import less(1)
[unleashed/tickless.git] / usr / src / lib / libc / port / fp / __flt_decim.c
blob549da276cd8feb38a4d4c6455ea6e4e4a96ce23f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #pragma ident "%Z%%M% %I% %E% SMI"
30 * Short cut for conversion from double precision to decimal
31 * floating point
34 #include "lint.h"
35 #include <sys/types.h>
36 #include <sys/isa_defs.h>
37 #include "base_conversion.h"
40 * Powers of ten rounded up. If i is the largest index such that
41 * tbl_decade[i] <= x, then:
43 * if i == 0 then x < 10^-49
44 * else if i == TBL_DECADE_MAX then x >= 10^67
45 * else 10^(i-TBL_DECADE_OFFSET) <= x < 10^(i-TBL_DECADE_OFFSET+1)
48 #define TBL_DECADE_OFFSET 50
49 #define TBL_DECADE_MAX 117
51 static const double tbl_decade[TBL_DECADE_MAX + 1] = {
52 0.0,
53 1.00000000000000012631e-49, 1.00000000000000012631e-48,
54 1.00000000000000009593e-47, 1.00000000000000002300e-46,
55 1.00000000000000013968e-45, 1.00000000000000007745e-44,
56 1.00000000000000007745e-43, 1.00000000000000003762e-42,
57 1.00000000000000000576e-41, 1.00000000000000013321e-40,
58 1.00000000000000009243e-39, 1.00000000000000009243e-38,
59 1.00000000000000006632e-37, 1.00000000000000010809e-36,
60 1.00000000000000000786e-35, 1.00000000000000014150e-34,
61 1.00000000000000005597e-33, 1.00000000000000005597e-32,
62 1.00000000000000008334e-31, 1.00000000000000008334e-30,
63 1.00000000000000008334e-29, 1.00000000000000008334e-28,
64 1.00000000000000003849e-27, 1.00000000000000003849e-26,
65 1.00000000000000003849e-25, 1.00000000000000010737e-24,
66 1.00000000000000010737e-23, 1.00000000000000004860e-22,
67 1.00000000000000009562e-21, 1.00000000000000009562e-20,
68 1.00000000000000009562e-19, 1.00000000000000007154e-18,
69 1.00000000000000007154e-17, 1.00000000000000010236e-16,
70 1.00000000000000007771e-15, 1.00000000000000015659e-14,
71 1.00000000000000003037e-13, 1.00000000000000018184e-12,
72 1.00000000000000010106e-11, 1.00000000000000003643e-10,
73 1.00000000000000006228e-09, 1.00000000000000002092e-08,
74 1.00000000000000008710e-07, 1.00000000000000016651e-06,
75 1.00000000000000008180e-05, 1.00000000000000004792e-04,
76 1.00000000000000002082e-03, 1.00000000000000002082e-02,
77 1.00000000000000005551e-01, 1.00000000000000000000e+00,
78 1.00000000000000000000e+01, 1.00000000000000000000e+02,
79 1.00000000000000000000e+03, 1.00000000000000000000e+04,
80 1.00000000000000000000e+05, 1.00000000000000000000e+06,
81 1.00000000000000000000e+07, 1.00000000000000000000e+08,
82 1.00000000000000000000e+09, 1.00000000000000000000e+10,
83 1.00000000000000000000e+11, 1.00000000000000000000e+12,
84 1.00000000000000000000e+13, 1.00000000000000000000e+14,
85 1.00000000000000000000e+15, 1.00000000000000000000e+16,
86 1.00000000000000000000e+17, 1.00000000000000000000e+18,
87 1.00000000000000000000e+19, 1.00000000000000000000e+20,
88 1.00000000000000000000e+21, 1.00000000000000000000e+22,
89 1.00000000000000008389e+23, 1.00000000000000011744e+24,
90 1.00000000000000009060e+25, 1.00000000000000004765e+26,
91 1.00000000000000001329e+27, 1.00000000000000017821e+28,
92 1.00000000000000009025e+29, 1.00000000000000001988e+30,
93 1.00000000000000007618e+31, 1.00000000000000005366e+32,
94 1.00000000000000008969e+33, 1.00000000000000006087e+34,
95 1.00000000000000015310e+35, 1.00000000000000004242e+36,
96 1.00000000000000007194e+37, 1.00000000000000016638e+38,
97 1.00000000000000009082e+39, 1.00000000000000003038e+40,
98 1.00000000000000000620e+41, 1.00000000000000004489e+42,
99 1.00000000000000001394e+43, 1.00000000000000008821e+44,
100 1.00000000000000008821e+45, 1.00000000000000011990e+46,
101 1.00000000000000004385e+47, 1.00000000000000004385e+48,
102 1.00000000000000007630e+49, 1.00000000000000007630e+50,
103 1.00000000000000015937e+51, 1.00000000000000012614e+52,
104 1.00000000000000020590e+53, 1.00000000000000007829e+54,
105 1.00000000000000001024e+55, 1.00000000000000009190e+56,
106 1.00000000000000004835e+57, 1.00000000000000008319e+58,
107 1.00000000000000008319e+59, 1.00000000000000012779e+60,
108 1.00000000000000009211e+61, 1.00000000000000003502e+62,
109 1.00000000000000005786e+63, 1.00000000000000002132e+64,
110 1.00000000000000010901e+65, 1.00000000000000013239e+66,
111 1.00000000000000013239e+67
115 * Convert a positive double precision integer x <= 2147483647999999744
116 * (the largest double less than 2^31 * 10^9; this implementation works
117 * up to the largest double less than 2^25 * 10^12) to a string of ASCII
118 * decimal digits, adding leading zeroes so that the result has at least
119 * n digits. The string is terminated by a null byte, and its length
120 * is returned.
