4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2015, Joyent Inc. All rights reserved.
25 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
29 * DTrace D Language Parser
31 * The D Parser is a lex/yacc parser consisting of the lexer dt_lex.l, the
32 * parsing grammar dt_grammar.y, and this file, dt_parser.c, which handles
33 * the construction of the parse tree nodes and their syntactic validation.
34 * The parse tree is constructed of dt_node_t structures (see <dt_parser.h>)
35 * that are built in two passes: (1) the "create" pass, where the parse tree
36 * nodes are allocated by calls from the grammar to dt_node_*() subroutines,
37 * and (2) the "cook" pass, where nodes are coalesced, assigned D types, and
38 * validated according to the syntactic rules of the language.
40 * All node allocations are performed using dt_node_alloc(). All node frees
41 * during the parsing phase are performed by dt_node_free(), which frees node-
42 * internal state but does not actually free the nodes. All final node frees
43 * are done as part of the end of dt_compile() or as part of destroying
44 * persistent identifiers or translators which have embedded nodes.
46 * The dt_node_* routines that implement pass (1) may allocate new nodes. The
47 * dt_cook_* routines that implement pass (2) may *not* allocate new nodes.
48 * They may free existing nodes using dt_node_free(), but they may not actually
49 * deallocate any dt_node_t's. Currently dt_cook_op2() is an exception to this
50 * rule: see the comments therein for how this issue is resolved.
52 * The dt_cook_* routines are responsible for (at minimum) setting the final
53 * node type (dn_ctfp/dn_type) and attributes (dn_attr). If dn_ctfp/dn_type
54 * are set manually (i.e. not by one of the type assignment functions), then
55 * the DT_NF_COOKED flag must be set manually on the node.
57 * The cooking pass can be applied to the same parse tree more than once (used
58 * in the case of a comma-separated list of probe descriptions). As such, the
59 * cook routines must not perform any parse tree transformations which would
60 * be invalid if the tree were subsequently cooked using a different context.
62 * The dn_ctfp and dn_type fields form the type of the node. This tuple can
63 * take on the following set of values, which form our type invariants:
65 * 1. dn_ctfp = NULL, dn_type = CTF_ERR
67 * In this state, the node has unknown type and is not yet cooked. The
68 * DT_NF_COOKED flag is not yet set on the node.
70 * 2. dn_ctfp = DT_DYN_CTFP(dtp), dn_type = DT_DYN_TYPE(dtp)
72 * In this state, the node is a dynamic D type. This means that generic
73 * operations are not valid on this node and only code that knows how to
74 * examine the inner details of the node can operate on it. A <DYN> node
75 * must have dn_ident set to point to an identifier describing the object
76 * and its type. The DT_NF_REF flag is set for all nodes of type <DYN>.
77 * At present, the D compiler uses the <DYN> type for:
79 * - associative arrays that do not yet have a value type defined
80 * - translated data (i.e. the result of the xlate operator)
83 * 3. dn_ctfp = DT_STR_CTFP(dtp), dn_type = DT_STR_TYPE(dtp)
85 * In this state, the node is of type D string. The string type is really
86 * a char[0] typedef, but requires special handling throughout the compiler.
88 * 4. dn_ctfp != NULL, dn_type = any other type ID
90 * In this state, the node is of some known D/CTF type. The normal libctf
91 * APIs can be used to learn more about the type name or structure. When
92 * the type is assigned, the DT_NF_SIGNED, DT_NF_REF, and DT_NF_BITFIELD
93 * flags cache the corresponding attributes of the underlying CTF type.
96 #include <sys/param.h>
97 #include <sys/sysmacros.h>
110 #include <dt_grammar.h>
111 #include <dt_module.h>
112 #include <dt_provider.h>
113 #include <dt_string.h>
116 dt_pcb_t
*yypcb
; /* current control block for parser */
117 dt_node_t
*yypragma
; /* lex token list for control lines */
118 char yyintprefix
; /* int token macro prefix (+/-) */
119 char yyintsuffix
[4]; /* int token suffix string [uU][lL] */
120 int yyintdecimal
; /* int token format flag (1=decimal, 0=octal/hex) */
126 case DT_TOK_COMMA
: return (",");
127 case DT_TOK_ELLIPSIS
: return ("...");
128 case DT_TOK_ASGN
: return ("=");
129 case DT_TOK_ADD_EQ
: return ("+=");
130 case DT_TOK_SUB_EQ
: return ("-=");
131 case DT_TOK_MUL_EQ
: return ("*=");
132 case DT_TOK_DIV_EQ
: return ("/=");
133 case DT_TOK_MOD_EQ
: return ("%=");
134 case DT_TOK_AND_EQ
: return ("&=");
135 case DT_TOK_XOR_EQ
: return ("^=");
136 case DT_TOK_OR_EQ
: return ("|=");
137 case DT_TOK_LSH_EQ
: return ("<<=");
138 case DT_TOK_RSH_EQ
: return (">>=");
139 case DT_TOK_QUESTION
: return ("?");
140 case DT_TOK_COLON
: return (":");
141 case DT_TOK_LOR
: return ("||");
142 case DT_TOK_LXOR
: return ("^^");
143 case DT_TOK_LAND
: return ("&&");
144 case DT_TOK_BOR
: return ("|");
145 case DT_TOK_XOR
: return ("^");
146 case DT_TOK_BAND
: return ("&");
147 case DT_TOK_EQU
: return ("==");
148 case DT_TOK_NEQ
: return ("!=");
149 case DT_TOK_LT
: return ("<");
150 case DT_TOK_LE
: return ("<=");
151 case DT_TOK_GT
: return (">");
152 case DT_TOK_GE
: return (">=");
153 case DT_TOK_LSH
: return ("<<");
154 case DT_TOK_RSH
: return (">>");
155 case DT_TOK_ADD
: return ("+");
156 case DT_TOK_SUB
: return ("-");
157 case DT_TOK_MUL
: return ("*");
158 case DT_TOK_DIV
: return ("/");
159 case DT_TOK_MOD
: return ("%");
160 case DT_TOK_LNEG
: return ("!");
161 case DT_TOK_BNEG
: return ("~");
162 case DT_TOK_ADDADD
: return ("++");
163 case DT_TOK_PREINC
: return ("++");
164 case DT_TOK_POSTINC
: return ("++");
165 case DT_TOK_SUBSUB
: return ("--");
166 case DT_TOK_PREDEC
: return ("--");
167 case DT_TOK_POSTDEC
: return ("--");
168 case DT_TOK_IPOS
: return ("+");
169 case DT_TOK_INEG
: return ("-");
170 case DT_TOK_DEREF
: return ("*");
171 case DT_TOK_ADDROF
: return ("&");
172 case DT_TOK_OFFSETOF
: return ("offsetof");
173 case DT_TOK_SIZEOF
: return ("sizeof");
174 case DT_TOK_STRINGOF
: return ("stringof");
175 case DT_TOK_XLATE
: return ("xlate");
176 case DT_TOK_LPAR
: return ("(");
177 case DT_TOK_RPAR
: return (")");
178 case DT_TOK_LBRAC
: return ("[");
179 case DT_TOK_RBRAC
: return ("]");
180 case DT_TOK_PTR
: return ("->");
181 case DT_TOK_DOT
: return (".");
182 case DT_TOK_STRING
: return ("<string>");
183 case DT_TOK_IDENT
: return ("<ident>");
184 case DT_TOK_TNAME
: return ("<type>");
185 case DT_TOK_INT
: return ("<int>");
186 default: return ("<?>");
191 dt_type_lookup(const char *s
, dtrace_typeinfo_t
*tip
)
193 static const char delimiters
[] = " \t\n\r\v\f*`";
194 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
195 const char *p
, *q
, *r
, *end
, *obj
;
197 for (p
= s
, end
= s
+ strlen(s
); *p
!= '\0'; p
= q
) {
199 p
++; /* skip leading whitespace prior to token */
201 if (p
== end
|| (q
= strpbrk(p
+ 1, delimiters
)) == NULL
)
202 break; /* empty string or single token remaining */
205 char *object
= alloca((size_t)(q
- p
) + 1);
206 char *type
= alloca((size_t)(end
- s
) + 1);
209 * Copy from the start of the token (p) to the location
210 * backquote (q) to extract the nul-terminated object.
212 bcopy(p
, object
, (size_t)(q
- p
));
213 object
[(size_t)(q
- p
)] = '\0';
216 * Copy the original string up to the start of this
217 * token (p) into type, and then concatenate everything
218 * after q. This is the type name without the object.
220 bcopy(s
, type
, (size_t)(p
- s
));
221 bcopy(q
+ 1, type
+ (size_t)(p
- s
), strlen(q
+ 1) + 1);
224 * There may be at most three delimeters. The second
225 * delimeter is usually used to distinguish the type
226 * within a given module, however, there could be a link
227 * map id on the scene in which case that delimeter
228 * would be the third. We determine presence of the lmid
229 * if it rouglhly meets the from LM[0-9]
231 if ((r
= strchr(q
+ 1, '`')) != NULL
&&
232 ((r
= strchr(r
+ 1, '`')) != NULL
)) {
233 if (strchr(r
+ 1, '`') != NULL
)
234 return (dt_set_errno(dtp
,
236 if (q
[1] != 'L' || q
[2] != 'M')
237 return (dt_set_errno(dtp
,
241 return (dtrace_lookup_by_type(dtp
, object
, type
, tip
));
245 if (yypcb
->pcb_idepth
!= 0)
246 obj
= DTRACE_OBJ_CDEFS
;
248 obj
= DTRACE_OBJ_EVERY
;
250 return (dtrace_lookup_by_type(dtp
, obj
, s
, tip
));
254 * When we parse type expressions or parse an expression with unary "&", we
255 * need to find a type that is a pointer to a previously known type.
256 * Unfortunately CTF is limited to a per-container view, so ctf_type_pointer()
257 * alone does not suffice for our needs. We provide a more intelligent wrapper
258 * for the compiler that attempts to compute a pointer to either the given type
259 * or its base (that is, we try both "foo_t *" and "struct foo *"), and also
260 * to potentially construct the required type on-the-fly.
263 dt_type_pointer(dtrace_typeinfo_t
*tip
)
265 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
266 ctf_file_t
*ctfp
= tip
->dtt_ctfp
;
267 ctf_id_t type
= tip
->dtt_type
;
268 ctf_id_t base
= ctf_type_resolve(ctfp
, type
);
269 uint_t bflags
= tip
->dtt_flags
;
274 if ((ptr
= ctf_type_pointer(ctfp
, type
)) != CTF_ERR
||
275 (ptr
= ctf_type_pointer(ctfp
, base
)) != CTF_ERR
) {
280 if (yypcb
->pcb_idepth
!= 0)
285 if (ctfp
!= dmp
->dm_ctfp
&& ctfp
!= ctf_parent_file(dmp
->dm_ctfp
) &&
286 (type
= ctf_add_type(dmp
->dm_ctfp
, ctfp
, type
)) == CTF_ERR
) {
287 dtp
->dt_ctferr
= ctf_errno(dmp
->dm_ctfp
);
288 return (dt_set_errno(dtp
, EDT_CTF
));
291 ptr
= ctf_add_pointer(dmp
->dm_ctfp
, CTF_ADD_ROOT
, NULL
, type
);
293 if (ptr
== CTF_ERR
|| ctf_update(dmp
->dm_ctfp
) == CTF_ERR
) {
294 dtp
->dt_ctferr
= ctf_errno(dmp
->dm_ctfp
);
295 return (dt_set_errno(dtp
, EDT_CTF
));
298 tip
->dtt_object
= dmp
->dm_name
;
299 tip
->dtt_ctfp
= dmp
->dm_ctfp
;
301 tip
->dtt_flags
= bflags
;
307 dt_type_name(ctf_file_t
*ctfp
, ctf_id_t type
, char *buf
, size_t len
)
309 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
311 if (ctfp
== DT_FPTR_CTFP(dtp
) && type
== DT_FPTR_TYPE(dtp
))
312 (void) snprintf(buf
, len
, "function pointer");
313 else if (ctfp
== DT_FUNC_CTFP(dtp
) && type
== DT_FUNC_TYPE(dtp
))
314 (void) snprintf(buf
, len
, "function");
315 else if (ctfp
== DT_DYN_CTFP(dtp
) && type
== DT_DYN_TYPE(dtp
))
316 (void) snprintf(buf
, len
, "dynamic variable");
317 else if (ctfp
== NULL
)
318 (void) snprintf(buf
, len
, "<none>");
319 else if (ctf_type_name(ctfp
, type
, buf
, len
) == NULL
)
320 (void) snprintf(buf
, len
, "unknown");
326 * Perform the "usual arithmetic conversions" to determine which of the two
327 * input operand types should be promoted and used as a result type. The
328 * rules for this are described in ISOC[6.3.1.8] and K&R[A6.5].
331 dt_type_promote(dt_node_t
*lp
, dt_node_t
*rp
, ctf_file_t
**ofp
, ctf_id_t
*otype
)
333 ctf_file_t
*lfp
= lp
->dn_ctfp
;
334 ctf_id_t ltype
= lp
->dn_type
;
336 ctf_file_t
*rfp
= rp
->dn_ctfp
;
337 ctf_id_t rtype
= rp
->dn_type
;
339 ctf_id_t lbase
= ctf_type_resolve(lfp
, ltype
);
340 uint_t lkind
= ctf_type_kind(lfp
, lbase
);
342 ctf_id_t rbase
= ctf_type_resolve(rfp
, rtype
);
343 uint_t rkind
= ctf_type_kind(rfp
, rbase
);
345 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
346 ctf_encoding_t le
, re
;
349 assert(lkind
== CTF_K_INTEGER
|| lkind
== CTF_K_ENUM
);
350 assert(rkind
== CTF_K_INTEGER
|| rkind
== CTF_K_ENUM
);
352 if (lkind
== CTF_K_ENUM
) {
353 lfp
= DT_INT_CTFP(dtp
);
354 ltype
= lbase
= DT_INT_TYPE(dtp
);
357 if (rkind
== CTF_K_ENUM
) {
358 rfp
= DT_INT_CTFP(dtp
);
359 rtype
= rbase
= DT_INT_TYPE(dtp
);
362 if (ctf_type_encoding(lfp
, lbase
, &le
) == CTF_ERR
) {
363 yypcb
->pcb_hdl
->dt_ctferr
= ctf_errno(lfp
);
364 longjmp(yypcb
->pcb_jmpbuf
, EDT_CTF
);
367 if (ctf_type_encoding(rfp
, rbase
, &re
) == CTF_ERR
) {
368 yypcb
->pcb_hdl
->dt_ctferr
= ctf_errno(rfp
);
369 longjmp(yypcb
->pcb_jmpbuf
, EDT_CTF
);
373 * Compute an integer rank based on the size and unsigned status.
374 * If rank is identical, pick the "larger" of the equivalent types
375 * which we define as having a larger base ctf_id_t. If rank is
376 * different, pick the type with the greater rank.
378 lrank
= le
.cte_bits
+ ((le
.cte_format
& CTF_INT_SIGNED
) == 0);
379 rrank
= re
.cte_bits
+ ((re
.cte_format
& CTF_INT_SIGNED
) == 0);
381 if (lrank
== rrank
) {
382 if (lbase
- rbase
< 0)
386 } else if (lrank
> rrank
) {
402 dt_node_promote(dt_node_t
*lp
, dt_node_t
*rp
, dt_node_t
*dnp
)
404 dt_type_promote(lp
, rp
, &dnp
->dn_ctfp
, &dnp
->dn_type
);
405 dt_node_type_assign(dnp
, dnp
->dn_ctfp
, dnp
->dn_type
, B_FALSE
);
406 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
410 dt_node_name(const dt_node_t
*dnp
, char *buf
, size_t len
)
412 char n1
[DT_TYPE_NAMELEN
];
413 char n2
[DT_TYPE_NAMELEN
];
415 const char *prefix
= "", *suffix
= "";
416 const dtrace_syminfo_t
*dts
;
419 switch (dnp
->dn_kind
) {
421 (void) snprintf(buf
, len
, "integer constant 0x%llx",
422 (u_longlong_t
)dnp
->dn_value
);
425 s
= strchr2esc(dnp
->dn_string
, strlen(dnp
->dn_string
));
426 (void) snprintf(buf
, len
, "string constant \"%s\"",
427 s
!= NULL
? s
: dnp
->dn_string
);
431 (void) snprintf(buf
, len
, "identifier %s", dnp
->dn_string
);
437 switch (dnp
->dn_ident
->di_kind
) {
439 case DT_IDENT_AGGFUNC
:
440 case DT_IDENT_ACTFUNC
:
447 (void) snprintf(buf
, len
, "%s %s%s%s",
448 dt_idkind_name(dnp
->dn_ident
->di_kind
),
449 prefix
, dnp
->dn_ident
->di_name
, suffix
);
452 dts
= dnp
->dn_ident
->di_data
;
453 (void) snprintf(buf
, len
, "symbol %s`%s",
454 dts
->dts_object
, dts
->dts_name
);
457 (void) snprintf(buf
, len
, "type %s",
458 dt_node_type_name(dnp
, n1
, sizeof (n1
)));
463 (void) snprintf(buf
, len
, "operator %s", opstr(dnp
->dn_op
));
468 return (dt_node_name(dnp
->dn_expr
, buf
, len
));
469 (void) snprintf(buf
, len
, "%s", "statement");
472 if (dnp
->dn_desc
->dtpd_id
== 0) {
473 (void) snprintf(buf
, len
,
474 "probe description %s:%s:%s:%s",
475 dnp
->dn_desc
->dtpd_provider
, dnp
->dn_desc
->dtpd_mod
,
476 dnp
->dn_desc
->dtpd_func
, dnp
->dn_desc
->dtpd_name
);
478 (void) snprintf(buf
, len
, "probe description %u",
479 dnp
->dn_desc
->dtpd_id
);
483 (void) snprintf(buf
, len
, "%s", "clause");
486 (void) snprintf(buf
, len
, "member %s", dnp
->dn_membname
);
489 (void) snprintf(buf
, len
, "translator <%s> (%s)",
490 dt_type_name(dnp
->dn_xlator
->dx_dst_ctfp
,
491 dnp
->dn_xlator
->dx_dst_type
, n1
, sizeof (n1
)),
492 dt_type_name(dnp
->dn_xlator
->dx_src_ctfp
,
493 dnp
->dn_xlator
->dx_src_type
, n2
, sizeof (n2
)));
496 (void) snprintf(buf
, len
, "%s", "program");
499 (void) snprintf(buf
, len
, "node <%u>", dnp
->dn_kind
);
507 * dt_node_xalloc() can be used to create new parse nodes from any libdtrace
508 * caller. The caller is responsible for assigning dn_link appropriately.
511 dt_node_xalloc(dtrace_hdl_t
*dtp
, int kind
)
513 dt_node_t
*dnp
= dt_alloc(dtp
, sizeof (dt_node_t
));
519 dnp
->dn_type
= CTF_ERR
;
520 dnp
->dn_kind
= (uchar_t
)kind
;
525 dnp
->dn_attr
= _dtrace_defattr
;
528 bzero(&dnp
->dn_u
, sizeof (dnp
->dn_u
));
534 * dt_node_alloc() is used to create new parse nodes from the parser. It
535 * assigns the node location based on the current lexer line number and places
536 * the new node on the default allocation list. If allocation fails, we
537 * automatically longjmp the caller back to the enclosing compilation call.
