import less(1)
[unleashed/tickless.git] / usr / src / lib / libc / port / threads / tsd.c
blob290aa22352dfe41c59abcbcbec718cb06546687a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #pragma ident "%Z%%M% %I% %E% SMI"
29 #include "lint.h"
30 #include "thr_uberdata.h"
31 #include <stddef.h>
34 * These symbols should not be exported from libc, but
35 * /lib/libm.so.2 references them. libm needs to be fixed.
36 * Also, some older versions of the Studio compiler/debugger
37 * components reference them. These need to be fixed, too.
39 #pragma weak _thr_getspecific = thr_getspecific
40 #pragma weak _thr_keycreate = thr_keycreate
41 #pragma weak _thr_setspecific = thr_setspecific
44 * 128 million keys should be enough for anyone.
45 * This allocates half a gigabyte of memory for the keys themselves and
46 * half a gigabyte of memory for each thread that uses the largest key.
48 #define MAX_KEYS 0x08000000U
50 int
51 thr_keycreate(thread_key_t *pkey, void (*destructor)(void *))
53 tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata;
54 void (**old_data)(void *) = NULL;
55 void (**new_data)(void *);
56 uint_t old_nkeys;
57 uint_t new_nkeys;
59 lmutex_lock(&tsdm->tsdm_lock);
62 * Unfortunately, pthread_getspecific() specifies that a
63 * pthread_getspecific() on an allocated key upon which the
64 * calling thread has not performed a pthread_setspecifc()
65 * must return NULL. Consider the following sequence:
67 * pthread_key_create(&key);
68 * pthread_setspecific(key, datum);
69 * pthread_key_delete(&key);
70 * pthread_key_create(&key);
71 * val = pthread_getspecific(key);
73 * According to POSIX, if the deleted key is reused for the new
74 * key returned by the second pthread_key_create(), then the
75 * pthread_getspecific() in the above example must return NULL
76 * (and not the stale datum). The implementation is thus left
77 * with two alternatives:
79 * (1) Reuse deleted keys. If this is to be implemented optimally,
80 * it requires that pthread_key_create() somehow associate
81 * the value NULL with the new (reused) key for each thread.
82 * Keeping the hot path fast and lock-free induces substantial
83 * complexity on the implementation.
85 * (2) Never reuse deleted keys. This allows the pthread_getspecific()
86 * implementation to simply perform a check against the number
87 * of keys set by the calling thread, returning NULL if the
88 * specified key is larger than the highest set key. This has
89 * the disadvantage of wasting memory (a program which simply
90 * loops calling pthread_key_create()/pthread_key_delete()
91 * will ultimately run out of memory), but permits an optimal
92 * pthread_getspecific() while allowing for simple key creation
93 * and deletion.
95 * All Solaris implementations have opted for (2). Given the
96 * ~10 years that this has been in the field, it is safe to assume
97 * that applications don't loop creating and destroying keys; we
98 * stick with (2).
100 if (tsdm->tsdm_nused == (old_nkeys = tsdm->tsdm_nkeys)) {
102 * We need to allocate or double the number of keys.
103 * tsdm->tsdm_nused must always be a power of two.
105 if ((new_nkeys = (old_nkeys << 1)) == 0)
106 new_nkeys = 8;
108 if (new_nkeys > MAX_KEYS) {
109 lmutex_unlock(&tsdm->tsdm_lock);
110 return (EAGAIN);
112 if ((new_data = lmalloc(new_nkeys * sizeof (void *))) == NULL) {
113 lmutex_unlock(&tsdm->tsdm_lock);
114 return (ENOMEM);
116 if ((old_data = tsdm->tsdm_destro) == NULL) {
117 /* key == 0 is always invalid */
118 new_data[0] = TSD_UNALLOCATED;
119 tsdm->tsdm_nused = 1;
120 } else {
121 (void) memcpy(new_data, old_data,
122 old_nkeys * sizeof (void *));
124 tsdm->tsdm_destro = new_data;
125 tsdm->tsdm_nkeys = new_nkeys;
128 *pkey = tsdm->tsdm_nused;
129 tsdm->tsdm_destro[tsdm->tsdm_nused++] = destructor;
130 lmutex_unlock(&tsdm->tsdm_lock);
132 if (old_data != NULL)
133 lfree(old_data, old_nkeys * sizeof (void *));
135 return (0);
138 #pragma weak _pthread_key_create = pthread_key_create
140 pthread_key_create(pthread_key_t *pkey, void (*destructor)(void *))
142 return (thr_keycreate(pkey, destructor));
146 * Same as thr_keycreate(), above, except that the key creation
147 * is performed only once. This relies upon the fact that a key
148 * value of THR_ONCE_KEY is invalid, and requires that the key be
149 * allocated with a value of THR_ONCE_KEY before calling here.
