This code was derived, with minor modifications, from:
48 * Peter Tang, "Table-Driven Implementation of the
49 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
50 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
52 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
53 * where F = j/128 for j an integer in [0, 128].
55 * log(2^m) = log2_hi*m + log2_tail*m
56 * since m is an integer, the dominant term is exact.
57 * m has at most 10 digits (for subnormal numbers),
58 * and log2_hi has 11 trailing zero bits.
60 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
61 * logF_hi[] + 512 is exact.
63 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
64 * the leading term is calculated to extra precision in two
65 * parts, the larger of which adds exactly to the dominant
67 * There are two cases:
68 * 1. when m, j are non-zero (m | j), use absolute
69 * precision for the leading term.
70 * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
71 * In this case, use a relative precision of 24 bits.
72 * (This is done differently in the original paper)
75 * 0 return signalling -Inf
76 * neg return signalling NaN
80 #if defined(vax) || defined(tahoe)
82 #define TRUNC(x) x = (double) (float) (x)
85 #define endian (((*(int *) &one)) ? 1 : 0)
86 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
92 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
93 * Used for generation of extend precision logarithms.
94 * The constant 35184372088832 is 2^45, so the divide is exact.
95 * It ensures correct reading of logF_head, even for inaccurate
96 * decimal-to-binary conversion routines. (Everybody gets the
97 * right answer for integers less than 2^53.)
98 * Values for log(F) were generated using error < 10^-57 absolute
99 * with the bc -l package.
101 static double A1
= .08333333333333178827;
102 static double A2
= .01250000000377174923;
103 static double A3
= .002232139987919447809;
104 static double A4
= .0004348877777076145742;
106 static double logF_head
[N
+1] = {
108 .007782140442060381246,
109 .015504186535963526694,
110 .023167059281547608406,
111 .030771658666765233647,
112 .038318864302141264488,
113 .045809536031242714670,
114 .053244514518837604555,
115 .060624621816486978786,
116 .067950661908525944454,
117 .075223421237524235039,
118 .082443669210988446138,
119 .089612158689760690322,
120 .096729626458454731618,
121 .103796793681567578460,
122 .110814366340264314203,
123 .117783035656430001836,
124 .124703478501032805070,
125 .131576357788617315236,
126 .138402322859292326029,
127 .145182009844575077295,
128 .151916042025732167530,
129 .158605030176659056451,
130 .165249572895390883786,
131 .171850256926518341060,
132 .178407657472689606947,
133 .184922338493834104156,
134 .191394852999565046047,
135 .197825743329758552135,
136 .204215541428766300668,
137 .210564769107350002741,
138 .216873938300523150246,
139 .223143551314024080056,
140 .229374101064877322642,
141 .235566071312860003672,
142 .241719936886966024758,
143 .247836163904594286577,
144 .253915209980732470285,
145 .259957524436686071567,
146 .265963548496984003577,
147 .271933715484010463114,
148 .277868451003087102435,
149 .283768173130738432519,
150 .289633292582948342896,
151 .295464212893421063199,
152 .301261330578199704177,
153 .307025035294827830512,
154 .312755710004239517729,
155 .318453731118097493890,
156 .324119468654316733591,
157 .329753286372579168528,
158 .335355541920762334484,
159 .340926586970454081892,
160 .346466767346100823488,
161 .351976423156884266063,
162 .357455888922231679316,
163 .362905493689140712376,
164 .368325561158599157352,
165 .373716409793814818840,
166 .379078352934811846353,
167 .384411698910298582632,
168 .389716751140440464951,
169 .394993808240542421117,
170 .400243164127459749579,
171 .405465108107819105498,
172 .410659924985338875558,
173 .415827895143593195825,
174 .420969294644237379543,
175 .426084395310681429691,
176 .431173464818130014464,
177 .436236766774527495726,
178 .441274560805140936281,
179 .446287102628048160113,
180 .451274644139630254358,
181 .456237433481874177232,
182 .461175715122408291790,