540 dt_node_alloc(int kind
)
542 dt_node_t
*dnp
= dt_node_xalloc(yypcb
->pcb_hdl
, kind
);
545 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
547 dnp
->dn_line
= yylineno
;
548 dnp
->dn_link
= yypcb
->pcb_list
;
549 yypcb
->pcb_list
= dnp
;
555 dt_node_free(dt_node_t
*dnp
)
557 uchar_t kind
= dnp
->dn_kind
;
559 dnp
->dn_kind
= DT_NODE_FREE
;
565 free(dnp
->dn_string
);
566 dnp
->dn_string
= NULL
;
572 if (dnp
->dn_ident
!= NULL
) {
573 if (dnp
->dn_ident
->di_flags
& DT_IDFLG_ORPHAN
)
574 dt_ident_destroy(dnp
->dn_ident
);
575 dnp
->dn_ident
= NULL
;
577 dt_node_list_free(&dnp
->dn_args
);
581 if (dnp
->dn_child
!= NULL
) {
582 dt_node_free(dnp
->dn_child
);
583 dnp
->dn_child
= NULL
;
588 if (dnp
->dn_expr
!= NULL
) {
589 dt_node_free(dnp
->dn_expr
);
594 if (dnp
->dn_left
!= NULL
) {
595 dt_node_free(dnp
->dn_left
);
598 if (dnp
->dn_right
!= NULL
) {
599 dt_node_free(dnp
->dn_right
);
600 dnp
->dn_right
= NULL
;
606 if (dnp
->dn_expr
!= NULL
) {
607 dt_node_free(dnp
->dn_expr
);
613 if (dnp
->dn_aggfun
!= NULL
) {
614 dt_node_free(dnp
->dn_aggfun
);
615 dnp
->dn_aggfun
= NULL
;
617 dt_node_list_free(&dnp
->dn_aggtup
);
628 if (dnp
->dn_pred
!= NULL
)
629 dt_node_free(dnp
->dn_pred
);
630 if (dnp
->dn_locals
!= NULL
)
631 dt_idhash_destroy(dnp
->dn_locals
);
632 dt_node_list_free(&dnp
->dn_pdescs
);
633 dt_node_list_free(&dnp
->dn_acts
);
637 free(dnp
->dn_membname
);
638 dnp
->dn_membname
= NULL
;
639 if (dnp
->dn_membexpr
!= NULL
) {
640 dt_node_free(dnp
->dn_membexpr
);
641 dnp
->dn_membexpr
= NULL
;
645 case DT_NODE_PROVIDER
:
646 dt_node_list_free(&dnp
->dn_probes
);
647 free(dnp
->dn_provname
);
648 dnp
->dn_provname
= NULL
;
652 dt_node_list_free(&dnp
->dn_list
);
658 dt_node_attr_assign(dt_node_t
*dnp
, dtrace_attribute_t attr
)
660 if ((yypcb
->pcb_cflags
& DTRACE_C_EATTR
) &&
661 (dt_attr_cmp(attr
, yypcb
->pcb_amin
) < 0)) {
662 char a
[DTRACE_ATTR2STR_MAX
];
665 dnerror(dnp
, D_ATTR_MIN
, "attributes for %s (%s) are less than "
666 "predefined minimum\n", dt_node_name(dnp
, s
, sizeof (s
)),
667 dtrace_attr2str(attr
, a
, sizeof (a
)));
674 dt_node_type_assign(dt_node_t
*dnp
, ctf_file_t
*fp
, ctf_id_t type
,
677 ctf_id_t base
= ctf_type_resolve(fp
, type
);
678 uint_t kind
= ctf_type_kind(fp
, base
);
682 ~(DT_NF_SIGNED
| DT_NF_REF
| DT_NF_BITFIELD
| DT_NF_USERLAND
);
684 if (kind
== CTF_K_INTEGER
&& ctf_type_encoding(fp
, base
, &e
) == 0) {
685 size_t size
= e
.cte_bits
/ NBBY
;
687 if (size
> 8 || (e
.cte_bits
% NBBY
) != 0 || (size
& (size
- 1)))
688 dnp
->dn_flags
|= DT_NF_BITFIELD
;
690 if (e
.cte_format
& CTF_INT_SIGNED
)
691 dnp
->dn_flags
|= DT_NF_SIGNED
;
694 if (kind
== CTF_K_FLOAT
&& ctf_type_encoding(fp
, base
, &e
) == 0) {
695 if (e
.cte_bits
/ NBBY
> sizeof (uint64_t))
696 dnp
->dn_flags
|= DT_NF_REF
;
699 if (kind
== CTF_K_STRUCT
|| kind
== CTF_K_UNION
||
700 kind
== CTF_K_FORWARD
||
701 kind
== CTF_K_ARRAY
|| kind
== CTF_K_FUNCTION
)
702 dnp
->dn_flags
|= DT_NF_REF
;
703 else if (yypcb
!= NULL
&& fp
== DT_DYN_CTFP(yypcb
->pcb_hdl
) &&
704 type
== DT_DYN_TYPE(yypcb
->pcb_hdl
))
705 dnp
->dn_flags
|= DT_NF_REF
;
708 dnp
->dn_flags
|= DT_NF_USERLAND
;
710 dnp
->dn_flags
|= DT_NF_COOKED
;
716 dt_node_type_propagate(const dt_node_t
*src
, dt_node_t
*dst
)
718 assert(src
->dn_flags
& DT_NF_COOKED
);
719 dst
->dn_flags
= src
->dn_flags
& ~DT_NF_LVALUE
;
720 dst
->dn_ctfp
= src
->dn_ctfp
;
721 dst
->dn_type
= src
->dn_type
;
725 dt_node_type_name(const dt_node_t
*dnp
, char *buf
, size_t len
)
727 if (dt_node_is_dynamic(dnp
) && dnp
->dn_ident
!= NULL
) {
728 (void) snprintf(buf
, len
, "%s",
729 dt_idkind_name(dt_ident_resolve(dnp
->dn_ident
)->di_kind
));
733 if (dnp
->dn_flags
& DT_NF_USERLAND
) {
734 size_t n
= snprintf(buf
, len
, "userland ");
735 len
= len
> n
? len
- n
: 0;
736 (void) dt_type_name(dnp
->dn_ctfp
, dnp
->dn_type
, buf
+ n
, len
);
740 return (dt_type_name(dnp
->dn_ctfp
, dnp
->dn_type
, buf
, len
));
744 dt_node_type_size(const dt_node_t
*dnp
)
747 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
749 if (dnp
->dn_kind
== DT_NODE_STRING
)
750 return (strlen(dnp
->dn_string
) + 1);
752 if (dt_node_is_dynamic(dnp
) && dnp
->dn_ident
!= NULL
)
753 return (dt_ident_size(dnp
->dn_ident
));
755 base
= ctf_type_resolve(dnp
->dn_ctfp
, dnp
->dn_type
);
757 if (ctf_type_kind(dnp
->dn_ctfp
, base
) == CTF_K_FORWARD
)
761 * Here we have a 32-bit user pointer that is being used with a 64-bit
762 * kernel. When we're using it and its tagged as a userland reference --
763 * then we need to keep it as a 32-bit pointer. However, if we are
764 * referring to it as a kernel address, eg. being used after a copyin()
765 * then we need to make sure that we actually return the kernel's size
766 * of a pointer, 8 bytes.
768 if (ctf_type_kind(dnp
->dn_ctfp
, base
) == CTF_K_POINTER
&&
769 ctf_getmodel(dnp
->dn_ctfp
) == CTF_MODEL_ILP32
&&
770 !(dnp
->dn_flags
& DT_NF_USERLAND
) &&
771 dtp
->dt_conf
.dtc_ctfmodel
== CTF_MODEL_LP64
)
774 return (ctf_type_size(dnp
->dn_ctfp
, dnp
->dn_type
));
778 * Determine if the specified parse tree node references an identifier of the
779 * specified kind, and if so return a pointer to it; otherwise return NULL.
780 * This function resolves the identifier itself, following through any inlines.
783 dt_node_resolve(const dt_node_t
*dnp
, uint_t idkind
)
787 switch (dnp
->dn_kind
) {
794 idp
= dt_ident_resolve(dnp
->dn_ident
);
795 return (idp
->di_kind
== idkind
? idp
: NULL
);
798 if (dt_node_is_dynamic(dnp
)) {
799 idp
= dt_ident_resolve(dnp
->dn_ident
);
800 return (idp
->di_kind
== idkind
? idp
: NULL
);
807 dt_node_sizeof(const dt_node_t
*dnp
)
809 dtrace_syminfo_t
*sip
;
811 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
814 * The size of the node as used for the sizeof() operator depends on
815 * the kind of the node. If the node is a SYM, the size is obtained
816 * from the symbol table; if it is not a SYM, the size is determined
817 * from the node's type. This is slightly different from C's sizeof()
818 * operator in that (for example) when applied to a function, sizeof()
819 * will evaluate to the length of the function rather than the size of
822 if (dnp
->dn_kind
!= DT_NODE_SYM
)
823 return (dt_node_type_size(dnp
));
825 sip
= dnp
->dn_ident
->di_data
;
827 if (dtrace_lookup_by_name(dtp
, sip
->dts_object
,
828 sip
->dts_name
, &sym
, NULL
) == -1)
831 return (sym
.st_size
);
835 dt_node_is_integer(const dt_node_t
*dnp
)
837 ctf_file_t
*fp
= dnp
->dn_ctfp
;
842 assert(dnp
->dn_flags
& DT_NF_COOKED
);
844 type
= ctf_type_resolve(fp
, dnp
->dn_type
);
845 kind
= ctf_type_kind(fp
, type
);
847 if (kind
== CTF_K_INTEGER
&&
848 ctf_type_encoding(fp
, type
, &e
) == 0 && IS_VOID(e
))
849 return (0); /* void integer */
851 return (kind
== CTF_K_INTEGER
|| kind
== CTF_K_ENUM
);
855 dt_node_is_float(const dt_node_t
*dnp
)
857 ctf_file_t
*fp
= dnp
->dn_ctfp
;
862 assert(dnp
->dn_flags
& DT_NF_COOKED
);
864 type
= ctf_type_resolve(fp
, dnp
->dn_type
);
865 kind
= ctf_type_kind(fp
, type
);
867 return (kind
== CTF_K_FLOAT
&&
868 ctf_type_encoding(dnp
->dn_ctfp
, type
, &e
) == 0 && (
869 e
.cte_format
== CTF_FP_SINGLE
|| e
.cte_format
== CTF_FP_DOUBLE
||
870 e
.cte_format
== CTF_FP_LDOUBLE
));
874 dt_node_is_scalar(const dt_node_t
*dnp
)
876 ctf_file_t
*fp
= dnp
->dn_ctfp
;
881 assert(dnp
->dn_flags
& DT_NF_COOKED
);
883 type
= ctf_type_resolve(fp
, dnp
->dn_type
);
884 kind
= ctf_type_kind(fp
, type
);
886 if (kind
== CTF_K_INTEGER
&&
887 ctf_type_encoding(fp
, type
, &e
) == 0 && IS_VOID(e
))
888 return (0); /* void cannot be used as a scalar */
890 return (kind
== CTF_K_INTEGER
|| kind
== CTF_K_ENUM
||
891 kind
== CTF_K_POINTER
);
895 dt_node_is_arith(const dt_node_t
*dnp
)
897 ctf_file_t
*fp
= dnp
->dn_ctfp
;
902 assert(dnp
->dn_flags
& DT_NF_COOKED
);
904 type
= ctf_type_resolve(fp
, dnp
->dn_type
);
905 kind
= ctf_type_kind(fp
, type
);
907 if (kind
== CTF_K_INTEGER
)
908 return (ctf_type_encoding(fp
, type
, &e
) == 0 && !IS_VOID(e
));
910 return (kind
== CTF_K_ENUM
);
914 dt_node_is_vfptr(const dt_node_t
*dnp
)
916 ctf_file_t
*fp
= dnp
->dn_ctfp
;
921 assert(dnp
->dn_flags
& DT_NF_COOKED
);
923 type
= ctf_type_resolve(fp
, dnp
->dn_type
);
924 if (ctf_type_kind(fp
, type
) != CTF_K_POINTER
)
925 return (0); /* type is not a pointer */
927 type
= ctf_type_resolve(fp
, ctf_type_reference(fp
, type
));
928 kind
= ctf_type_kind(fp
, type
);
930 return (kind
== CTF_K_FUNCTION
|| (kind
== CTF_K_INTEGER
&&
931 ctf_type_encoding(fp
, type
, &e
) == 0 && IS_VOID(e
)));
935 dt_node_is_dynamic(const dt_node_t
*dnp
)
937 if (dnp
->dn_kind
== DT_NODE_VAR
&&
938 (dnp
->dn_ident
->di_flags
& DT_IDFLG_INLINE
)) {
939 const dt_idnode_t
*inp
= dnp
->dn_ident
->di_iarg
;
940 return (inp
->din_root
? dt_node_is_dynamic(inp
->din_root
) : 0);
943 return (dnp
->dn_ctfp
== DT_DYN_CTFP(yypcb
->pcb_hdl
) &&
944 dnp
->dn_type
== DT_DYN_TYPE(yypcb
->pcb_hdl
));
948 dt_node_is_string(const dt_node_t
*dnp
)
950 return (dnp
->dn_ctfp
== DT_STR_CTFP(yypcb
->pcb_hdl
) &&
951 dnp
->dn_type
== DT_STR_TYPE(yypcb
->pcb_hdl
));
955 dt_node_is_stack(const dt_node_t
*dnp
)
957 return (dnp
->dn_ctfp
== DT_STACK_CTFP(yypcb
->pcb_hdl
) &&
958 dnp
->dn_type
== DT_STACK_TYPE(yypcb
->pcb_hdl
));
962 dt_node_is_symaddr(const dt_node_t
*dnp
)
964 return (dnp
->dn_ctfp
== DT_SYMADDR_CTFP(yypcb
->pcb_hdl
) &&
965 dnp
->dn_type
== DT_SYMADDR_TYPE(yypcb
->pcb_hdl
));
969 dt_node_is_usymaddr(const dt_node_t
*dnp
)
971 return (dnp
->dn_ctfp
== DT_USYMADDR_CTFP(yypcb
->pcb_hdl
) &&
972 dnp
->dn_type
== DT_USYMADDR_TYPE(yypcb
->pcb_hdl
));
976 dt_node_is_strcompat(const dt_node_t
*dnp
)
978 ctf_file_t
*fp
= dnp
->dn_ctfp
;
984 assert(dnp
->dn_flags
& DT_NF_COOKED
);
986 base
= ctf_type_resolve(fp
, dnp
->dn_type
);
987 kind
= ctf_type_kind(fp
, base
);
989 if (kind
== CTF_K_POINTER
&&
990 (base
= ctf_type_reference(fp
, base
)) != CTF_ERR
&&
991 (base
= ctf_type_resolve(fp
, base
)) != CTF_ERR
&&
992 ctf_type_encoding(fp
, base
, &e
) == 0 && IS_CHAR(e
))
993 return (1); /* promote char pointer to string */
995 if (kind
== CTF_K_ARRAY
&& ctf_array_info(fp
, base
, &r
) == 0 &&
996 (base
= ctf_type_resolve(fp
, r
.ctr_contents
)) != CTF_ERR
&&
997 ctf_type_encoding(fp
, base
, &e
) == 0 && IS_CHAR(e
))
998 return (1); /* promote char array to string */
1004 dt_node_is_pointer(const dt_node_t
*dnp
)
1006 ctf_file_t
*fp
= dnp
->dn_ctfp
;
1009 assert(dnp
->dn_flags
& DT_NF_COOKED
);
1011 if (dt_node_is_string(dnp
))
1012 return (0); /* string are pass-by-ref but act like structs */
1014 kind
= ctf_type_kind(fp
, ctf_type_resolve(fp
, dnp
->dn_type
));
1015 return (kind
== CTF_K_POINTER
|| kind
== CTF_K_ARRAY
);
1019 dt_node_is_void(const dt_node_t
*dnp
)
1021 ctf_file_t
*fp
= dnp
->dn_ctfp
;
1025 if (dt_node_is_dynamic(dnp
))
1026 return (0); /* <DYN> is an alias for void but not the same */
1028 if (dt_node_is_stack(dnp
))
1031 if (dt_node_is_symaddr(dnp
) || dt_node_is_usymaddr(dnp
))
1034 type
= ctf_type_resolve(fp
, dnp
->dn_type
);
1036 return (ctf_type_kind(fp
, type
) == CTF_K_INTEGER
&&
1037 ctf_type_encoding(fp
, type
, &e
) == 0 && IS_VOID(e
));
1041 dt_node_is_ptrcompat(const dt_node_t
*lp
, const dt_node_t
*rp
,
1042 ctf_file_t
**fpp
, ctf_id_t
*tp
)
1044 ctf_file_t
*lfp
= lp
->dn_ctfp
;
1045 ctf_file_t
*rfp
= rp
->dn_ctfp
;
1047 ctf_id_t lbase
= CTF_ERR
, rbase
= CTF_ERR
;
1048 ctf_id_t lref
= CTF_ERR
, rref
= CTF_ERR
;
1050 int lp_is_void
, rp_is_void
, lp_is_int
, rp_is_int
, compat
;
1051 uint_t lkind
, rkind
;
1055 assert(lp
->dn_flags
& DT_NF_COOKED
);
1056 assert(rp
->dn_flags
& DT_NF_COOKED
);
1058 if (dt_node_is_dynamic(lp
) || dt_node_is_dynamic(rp
))
1059 return (0); /* fail if either node is a dynamic variable */
1061 lp_is_int
= dt_node_is_integer(lp
);
1062 rp_is_int
= dt_node_is_integer(rp
);
1064 if (lp_is_int
&& rp_is_int
)
1065 return (0); /* fail if both nodes are integers */
1067 if (lp_is_int
&& (lp
->dn_kind
!= DT_NODE_INT
|| lp
->dn_value
!= 0))
1068 return (0); /* fail if lp is an integer that isn't 0 constant */
1070 if (rp_is_int
&& (rp
->dn_kind
!= DT_NODE_INT
|| rp
->dn_value
!= 0))
1071 return (0); /* fail if rp is an integer that isn't 0 constant */
1073 if ((lp_is_int
== 0 && rp_is_int
== 0) && (
1074 (lp
->dn_flags
& DT_NF_USERLAND
) ^ (rp
->dn_flags
& DT_NF_USERLAND
)))
1075 return (0); /* fail if only one pointer is a userland address */
1078 * Resolve the left-hand and right-hand types to their base type, and
1079 * then resolve the referenced type as well (assuming the base type
1080 * is CTF_K_POINTER or CTF_K_ARRAY). Otherwise [lr]ref = CTF_ERR.