150 * THR_ONCE_KEY and PTHREAD_ONCE_KEY_NP, defined in <thread.h>
151 * and <pthread.h> respectively, must have the same value.
152 * Example:
154 * static pthread_key_t key = PTHREAD_ONCE_KEY_NP;
155 * ...
156 * pthread_key_create_once_np(&key, destructor);
158 #pragma weak pthread_key_create_once_np = thr_keycreate_once
160 thr_keycreate_once(thread_key_t *keyp, void (*destructor)(void *))
162 static mutex_t key_lock = DEFAULTMUTEX;
163 thread_key_t key;
164 int error;
166 if (*keyp == THR_ONCE_KEY) {
167 lmutex_lock(&key_lock);
168 if (*keyp == THR_ONCE_KEY) {
169 error = thr_keycreate(&key, destructor);
170 if (error) {
171 lmutex_unlock(&key_lock);
172 return (error);
174 membar_producer();
175 *keyp = key;
177 lmutex_unlock(&key_lock);
179 membar_consumer();
181 return (0);
185 pthread_key_delete(pthread_key_t key)
187 tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata;
189 lmutex_lock(&tsdm->tsdm_lock);
191 if (key >= tsdm->tsdm_nused ||
192 tsdm->tsdm_destro[key] == TSD_UNALLOCATED) {
193 lmutex_unlock(&tsdm->tsdm_lock);
194 return (EINVAL);
197 tsdm->tsdm_destro[key] = TSD_UNALLOCATED;
198 lmutex_unlock(&tsdm->tsdm_lock);
200 return (0);
204 * Blessedly, the pthread_getspecific() interface is much better than the
205 * thr_getspecific() interface in that it cannot return an error status.
206 * Thus, if the key specified is bogus, pthread_getspecific()'s behavior
207 * is undefined. As an added bonus (and as an artificat of not returning
208 * an error code), the requested datum is returned rather than stored
209 * through a parameter -- thereby avoiding the unnecessary store/load pair
210 * incurred by thr_getspecific(). Every once in a while, the Standards
211 * get it right -- but usually by accident.
213 void *
214 pthread_getspecific(pthread_key_t key)
216 tsd_t *stsd;
219 * We are cycle-shaving in this function because some
220 * applications make heavy use of it and one machine cycle
221 * can make a measurable difference in performance. This
222 * is why we waste a little memory and allocate a NULL value
223 * for the invalid key == 0 in curthread->ul_ftsd[0] rather
224 * than adjusting the key by subtracting one.
226 if (key < TSD_NFAST)
227 return (curthread->ul_ftsd[key]);
229 if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc)
230 return (stsd->tsd_data[key]);
232 return (NULL);
236 thr_getspecific(thread_key_t key, void **valuep)
238 tsd_t *stsd;
241 * Amazingly, some application code (and worse, some particularly
242 * fugly Solaris library code) _relies_ on the fact that 0 is always
243 * an invalid key. To preserve this semantic, 0 is never returned
244 * as a key from thr_/pthread_key_create(); we explicitly check
245 * for it here and return EINVAL.
247 if (key == 0)
248 return (EINVAL);
250 if (key < TSD_NFAST)
251 *valuep = curthread->ul_ftsd[key];
252 else if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc)
253 *valuep = stsd->tsd_data[key];
254 else
255 *valuep = NULL;
257 return (0);
261 * We call thr_setspecific_slow() when the key specified
262 * is beyond the current thread's currently allocated range.
263 * This case is in a separate function because we want
264 * the compiler to optimize for the common case.
266 static int
267 thr_setspecific_slow(thread_key_t key, void *value)
269 ulwp_t *self = curthread;
270 tsd_metadata_t *tsdm = &self->ul_uberdata->tsd_metadata;
271 tsd_t *stsd;
272 tsd_t *ntsd;
273 uint_t nkeys;
276 * It isn't necessary to grab locks in this path;
277 * tsdm->tsdm_nused can only increase.
279 if (key >= tsdm->tsdm_nused)
280 return (EINVAL);
283 * We would like to test (tsdm->tsdm_destro[key] == TSD_UNALLOCATED)
284 * here but that would require acquiring tsdm->tsdm_lock and we
285 * want to avoid locks in this path.
287 * We have a key which is (or at least _was_) valid. If this key
288 * is later deleted (or indeed, is deleted before we set the value),
289 * we don't care; such a condition would indicate an application
290 * race for which POSIX thankfully leaves the behavior unspecified.
292 * First, determine our new size. To avoid allocating more than we
293 * have to, continue doubling our size only until the new key fits.
294 * stsd->tsd_nalloc must always be a power of two.