122 * This routine assumes round-to-nearest mode is in effect and any
123 * exceptions raised will be ignored.
126 #define tenm4 tbl_decade[TBL_DECADE_OFFSET - 4]
127 #define ten4 tbl_decade[TBL_DECADE_OFFSET + 4]
128 #define tenm12 tbl_decade[TBL_DECADE_OFFSET - 12]
129 #define ten12 tbl_decade[TBL_DECADE_OFFSET + 12]
130 #define one tbl_decade[TBL_DECADE_OFFSET]
132 static int
133 __double_to_digits(double x, char *s, int n)
135 double y;
136 int d[5], i, j;
137 char *ss, tmp[4];
139 /* decompose x into four-digit chunks */
140 y = (int)(x * tenm12);
141 x -= y * ten12;
142 if (x < 0.0) {
143 y -= one;
144 x += ten12;
146 d[0] = (int)(y * tenm4);
147 d[1] = (int)(y - d[0] * ten4);
148 y = (int)(x * tenm4);
149 d[4] = (int)(x - y * ten4);
150 d[2] = (int)(y * tenm4);
151 d[3] = (int)(y - d[2] * ten4);
154 * Find the first nonzero chunk or the point at which to start
155 * converting so we have n digits, whichever comes first.
157 ss = s;
158 if (n > 20) {
159 for (j = 0; j < n - 20; j++)
160 *ss++ = '0';
161 i = 0;
162 } else {
163 for (i = 0; d[i] == 0 && n <= ((4 - i) << 2); i++)
165 __four_digits_quick(d[i], tmp);
166 for (j = 0; tmp[j] == '0' && n <= ((4 - i) << 2) + 3 - j; j++)
168 while (j < 4)
169 *ss++ = tmp[j++];
170 i++;
173 /* continue converting four-digit chunks */
174 while (i < 5) {
175 __four_digits_quick(d[i], ss);
176 ss += 4;
177 i++;
180 *ss = '\0';
181 return (ss - s);
185 * Round a positive double precision number *x to the nearest integer,
186 * returning the result and passing back an indication of accuracy in
187 * *pe. On entry, nrx is the number of rounding errors already com-
188 * mitted in forming *x. On exit, *pe is 0 if *x was already integral
189 * and exact, 1 if the result is the correctly rounded integer value
190 * but not exact, and 2 if error in *x precludes determining the cor-
191 * rectly rounded integer value (i.e., the error might be larger than
192 * 1/2 - |*x - rx|, where rx is the nearest integer to *x).
195 static union {
196 unsigned int i[2];
197 double d;
198 } C[] = {
199 #ifdef _LITTLE_ENDIAN
200 { 0x00000000, 0x43300000 },
201 { 0x00000000, 0x3ca00000 },
202 { 0x00000000, 0x3fe00000 },
203 { 0xffffffff, 0x3fdfffff },
204 #else
205 { 0x43300000, 0x00000000 },
206 { 0x3ca00000, 0x00000000 },
207 { 0x3fe00000, 0x00000000 },
208 { 0x3fdfffff, 0xffffffff }, /* nextafter(1/2, 0) */
209 #endif
212 #define two52 C[0].d
213 #define twom53 C[1].d
214 #define half C[2].d
215 #define halfdec C[3].d
217 static double
218 __arint_set_n(double *x, int nrx, int *pe)
220 int hx;
221 double rx, rmx;
223 #ifdef _LITTLE_ENDIAN
224 hx = *(1+(int *)x);
225 #else
226 hx = *(int *)x;
227 #endif
228 if (hx >= 0x43300000) {
229 /* x >= 2^52, so it's already integral */
230 if (nrx == 0)
231 *pe = 0;
232 else if (nrx == 1 && hx < 0x43400000)
233 *pe = 1;
234 else
235 *pe = 2;
236 return (*x);
237 } else if (hx < 0x3fe00000) {
238 /* x < 1/2 */
239 if (nrx > 1 && hx == 0x3fdfffff)
240 *pe = (*x == halfdec)? 2 : 1;
241 else
242 *pe = 1;
243 return (0.0);
246 rx = (*x + two52) - two52;
247 if (nrx == 0) {
248 *pe = (rx == *x)? 0 : 1;
249 } else {
250 rmx = rx - *x;
251 if (rmx < 0.0)
252 rmx = -rmx;
253 *pe = (nrx * twom53 * *x < half - rmx)? 1 : 2;
255 return (rx);
259 * Attempt to convert dd to a decimal record *pd according to the
260 * modes in *pm using double precision floating point. Return zero
261 * and sets *ps to reflect any exceptions incurred if successful.