1083 lbase
= ctf_type_resolve(lfp
, lp
->dn_type
);
1084 lkind
= ctf_type_kind(lfp
, lbase
);
1086 if (lkind
== CTF_K_POINTER
) {
1087 lref
= ctf_type_resolve(lfp
,
1088 ctf_type_reference(lfp
, lbase
));
1089 } else if (lkind
== CTF_K_ARRAY
&&
1090 ctf_array_info(lfp
, lbase
, &r
) == 0) {
1091 lref
= ctf_type_resolve(lfp
, r
.ctr_contents
);
1096 rbase
= ctf_type_resolve(rfp
, rp
->dn_type
);
1097 rkind
= ctf_type_kind(rfp
, rbase
);
1099 if (rkind
== CTF_K_POINTER
) {
1100 rref
= ctf_type_resolve(rfp
,
1101 ctf_type_reference(rfp
, rbase
));
1102 } else if (rkind
== CTF_K_ARRAY
&&
1103 ctf_array_info(rfp
, rbase
, &r
) == 0) {
1104 rref
= ctf_type_resolve(rfp
, r
.ctr_contents
);
1109 * We know that one or the other type may still be a zero-valued
1110 * integer constant. To simplify the code below, set the integer
1111 * type variables equal to the non-integer types and proceed.
1118 } else if (rp_is_int
) {
1125 lp_is_void
= ctf_type_encoding(lfp
, lref
, &e
) == 0 && IS_VOID(e
);
1126 rp_is_void
= ctf_type_encoding(rfp
, rref
, &e
) == 0 && IS_VOID(e
);
1129 * The types are compatible if both are pointers to the same type, or
1130 * if either pointer is a void pointer. If they are compatible, set
1131 * tp to point to the more specific pointer type and return it.
1133 compat
= (lkind
== CTF_K_POINTER
|| lkind
== CTF_K_ARRAY
) &&
1134 (rkind
== CTF_K_POINTER
|| rkind
== CTF_K_ARRAY
) &&
1135 (lp_is_void
|| rp_is_void
|| ctf_type_compat(lfp
, lref
, rfp
, rref
));
1139 *fpp
= rp_is_void
? lfp
: rfp
;
1141 *tp
= rp_is_void
? lbase
: rbase
;
1148 * The rules for checking argument types against parameter types are described
1149 * in the ANSI-C spec (see K&R[A7.3.2] and K&R[A7.17]). We use the same rule
1150 * set to determine whether associative array arguments match the prototype.
1153 dt_node_is_argcompat(const dt_node_t
*lp
, const dt_node_t
*rp
)
1155 ctf_file_t
*lfp
= lp
->dn_ctfp
;
1156 ctf_file_t
*rfp
= rp
->dn_ctfp
;
1158 assert(lp
->dn_flags
& DT_NF_COOKED
);
1159 assert(rp
->dn_flags
& DT_NF_COOKED
);
1161 if (dt_node_is_integer(lp
) && dt_node_is_integer(rp
))
1162 return (1); /* integer types are compatible */
1164 if (dt_node_is_strcompat(lp
) && dt_node_is_strcompat(rp
))
1165 return (1); /* string types are compatible */
1167 if (dt_node_is_stack(lp
) && dt_node_is_stack(rp
))
1168 return (1); /* stack types are compatible */
1170 if (dt_node_is_symaddr(lp
) && dt_node_is_symaddr(rp
))
1171 return (1); /* symaddr types are compatible */
1173 if (dt_node_is_usymaddr(lp
) && dt_node_is_usymaddr(rp
))
1174 return (1); /* usymaddr types are compatible */
1176 switch (ctf_type_kind(lfp
, ctf_type_resolve(lfp
, lp
->dn_type
))) {
1177 case CTF_K_FUNCTION
:
1180 return (ctf_type_compat(lfp
, lp
->dn_type
, rfp
, rp
->dn_type
));
1182 return (dt_node_is_ptrcompat(lp
, rp
, NULL
, NULL
));
1187 * We provide dt_node_is_posconst() as a convenience routine for callers who
1188 * wish to verify that an argument is a positive non-zero integer constant.
1191 dt_node_is_posconst(const dt_node_t
*dnp
)
1193 return (dnp
->dn_kind
== DT_NODE_INT
&& dnp
->dn_value
!= 0 && (
1194 (dnp
->dn_flags
& DT_NF_SIGNED
) == 0 || (int64_t)dnp
->dn_value
> 0));
1198 dt_node_is_actfunc(const dt_node_t
*dnp
)
1200 return (dnp
->dn_kind
== DT_NODE_FUNC
&&
1201 dnp
->dn_ident
->di_kind
== DT_IDENT_ACTFUNC
);
1205 * The original rules for integer constant typing are described in K&R[A2.5.1].
1206 * However, since we support long long, we instead use the rules from ISO C99
1207 * clause 6.4.4.1 since that is where long longs are formally described. The
1208 * rules require us to know whether the constant was specified in decimal or
1209 * in octal or hex, which we do by looking at our lexer's 'yyintdecimal' flag.
1210 * The type of an integer constant is the first of the corresponding list in
1211 * which its value can be represented:
1213 * unsuffixed decimal: int, long, long long
1214 * unsuffixed oct/hex: int, unsigned int, long, unsigned long,
1215 * long long, unsigned long long
1216 * suffix [uU]: unsigned int, unsigned long, unsigned long long
1217 * suffix [lL] decimal: long, long long
1218 * suffix [lL] oct/hex: long, unsigned long, long long, unsigned long long
1219 * suffix [uU][Ll]: unsigned long, unsigned long long
1220 * suffix ll/LL decimal: long long
1221 * suffix ll/LL oct/hex: long long, unsigned long long
1222 * suffix [uU][ll/LL]: unsigned long long
1224 * Given that our lexer has already validated the suffixes by regexp matching,
1225 * there is an obvious way to concisely encode these rules: construct an array
1226 * of the types in the order int, unsigned int, long, unsigned long, long long,
1227 * unsigned long long. Compute an integer array starting index based on the
1228 * suffix (e.g. none = 0, u = 1, ull = 5), and compute an increment based on
1229 * the specifier (dec/oct/hex) and suffix (u). Then iterate from the starting
1230 * index to the end, advancing using the increment, and searching until we
1231 * find a limit that matches or we run out of choices (overflow). To make it
1232 * even faster, we precompute the table of type information in dtrace_open().
1235 dt_node_int(uintmax_t value
)
1237 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_INT
);
1238 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
1240 int n
= (yyintdecimal
| (yyintsuffix
[0] == 'u')) + 1;
1246 dnp
->dn_op
= DT_TOK_INT
;
1247 dnp
->dn_value
= value
;
1249 for (p
= yyintsuffix
; (c
= *p
) != '\0'; p
++) {
1250 if (c
== 'U' || c
== 'u')
1252 else if (c
== 'L' || c
== 'l')
1256 for (; i
< sizeof (dtp
->dt_ints
) / sizeof (dtp
->dt_ints
[0]); i
+= n
) {
1257 if (value
<= dtp
->dt_ints
[i
].did_limit
) {
1258 dt_node_type_assign(dnp
,
1259 dtp
->dt_ints
[i
].did_ctfp
,
1260 dtp
->dt_ints
[i
].did_type
, B_FALSE
);
1263 * If a prefix character is present in macro text, add
1264 * in the corresponding operator node (see dt_lex.l).
1266 switch (yyintprefix
) {
1268 return (dt_node_op1(DT_TOK_IPOS
, dnp
));
1270 return (dt_node_op1(DT_TOK_INEG
, dnp
));
1277 xyerror(D_INT_OFLOW
, "integer constant 0x%llx cannot be represented "
1278 "in any built-in integral type\n", (u_longlong_t
)value
);
1280 return (NULL
); /* keep gcc happy */
1284 dt_node_string(char *string
)
1286 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
1290 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
1292 dnp
= dt_node_alloc(DT_NODE_STRING
);
1293 dnp
->dn_op
= DT_TOK_STRING
;
1294 dnp
->dn_string
= string
;
1295 dt_node_type_assign(dnp
, DT_STR_CTFP(dtp
), DT_STR_TYPE(dtp
), B_FALSE
);
1301 dt_node_ident(char *name
)
1307 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
1310 * If the identifier is an inlined integer constant, then create an INT
1311 * node that is a clone of the inline parse tree node and return that
1312 * immediately, allowing this inline to be used in parsing contexts
1313 * that require constant expressions (e.g. scalar array sizes).
1315 if ((idp
= dt_idstack_lookup(&yypcb
->pcb_globals
, name
)) != NULL
&&
1316 (idp
->di_flags
& DT_IDFLG_INLINE
)) {
1317 dt_idnode_t
*inp
= idp
->di_iarg
;
1319 if (inp
->din_root
!= NULL
&&
1320 inp
->din_root
->dn_kind
== DT_NODE_INT
) {
1323 dnp
= dt_node_alloc(DT_NODE_INT
);
1324 dnp
->dn_op
= DT_TOK_INT
;
1325 dnp
->dn_value
= inp
->din_root
->dn_value
;
1326 dt_node_type_propagate(inp
->din_root
, dnp
);
1332 dnp
= dt_node_alloc(DT_NODE_IDENT
);
1333 dnp
->dn_op
= name
[0] == '@' ? DT_TOK_AGG
: DT_TOK_IDENT
;
1334 dnp
->dn_string
= name
;
1340 * Create an empty node of type corresponding to the given declaration.
1341 * Explicit references to user types (C or D) are assigned the default
1342 * stability; references to other types are _dtrace_typattr (Private).
1345 dt_node_type(dt_decl_t
*ddp
)
1347 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
1348 dtrace_typeinfo_t dtt
;
1354 * If 'ddp' is NULL, we get a decl by popping the decl stack. This
1355 * form of dt_node_type() is used by parameter rules in dt_grammar.y.
1358 ddp
= dt_decl_pop_param(&name
);
1360 err
= dt_decl_type(ddp
, &dtt
);
1365 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
1368 dnp
= dt_node_alloc(DT_NODE_TYPE
);
1369 dnp
->dn_op
= DT_TOK_IDENT
;
1370 dnp
->dn_string
= name
;
1372 dt_node_type_assign(dnp
, dtt
.dtt_ctfp
, dtt
.dtt_type
,
1373 dtt
.dtt_flags
& DTT_FL_USER
? B_TRUE
: B_FALSE
);
1375 if (dtt
.dtt_ctfp
== dtp
->dt_cdefs
->dm_ctfp
||
1376 dtt
.dtt_ctfp
== dtp
->dt_ddefs
->dm_ctfp
)
1377 dt_node_attr_assign(dnp
, _dtrace_defattr
);
1379 dt_node_attr_assign(dnp
, _dtrace_typattr
);
1385 * Create a type node corresponding to a varargs (...) parameter by just
1386 * assigning it type CTF_ERR. The decl processing code will handle this.
1389 dt_node_vatype(void)
1391 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_TYPE
);
1393 dnp
->dn_op
= DT_TOK_IDENT
;
1394 dnp
->dn_ctfp
= yypcb
->pcb_hdl
->dt_cdefs
->dm_ctfp
;
1395 dnp
->dn_type
= CTF_ERR
;
1396 dnp
->dn_attr
= _dtrace_defattr
;
1402 * Instantiate a decl using the contents of the current declaration stack. As
1403 * we do not currently permit decls to be initialized, this function currently
1404 * returns NULL and no parse node is created. When this function is called,
1405 * the topmost scope's ds_ident pointer will be set to NULL (indicating no
1406 * init_declarator rule was matched) or will point to the identifier to use.
1411 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
1412 dt_scope_t
*dsp
= &yypcb
->pcb_dstack
;
1413 dt_dclass_t
class = dsp
->ds_class
;
1414 dt_decl_t
*ddp
= dt_decl_top();
1417 dtrace_typeinfo_t dtt
;
1420 char n1
[DT_TYPE_NAMELEN
];
1421 char n2
[DT_TYPE_NAMELEN
];
1423 if (dt_decl_type(ddp
, &dtt
) != 0)
1424 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
1427 * If we have no declaration identifier, then this is either a spurious
1428 * declaration of an intrinsic type (e.g. "extern int;") or declaration
1429 * or redeclaration of a struct, union, or enum type or tag.
1431 if (dsp
->ds_ident
== NULL
) {
1432 if (ddp
->dd_kind
!= CTF_K_STRUCT
&&
1433 ddp
->dd_kind
!= CTF_K_UNION
&& ddp
->dd_kind
!= CTF_K_ENUM
)
1434 xyerror(D_DECL_USELESS
, "useless declaration\n");
1436 dt_dprintf("type %s added as id %ld\n", dt_type_name(
1437 ddp
->dd_ctfp
, ddp
->dd_type
, n1
, sizeof (n1
)), ddp
->dd_type
);
1442 if (strchr(dsp
->ds_ident
, '`') != NULL
) {
1443 xyerror(D_DECL_SCOPE
, "D scoping operator may not be used in "
1444 "a declaration name (%s)\n", dsp
->ds_ident
);
1448 * If we are nested inside of a C include file, add the declaration to
1449 * the C definition module; otherwise use the D definition module.
1451 if (yypcb
->pcb_idepth
!= 0)
1452 dmp
= dtp
->dt_cdefs
;
1454 dmp
= dtp
->dt_ddefs
;
1457 * If we see a global or static declaration of a function prototype,
1458 * treat this as equivalent to a D extern declaration.
1460 if (ctf_type_kind(dtt
.dtt_ctfp
, dtt
.dtt_type
) == CTF_K_FUNCTION
&&
1461 (class == DT_DC_DEFAULT
|| class == DT_DC_STATIC
))
1462 class = DT_DC_EXTERN
;
1466 case DT_DC_REGISTER
:
1468 xyerror(D_DECL_BADCLASS
, "specified storage class not "
1469 "appropriate in D\n");
1472 case DT_DC_EXTERN
: {
1473 dtrace_typeinfo_t ott
;
1474 dtrace_syminfo_t dts
;
1477 int exists
= dtrace_lookup_by_name(dtp
,
1478 dmp
->dm_name
, dsp
->ds_ident
, &sym
, &dts
) == 0;
1480 if (exists
&& (dtrace_symbol_type(dtp
, &sym
, &dts
, &ott
) != 0 ||
1481 ctf_type_cmp(dtt
.dtt_ctfp
, dtt
.dtt_type
,
1482 ott
.dtt_ctfp
, ott
.dtt_type
) != 0)) {
1483 xyerror(D_DECL_IDRED
, "identifier redeclared: %s`%s\n"
1484 "\t current: %s\n\tprevious: %s\n",
1485 dmp
->dm_name
, dsp
->ds_ident
,
1486 dt_type_name(dtt
.dtt_ctfp
, dtt
.dtt_type
,
1488 dt_type_name(ott
.dtt_ctfp
, ott
.dtt_type
,
1490 } else if (!exists
&& dt_module_extern(dtp
, dmp
,
1491 dsp
->ds_ident
, &dtt
) == NULL
) {
1493 "failed to extern %s: %s\n", dsp
->ds_ident
,
1494 dtrace_errmsg(dtp
, dtrace_errno(dtp
)));
1496 dt_dprintf("extern %s`%s type=<%s>\n",
1497 dmp
->dm_name
, dsp
->ds_ident
,
1498 dt_type_name(dtt
.dtt_ctfp
, dtt
.dtt_type
,
1505 if (dt_idstack_lookup(&yypcb
->pcb_globals
, dsp
->ds_ident
)) {
1506 xyerror(D_DECL_IDRED
, "global variable identifier "
1507 "redeclared: %s\n", dsp
->ds_ident
);
1510 if (ctf_lookup_by_name(dmp
->dm_ctfp
,
1511 dsp
->ds_ident
) != CTF_ERR
) {
1512 xyerror(D_DECL_IDRED
,
1513 "typedef redeclared: %s\n", dsp
->ds_ident
);
1517 * If the source type for the typedef is not defined in the
1518 * target container or its parent, copy the type to the target
1519 * container and reset dtt_ctfp and dtt_type to the copy.
1521 if (dtt
.dtt_ctfp
!= dmp
->dm_ctfp
&&
1522 dtt
.dtt_ctfp
!= ctf_parent_file(dmp
->dm_ctfp
)) {
1524 dtt
.dtt_type
= ctf_add_type(dmp
->dm_ctfp
,
1525 dtt
.dtt_ctfp
, dtt
.dtt_type
);
1526 dtt
.dtt_ctfp
= dmp
->dm_ctfp
;
1528 if (dtt
.dtt_type
== CTF_ERR
||
1529 ctf_update(dtt
.dtt_ctfp
) == CTF_ERR
) {
1530 xyerror(D_UNKNOWN
, "failed to copy typedef %s "
1531 "source type: %s\n", dsp
->ds_ident
,
1532 ctf_errmsg(ctf_errno(dtt
.dtt_ctfp
)));
1536 type
= ctf_add_typedef(dmp
->dm_ctfp
,
1537 CTF_ADD_ROOT
, dsp
->ds_ident
, dtt
.dtt_type
);
1539 if (type
== CTF_ERR
|| ctf_update(dmp
->dm_ctfp
) == CTF_ERR
) {
1540 xyerror(D_UNKNOWN
, "failed to typedef %s: %s\n",
1541 dsp
->ds_ident
, ctf_errmsg(ctf_errno(dmp
->dm_ctfp
)));
1544 dt_dprintf("typedef %s added as id %ld\n", dsp
->ds_ident
, type
);
1558 dhp
= yypcb
->pcb_locals
;
1559 idflags
= DT_IDFLG_LOCAL
;
1560 idp
= dt_idhash_lookup(dhp
, dsp
->ds_ident
);
1564 idflags
= DT_IDFLG_TLS
;
1565 idp
= dt_idhash_lookup(dhp
, dsp
->ds_ident
);
1568 dhp
= dtp
->dt_globals
;
1570 idp
= dt_idstack_lookup(
1571 &yypcb
->pcb_globals
, dsp
->ds_ident
);
1575 if (ddp
->dd_kind
== CTF_K_ARRAY
&& ddp
->dd_node
== NULL
) {
1576 xyerror(D_DECL_ARRNULL
,
1577 "array declaration requires array dimension or "
1578 "tuple signature: %s\n", dsp
->ds_ident
);
1581 if (idp
!= NULL
&& idp
->di_gen
== 0) {
1582 xyerror(D_DECL_IDRED
, "built-in identifier "
1583 "redeclared: %s\n", idp
->di_name
);
1586 if (dtrace_lookup_by_type(dtp
, DTRACE_OBJ_CDEFS
,
1587 dsp
->ds_ident
, NULL
) == 0 ||
1588 dtrace_lookup_by_type(dtp
, DTRACE_OBJ_DDEFS
,
1589 dsp
->ds_ident
, NULL
) == 0) {
1590 xyerror(D_DECL_IDRED
, "typedef identifier "
1591 "redeclared: %s\n", dsp
->ds_ident
);
1595 * Cache some attributes of the decl to make the rest of this
1596 * code simpler: if the decl is an array which is subscripted
1597 * by a type rather than an integer, then it's an associative
1598 * array (assc). We then expect to match either DT_IDENT_ARRAY
1599 * for associative arrays or DT_IDENT_SCALAR for anything else.