183 .466089729924533457960,
184 .470979715219073113985,
185 .475845904869856894947,
186 .480688529345570714212,
187 .485507815781602403149,
188 .490303988045525329653,
189 .495077266798034543171,
190 .499827869556611403822,
191 .504556010751912253908,
192 .509261901790523552335,
193 .513945751101346104405,
194 .518607764208354637958,
195 .523248143765158602036,
196 .527867089620485785417,
197 .532464798869114019908,
198 .537041465897345915436,
199 .541597282432121573947,
200 .546132437597407260909,
201 .550647117952394182793,
202 .555141507540611200965,
203 .559615787935399566777,
204 .564070138285387656651,
205 .568504735352689749561,
206 .572919753562018740922,
207 .577315365035246941260,
208 .581691739635061821900,
209 .586049045003164792433,
210 .590387446602107957005,
211 .594707107746216934174,
212 .599008189645246602594,
213 .603290851438941899687,
214 .607555250224322662688,
215 .611801541106615331955,
216 .616029877215623855590,
217 .620240409751204424537,
218 .624433288012369303032,
219 .628608659422752680256,
220 .632766669570628437213,
221 .636907462236194987781,
222 .641031179420679109171,
223 .645137961373620782978,
224 .649227946625615004450,
225 .653301272011958644725,
226 .657358072709030238911,
227 .661398482245203922502,
228 .665422632544505177065,
229 .669430653942981734871,
230 .673422675212350441142,
231 .677398823590920073911,
232 .681359224807238206267,
233 .685304003098281100392,
234 .689233281238557538017,
235 .693147180560117703862
238 static double logF_tail
[N
+1] = {
240 -.00000000000000543229938420049,
241 .00000000000000172745674997061,
242 -.00000000000001323017818229233,
243 -.00000000000001154527628289872,
244 -.00000000000000466529469958300,
245 .00000000000005148849572685810,
246 -.00000000000002532168943117445,
247 -.00000000000005213620639136504,
248 -.00000000000001819506003016881,
249 .00000000000006329065958724544,
250 .00000000000008614512936087814,
251 -.00000000000007355770219435028,
252 .00000000000009638067658552277,
253 .00000000000007598636597194141,
254 .00000000000002579999128306990,
255 -.00000000000004654729747598444,
256 -.00000000000007556920687451336,
257 .00000000000010195735223708472,
258 -.00000000000017319034406422306,
259 -.00000000000007718001336828098,
260 .00000000000010980754099855238,
261 -.00000000000002047235780046195,
262 -.00000000000008372091099235912,
263 .00000000000014088127937111135,
264 .00000000000012869017157588257,
265 .00000000000017788850778198106,
266 .00000000000006440856150696891,
267 .00000000000016132822667240822,
268 -.00000000000007540916511956188,
269 -.00000000000000036507188831790,
270 .00000000000009120937249914984,
271 .00000000000018567570959796010,
272 -.00000000000003149265065191483,
273 -.00000000000009309459495196889,
274 .00000000000017914338601329117,
275 -.00000000000001302979717330866,
276 .00000000000023097385217586939,
277 .00000000000023999540484211737,
278 .00000000000015393776174455408,
279 -.00000000000036870428315837678,
280 .00000000000036920375082080089,
281 -.00000000000009383417223663699,
282 .00000000000009433398189512690,
283 .00000000000041481318704258568,
284 -.00000000000003792316480209314,
285 .00000000000008403156304792424,
286 -.00000000000034262934348285429,
287 .00000000000043712191957429145,
288 -.00000000000010475750058776541,
289 -.00000000000011118671389559323,
290 .00000000000037549577257259853,
291 .00000000000013912841212197565,
292 .00000000000010775743037572640,
293 .00000000000029391859187648000,
294 -.00000000000042790509060060774,
295 .00000000000022774076114039555,
296 .00000000000010849569622967912,
297 -.00000000000023073801945705758,
298 .00000000000015761203773969435,
299 .00000000000003345710269544082,
300 -.00000000000041525158063436123,
301 .00000000000032655698896907146,
302 -.00000000000044704265010452446,
303 .00000000000034527647952039772,
304 -.00000000000007048962392109746,
305 .00000000000011776978751369214,
306 -.00000000000010774341461609578,
307 .00000000000021863343293215910,
308 .00000000000024132639491333131,
309 .00000000000039057462209830700,