262 * Return a nonzero value if unsuccessful.
265 __fast_double_to_decimal(double *dd, decimal_mode *pm, decimal_record *pd,
266 fp_exception_field_type *ps)
268 int i, is, esum, eround, hd;
269 double dds;
270 __ieee_flags_type fb;
272 if (pm->rd != fp_nearest)
273 return (1);
275 if (pm->df == fixed_form) {
276 /* F format */
277 if (pm->ndigits < 0 || pm->ndigits > __TBL_TENS_MAX)
278 return (1);
279 __get_ieee_flags(&fb);
280 dds = __dabs(dd);
281 esum = 0;
282 if (pm->ndigits) {
283 /* scale by a positive power of ten */
284 if (pm->ndigits > __TBL_TENS_EXACT) {
285 dds *= __tbl_tens[pm->ndigits];
286 esum = 2;
287 } else {
288 dds = __mul_set(dds, __tbl_tens[pm->ndigits],
289 &eround);
290 esum = eround;
293 if (dds > 2147483647999999744.0) {
294 __set_ieee_flags(&fb);
295 return (1);
297 dds = __arint_set_n(&dds, esum, &eround);
298 if (eround == 2) {
299 /* error is too large to round reliably; punt */
300 __set_ieee_flags(&fb);
301 return (1);
303 if (dds == 0.0) {
304 is = (pm->ndigits > 0)? pm->ndigits : 1;
305 for (i = 0; i < is; i++)
306 pd->ds[i] = '0';
307 pd->ds[is] = '\0';
308 eround++;
309 } else {
310 is = __double_to_digits(dds, pd->ds, pm->ndigits);
312 pd->ndigits = is;
313 pd->exponent = -pm->ndigits;
314 } else {
315 /* E format */
316 if (pm->ndigits < 1 || pm->ndigits > 18)
317 return (1);
318 __get_ieee_flags(&fb);
319 dds = __dabs(dd);
320 /* find the decade containing dds */
321 #ifdef _LITTLE_ENDIAN
322 hd = *(1+(int *)dd);
323 #else
324 hd = *(int *)dd;
325 #endif
326 hd = (hd >> 20) & 0x7ff;
327 if (hd >= 0x400) {
328 if (hd > 0x4e0)
329 i = TBL_DECADE_MAX;
330 else
331 i = TBL_DECADE_MAX - ((0x4e0 - hd) >> 2);
332 } else {
333 if (hd < 0x358)
334 i = 0;
335 else
336 i = TBL_DECADE_OFFSET - ((0x3ff - hd) >> 2);
338 while (dds < tbl_decade[i])
339 i--;
340 /* determine the power of ten by which to scale */
341 i = pm->ndigits - 1 - (i - TBL_DECADE_OFFSET);
342 esum = 0;
343 if (i > 0) {
344 /* scale by a positive power of ten */
345 if (i > __TBL_TENS_EXACT) {
346 if (i > __TBL_TENS_MAX) {
347 __set_ieee_flags(&fb);
348 return (1);
350 dds *= __tbl_tens[i];
351 esum = 2;
352 } else {
353 dds = __mul_set(dds, __tbl_tens[i], &eround);
354 esum = eround;
356 } else if (i < 0) {
357 /* scale by a negative power of ten */
358 if (-i > __TBL_TENS_EXACT) {
359 if (-i > __TBL_TENS_MAX) {
360 __set_ieee_flags(&fb);
361 return (1);
363 dds /= __tbl_tens[-i];
364 esum = 2;
365 } else {
366 dds = __div_set(dds, __tbl_tens[-i], &eround);
367 esum = eround;
370 dds = __arint_set_n(&dds, esum, &eround);
371 if (eround == 2) {
372 /* error is too large to round reliably; punt */
373 __set_ieee_flags(&fb);
374 return (1);
376 is = __double_to_digits(dds, pd->ds, 1);
377 if (is > pm->ndigits) {
379 * The result rounded up to the next larger power
380 * of ten; just discard the last zero and adjust
381 * the exponent.
383 pd->ds[--is] = '\0';
384 i--;
386 pd->ndigits = is;
387 pd->exponent = -i;
389 *ps = (eround == 0)? 0 : (1 << fp_inexact);
390 __set_ieee_flags(&fb);
391 return (0);