1601 assc
= ddp
->dd_kind
== CTF_K_ARRAY
&&
1602 ddp
->dd_node
->dn_kind
== DT_NODE_TYPE
;
1604 idkind
= assc
? DT_IDENT_ARRAY
: DT_IDENT_SCALAR
;
1607 * Create a fake dt_node_t on the stack so we can determine the
1608 * type of any matching identifier by assigning to this node.
1609 * If the pre-existing ident has its di_type set, propagate
1610 * the type by hand so as not to trigger a prototype check for
1611 * arrays (yet); otherwise we use dt_ident_cook() on the ident
1612 * to ensure it is fully initialized before looking at it.
1614 bzero(&idn
, sizeof (dt_node_t
));
1616 if (idp
!= NULL
&& idp
->di_type
!= CTF_ERR
)
1617 dt_node_type_assign(&idn
, idp
->di_ctfp
, idp
->di_type
,
1619 else if (idp
!= NULL
)
1620 (void) dt_ident_cook(&idn
, idp
, NULL
);
1623 if (class == DT_DC_THIS
) {
1624 xyerror(D_DECL_LOCASSC
, "associative arrays "
1625 "may not be declared as local variables:"
1626 " %s\n", dsp
->ds_ident
);
1629 if (dt_decl_type(ddp
->dd_next
, &dtt
) != 0)
1630 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
1633 if (idp
!= NULL
&& (idp
->di_kind
!= idkind
||
1634 ctf_type_cmp(dtt
.dtt_ctfp
, dtt
.dtt_type
,
1635 idn
.dn_ctfp
, idn
.dn_type
) != 0)) {
1636 xyerror(D_DECL_IDRED
, "identifier redeclared: %s\n"
1637 "\t current: %s %s\n\tprevious: %s %s\n",
1638 dsp
->ds_ident
, dt_idkind_name(idkind
),
1639 dt_type_name(dtt
.dtt_ctfp
,
1640 dtt
.dtt_type
, n1
, sizeof (n1
)),
1641 dt_idkind_name(idp
->di_kind
),
1642 dt_node_type_name(&idn
, n2
, sizeof (n2
)));
1644 } else if (idp
!= NULL
&& assc
) {
1645 const dt_idsig_t
*isp
= idp
->di_data
;
1646 dt_node_t
*dnp
= ddp
->dd_node
;
1649 for (; dnp
!= NULL
; dnp
= dnp
->dn_list
, argc
++) {
1650 const dt_node_t
*pnp
= &isp
->dis_args
[argc
];
1652 if (argc
>= isp
->dis_argc
)
1653 continue; /* tuple length mismatch */
1655 if (ctf_type_cmp(dnp
->dn_ctfp
, dnp
->dn_type
,
1656 pnp
->dn_ctfp
, pnp
->dn_type
) == 0)
1659 xyerror(D_DECL_IDRED
,
1660 "identifier redeclared: %s\n"
1661 "\t current: %s, key #%d of type %s\n"
1662 "\tprevious: %s, key #%d of type %s\n",
1664 dt_idkind_name(idkind
), argc
+ 1,
1665 dt_node_type_name(dnp
, n1
, sizeof (n1
)),
1666 dt_idkind_name(idp
->di_kind
), argc
+ 1,
1667 dt_node_type_name(pnp
, n2
, sizeof (n2
)));
1670 if (isp
->dis_argc
!= argc
) {
1671 xyerror(D_DECL_IDRED
,
1672 "identifier redeclared: %s\n"
1673 "\t current: %s of %s, tuple length %d\n"
1674 "\tprevious: %s of %s, tuple length %d\n",
1675 dsp
->ds_ident
, dt_idkind_name(idkind
),
1676 dt_type_name(dtt
.dtt_ctfp
, dtt
.dtt_type
,
1677 n1
, sizeof (n1
)), argc
,
1678 dt_idkind_name(idp
->di_kind
),
1679 dt_node_type_name(&idn
, n2
, sizeof (n2
)),
1683 } else if (idp
== NULL
) {
1684 type
= ctf_type_resolve(dtt
.dtt_ctfp
, dtt
.dtt_type
);
1685 kind
= ctf_type_kind(dtt
.dtt_ctfp
, type
);
1689 if (ctf_type_encoding(dtt
.dtt_ctfp
, type
,
1690 &cte
) == 0 && IS_VOID(cte
)) {
1691 xyerror(D_DECL_VOIDOBJ
, "cannot have "
1692 "void object: %s\n", dsp
->ds_ident
);
1697 if (ctf_type_size(dtt
.dtt_ctfp
, type
) != 0)
1698 break; /* proceed to declaring */
1701 xyerror(D_DECL_INCOMPLETE
,
1702 "incomplete struct/union/enum %s: %s\n",
1703 dt_type_name(dtt
.dtt_ctfp
, dtt
.dtt_type
,
1704 n1
, sizeof (n1
)), dsp
->ds_ident
);
1708 if (dt_idhash_nextid(dhp
, &id
) == -1) {
1709 xyerror(D_ID_OFLOW
, "cannot create %s: limit "
1710 "on number of %s variables exceeded\n",
1711 dsp
->ds_ident
, dt_idhash_name(dhp
));
1714 dt_dprintf("declare %s %s variable %s, id=%u\n",
1715 dt_idhash_name(dhp
), dt_idkind_name(idkind
),
1718 idp
= dt_idhash_insert(dhp
, dsp
->ds_ident
, idkind
,
1719 idflags
| DT_IDFLG_WRITE
| DT_IDFLG_DECL
, id
,
1720 _dtrace_defattr
, 0, assc
? &dt_idops_assc
:
1721 &dt_idops_thaw
, NULL
, dtp
->dt_gen
);
1724 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
1726 dt_ident_type_assign(idp
, dtt
.dtt_ctfp
, dtt
.dtt_type
);
1729 * If we are declaring an associative array, use our
1730 * fake parse node to cook the new assoc identifier.
1731 * This will force the ident code to instantiate the
1732 * array type signature corresponding to the list of
1733 * types pointed to by ddp->dd_node. We also reset
1734 * the identifier's attributes based upon the result.
1738 dt_ident_cook(&idn
, idp
, &ddp
->dd_node
);
1743 } /* end of switch */
1745 free(dsp
->ds_ident
);
1746 dsp
->ds_ident
= NULL
;
1752 dt_node_func(dt_node_t
*dnp
, dt_node_t
*args
)
1756 if (dnp
->dn_kind
!= DT_NODE_IDENT
) {
1757 xyerror(D_FUNC_IDENT
,
1758 "function designator is not of function type\n");
1761 idp
= dt_idstack_lookup(&yypcb
->pcb_globals
, dnp
->dn_string
);
1764 xyerror(D_FUNC_UNDEF
,
1765 "undefined function name: %s\n", dnp
->dn_string
);
1768 if (idp
->di_kind
!= DT_IDENT_FUNC
&&
1769 idp
->di_kind
!= DT_IDENT_AGGFUNC
&&
1770 idp
->di_kind
!= DT_IDENT_ACTFUNC
) {
1771 xyerror(D_FUNC_IDKIND
, "%s '%s' may not be referenced as a "
1772 "function\n", dt_idkind_name(idp
->di_kind
), idp
->di_name
);
1775 free(dnp
->dn_string
);
1776 dnp
->dn_string
= NULL
;
1778 dnp
->dn_kind
= DT_NODE_FUNC
;
1779 dnp
->dn_flags
&= ~DT_NF_COOKED
;
1780 dnp
->dn_ident
= idp
;
1781 dnp
->dn_args
= args
;
1782 dnp
->dn_list
= NULL
;
1788 * The offsetof() function is special because it takes a type name as an
1789 * argument. It does not actually construct its own node; after looking up the
1790 * structure or union offset, we just return an integer node with the offset.
1793 dt_node_offsetof(dt_decl_t
*ddp
, char *s
)
1795 dtrace_typeinfo_t dtt
;
1808 err
= dt_decl_type(ddp
, &dtt
);
1812 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
1814 type
= ctf_type_resolve(dtt
.dtt_ctfp
, dtt
.dtt_type
);
1815 kind
= ctf_type_kind(dtt
.dtt_ctfp
, type
);
1817 if (kind
!= CTF_K_STRUCT
&& kind
!= CTF_K_UNION
) {
1818 xyerror(D_OFFSETOF_TYPE
,
1819 "offsetof operand must be a struct or union type\n");
1822 if (ctf_member_info(dtt
.dtt_ctfp
, type
, name
, &ctm
) == CTF_ERR
) {
1823 xyerror(D_UNKNOWN
, "failed to determine offset of %s: %s\n",
1824 name
, ctf_errmsg(ctf_errno(dtt
.dtt_ctfp
)));
1827 bzero(&dn
, sizeof (dn
));
1829 * Resolution of CTF_K_FORWARD is unnecessary here, since it can't be
1830 * both forward _and_ a bitfield, but is done for completeness.
1832 type
= ctm
.ctm_type
;
1833 ctfp
= dtt
.dtt_ctfp
;
1835 dt_resolve_forward_decl(&ctfp
, &type
);
1836 dt_node_type_assign(&dn
, ctfp
, type
, B_FALSE
);
1838 if (dn
.dn_flags
& DT_NF_BITFIELD
) {
1839 xyerror(D_OFFSETOF_BITFIELD
,
1840 "cannot take offset of a bit-field: %s\n", name
);
1843 return (dt_node_int(ctm
.ctm_offset
/ NBBY
));
1847 dt_node_op1(int op
, dt_node_t
*cp
)
1851 if (cp
->dn_kind
== DT_NODE_INT
) {
1855 * If we're negating an unsigned integer, zero out any
1856 * extra top bits to truncate the value to the size of
1857 * the effective type determined by dt_node_int().
1859 cp
->dn_value
= -cp
->dn_value
;
1860 if (!(cp
->dn_flags
& DT_NF_SIGNED
)) {
1861 cp
->dn_value
&= ~0ULL >>
1862 (64 - dt_node_type_size(cp
) * NBBY
);
1868 cp
->dn_value
= ~cp
->dn_value
;
1871 cp
->dn_value
= !cp
->dn_value
;
1877 * If sizeof is applied to a type_name or string constant, we can
1878 * transform 'cp' into an integer constant in the node construction
1879 * pass so that it can then be used for arithmetic in this pass.
1881 if (op
== DT_TOK_SIZEOF
&&
1882 (cp
->dn_kind
== DT_NODE_STRING
|| cp
->dn_kind
== DT_NODE_TYPE
)) {
1883 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
1884 size_t size
= dt_node_type_size(cp
);
1887 xyerror(D_SIZEOF_TYPE
, "cannot apply sizeof to an "
1888 "operand of unknown size\n");
1891 dt_node_type_assign(cp
, dtp
->dt_ddefs
->dm_ctfp
,
1892 ctf_lookup_by_name(dtp
->dt_ddefs
->dm_ctfp
, "size_t"),
1895 cp
->dn_kind
= DT_NODE_INT
;
1896 cp
->dn_op
= DT_TOK_INT
;
1897 cp
->dn_value
= size
;
1902 dnp
= dt_node_alloc(DT_NODE_OP1
);
1903 assert(op
<= USHRT_MAX
);
1904 dnp
->dn_op
= (ushort_t
)op
;
1911 * If an integer constant is being cast to another integer type, we can
1912 * perform the cast as part of integer constant folding in this pass. We must
1913 * take action when the integer is being cast to a smaller type or if it is
1914 * changing signed-ness. If so, we first shift rp's bits bits high (losing
1915 * excess bits if narrowing) and then shift them down with either a logical
1916 * shift (unsigned) or arithmetic shift (signed).
1919 dt_cast(dt_node_t
*lp
, dt_node_t
*rp
)
1921 size_t srcsize
= dt_node_type_size(rp
);
1922 size_t dstsize
= dt_node_type_size(lp
);
1924 if (dstsize
< srcsize
) {
1925 int n
= (sizeof (uint64_t) - dstsize
) * NBBY
;
1928 } else if (dstsize
> srcsize
) {
1929 int n
= (sizeof (uint64_t) - srcsize
) * NBBY
;
1930 int s
= (dstsize
- srcsize
) * NBBY
;
1933 if (rp
->dn_flags
& DT_NF_SIGNED
) {
1934 rp
->dn_value
= (intmax_t)rp
->dn_value
>> s
;
1935 rp
->dn_value
>>= n
- s
;
1943 dt_node_op2(int op
, dt_node_t
*lp
, dt_node_t
*rp
)
1945 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
1949 * First we check for operations that are illegal -- namely those that
1950 * might result in integer division by zero, and abort if one is found.
1952 if (rp
->dn_kind
== DT_NODE_INT
&& rp
->dn_value
== 0 &&
1953 (op
== DT_TOK_MOD
|| op
== DT_TOK_DIV
||
1954 op
== DT_TOK_MOD_EQ
|| op
== DT_TOK_DIV_EQ
))
1955 xyerror(D_DIV_ZERO
, "expression contains division by zero\n");
1958 * If both children are immediate values, we can just perform inline
1959 * calculation and return a new immediate node with the result.
1961 if (lp
->dn_kind
== DT_NODE_INT
&& rp
->dn_kind
== DT_NODE_INT
) {
1962 uintmax_t l
= lp
->dn_value
;
1963 uintmax_t r
= rp
->dn_value
;
1965 dnp
= dt_node_int(0); /* allocate new integer node for result */
1969 dnp
->dn_value
= l
|| r
;
1970 dt_node_type_assign(dnp
,
1971 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
1974 dnp
->dn_value
= (l
!= 0) ^ (r
!= 0);
1975 dt_node_type_assign(dnp
,
1976 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
1979 dnp
->dn_value
= l
&& r
;
1980 dt_node_type_assign(dnp
,
1981 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
1984 dnp
->dn_value
= l
| r
;
1985 dt_node_promote(lp
, rp
, dnp
);
1988 dnp
->dn_value
= l
^ r
;
1989 dt_node_promote(lp
, rp
, dnp
);
1992 dnp
->dn_value
= l
& r
;
1993 dt_node_promote(lp
, rp
, dnp
);
1996 dnp
->dn_value
= l
== r
;
1997 dt_node_type_assign(dnp
,
1998 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
2001 dnp
->dn_value
= l
!= r
;
2002 dt_node_type_assign(dnp
,
2003 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
2006 dt_node_promote(lp
, rp
, dnp
);
2007 if (dnp
->dn_flags
& DT_NF_SIGNED
)
2008 dnp
->dn_value
= (intmax_t)l
< (intmax_t)r
;
2010 dnp
->dn_value
= l
< r
;
2011 dt_node_type_assign(dnp
,
2012 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
2015 dt_node_promote(lp
, rp
, dnp
);
2016 if (dnp
->dn_flags
& DT_NF_SIGNED
)
2017 dnp
->dn_value
= (intmax_t)l
<= (intmax_t)r
;
2019 dnp
->dn_value
= l
<= r
;
2020 dt_node_type_assign(dnp
,
2021 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
2024 dt_node_promote(lp
, rp
, dnp
);
2025 if (dnp
->dn_flags
& DT_NF_SIGNED
)
2026 dnp
->dn_value
= (intmax_t)l
> (intmax_t)r
;
2028 dnp
->dn_value
= l
> r
;
2029 dt_node_type_assign(dnp
,
2030 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
2033 dt_node_promote(lp
, rp
, dnp
);
2034 if (dnp
->dn_flags
& DT_NF_SIGNED
)
2035 dnp
->dn_value
= (intmax_t)l
>= (intmax_t)r
;
2037 dnp
->dn_value
= l
>= r
;
2038 dt_node_type_assign(dnp
,
2039 DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
), B_FALSE
);
2042 dnp
->dn_value
= l
<< r
;
2043 dt_node_type_propagate(lp
, dnp
);
2044 dt_node_attr_assign(rp
,
2045 dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
2048 dnp
->dn_value
= l
>> r
;
2049 dt_node_type_propagate(lp
, dnp
);
2050 dt_node_attr_assign(rp
,
2051 dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
2054 dnp
->dn_value
= l
+ r
;
2055 dt_node_promote(lp
, rp
, dnp
);
2058 dnp
->dn_value
= l
- r
;
2059 dt_node_promote(lp
, rp
, dnp
);
2062 dnp
->dn_value
= l
* r
;
2063 dt_node_promote(lp
, rp
, dnp
);
2066 dt_node_promote(lp
, rp
, dnp
);
2067 if (dnp
->dn_flags
& DT_NF_SIGNED
)
2068 dnp
->dn_value
= (intmax_t)l
/ (intmax_t)r
;
2070 dnp
->dn_value
= l
/ r
;
2073 dt_node_promote(lp
, rp
, dnp
);
2074 if (dnp
->dn_flags
& DT_NF_SIGNED
)
2075 dnp
->dn_value
= (intmax_t)l
% (intmax_t)r
;
2077 dnp
->dn_value
= l
% r
;
2091 if (op
== DT_TOK_LPAR
&& rp
->dn_kind
== DT_NODE_INT
&&
2092 dt_node_is_integer(lp
)) {
2094 dt_node_type_propagate(lp
, rp
);
2095 dt_node_attr_assign(rp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
2102 * If no immediate optimizations are available, create an new OP2 node
2103 * and glue the left and right children into place and return.