296 nkeys = ((stsd = self->ul_stsd) != NULL)? stsd->tsd_nalloc : 8;
297 for (; key >= nkeys; nkeys <<= 1)
298 continue;
301 * Allocate the new TSD.
303 if ((ntsd = lmalloc(nkeys * sizeof (void *))) == NULL)
304 return (ENOMEM);
306 if (stsd != NULL) {
308 * Copy the old TSD across to the new.
310 (void) memcpy(ntsd, stsd, stsd->tsd_nalloc * sizeof (void *));
311 lfree(stsd, stsd->tsd_nalloc * sizeof (void *));
314 ntsd->tsd_nalloc = nkeys;
315 ntsd->tsd_data[key] = value;
316 self->ul_stsd = ntsd;
318 return (0);
322 thr_setspecific(thread_key_t key, void *value)
324 tsd_t *stsd;
325 int ret;
326 ulwp_t *self = curthread;
329 * See the comment in thr_getspecific(), above.
331 if (key == 0)
332 return (EINVAL);
334 if (key < TSD_NFAST) {
335 curthread->ul_ftsd[key] = value;
336 return (0);
339 if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc) {
340 stsd->tsd_data[key] = value;
341 return (0);
345 * This is a critical region since we are dealing with memory
346 * allocation and free. Similar protection required in tsd_free().
348 enter_critical(self);
349 ret = thr_setspecific_slow(key, value);
350 exit_critical(self);
351 return (ret);
355 pthread_setspecific(pthread_key_t key, const void *value)
357 return (thr_setspecific(key, (void *)value));
361 * Contract-private interface for java. See PSARC/2003/159
363 * If the key falls within the TSD_NFAST range, return a non-negative
364 * offset that can be used by the caller to fetch the TSD data value
365 * directly out of the thread structure using %g7 (sparc) or %gs (x86).
366 * With the advent of TLS, %g7 and %gs are part of the ABI, even though
367 * the definition of the thread structure itself (ulwp_t) is private.
369 * We guarantee that the offset returned on sparc will fit within
370 * a SIMM13 field (that is, it is less than 2048).
372 * On failure (key is not in the TSD_NFAST range), return -1.
374 ptrdiff_t
375 _thr_slot_offset(thread_key_t key)
377 if (key != 0 && key < TSD_NFAST)
378 return ((ptrdiff_t)offsetof(ulwp_t, ul_ftsd[key]));
379 return (-1);
383 * This is called by _thrp_exit() to apply destructors to the thread's tsd.
385 void
386 tsd_exit()
388 ulwp_t *self = curthread;
389 tsd_metadata_t *tsdm = &self->ul_uberdata->tsd_metadata;
390 thread_key_t key;
391 int recheck;
392 void *val;
393 void (*func)(void *);
395 lmutex_lock(&tsdm->tsdm_lock);
397 do {
398 recheck = 0;
400 for (key = 1; key < TSD_NFAST &&
401 key < tsdm->tsdm_nused; key++) {
402 if ((func = tsdm->tsdm_destro[key]) != NULL &&
403 func != TSD_UNALLOCATED &&
404 (val = self->ul_ftsd[key]) != NULL) {
405 self->ul_ftsd[key] = NULL;
406 lmutex_unlock(&tsdm->tsdm_lock);
407 (*func)(val);
408 lmutex_lock(&tsdm->tsdm_lock);
409 recheck = 1;
413 if (self->ul_stsd == NULL)
414 continue;
417 * Any of these destructors could cause us to grow the number
418 * TSD keys in the slow TSD; we cannot cache the slow TSD
419 * pointer through this loop.
421 for (; key < self->ul_stsd->tsd_nalloc &&
422 key < tsdm->tsdm_nused; key++) {
423 if ((func = tsdm->tsdm_destro[key]) != NULL &&
424 func != TSD_UNALLOCATED &&
425 (val = self->ul_stsd->tsd_data[key]) != NULL) {
426 self->ul_stsd->tsd_data[key] = NULL;
427 lmutex_unlock(&tsdm->tsdm_lock);
428 (*func)(val);
429 lmutex_lock(&tsdm->tsdm_lock);
430 recheck = 1;
433 } while (recheck);
435 lmutex_unlock(&tsdm->tsdm_lock);
438 * We're done; if we have slow TSD, we need to free it.
440 tsd_free(self);
443 void
444 tsd_free(ulwp_t *ulwp)
446 tsd_t *stsd;
447 ulwp_t *self = curthread;
449 enter_critical(self);
450 if ((stsd = ulwp->ul_stsd) != NULL)
451 lfree(stsd, stsd->tsd_nalloc * sizeof (void *));
452 ulwp->ul_stsd = NULL;
453 exit_critical(self);