310 -.00000000000026570679203560751,
311 .00000000000037135141919592021,
312 -.00000000000017166921336082431,
313 -.00000000000028658285157914353,
314 -.00000000000023812542263446809,
315 .00000000000006576659768580062,
316 -.00000000000028210143846181267,
317 .00000000000010701931762114254,
318 .00000000000018119346366441110,
319 .00000000000009840465278232627,
320 -.00000000000033149150282752542,
321 -.00000000000018302857356041668,
322 -.00000000000016207400156744949,
323 .00000000000048303314949553201,
324 -.00000000000071560553172382115,
325 .00000000000088821239518571855,
326 -.00000000000030900580513238244,
327 -.00000000000061076551972851496,
328 .00000000000035659969663347830,
329 .00000000000035782396591276383,
330 -.00000000000046226087001544578,
331 .00000000000062279762917225156,
332 .00000000000072838947272065741,
333 .00000000000026809646615211673,
334 -.00000000000010960825046059278,
335 .00000000000002311949383800537,
336 -.00000000000058469058005299247,
337 -.00000000000002103748251144494,
338 -.00000000000023323182945587408,
339 -.00000000000042333694288141916,
340 -.00000000000043933937969737844,
341 .00000000000041341647073835565,
342 .00000000000006841763641591466,
343 .00000000000047585534004430641,
344 .00000000000083679678674757695,
345 -.00000000000085763734646658640,
346 .00000000000021913281229340092,
347 -.00000000000062242842536431148,
348 -.00000000000010983594325438430,
349 .00000000000065310431377633651,
350 -.00000000000047580199021710769,
351 -.00000000000037854251265457040,
352 .00000000000040939233218678664,
353 .00000000000087424383914858291,
354 .00000000000025218188456842882,
355 -.00000000000003608131360422557,
356 -.00000000000050518555924280902,
357 .00000000000078699403323355317,
358 -.00000000000067020876961949060,
359 .00000000000016108575753932458,
360 .00000000000058527188436251509,
361 -.00000000000035246757297904791,
362 -.00000000000018372084495629058,
363 .00000000000088606689813494916,
364 .00000000000066486268071468700,
365 .00000000000063831615170646519,
366 .00000000000025144230728376072,
367 -.00000000000017239444525614834
380 double F
, f
, g
, q
, u
, u2
, v
, zero
= 0.0, one
= 1.0;
383 /* Catch special cases */
385 if (_IEEE
&& x
== zero
) /* log(0) = -Inf */
387 else if (_IEEE
) /* log(neg) = NaN */
389 else if (x
== zero
) /* NOT REACHED IF _IEEE */
390 return (infnan(-ERANGE
));
392 return (infnan(EDOM
));
394 if (_IEEE
) /* x = NaN, Inf */
397 return (infnan(ERANGE
));
399 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
400 /* y = F*(1 + f/F) for |f| <= 2^-8 */
404 if (_IEEE
&& m
== -1022) {
409 F
= (1.0/N
) * j
+ 1; /* F*128 is an integer in [128, 512] */
412 /* Approximate expansion for log(1+f/F) ~= u + q */
416 q
= u
*v
*(A1
+ v
*(A2
+ v
*(A3
+ v
*A4
)));
418 /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
419 * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
420 * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
423 u1
= u
+ 513, u1
-= 513;
425 /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
430 u2
= (2.0*(f
- F
*u1
) - u1
*f
) * g
;
431 /* u1 + u2 = 2f/(2F+f) to extra precision. */
433 /* log(x) = log(2^m*F*(1+f/F)) = */
434 /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
435 /* (exact) + (tiny) */
437 u1
+= m
*logF_head
[N
] + logF_head
[j
]; /* exact */
438 u2
= (u2
+ logF_tail
[j
]) + q
; /* tiny */
439 u2
+= logF_tail
[N
]*m
;
446 * Extra precision variant, returning struct {double a, b;};
447 * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
453 __log__D(x
) double x
;
457 double F
, f
, g
, q
, u
, v
, u2
, one
= 1.0;
461 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
462 /* y = F*(1 + f/F) for |f| <= 2^-8 */
466 if (_IEEE
&& m
== -1022) {
467 j
= (int)logb(g
), m
+= j
;
470 j
= (int)(N
*(g
-1) + .5);
477 q
= u
*v
*(A1
+ v
*(A2
+ v
*(A3
+ v
*A4
)));
479 u1
= u
+ 513, u1
-= 513;
482 u2
= (2.0*(f
- F
*u1
) - u1
*f
) * g
;
484 u1
+= m
*logF_head
[N
] + logF_head
[j
];
486 u2
+= logF_tail
[j
]; u2
+= q
;
487 u2
+= logF_tail
[N
]*m
;
488 r
.a
= u1
+ u2
; /* Only difference is here */
490 r
.b
= (u1
- r
.a
) + u2
;