2105 dnp
= dt_node_alloc(DT_NODE_OP2
);
2106 assert(op
<= USHRT_MAX
);
2107 dnp
->dn_op
= (ushort_t
)op
;
2115 dt_node_op3(dt_node_t
*expr
, dt_node_t
*lp
, dt_node_t
*rp
)
2119 if (expr
->dn_kind
== DT_NODE_INT
)
2120 return (expr
->dn_value
!= 0 ? lp
: rp
);
2122 dnp
= dt_node_alloc(DT_NODE_OP3
);
2123 dnp
->dn_op
= DT_TOK_QUESTION
;
2124 dnp
->dn_expr
= expr
;
2132 dt_node_statement(dt_node_t
*expr
)
2136 if (expr
->dn_kind
== DT_NODE_AGG
)
2139 if (expr
->dn_kind
== DT_NODE_FUNC
&&
2140 expr
->dn_ident
->di_kind
== DT_IDENT_ACTFUNC
)
2141 dnp
= dt_node_alloc(DT_NODE_DFUNC
);
2143 dnp
= dt_node_alloc(DT_NODE_DEXPR
);
2145 dnp
->dn_expr
= expr
;
2150 dt_node_if(dt_node_t
*pred
, dt_node_t
*acts
, dt_node_t
*else_acts
)
2152 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_IF
);
2153 dnp
->dn_conditional
= pred
;
2154 dnp
->dn_body
= acts
;
2155 dnp
->dn_alternate_body
= else_acts
;
2161 dt_node_pdesc_by_name(char *spec
)
2163 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2167 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2169 dnp
= dt_node_alloc(DT_NODE_PDESC
);
2170 dnp
->dn_spec
= spec
;
2171 dnp
->dn_desc
= malloc(sizeof (dtrace_probedesc_t
));
2173 if (dnp
->dn_desc
== NULL
)
2174 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2176 if (dtrace_xstr2desc(dtp
, yypcb
->pcb_pspec
, dnp
->dn_spec
,
2177 yypcb
->pcb_sargc
, yypcb
->pcb_sargv
, dnp
->dn_desc
) != 0) {
2178 xyerror(D_PDESC_INVAL
, "invalid probe description \"%s\": %s\n",
2179 dnp
->dn_spec
, dtrace_errmsg(dtp
, dtrace_errno(dtp
)));
2183 dnp
->dn_spec
= NULL
;
2189 dt_node_pdesc_by_id(uintmax_t id
)
2191 static const char *const names
[] = {
2192 "providers", "modules", "functions"
2195 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2196 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_PDESC
);
2198 if ((dnp
->dn_desc
= malloc(sizeof (dtrace_probedesc_t
))) == NULL
)
2199 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2201 if (id
> UINT_MAX
) {
2202 xyerror(D_PDESC_INVAL
, "identifier %llu exceeds maximum "
2203 "probe id\n", (u_longlong_t
)id
);
2206 if (yypcb
->pcb_pspec
!= DTRACE_PROBESPEC_NAME
) {
2207 xyerror(D_PDESC_INVAL
, "probe identifier %llu not permitted "
2208 "when specifying %s\n", (u_longlong_t
)id
,
2209 names
[yypcb
->pcb_pspec
]);
2212 if (dtrace_id2desc(dtp
, (dtrace_id_t
)id
, dnp
->dn_desc
) != 0) {
2213 xyerror(D_PDESC_INVAL
, "invalid probe identifier %llu: %s\n",
2214 (u_longlong_t
)id
, dtrace_errmsg(dtp
, dtrace_errno(dtp
)));
2221 dt_node_clause(dt_node_t
*pdescs
, dt_node_t
*pred
, dt_node_t
*acts
)
2223 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_CLAUSE
);
2225 dnp
->dn_pdescs
= pdescs
;
2226 dnp
->dn_pred
= pred
;
2227 dnp
->dn_acts
= acts
;
2233 dt_node_inline(dt_node_t
*expr
)
2235 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2236 dt_scope_t
*dsp
= &yypcb
->pcb_dstack
;
2237 dt_decl_t
*ddp
= dt_decl_top();
2239 char n
[DT_TYPE_NAMELEN
];
2240 dtrace_typeinfo_t dtt
;
2242 dt_ident_t
*idp
, *rdp
;
2246 if (dt_decl_type(ddp
, &dtt
) != 0)
2247 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
2249 if (dsp
->ds_class
!= DT_DC_DEFAULT
) {
2250 xyerror(D_DECL_BADCLASS
, "specified storage class not "
2251 "appropriate for inline declaration\n");
2254 if (dsp
->ds_ident
== NULL
)
2255 xyerror(D_DECL_USELESS
, "inline declaration requires a name\n");
2257 if ((idp
= dt_idstack_lookup(
2258 &yypcb
->pcb_globals
, dsp
->ds_ident
)) != NULL
) {
2259 xyerror(D_DECL_IDRED
, "identifier redefined: %s\n\t current: "
2260 "inline definition\n\tprevious: %s %s\n",
2261 idp
->di_name
, dt_idkind_name(idp
->di_kind
),
2262 (idp
->di_flags
& DT_IDFLG_INLINE
) ? "inline" : "");
2266 * If we are declaring an inlined array, verify that we have a tuple
2267 * signature, and then recompute 'dtt' as the array's value type.
2269 if (ddp
->dd_kind
== CTF_K_ARRAY
) {
2270 if (ddp
->dd_node
== NULL
) {
2271 xyerror(D_DECL_ARRNULL
, "inline declaration requires "
2272 "array tuple signature: %s\n", dsp
->ds_ident
);
2275 if (ddp
->dd_node
->dn_kind
!= DT_NODE_TYPE
) {
2276 xyerror(D_DECL_ARRNULL
, "inline declaration cannot be "
2277 "of scalar array type: %s\n", dsp
->ds_ident
);
2280 if (dt_decl_type(ddp
->dd_next
, &dtt
) != 0)
2281 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
2285 * If the inline identifier is not defined, then create it with the
2286 * orphan flag set. We do not insert the identifier into dt_globals
2287 * until we have successfully cooked the right-hand expression, below.
2289 dnp
= dt_node_alloc(DT_NODE_INLINE
);
2290 dt_node_type_assign(dnp
, dtt
.dtt_ctfp
, dtt
.dtt_type
, B_FALSE
);
2291 dt_node_attr_assign(dnp
, _dtrace_defattr
);
2293 if (dt_node_is_void(dnp
)) {
2294 xyerror(D_DECL_VOIDOBJ
,
2295 "cannot declare void inline: %s\n", dsp
->ds_ident
);
2298 if (ctf_type_kind(dnp
->dn_ctfp
, ctf_type_resolve(
2299 dnp
->dn_ctfp
, dnp
->dn_type
)) == CTF_K_FORWARD
) {
2300 xyerror(D_DECL_INCOMPLETE
,
2301 "incomplete struct/union/enum %s: %s\n",
2302 dt_node_type_name(dnp
, n
, sizeof (n
)), dsp
->ds_ident
);
2305 if ((inp
= malloc(sizeof (dt_idnode_t
))) == NULL
)
2306 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2308 bzero(inp
, sizeof (dt_idnode_t
));
2310 idp
= dnp
->dn_ident
= dt_ident_create(dsp
->ds_ident
,
2311 ddp
->dd_kind
== CTF_K_ARRAY
? DT_IDENT_ARRAY
: DT_IDENT_SCALAR
,
2312 DT_IDFLG_INLINE
| DT_IDFLG_REF
| DT_IDFLG_DECL
| DT_IDFLG_ORPHAN
, 0,
2313 _dtrace_defattr
, 0, &dt_idops_inline
, inp
, dtp
->dt_gen
);
2317 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2321 * If we're inlining an associative array, create a private identifier
2322 * hash containing the named parameters and store it in inp->din_hash.
2323 * We then push this hash on to the top of the pcb_globals stack.
2325 if (ddp
->dd_kind
== CTF_K_ARRAY
) {
2331 for (pnp
= ddp
->dd_node
; pnp
!= NULL
; pnp
= pnp
->dn_list
)
2332 i
++; /* count up parameters for din_argv[] */
2334 inp
->din_hash
= dt_idhash_create("inline args", NULL
, 0, 0);
2335 inp
->din_argv
= calloc(i
, sizeof (dt_ident_t
*));
2337 if (inp
->din_hash
== NULL
|| inp
->din_argv
== NULL
)
2338 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2341 * Create an identifier for each parameter as a scalar inline,
2342 * and store it in din_hash and in position in din_argv[]. The
2343 * parameter identifiers also use dt_idops_inline, but we leave
2344 * the dt_idnode_t argument 'pinp' zeroed. This will be filled
2345 * in by the code generation pass with references to the args.
2347 for (i
= 0, pnp
= ddp
->dd_node
;
2348 pnp
!= NULL
; pnp
= pnp
->dn_list
, i
++) {
2350 if (pnp
->dn_string
== NULL
)
2351 continue; /* ignore anonymous parameters */
2353 if ((pinp
= malloc(sizeof (dt_idnode_t
))) == NULL
)
2354 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2356 pidp
= dt_idhash_insert(inp
->din_hash
, pnp
->dn_string
,
2357 DT_IDENT_SCALAR
, DT_IDFLG_DECL
| DT_IDFLG_INLINE
, 0,
2358 _dtrace_defattr
, 0, &dt_idops_inline
,
2363 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2366 inp
->din_argv
[i
] = pidp
;
2367 bzero(pinp
, sizeof (dt_idnode_t
));
2368 dt_ident_type_assign(pidp
, pnp
->dn_ctfp
, pnp
->dn_type
);
2371 dt_idstack_push(&yypcb
->pcb_globals
, inp
->din_hash
);
2375 * Unlike most constructors, we need to explicitly cook the right-hand
2376 * side of the inline definition immediately to prevent recursion. If
2377 * the right-hand side uses the inline itself, the cook will fail.
2379 expr
= dt_node_cook(expr
, DT_IDFLG_REF
);
2381 if (ddp
->dd_kind
== CTF_K_ARRAY
)
2382 dt_idstack_pop(&yypcb
->pcb_globals
, inp
->din_hash
);
2385 * Set the type, attributes, and flags for the inline. If the right-
2386 * hand expression has an identifier, propagate its flags. Then cook
2387 * the identifier to fully initialize it: if we're declaring an inline
2388 * associative array this will construct a type signature from 'ddp'.
2390 if (dt_node_is_dynamic(expr
))
2391 rdp
= dt_ident_resolve(expr
->dn_ident
);
2392 else if (expr
->dn_kind
== DT_NODE_VAR
|| expr
->dn_kind
== DT_NODE_SYM
)
2393 rdp
= expr
->dn_ident
;
2398 idp
->di_flags
|= (rdp
->di_flags
&
2399 (DT_IDFLG_WRITE
| DT_IDFLG_USER
| DT_IDFLG_PRIM
));
2402 idp
->di_attr
= dt_attr_min(_dtrace_defattr
, expr
->dn_attr
);
2403 dt_ident_type_assign(idp
, dtt
.dtt_ctfp
, dtt
.dtt_type
);
2404 (void) dt_ident_cook(dnp
, idp
, &ddp
->dd_node
);
2407 * Store the parse tree nodes for 'expr' inside of idp->di_data ('inp')
2408 * so that they will be preserved with this identifier. Then pop the
2409 * inline declaration from the declaration stack and restore the lexer.
2411 inp
->din_list
= yypcb
->pcb_list
;
2412 inp
->din_root
= expr
;
2414 dt_decl_free(dt_decl_pop());
2415 yybegin(YYS_CLAUSE
);
2418 * Finally, insert the inline identifier into dt_globals to make it
2419 * visible, and then cook 'dnp' to check its type against 'expr'.
2421 dt_idhash_xinsert(dtp
->dt_globals
, idp
);
2422 return (dt_node_cook(dnp
, DT_IDFLG_REF
));
2426 dt_node_member(dt_decl_t
*ddp
, char *name
, dt_node_t
*expr
)
2428 dtrace_typeinfo_t dtt
;
2433 err
= dt_decl_type(ddp
, &dtt
);
2437 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
2440 dnp
= dt_node_alloc(DT_NODE_MEMBER
);
2441 dnp
->dn_membname
= name
;
2442 dnp
->dn_membexpr
= expr
;
2445 dt_node_type_assign(dnp
, dtt
.dtt_ctfp
, dtt
.dtt_type
,
2446 dtt
.dtt_flags
& DTT_FL_USER
? B_TRUE
: B_FALSE
);
2452 dt_node_xlator(dt_decl_t
*ddp
, dt_decl_t
*sdp
, char *name
, dt_node_t
*members
)
2454 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2455 dtrace_typeinfo_t src
, dst
;
2462 char n1
[DT_TYPE_NAMELEN
];
2463 char n2
[DT_TYPE_NAMELEN
];
2465 edst
= dt_decl_type(ddp
, &dst
);
2468 esrc
= dt_decl_type(sdp
, &src
);
2471 if (edst
!= 0 || esrc
!= 0) {
2473 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
2476 bzero(&sn
, sizeof (sn
));
2477 dt_node_type_assign(&sn
, src
.dtt_ctfp
, src
.dtt_type
, B_FALSE
);
2479 bzero(&dn
, sizeof (dn
));
2480 dt_node_type_assign(&dn
, dst
.dtt_ctfp
, dst
.dtt_type
, B_FALSE
);
2482 if (dt_xlator_lookup(dtp
, &sn
, &dn
, DT_XLATE_EXACT
) != NULL
) {
2483 xyerror(D_XLATE_REDECL
,
2484 "translator from %s to %s has already been declared\n",
2485 dt_node_type_name(&sn
, n1
, sizeof (n1
)),
2486 dt_node_type_name(&dn
, n2
, sizeof (n2
)));
2489 kind
= ctf_type_kind(dst
.dtt_ctfp
,
2490 ctf_type_resolve(dst
.dtt_ctfp
, dst
.dtt_type
));
2492 if (kind
== CTF_K_FORWARD
) {
2493 xyerror(D_XLATE_SOU
, "incomplete struct/union/enum %s\n",
2494 dt_type_name(dst
.dtt_ctfp
, dst
.dtt_type
, n1
, sizeof (n1
)));
2497 if (kind
!= CTF_K_STRUCT
&& kind
!= CTF_K_UNION
) {
2498 xyerror(D_XLATE_SOU
,
2499 "translator output type must be a struct or union\n");
2502 dxp
= dt_xlator_create(dtp
, &src
, &dst
, name
, members
, yypcb
->pcb_list
);
2503 yybegin(YYS_CLAUSE
);
2507 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2509 dnp
= dt_node_alloc(DT_NODE_XLATOR
);
2510 dnp
->dn_xlator
= dxp
;
2511 dnp
->dn_members
= members
;
2513 return (dt_node_cook(dnp
, DT_IDFLG_REF
));
2517 dt_node_probe(char *s
, int protoc
, dt_node_t
*nargs
, dt_node_t
*xargs
)
2519 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2523 size_t len
= strlen(s
) + 3; /* +3 for :: and \0 */
2524 char *name
= alloca(len
);
2526 (void) snprintf(name
, len
, "::%s", s
);
2527 (void) strhyphenate(name
);
2530 if (strchr(name
, '`') != NULL
) {
2531 xyerror(D_PROV_BADNAME
, "probe name may not "
2532 "contain scoping operator: %s\n", name
);
2535 if (strlen(name
) - 2 >= DTRACE_NAMELEN
) {
2536 xyerror(D_PROV_BADNAME
, "probe name may not exceed %d "
2537 "characters: %s\n", DTRACE_NAMELEN
- 1, name
);
2540 dnp
= dt_node_alloc(DT_NODE_PROBE
);
2542 dnp
->dn_ident
= dt_ident_create(name
, DT_IDENT_PROBE
,
2543 DT_IDFLG_ORPHAN
, DTRACE_IDNONE
, _dtrace_defattr
, 0,
2544 &dt_idops_probe
, NULL
, dtp
->dt_gen
);
2546 nargc
= dt_decl_prototype(nargs
, nargs
,
2547 "probe input", DT_DP_VOID
| DT_DP_ANON
);
2549 xargc
= dt_decl_prototype(xargs
, nargs
,
2550 "probe output", DT_DP_VOID
);
2552 if (nargc
> UINT8_MAX
) {
2553 xyerror(D_PROV_PRARGLEN
, "probe %s input prototype exceeds %u "
2554 "parameters: %d params used\n", name
, UINT8_MAX
, nargc
);
2557 if (xargc
> UINT8_MAX
) {
2558 xyerror(D_PROV_PRARGLEN
, "probe %s output prototype exceeds %u "
2559 "parameters: %d params used\n", name
, UINT8_MAX
, xargc
);
2562 if (dnp
->dn_ident
== NULL
|| dt_probe_create(dtp
,
2563 dnp
->dn_ident
, protoc
, nargs
, nargc
, xargs
, xargc
) == NULL
)
2564 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2570 dt_node_provider(char *name
, dt_node_t
*probes
)
2572 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2573 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_PROVIDER
);
2577 dnp
->dn_provname
= name
;
2578 dnp
->dn_probes
= probes
;
2580 if (strchr(name
, '`') != NULL
) {
2581 dnerror(dnp
, D_PROV_BADNAME
, "provider name may not "
2582 "contain scoping operator: %s\n", name
);
2585 if ((len
= strlen(name
)) >= DTRACE_PROVNAMELEN
) {
2586 dnerror(dnp
, D_PROV_BADNAME
, "provider name may not exceed %d "
2587 "characters: %s\n", DTRACE_PROVNAMELEN
- 1, name
);
2590 if (isdigit(name
[len
- 1])) {
2591 dnerror(dnp
, D_PROV_BADNAME
, "provider name may not "
2592 "end with a digit: %s\n", name
);
2596 * Check to see if the provider is already defined or visible through
2597 * dtrace(7D). If so, set dn_provred to treat it as a re-declaration.
2598 * If not, create a new provider and set its interface-only flag. This
2599 * flag may be cleared later by calls made to dt_probe_declare().
2601 if ((dnp
->dn_provider
= dt_provider_lookup(dtp
, name
)) != NULL
)
2602 dnp
->dn_provred
= B_TRUE
;
2603 else if ((dnp
->dn_provider
= dt_provider_create(dtp
, name
)) == NULL
)
2604 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2606 dnp
->dn_provider
->pv_flags
|= DT_PROVIDER_INTF
;
2609 * Store all parse nodes created since we consumed the DT_KEY_PROVIDER
2610 * token with the provider and then restore our lexing state to CLAUSE.
2611 * Note that if dnp->dn_provred is true, we may end up storing dups of
2612 * a provider's interface and implementation: we eat this space because
2613 * the implementation will likely need to redeclare probe members, and
2614 * therefore may result in those member nodes becoming persistent.
2616 for (lnp
= yypcb
->pcb_list
; lnp
->dn_link
!= NULL
; lnp
= lnp
->dn_link
)
2617 continue; /* skip to end of allocation list */
2619 lnp
->dn_link
= dnp
->dn_provider
->pv_nodes
;
2620 dnp
->dn_provider
->pv_nodes
= yypcb
->pcb_list
;
2622 yybegin(YYS_CLAUSE
);
2627 dt_node_program(dt_node_t
*lnp
)
2629 dt_node_t
*dnp
= dt_node_alloc(DT_NODE_PROG
);
2635 * This function provides the underlying implementation of cooking an
2636 * identifier given its node, a hash of dynamic identifiers, an identifier
2637 * kind, and a boolean flag indicating whether we are allowed to instantiate
2638 * a new identifier if the string is not found. This function is either
2639 * called from dt_cook_ident(), below, or directly by the various cooking
2640 * routines that are allowed to instantiate identifiers (e.g. op2 TOK_ASGN).
2643 dt_xcook_ident(dt_node_t
*dnp
, dt_idhash_t
*dhp
, uint_t idkind
, int create
)
2645 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2646 const char *sname
= dt_idhash_name(dhp
);
2649 dtrace_attribute_t attr
= _dtrace_defattr
;
2651 dtrace_syminfo_t dts
;
2654 const char *scope
, *mark
;
2659 * Look for scoping marks in the identifier. If one is found, set our
2660 * scope to either DTRACE_OBJ_KMODS or UMODS or to the first part of
2661 * the string that specifies the scope using an explicit module name.
2662 * If two marks in a row are found, set 'uref' (user symbol reference).
2663 * Otherwise we set scope to DTRACE_OBJ_EXEC, indicating that normal
2664 * scope is desired and we should search the specified idhash.
2666 if ((name
= strrchr(dnp
->dn_string
, '`')) != NULL
) {
2667 if (name
> dnp
->dn_string
&& name
[-1] == '`') {
2672 if (name
== dnp
->dn_string
+ uref
)
2673 scope
= uref
? DTRACE_OBJ_UMODS
: DTRACE_OBJ_KMODS
;
2675 scope
= dnp
->dn_string
;
2677 *name
++ = '\0'; /* leave name pointing after scoping mark */
2678 dnkind
= DT_NODE_VAR
;
2680 } else if (idkind
== DT_IDENT_AGG
) {
2681 scope
= DTRACE_OBJ_EXEC
;
2682 name
= dnp
->dn_string
+ 1;
2683 dnkind
= DT_NODE_AGG
;
2685 scope
= DTRACE_OBJ_EXEC
;
2686 name
= dnp
->dn_string
;
2687 dnkind
= DT_NODE_VAR
;
2691 * If create is set to false, and we fail our idhash lookup, preset
2692 * the errno code to EDT_NOVAR for our final error message below.
2693 * If we end up calling dtrace_lookup_by_name(), it will reset the
2694 * errno appropriately and that error will be reported instead.
2696 (void) dt_set_errno(dtp
, EDT_NOVAR
);
2697 mark
= uref
? "``" : "`";
2699 if (scope
== DTRACE_OBJ_EXEC
&& (
2700 (dhp
!= dtp
->dt_globals
&&
2701 (idp
= dt_idhash_lookup(dhp
, name
)) != NULL
) ||
2702 (dhp
== dtp
->dt_globals
&&
2703 (idp
= dt_idstack_lookup(&yypcb
->pcb_globals
, name
)) != NULL
))) {
2705 * Check that we are referencing the ident in the manner that
2706 * matches its type if this is a global lookup. In the TLS or
2707 * local case, we don't know how the ident will be used until
2708 * the time operator -> is seen; more parsing is needed.
2710 if (idp
->di_kind
!= idkind
&& dhp
== dtp
->dt_globals
) {
2711 xyerror(D_IDENT_BADREF
, "%s '%s' may not be referenced "
2712 "as %s\n", dt_idkind_name(idp
->di_kind
),
2713 idp
->di_name
, dt_idkind_name(idkind
));
2717 * Arrays and aggregations are not cooked individually. They
2718 * have dynamic types and must be referenced using operator [].
2719 * This is handled explicitly by the code for DT_TOK_LBRAC.
2721 if (idp
->di_kind
!= DT_IDENT_ARRAY
&&
2722 idp
->di_kind
!= DT_IDENT_AGG
)
2723 attr
= dt_ident_cook(dnp
, idp
, NULL
);
2725 dt_node_type_assign(dnp
,
2726 DT_DYN_CTFP(dtp
), DT_DYN_TYPE(dtp
), B_FALSE
);
2727 attr
= idp
->di_attr
;
2730 free(dnp
->dn_string
);
2731 dnp
->dn_string
= NULL
;
2732 dnp
->dn_kind
= dnkind
;
2733 dnp
->dn_ident
= idp
;
2734 dnp
->dn_flags
|= DT_NF_LVALUE
;
2736 if (idp
->di_flags
& DT_IDFLG_WRITE
)
2737 dnp
->dn_flags
|= DT_NF_WRITABLE
;
2739 dt_node_attr_assign(dnp
, attr
);
2741 } else if (dhp
== dtp
->dt_globals
&& scope
!= DTRACE_OBJ_EXEC
&&
2742 dtrace_lookup_by_name(dtp
, scope
, name
, &sym
, &dts
) == 0) {
2744 dt_module_t
*mp
= dt_module_lookup_by_name(dtp
, dts
.dts_object
);
2745 int umod
= (mp
->dm_flags
& DT_DM_KERNEL
) == 0;
2746 static const char *const kunames
[] = { "kernel", "user" };
2748 dtrace_typeinfo_t dtt
;
2749 dtrace_syminfo_t
*sip
;
2752 xyerror(D_SYM_BADREF
, "%s module '%s' symbol '%s' may "
2753 "not be referenced as a %s symbol\n", kunames
[umod
],
2754 dts
.dts_object
, dts
.dts_name
, kunames
[uref
]);
2757 if (dtrace_symbol_type(dtp
, &sym
, &dts
, &dtt
) != 0) {
2759 * For now, we special-case EDT_DATAMODEL to clarify
2760 * that mixed data models are not currently supported.
2762 if (dtp
->dt_errno
== EDT_DATAMODEL
) {
2763 xyerror(D_SYM_MODEL
, "cannot use %s symbol "
2764 "%s%s%s in a %s D program\n",
2765 dt_module_modelname(mp
),
2766 dts
.dts_object
, mark
, dts
.dts_name
,
2767 dt_module_modelname(dtp
->dt_ddefs
));
2770 xyerror(D_SYM_NOTYPES
,
2771 "no symbolic type information is available for "
2772 "%s%s%s: %s\n", dts
.dts_object
, mark
, dts
.dts_name
,
2773 dtrace_errmsg(dtp
, dtrace_errno(dtp
)));
2776 idp
= dt_ident_create(name
, DT_IDENT_SYMBOL
, 0, 0,
2777 _dtrace_symattr
, 0, &dt_idops_thaw
, NULL
, dtp
->dt_gen
);
2780 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2782 if (mp
->dm_flags
& DT_DM_PRIMARY
)
2783 idp
->di_flags
|= DT_IDFLG_PRIM
;
2785 idp
->di_next
= dtp
->dt_externs
;
2786 dtp
->dt_externs
= idp
;
2788 if ((sip
= malloc(sizeof (dtrace_syminfo_t
))) == NULL
)
2789 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2791 bcopy(&dts
, sip
, sizeof (dtrace_syminfo_t
));
2793 idp
->di_ctfp
= dtt
.dtt_ctfp
;
2794 idp
->di_type
= dtt
.dtt_type
;
2796 free(dnp
->dn_string
);
2797 dnp
->dn_string
= NULL
;
2798 dnp
->dn_kind
= DT_NODE_SYM
;
2799 dnp
->dn_ident
= idp
;
2800 dnp
->dn_flags
|= DT_NF_LVALUE
;
2802 dt_node_type_assign(dnp
, dtt
.dtt_ctfp
, dtt
.dtt_type
,
2803 dtt
.dtt_flags
& DTT_FL_USER
? B_TRUE
: B_FALSE
);
2804 dt_node_attr_assign(dnp
, _dtrace_symattr
);
2807 idp
->di_flags
|= DT_IDFLG_USER
;
2808 dnp
->dn_flags
|= DT_NF_USERLAND
;
2811 } else if (scope
== DTRACE_OBJ_EXEC
&& create
== B_TRUE
) {
2812 uint_t flags
= DT_IDFLG_WRITE
;
2815 if (dt_idhash_nextid(dhp
, &id
) == -1) {
2816 xyerror(D_ID_OFLOW
, "cannot create %s: limit on number "
2817 "of %s variables exceeded\n", name
, sname
);
2820 if (dhp
== yypcb
->pcb_locals
)
2821 flags
|= DT_IDFLG_LOCAL
;
2822 else if (dhp
== dtp
->dt_tls
)
2823 flags
|= DT_IDFLG_TLS
;
2825 dt_dprintf("create %s %s variable %s, id=%u\n",
2826 sname
, dt_idkind_name(idkind
), name
, id
);
2828 if (idkind
== DT_IDENT_ARRAY
|| idkind
== DT_IDENT_AGG
) {
2829 idp
= dt_idhash_insert(dhp
, name
,
2830 idkind
, flags
, id
, _dtrace_defattr
, 0,
2831 &dt_idops_assc
, NULL
, dtp
->dt_gen
);
2833 idp
= dt_idhash_insert(dhp
, name
,
2834 idkind
, flags
, id
, _dtrace_defattr
, 0,
2835 &dt_idops_thaw
, NULL
, dtp
->dt_gen
);
2839 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
2842 * Arrays and aggregations are not cooked individually. They
2843 * have dynamic types and must be referenced using operator [].
2844 * This is handled explicitly by the code for DT_TOK_LBRAC.
2846 if (idp
->di_kind
!= DT_IDENT_ARRAY
&&
2847 idp
->di_kind
!= DT_IDENT_AGG
)
2848 attr
= dt_ident_cook(dnp
, idp
, NULL
);
2850 dt_node_type_assign(dnp
,
2851 DT_DYN_CTFP(dtp
), DT_DYN_TYPE(dtp
), B_FALSE
);
2852 attr
= idp
->di_attr
;
2855 free(dnp
->dn_string
);
2856 dnp
->dn_string
= NULL
;
2857 dnp
->dn_kind
= dnkind
;
2858 dnp
->dn_ident
= idp
;
2859 dnp
->dn_flags
|= DT_NF_LVALUE
| DT_NF_WRITABLE
;
2861 dt_node_attr_assign(dnp
, attr
);
2863 } else if (scope
!= DTRACE_OBJ_EXEC
) {
2864 xyerror(D_IDENT_UNDEF
, "failed to resolve %s%s%s: %s\n",
2865 dnp
->dn_string
, mark
, name
,
2866 dtrace_errmsg(dtp
, dtrace_errno(dtp
)));
2868 xyerror(D_IDENT_UNDEF
, "failed to resolve %s: %s\n",
2869 dnp
->dn_string
, dtrace_errmsg(dtp
, dtrace_errno(dtp
)));
2874 dt_cook_ident(dt_node_t
*dnp
, uint_t idflags
)
2876 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2878 if (dnp
->dn_op
== DT_TOK_AGG
)
2879 dt_xcook_ident(dnp
, dtp
->dt_aggs
, DT_IDENT_AGG
, B_FALSE
);
2881 dt_xcook_ident(dnp
, dtp
->dt_globals
, DT_IDENT_SCALAR
, B_FALSE
);
2883 return (dt_node_cook(dnp
, idflags
));
2887 * Since operators [ and -> can instantiate new variables before we know
2888 * whether the reference is for a read or a write, we need to check read
2889 * references to determine if the identifier is currently dt_ident_unref().
2890 * If so, we report that this first access was to an undefined variable.
2893 dt_cook_var(dt_node_t
*dnp
, uint_t idflags
)
2895 dt_ident_t
*idp
= dnp
->dn_ident
;
2897 if ((idflags
& DT_IDFLG_REF
) && dt_ident_unref(idp
)) {
2898 dnerror(dnp
, D_VAR_UNDEF
,
2899 "%s%s has not yet been declared or assigned\n",
2900 (idp
->di_flags
& DT_IDFLG_LOCAL
) ? "this->" :
2901 (idp
->di_flags
& DT_IDFLG_TLS
) ? "self->" : "",
2905 dt_node_attr_assign(dnp
, dt_ident_cook(dnp
, idp
, &dnp
->dn_args
));
2911 dt_cook_func(dt_node_t
*dnp
, uint_t idflags
)
2913 dt_node_attr_assign(dnp
,
2914 dt_ident_cook(dnp
, dnp
->dn_ident
, &dnp
->dn_args
));
2920 dt_cook_op1(dt_node_t
*dnp
, uint_t idflags
)
2922 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
2923 dt_node_t
*cp
= dnp
->dn_child
;
2925 char n
[DT_TYPE_NAMELEN
];
2926 dtrace_typeinfo_t dtt
;
2931 ctf_id_t type
, base
;
2934 if (dnp
->dn_op
== DT_TOK_PREINC
|| dnp
->dn_op
== DT_TOK_POSTINC
||
2935 dnp
->dn_op
== DT_TOK_PREDEC
|| dnp
->dn_op
== DT_TOK_POSTDEC
)
2936 idflags
= DT_IDFLG_REF
| DT_IDFLG_MOD
;
2938 idflags
= DT_IDFLG_REF
;
2941 * We allow the unary ++ and -- operators to instantiate new scalar
2942 * variables if applied to an identifier; otherwise just cook as usual.
2944 if (cp
->dn_kind
== DT_NODE_IDENT
&& (idflags
& DT_IDFLG_MOD
))
2945 dt_xcook_ident(cp
, dtp
->dt_globals
, DT_IDENT_SCALAR
, B_TRUE
);
2947 cp
= dnp
->dn_child
= dt_node_cook(cp
, 0); /* don't set idflags yet */
2949 if (cp
->dn_kind
== DT_NODE_VAR
&& dt_ident_unref(cp
->dn_ident
)) {
2950 if (dt_type_lookup("int64_t", &dtt
) != 0)
2951 xyerror(D_TYPE_ERR
, "failed to lookup int64_t\n");
2953 dt_ident_type_assign(cp
->dn_ident
, dtt
.dtt_ctfp
, dtt
.dtt_type
);
2954 dt_node_type_assign(cp
, dtt
.dtt_ctfp
, dtt
.dtt_type
,
2955 dtt
.dtt_flags
& DTT_FL_USER
? B_TRUE
: B_FALSE
);
2958 if (cp
->dn_kind
== DT_NODE_VAR
)
2959 cp
->dn_ident
->di_flags
|= idflags
;
2961 switch (dnp
->dn_op
) {
2964 * If the deref operator is applied to a translated pointer,
2965 * we set our output type to the output of the translation.
2967 if ((idp
= dt_node_resolve(cp
, DT_IDENT_XLPTR
)) != NULL
) {
2968 dt_xlator_t
*dxp
= idp
->di_data
;
2970 dnp
->dn_ident
= &dxp
->dx_souid
;
2971 dt_node_type_assign(dnp
,
2972 dnp
->dn_ident
->di_ctfp
, dnp
->dn_ident
->di_type
,
2973 cp
->dn_flags
& DT_NF_USERLAND
);
2977 type
= ctf_type_resolve(cp
->dn_ctfp
, cp
->dn_type
);
2978 kind
= ctf_type_kind(cp
->dn_ctfp
, type
);
2980 if (kind
== CTF_K_ARRAY
) {
2981 if (ctf_array_info(cp
->dn_ctfp
, type
, &r
) != 0) {
2982 dtp
->dt_ctferr
= ctf_errno(cp
->dn_ctfp
);
2983 longjmp(yypcb
->pcb_jmpbuf
, EDT_CTF
);
2985 type
= r
.ctr_contents
;
2986 } else if (kind
== CTF_K_POINTER
) {
2987 type
= ctf_type_reference(cp
->dn_ctfp
, type
);
2989 xyerror(D_DEREF_NONPTR
,
2990 "cannot dereference non-pointer type\n");
2993 dt_node_type_assign(dnp
, cp
->dn_ctfp
, type
,
2994 cp
->dn_flags
& DT_NF_USERLAND
);
2995 base
= ctf_type_resolve(cp
->dn_ctfp
, type
);
2996 kind
= ctf_type_kind(cp
->dn_ctfp
, base
);
2998 if (kind
== CTF_K_INTEGER
&& ctf_type_encoding(cp
->dn_ctfp
,
2999 base
, &e
) == 0 && IS_VOID(e
)) {
3000 xyerror(D_DEREF_VOID
,
3001 "cannot dereference pointer to void\n");
3004 if (kind
== CTF_K_FUNCTION
) {
3005 xyerror(D_DEREF_FUNC
,
3006 "cannot dereference pointer to function\n");
3009 if (kind
!= CTF_K_ARRAY
|| dt_node_is_string(dnp
))
3010 dnp
->dn_flags
|= DT_NF_LVALUE
; /* see K&R[A7.4.3] */
3013 * If we propagated the l-value bit and the child operand was
3014 * a writable D variable or a binary operation of the form
3015 * a + b where a is writable, then propagate the writable bit.
3016 * This is necessary to permit assignments to scalar arrays,
3017 * which are converted to expressions of the form *(a + i).
3019 if ((cp
->dn_flags
& DT_NF_WRITABLE
) ||
3020 (cp
->dn_kind
== DT_NODE_OP2
&& cp
->dn_op
== DT_TOK_ADD
&&
3021 (cp
->dn_left
->dn_flags
& DT_NF_WRITABLE
)))
3022 dnp
->dn_flags
|= DT_NF_WRITABLE
;
3024 if ((cp
->dn_flags
& DT_NF_USERLAND
) &&
3025 (kind
== CTF_K_POINTER
|| (dnp
->dn_flags
& DT_NF_REF
)))
3026 dnp
->dn_flags
|= DT_NF_USERLAND
;
3031 if (!dt_node_is_arith(cp
)) {
3032 xyerror(D_OP_ARITH
, "operator %s requires an operand "
3033 "of arithmetic type\n", opstr(dnp
->dn_op
));
3035 dt_node_type_propagate(cp
, dnp
); /* see K&R[A7.4.4-6] */
3039 if (!dt_node_is_integer(cp
)) {
3040 xyerror(D_OP_INT
, "operator %s requires an operand of "
3041 "integral type\n", opstr(dnp
->dn_op
));
3043 dt_node_type_propagate(cp
, dnp
); /* see K&R[A7.4.4-6] */
3047 if (!dt_node_is_scalar(cp
)) {
3048 xyerror(D_OP_SCALAR
, "operator %s requires an operand "
3049 "of scalar type\n", opstr(dnp
->dn_op
));
3051 dt_node_type_assign(dnp
, DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
),
3056 if (cp
->dn_kind
== DT_NODE_VAR
|| cp
->dn_kind
== DT_NODE_AGG
) {
3057 xyerror(D_ADDROF_VAR
,
3058 "cannot take address of dynamic variable\n");
3061 if (dt_node_is_dynamic(cp
)) {
3062 xyerror(D_ADDROF_VAR
,
3063 "cannot take address of dynamic object\n");
3066 if (!(cp
->dn_flags
& DT_NF_LVALUE
)) {
3067 xyerror(D_ADDROF_LVAL
, /* see K&R[A7.4.2] */
3068 "unacceptable operand for unary & operator\n");
3071 if (cp
->dn_flags
& DT_NF_BITFIELD
) {
3072 xyerror(D_ADDROF_BITFIELD
,
3073 "cannot take address of bit-field\n");
3076 dtt
.dtt_object
= NULL
;
3077 dtt
.dtt_ctfp
= cp
->dn_ctfp
;
3078 dtt
.dtt_type
= cp
->dn_type
;
3080 if (dt_type_pointer(&dtt
) == -1) {
3081 xyerror(D_TYPE_ERR
, "cannot find type for \"&\": %s*\n",
3082 dt_node_type_name(cp
, n
, sizeof (n
)));
3085 dt_node_type_assign(dnp
, dtt
.dtt_ctfp
, dtt
.dtt_type
,
3086 cp
->dn_flags
& DT_NF_USERLAND
);
3090 if (cp
->dn_flags
& DT_NF_BITFIELD
) {
3091 xyerror(D_SIZEOF_BITFIELD
,
3092 "cannot apply sizeof to a bit-field\n");
3095 if (dt_node_sizeof(cp
) == 0) {
3096 xyerror(D_SIZEOF_TYPE
, "cannot apply sizeof to an "
3097 "operand of unknown size\n");
3100 dt_node_type_assign(dnp
, dtp
->dt_ddefs
->dm_ctfp
,
3101 ctf_lookup_by_name(dtp
->dt_ddefs
->dm_ctfp
, "size_t"),
3105 case DT_TOK_STRINGOF
:
3106 if (!dt_node_is_scalar(cp
) && !dt_node_is_pointer(cp
) &&
3107 !dt_node_is_strcompat(cp
)) {
3108 xyerror(D_STRINGOF_TYPE
,
3109 "cannot apply stringof to a value of type %s\n",
3110 dt_node_type_name(cp
, n
, sizeof (n
)));
3112 dt_node_type_assign(dnp
, DT_STR_CTFP(dtp
), DT_STR_TYPE(dtp
),
3113 cp
->dn_flags
& DT_NF_USERLAND
);
3117 case DT_TOK_POSTINC
:
3119 case DT_TOK_POSTDEC
:
3120 if (dt_node_is_scalar(cp
) == 0) {
3121 xyerror(D_OP_SCALAR
, "operator %s requires operand of "
3122 "scalar type\n", opstr(dnp
->dn_op
));
3125 if (dt_node_is_vfptr(cp
)) {
3126 xyerror(D_OP_VFPTR
, "operator %s requires an operand "
3127 "of known size\n", opstr(dnp
->dn_op
));
3130 if (!(cp
->dn_flags
& DT_NF_LVALUE
)) {
3131 xyerror(D_OP_LVAL
, "operator %s requires modifiable "
3132 "lvalue as an operand\n", opstr(dnp
->dn_op
));
3135 if (!(cp
->dn_flags
& DT_NF_WRITABLE
)) {
3136 xyerror(D_OP_WRITE
, "operator %s can only be applied "
3137 "to a writable variable\n", opstr(dnp
->dn_op
));
3140 dt_node_type_propagate(cp
, dnp
); /* see K&R[A7.4.1] */
3144 xyerror(D_UNKNOWN
, "invalid unary op %s\n", opstr(dnp
->dn_op
));
3147 dt_node_attr_assign(dnp
, cp
->dn_attr
);
3152 dt_assign_common(dt_node_t
*dnp
)
3154 dt_node_t
*lp
= dnp
->dn_left
;
3155 dt_node_t
*rp
= dnp
->dn_right
;
3156 int op
= dnp
->dn_op
;
3158 if (rp
->dn_kind
== DT_NODE_INT
)
3161 if (!(lp
->dn_flags
& DT_NF_LVALUE
)) {
3162 xyerror(D_OP_LVAL
, "operator %s requires modifiable "
3163 "lvalue as an operand\n", opstr(op
));
3164 /* see K&R[A7.17] */
3167 if (!(lp
->dn_flags
& DT_NF_WRITABLE
)) {
3168 xyerror(D_OP_WRITE
, "operator %s can only be applied "
3169 "to a writable variable\n", opstr(op
));
3172 dt_node_type_propagate(lp
, dnp
); /* see K&R[A7.17] */
3173 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3177 dt_cook_op2(dt_node_t
*dnp
, uint_t idflags
)
3179 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
3180 dt_node_t
*lp
= dnp
->dn_left
;
3181 dt_node_t
*rp
= dnp
->dn_right
;
3182 int op
= dnp
->dn_op
;
3187 int kind
, val
, uref
;
3190 char n1
[DT_TYPE_NAMELEN
];
3191 char n2
[DT_TYPE_NAMELEN
];
3194 * The expression E1[E2] is identical by definition to *((E1)+(E2)) so
3195 * we convert "[" to "+" and glue on "*" at the end (see K&R[A7.3.1])
3196 * unless the left-hand side is an untyped D scalar, associative array,
3197 * or aggregation. In these cases, we proceed to case DT_TOK_LBRAC and
3198 * handle associative array and aggregation references there.
3200 if (op
== DT_TOK_LBRAC
) {
3201 if (lp
->dn_kind
== DT_NODE_IDENT
) {
3205 if (lp
->dn_op
== DT_TOK_AGG
) {
3207 idp
= dt_idhash_lookup(dhp
, lp
->dn_string
+ 1);
3208 idkind
= DT_IDENT_AGG
;
3210 dhp
= dtp
->dt_globals
;
3211 idp
= dt_idstack_lookup(
3212 &yypcb
->pcb_globals
, lp
->dn_string
);
3213 idkind
= DT_IDENT_ARRAY
;
3216 if (idp
== NULL
|| dt_ident_unref(idp
))
3217 dt_xcook_ident(lp
, dhp
, idkind
, B_TRUE
);
3219 dt_xcook_ident(lp
, dhp
, idp
->di_kind
, B_FALSE
);
3221 lp
= dnp
->dn_left
= dt_node_cook(lp
, 0);
3225 * Switch op to '+' for *(E1 + E2) array mode in these cases:
3226 * (a) lp is a DT_IDENT_ARRAY variable that has already been
3227 * referenced using [] notation (dn_args != NULL).
3228 * (b) lp is a non-ARRAY variable that has already been given
3229 * a type by assignment or declaration (!dt_ident_unref())
3230 * (c) lp is neither a variable nor an aggregation
3232 if (lp
->dn_kind
== DT_NODE_VAR
) {
3233 if (lp
->dn_ident
->di_kind
== DT_IDENT_ARRAY
) {
3234 if (lp
->dn_args
!= NULL
)
3236 } else if (!dt_ident_unref(lp
->dn_ident
)) {
3239 } else if (lp
->dn_kind
!= DT_NODE_AGG
) {
3248 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3249 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3251 if (!dt_node_is_integer(lp
) || !dt_node_is_integer(rp
)) {
3252 xyerror(D_OP_INT
, "operator %s requires operands of "
3253 "integral type\n", opstr(op
));
3256 dt_node_promote(lp
, rp
, dnp
); /* see K&R[A7.11-13] */
3261 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3262 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3264 if (!dt_node_is_integer(lp
) || !dt_node_is_integer(rp
)) {
3265 xyerror(D_OP_INT
, "operator %s requires operands of "
3266 "integral type\n", opstr(op
));
3269 dt_node_type_propagate(lp
, dnp
); /* see K&R[A7.8] */
3270 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3274 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3275 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3277 if (!dt_node_is_integer(lp
) || !dt_node_is_integer(rp
)) {
3278 xyerror(D_OP_INT
, "operator %s requires operands of "
3279 "integral type\n", opstr(op
));
3282 dt_node_promote(lp
, rp
, dnp
); /* see K&R[A7.6] */
3287 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3288 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3290 if (!dt_node_is_arith(lp
) || !dt_node_is_arith(rp
)) {
3291 xyerror(D_OP_ARITH
, "operator %s requires operands of "
3292 "arithmetic type\n", opstr(op
));
3295 dt_node_promote(lp
, rp
, dnp
); /* see K&R[A7.6] */
3301 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3302 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3304 if (!dt_node_is_scalar(lp
) || !dt_node_is_scalar(rp
)) {
3305 xyerror(D_OP_SCALAR
, "operator %s requires operands "
3306 "of scalar type\n", opstr(op
));
3309 dt_node_type_assign(dnp
, DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
),
3311 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3321 * The D comparison operators provide the ability to transform
3322 * a right-hand identifier into a corresponding enum tag value
3323 * if the left-hand side is an enum type. To do this, we cook
3324 * the left-hand side, and then see if the right-hand side is
3325 * an unscoped identifier defined in the enum. If so, we
3326 * convert into an integer constant node with the tag's value.
3328 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3330 kind
= ctf_type_kind(lp
->dn_ctfp
,
3331 ctf_type_resolve(lp
->dn_ctfp
, lp
->dn_type
));
3333 if (kind
== CTF_K_ENUM
&& rp
->dn_kind
== DT_NODE_IDENT
&&
3334 strchr(rp
->dn_string
, '`') == NULL
&& ctf_enum_value(
3335 lp
->dn_ctfp
, lp
->dn_type
, rp
->dn_string
, &val
) == 0) {
3337 if ((idp
= dt_idstack_lookup(&yypcb
->pcb_globals
,
3338 rp
->dn_string
)) != NULL
) {
3339 xyerror(D_IDENT_AMBIG
,
3340 "ambiguous use of operator %s: %s is "
3341 "both a %s enum tag and a global %s\n",
3342 opstr(op
), rp
->dn_string
,
3343 dt_node_type_name(lp
, n1
, sizeof (n1
)),
3344 dt_idkind_name(idp
->di_kind
));
3347 free(rp
->dn_string
);
3348 rp
->dn_string
= NULL
;
3349 rp
->dn_kind
= DT_NODE_INT
;
3350 rp
->dn_flags
|= DT_NF_COOKED
;
3351 rp
->dn_op
= DT_TOK_INT
;
3352 rp
->dn_value
= (intmax_t)val
;
3354 dt_node_type_assign(rp
, lp
->dn_ctfp
, lp
->dn_type
,
3356 dt_node_attr_assign(rp
, _dtrace_symattr
);
3359 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3362 * The rules for type checking for the relational operators are
3363 * described in the ANSI-C spec (see K&R[A7.9-10]). We perform
3364 * the various tests in order from least to most expensive. We
3365 * also allow derived strings to be compared as a first-class
3366 * type (resulting in a strcmp(3C)-style comparison), and we
3367 * slightly relax the A7.9 rules to permit void pointer
3368 * comparisons as in A7.10. Our users won't be confused by
3369 * this since they understand pointers are just numbers, and
3370 * relaxing this constraint simplifies the implementation.
3372 if (ctf_type_compat(lp
->dn_ctfp
, lp
->dn_type
,
3373 rp
->dn_ctfp
, rp
->dn_type
))
3375 else if (dt_node_is_integer(lp
) && dt_node_is_integer(rp
))
3377 else if (dt_node_is_strcompat(lp
) && dt_node_is_strcompat(rp
) &&
3378 (dt_node_is_string(lp
) || dt_node_is_string(rp
)))
3380 else if (dt_node_is_ptrcompat(lp
, rp
, NULL
, NULL
) == 0) {
3381 xyerror(D_OP_INCOMPAT
, "operands have "
3382 "incompatible types: \"%s\" %s \"%s\"\n",
3383 dt_node_type_name(lp
, n1
, sizeof (n1
)), opstr(op
),
3384 dt_node_type_name(rp
, n2
, sizeof (n2
)));
3387 dt_node_type_assign(dnp
, DT_INT_CTFP(dtp
), DT_INT_TYPE(dtp
),
3389 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3395 * The rules for type checking for the additive operators are
3396 * described in the ANSI-C spec (see K&R[A7.7]). Pointers and
3397 * integers may be manipulated according to specific rules. In
3398 * these cases D permits strings to be treated as pointers.
3400 int lp_is_ptr
, lp_is_int
, rp_is_ptr
, rp_is_int
;
3402 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3403 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3405 lp_is_ptr
= dt_node_is_string(lp
) ||
3406 (dt_node_is_pointer(lp
) && !dt_node_is_vfptr(lp
));
3407 lp_is_int
= dt_node_is_integer(lp
);
3409 rp_is_ptr
= dt_node_is_string(rp
) ||
3410 (dt_node_is_pointer(rp
) && !dt_node_is_vfptr(rp
));
3411 rp_is_int
= dt_node_is_integer(rp
);
3413 if (lp_is_int
&& rp_is_int
) {
3414 dt_type_promote(lp
, rp
, &ctfp
, &type
);
3416 } else if (lp_is_ptr
&& rp_is_int
) {
3419 uref
= lp
->dn_flags
& DT_NF_USERLAND
;
3420 } else if (lp_is_int
&& rp_is_ptr
&& op
== DT_TOK_ADD
) {
3423 uref
= rp
->dn_flags
& DT_NF_USERLAND
;
3424 } else if (lp_is_ptr
&& rp_is_ptr
&& op
== DT_TOK_SUB
&&
3425 dt_node_is_ptrcompat(lp
, rp
, NULL
, NULL
)) {
3426 ctfp
= dtp
->dt_ddefs
->dm_ctfp
;
3427 type
= ctf_lookup_by_name(ctfp
, "ptrdiff_t");
3430 xyerror(D_OP_INCOMPAT
, "operands have incompatible "
3431 "types: \"%s\" %s \"%s\"\n",
3432 dt_node_type_name(lp
, n1
, sizeof (n1
)), opstr(op
),
3433 dt_node_type_name(rp
, n2
, sizeof (n2
)));
3436 dt_node_type_assign(dnp
, ctfp
, type
, B_FALSE
);
3437 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3440 dnp
->dn_flags
|= DT_NF_USERLAND
;
3450 if (lp
->dn_kind
== DT_NODE_IDENT
) {
3451 dt_xcook_ident(lp
, dtp
->dt_globals
,
3452 DT_IDENT_SCALAR
, B_TRUE
);
3456 dt_node_cook(lp
, DT_IDFLG_REF
| DT_IDFLG_MOD
);
3458 rp
= dnp
->dn_right
=
3459 dt_node_cook(rp
, DT_IDFLG_REF
| DT_IDFLG_MOD
);
3461 if (!dt_node_is_integer(lp
) || !dt_node_is_integer(rp
)) {
3462 xyerror(D_OP_INT
, "operator %s requires operands of "
3463 "integral type\n", opstr(op
));
3469 if (lp
->dn_kind
== DT_NODE_IDENT
) {
3470 dt_xcook_ident(lp
, dtp
->dt_globals
,
3471 DT_IDENT_SCALAR
, B_TRUE
);
3475 dt_node_cook(lp
, DT_IDFLG_REF
| DT_IDFLG_MOD
);
3477 rp
= dnp
->dn_right
=
3478 dt_node_cook(rp
, DT_IDFLG_REF
| DT_IDFLG_MOD
);
3480 if (!dt_node_is_arith(lp
) || !dt_node_is_arith(rp
)) {
3481 xyerror(D_OP_ARITH
, "operator %s requires operands of "
3482 "arithmetic type\n", opstr(op
));
3488 * If the left-hand side is an identifier, attempt to resolve
3489 * it as either an aggregation or scalar variable. We pass
3490 * B_TRUE to dt_xcook_ident to indicate that a new variable can
3491 * be created if no matching variable exists in the namespace.
3493 if (lp
->dn_kind
== DT_NODE_IDENT
) {
3494 if (lp
->dn_op
== DT_TOK_AGG
) {
3495 dt_xcook_ident(lp
, dtp
->dt_aggs
,
3496 DT_IDENT_AGG
, B_TRUE
);
3498 dt_xcook_ident(lp
, dtp
->dt_globals
,
3499 DT_IDENT_SCALAR
, B_TRUE
);
3503 lp
= dnp
->dn_left
= dt_node_cook(lp
, 0); /* don't set mod yet */
3504 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3507 * If the left-hand side is an aggregation, verify that we are
3508 * assigning it the result of an aggregating function. Once
3509 * we've done so, hide the func node in the aggregation and
3510 * return the aggregation itself up to the parse tree parent.
3511 * This transformation is legal since the assigned function
3512 * cannot change identity across disjoint cooking passes and
3513 * the argument list subtree is retained for later cooking.
3515 if (lp
->dn_kind
== DT_NODE_AGG
) {
3516 const char *aname
= lp
->dn_ident
->di_name
;
3517 dt_ident_t
*oid
= lp
->dn_ident
->di_iarg
;
3519 if (rp
->dn_kind
!= DT_NODE_FUNC
||
3520 rp
->dn_ident
->di_kind
!= DT_IDENT_AGGFUNC
) {
3522 "@%s must be assigned the result of "
3523 "an aggregating function\n", aname
);
3526 if (oid
!= NULL
&& oid
!= rp
->dn_ident
) {
3527 xyerror(D_AGG_REDEF
,
3528 "aggregation redefined: @%s\n\t "
3529 "current: @%s = %s( )\n\tprevious: @%s = "
3530 "%s( ) : line %d\n", aname
, aname
,
3531 rp
->dn_ident
->di_name
, aname
, oid
->di_name
,
3532 lp
->dn_ident
->di_lineno
);
3533 } else if (oid
== NULL
)
3534 lp
->dn_ident
->di_iarg
= rp
->dn_ident
;
3537 * Do not allow multiple aggregation assignments in a
3538 * single statement, e.g. (@a = count()) = count();
3539 * We produce a message as if the result of aggregating
3540 * function does not propagate DT_NF_LVALUE.
3542 if (lp
->dn_aggfun
!= NULL
) {
3543 xyerror(D_OP_LVAL
, "operator = requires "
3544 "modifiable lvalue as an operand\n");
3548 lp
= dt_node_cook(lp
, DT_IDFLG_MOD
);
3550 dnp
->dn_left
= dnp
->dn_right
= NULL
;
3557 * If the right-hand side is a dynamic variable that is the
3558 * output of a translator, our result is the translated type.
3560 if ((idp
= dt_node_resolve(rp
, DT_IDENT_XLSOU
)) != NULL
) {
3561 ctfp
= idp
->di_ctfp
;
3562 type
= idp
->di_type
;
3563 uref
= idp
->di_flags
& DT_IDFLG_USER
;
3567 uref
= rp
->dn_flags
& DT_NF_USERLAND
;
3571 * If the left-hand side of an assignment statement is a virgin
3572 * variable created by this compilation pass, reset the type of
3573 * this variable to the type of the right-hand side.
3575 if (lp
->dn_kind
== DT_NODE_VAR
&&
3576 dt_ident_unref(lp
->dn_ident
)) {
3577 dt_node_type_assign(lp
, ctfp
, type
, B_FALSE
);
3578 dt_ident_type_assign(lp
->dn_ident
, ctfp
, type
);
3581 lp
->dn_flags
|= DT_NF_USERLAND
;
3582 lp
->dn_ident
->di_flags
|= DT_IDFLG_USER
;
3586 if (lp
->dn_kind
== DT_NODE_VAR
)
3587 lp
->dn_ident
->di_flags
|= DT_IDFLG_MOD
;
3590 * The rules for type checking for the assignment operators are
3591 * described in the ANSI-C spec (see K&R[A7.17]). We share
3592 * most of this code with the argument list checking code.
3594 if (!dt_node_is_string(lp
)) {
3595 kind
= ctf_type_kind(lp
->dn_ctfp
,
3596 ctf_type_resolve(lp
->dn_ctfp
, lp
->dn_type
));
3598 if (kind
== CTF_K_ARRAY
|| kind
== CTF_K_FUNCTION
) {
3599 xyerror(D_OP_ARRFUN
, "operator %s may not be "
3600 "applied to operand of type \"%s\"\n",
3602 dt_node_type_name(lp
, n1
, sizeof (n1
)));
3606 if (idp
!= NULL
&& idp
->di_kind
== DT_IDENT_XLSOU
&&
3607 ctf_type_compat(lp
->dn_ctfp
, lp
->dn_type
, ctfp
, type
))
3610 if (dt_node_is_argcompat(lp
, rp
))
3613 xyerror(D_OP_INCOMPAT
,
3614 "operands have incompatible types: \"%s\" %s \"%s\"\n",
3615 dt_node_type_name(lp
, n1
, sizeof (n1
)), opstr(op
),
3616 dt_node_type_name(rp
, n2
, sizeof (n2
)));
3621 if (lp
->dn_kind
== DT_NODE_IDENT
) {
3622 dt_xcook_ident(lp
, dtp
->dt_globals
,
3623 DT_IDENT_SCALAR
, B_TRUE
);
3627 dt_node_cook(lp
, DT_IDFLG_REF
| DT_IDFLG_MOD
);
3629 rp
= dnp
->dn_right
=
3630 dt_node_cook(rp
, DT_IDFLG_REF
| DT_IDFLG_MOD
);
3632 if (dt_node_is_string(lp
) || dt_node_is_string(rp
)) {
3633 xyerror(D_OP_INCOMPAT
, "operands have "
3634 "incompatible types: \"%s\" %s \"%s\"\n",
3635 dt_node_type_name(lp
, n1
, sizeof (n1
)), opstr(op
),
3636 dt_node_type_name(rp
, n2
, sizeof (n2
)));
3640 * The rules for type checking for the assignment operators are
3641 * described in the ANSI-C spec (see K&R[A7.17]). To these
3642 * rules we add that only writable D nodes can be modified.
3644 if (dt_node_is_integer(lp
) == 0 ||
3645 dt_node_is_integer(rp
) == 0) {
3646 if (!dt_node_is_pointer(lp
) || dt_node_is_vfptr(lp
)) {
3648 "operator %s requires left-hand scalar "
3649 "operand of known size\n", opstr(op
));
3650 } else if (dt_node_is_integer(rp
) == 0 &&
3651 dt_node_is_ptrcompat(lp
, rp
, NULL
, NULL
) == 0) {
3652 xyerror(D_OP_INCOMPAT
, "operands have "
3653 "incompatible types: \"%s\" %s \"%s\"\n",
3654 dt_node_type_name(lp
, n1
, sizeof (n1
)),
3656 dt_node_type_name(rp
, n2
, sizeof (n2
)));
3660 dt_assign_common(dnp
);
3665 * If the left-hand side of operator -> is one of the scoping
3666 * keywords, permit a local or thread variable to be created or
3669 if (lp
->dn_kind
== DT_NODE_IDENT
) {
3670 dt_idhash_t
*dhp
= NULL
;
3672 if (strcmp(lp
->dn_string
, "self") == 0) {
3674 } else if (strcmp(lp
->dn_string
, "this") == 0) {
3675 dhp
= yypcb
->pcb_locals
;
3678 if (rp
->dn_kind
!= DT_NODE_VAR
) {
3679 dt_xcook_ident(rp
, dhp
,
3680 DT_IDENT_SCALAR
, B_TRUE
);
3684 rp
= dt_node_cook(rp
, idflags
);
3686 /* avoid freeing rp */
3687 dnp
->dn_right
= dnp
->dn_left
;
3694 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3696 if (rp
->dn_kind
!= DT_NODE_IDENT
) {
3697 xyerror(D_OP_IDENT
, "operator %s must be followed by "
3698 "an identifier\n", opstr(op
));
3701 if ((idp
= dt_node_resolve(lp
, DT_IDENT_XLSOU
)) != NULL
||
3702 (idp
= dt_node_resolve(lp
, DT_IDENT_XLPTR
)) != NULL
) {
3704 * If the left-hand side is a translated struct or ptr,
3705 * the type of the left is the translation output type.
3707 dt_xlator_t
*dxp
= idp
->di_data
;
3709 if (dt_xlator_member(dxp
, rp
->dn_string
) == NULL
) {
3710 xyerror(D_XLATE_NOCONV
,
3711 "translator does not define conversion "
3712 "for member: %s\n", rp
->dn_string
);
3715 ctfp
= idp
->di_ctfp
;
3716 type
= ctf_type_resolve(ctfp
, idp
->di_type
);
3717 uref
= idp
->di_flags
& DT_IDFLG_USER
;
3720 type
= ctf_type_resolve(ctfp
, lp
->dn_type
);
3721 uref
= lp
->dn_flags
& DT_NF_USERLAND
;
3724 kind
= ctf_type_kind(ctfp
, type
);
3726 if (op
== DT_TOK_PTR
) {
3727 if (kind
!= CTF_K_POINTER
) {
3728 xyerror(D_OP_PTR
, "operator %s must be "
3729 "applied to a pointer\n", opstr(op
));
3731 type
= ctf_type_reference(ctfp
, type
);
3732 type
= ctf_type_resolve(ctfp
, type
);
3733 kind
= ctf_type_kind(ctfp
, type
);
3737 * If we follow a reference to a forward declaration tag,
3738 * search the entire type space for the actual definition.
3740 dt_resolve_forward_decl(&ctfp
, &type
);
3741 kind
= ctf_type_kind(ctfp
, type
);
3743 if (kind
== CTF_K_FORWARD
) {
3744 xyerror(D_OP_INCOMPLETE
,
3745 "operator %s cannot be applied to a "
3746 "forward declaration: no %s definition "
3747 "is available\n", opstr(op
),
3748 ctf_type_name(ctfp
, type
, n1
, sizeof (n1
)));
3749 } else if (kind
!= CTF_K_STRUCT
&& kind
!= CTF_K_UNION
) {
3750 if (op
== DT_TOK_PTR
) {
3751 xyerror(D_OP_SOU
, "operator -> cannot be "
3752 "applied to pointer to type \"%s\"; must "
3753 "be applied to a struct or union pointer\n",
3754 ctf_type_name(ctfp
, type
, n1
, sizeof (n1
)));
3756 xyerror(D_OP_SOU
, "operator %s cannot be "
3757 "applied to type \"%s\"; must be applied "
3758 "to a struct or union\n", opstr(op
),
3759 ctf_type_name(ctfp
, type
, n1
, sizeof (n1
)));
3763 if (ctf_member_info(ctfp
, type
, rp
->dn_string
, &m
) == CTF_ERR
) {
3764 xyerror(D_TYPE_MEMBER
,
3765 "%s is not a member of %s\n", rp
->dn_string
,
3766 ctf_type_name(ctfp
, type
, n1
, sizeof (n1
)));
3771 dt_resolve_forward_decl(&ctfp
, &type
);
3772 dt_node_type_assign(dnp
, ctfp
, type
, B_FALSE
);
3773 dt_node_attr_assign(dnp
, lp
->dn_attr
);
3775 type
= ctf_type_resolve(ctfp
, type
);
3776 kind
= ctf_type_kind(ctfp
, type
);
3778 if (op
== DT_TOK_PTR
&& (kind
!= CTF_K_ARRAY
||
3779 dt_node_is_string(dnp
)))
3780 dnp
->dn_flags
|= DT_NF_LVALUE
; /* see K&R[A7.3.3] */
3782 if (op
== DT_TOK_DOT
&& (lp
->dn_flags
& DT_NF_LVALUE
) &&
3783 (kind
!= CTF_K_ARRAY
|| dt_node_is_string(dnp
)))
3784 dnp
->dn_flags
|= DT_NF_LVALUE
; /* see K&R[A7.3.3] */
3786 if (lp
->dn_flags
& DT_NF_WRITABLE
)
3787 dnp
->dn_flags
|= DT_NF_WRITABLE
;
3789 if (uref
&& (kind
== CTF_K_POINTER
||
3790 (dnp
->dn_flags
& DT_NF_REF
)))
3791 dnp
->dn_flags
|= DT_NF_USERLAND
;
3794 case DT_TOK_LBRAC
: {
3796 * If op is DT_TOK_LBRAC, we know from the special-case code at
3797 * the top that lp is either a D variable or an aggregation.
3802 * If the left-hand side is an aggregation, just set dn_aggtup
3803 * to the right-hand side and return the cooked aggregation.
3804 * This transformation is legal since we are just collapsing
3805 * nodes to simplify later processing, and the entire aggtup
3806 * parse subtree is retained for subsequent cooking passes.
3808 if (lp
->dn_kind
== DT_NODE_AGG
) {
3809 if (lp
->dn_aggtup
!= NULL
) {
3810 xyerror(D_AGG_MDIM
, "improper attempt to "
3811 "reference @%s as a multi-dimensional "
3812 "array\n", lp
->dn_ident
->di_name
);
3816 lp
= dt_node_cook(lp
, 0);
3818 dnp
->dn_left
= dnp
->dn_right
= NULL
;
3824 assert(lp
->dn_kind
== DT_NODE_VAR
);
3828 * If the left-hand side is a non-global scalar that hasn't yet
3829 * been referenced or modified, it was just created by self->
3830 * or this-> and we can convert it from scalar to assoc array.
3832 if (idp
->di_kind
== DT_IDENT_SCALAR
&& dt_ident_unref(idp
) &&
3833 (idp
->di_flags
& (DT_IDFLG_LOCAL
| DT_IDFLG_TLS
)) != 0) {
3835 if (idp
->di_flags
& DT_IDFLG_LOCAL
) {
3836 xyerror(D_ARR_LOCAL
,
3837 "local variables may not be used as "
3838 "associative arrays: %s\n", idp
->di_name
);
3841 dt_dprintf("morph variable %s (id %u) from scalar to "
3842 "array\n", idp
->di_name
, idp
->di_id
);
3844 dt_ident_morph(idp
, DT_IDENT_ARRAY
,
3845 &dt_idops_assc
, NULL
);
3848 if (idp
->di_kind
!= DT_IDENT_ARRAY
) {
3849 xyerror(D_IDENT_BADREF
, "%s '%s' may not be referenced "
3850 "as %s\n", dt_idkind_name(idp
->di_kind
),
3851 idp
->di_name
, dt_idkind_name(DT_IDENT_ARRAY
));
3855 * Now that we've confirmed our left-hand side is a DT_NODE_VAR
3856 * of idkind DT_IDENT_ARRAY, we need to splice the [ node from
3857 * the parse tree and leave a cooked DT_NODE_VAR in its place
3858 * where dn_args for the VAR node is the right-hand 'rp' tree,
3859 * as shown in the parse tree diagram below:
3862 * [ OP2 "[" ]=dnp [ VAR ]=dnp
3864 * / \ +- dn_args -> [ ??? ]=rp
3865 * [ VAR ]=lp [ ??? ]=rp
3867 * Since the final dt_node_cook(dnp) can fail using longjmp we
3868 * must perform the transformations as a group first by over-
3869 * writing 'dnp' to become the VAR node, so that the parse tree
3870 * is guaranteed to be in a consistent state if the cook fails.
3872 assert(lp
->dn_kind
== DT_NODE_VAR
);
3873 assert(lp
->dn_args
== NULL
);
3876 bcopy(lp
, dnp
, sizeof (dt_node_t
));
3880 dnp
->dn_list
= NULL
;
3883 return (dt_node_cook(dnp
, idflags
));
3886 case DT_TOK_XLATE
: {
3889 assert(lp
->dn_kind
== DT_NODE_TYPE
);
3890 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3891 dxp
= dt_xlator_lookup(dtp
, rp
, lp
, DT_XLATE_FUZZY
);
3894 xyerror(D_XLATE_NONE
,
3895 "cannot translate from \"%s\" to \"%s\"\n",
3896 dt_node_type_name(rp
, n1
, sizeof (n1
)),
3897 dt_node_type_name(lp
, n2
, sizeof (n2
)));
3900 dnp
->dn_ident
= dt_xlator_ident(dxp
, lp
->dn_ctfp
, lp
->dn_type
);
3901 dt_node_type_assign(dnp
, DT_DYN_CTFP(dtp
), DT_DYN_TYPE(dtp
),
3903 dt_node_attr_assign(dnp
,
3904 dt_attr_min(rp
->dn_attr
, dnp
->dn_ident
->di_attr
));
3909 ctf_id_t ltype
, rtype
;
3910 uint_t lkind
, rkind
;
3912 assert(lp
->dn_kind
== DT_NODE_TYPE
);
3913 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3915 ltype
= ctf_type_resolve(lp
->dn_ctfp
, lp
->dn_type
);
3916 lkind
= ctf_type_kind(lp
->dn_ctfp
, ltype
);
3918 rtype
= ctf_type_resolve(rp
->dn_ctfp
, rp
->dn_type
);
3919 rkind
= ctf_type_kind(rp
->dn_ctfp
, rtype
);
3922 * The rules for casting are loosely explained in K&R[A7.5]
3923 * and K&R[A6]. Basically, we can cast to the same type or
3924 * same base type, between any kind of scalar values, from
3925 * arrays to pointers, and we can cast anything to void.
3926 * To these rules D adds casts from scalars to strings.
3928 if (ctf_type_compat(lp
->dn_ctfp
, lp
->dn_type
,
3929 rp
->dn_ctfp
, rp
->dn_type
))
3931 else if (dt_node_is_scalar(lp
) &&
3932 (dt_node_is_scalar(rp
) || rkind
== CTF_K_FUNCTION
))
3934 else if (dt_node_is_void(lp
))
3936 else if (lkind
== CTF_K_POINTER
&& dt_node_is_pointer(rp
))
3938 else if (dt_node_is_string(lp
) && (dt_node_is_scalar(rp
) ||
3939 dt_node_is_pointer(rp
) || dt_node_is_strcompat(rp
)))
3942 xyerror(D_CAST_INVAL
,
3943 "invalid cast expression: \"%s\" to \"%s\"\n",
3944 dt_node_type_name(rp
, n1
, sizeof (n1
)),
3945 dt_node_type_name(lp
, n2
, sizeof (n2
)));
3948 dt_node_type_propagate(lp
, dnp
); /* see K&R[A7.5] */
3949 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3952 * If it's a pointer then should be able to (attempt to)
3955 if (lkind
== CTF_K_POINTER
)
3956 dnp
->dn_flags
|= DT_NF_WRITABLE
;
3962 lp
= dnp
->dn_left
= dt_node_cook(lp
, DT_IDFLG_REF
);
3963 rp
= dnp
->dn_right
= dt_node_cook(rp
, DT_IDFLG_REF
);
3965 if (dt_node_is_dynamic(lp
) || dt_node_is_dynamic(rp
)) {
3966 xyerror(D_OP_DYN
, "operator %s operands "
3967 "cannot be of dynamic type\n", opstr(op
));
3970 if (dt_node_is_actfunc(lp
) || dt_node_is_actfunc(rp
)) {
3971 xyerror(D_OP_ACT
, "operator %s operands "
3972 "cannot be actions\n", opstr(op
));
3975 dt_node_type_propagate(rp
, dnp
); /* see K&R[A7.18] */
3976 dt_node_attr_assign(dnp
, dt_attr_min(lp
->dn_attr
, rp
->dn_attr
));
3980 xyerror(D_UNKNOWN
, "invalid binary op %s\n", opstr(op
));
3984 * Complete the conversion of E1[E2] to *((E1)+(E2)) that we started
3985 * at the top of our switch() above (see K&R[A7.3.1]). Since E2 is
3986 * parsed as an argument_expression_list by dt_grammar.y, we can
3987 * end up with a comma-separated list inside of a non-associative
3988 * array reference. We check for this and report an appropriate error.
3990 if (dnp
->dn_op
== DT_TOK_LBRAC
&& op
== DT_TOK_ADD
) {
3993 if (rp
->dn_list
!= NULL
) {
3994 xyerror(D_ARR_BADREF
,
3995 "cannot access %s as an associative array\n",
3996 dt_node_name(lp
, n1
, sizeof (n1
)));
3999 dnp
->dn_op
= DT_TOK_ADD
;
4000 pnp
= dt_node_op1(DT_TOK_DEREF
, dnp
);
4003 * Cook callbacks are not typically permitted to allocate nodes.
4004 * When we do, we must insert them in the middle of an existing
4005 * allocation list rather than having them appended to the pcb
4006 * list because the sub-expression may be part of a definition.
4008 assert(yypcb
->pcb_list
== pnp
);
4009 yypcb
->pcb_list
= pnp
->dn_link
;
4011 pnp
->dn_link
= dnp
->dn_link
;
4014 return (dt_node_cook(pnp
, DT_IDFLG_REF
));
4022 dt_cook_op3(dt_node_t
*dnp
, uint_t idflags
)
4028 dnp
->dn_expr
= dt_node_cook(dnp
->dn_expr
, DT_IDFLG_REF
);
4029 lp
= dnp
->dn_left
= dt_node_cook(dnp
->dn_left
, DT_IDFLG_REF
);
4030 rp
= dnp
->dn_right
= dt_node_cook(dnp
->dn_right
, DT_IDFLG_REF
);
4032 if (!dt_node_is_scalar(dnp
->dn_expr
)) {
4033 xyerror(D_OP_SCALAR
,
4034 "operator ?: expression must be of scalar type\n");
4037 if (dt_node_is_dynamic(lp
) || dt_node_is_dynamic(rp
)) {
4039 "operator ?: operands cannot be of dynamic type\n");
4043 * The rules for type checking for the ternary operator are complex and
4044 * are described in the ANSI-C spec (see K&R[A7.16]). We implement
4045 * the various tests in order from least to most expensive.
4047 if (ctf_type_compat(lp
->dn_ctfp
, lp
->dn_type
,
4048 rp
->dn_ctfp
, rp
->dn_type
)) {
4051 } else if (dt_node_is_integer(lp
) && dt_node_is_integer(rp
)) {
4052 dt_type_promote(lp
, rp
, &ctfp
, &type
);
4053 } else if (dt_node_is_strcompat(lp
) && dt_node_is_strcompat(rp
) &&
4054 (dt_node_is_string(lp
) || dt_node_is_string(rp
))) {
4055 ctfp
= DT_STR_CTFP(yypcb
->pcb_hdl
);
4056 type
= DT_STR_TYPE(yypcb
->pcb_hdl
);
4057 } else if (dt_node_is_ptrcompat(lp
, rp
, &ctfp
, &type
) == 0) {
4058 xyerror(D_OP_INCOMPAT
,
4059 "operator ?: operands must have compatible types\n");
4062 if (dt_node_is_actfunc(lp
) || dt_node_is_actfunc(rp
)) {
4063 xyerror(D_OP_ACT
, "action cannot be "
4064 "used in a conditional context\n");
4067 dt_node_type_assign(dnp
, ctfp
, type
, B_FALSE
);
4068 dt_node_attr_assign(dnp
, dt_attr_min(dnp
->dn_expr
->dn_attr
,
4069 dt_attr_min(lp
->dn_attr
, rp
->dn_attr
)));
4075 dt_cook_statement(dt_node_t
*dnp
, uint_t idflags
)
4077 dnp
->dn_expr
= dt_node_cook(dnp
->dn_expr
, idflags
);
4078 dt_node_attr_assign(dnp
, dnp
->dn_expr
->dn_attr
);
4084 * If dn_aggfun is set, this node is a collapsed aggregation assignment (see
4085 * the special case code for DT_TOK_ASGN in dt_cook_op2() above), in which
4086 * case we cook both the tuple and the function call. If dn_aggfun is NULL,
4087 * this node is just a reference to the aggregation's type and attributes.
4091 dt_cook_aggregation(dt_node_t
*dnp
, uint_t idflags
)
4093 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
4095 if (dnp
->dn_aggfun
!= NULL
) {
4096 dnp
->dn_aggfun
= dt_node_cook(dnp
->dn_aggfun
, DT_IDFLG_REF
);
4097 dt_node_attr_assign(dnp
, dt_ident_cook(dnp
,
4098 dnp
->dn_ident
, &dnp
->dn_aggtup
));
4100 dt_node_type_assign(dnp
, DT_DYN_CTFP(dtp
), DT_DYN_TYPE(dtp
),
4102 dt_node_attr_assign(dnp
, dnp
->dn_ident
->di_attr
);
4109 * Since D permits new variable identifiers to be instantiated in any program
4110 * expression, we may need to cook a clause's predicate either before or after
4111 * the action list depending on the program code in question. Consider:
4113 * probe-description-list probe-description-list
4116 * trace(x); trace(x++);
4119 * In the left-hand example, the predicate uses operator ++ to instantiate 'x'
4120 * as a variable of type int64_t. The predicate must be cooked first because
4121 * otherwise the statement trace(x) refers to an unknown identifier. In the
4122 * right-hand example, the action list uses ++ to instantiate 'x'; the action
4123 * list must be cooked first because otherwise the predicate x == 0 refers to
4124 * an unknown identifier. In order to simplify programming, we support both.
4126 * When cooking a clause, we cook the action statements before the predicate by
4127 * default, since it seems more common to create or modify identifiers in the
4128 * action list. If cooking fails due to an unknown identifier, we attempt to
4129 * cook the predicate (i.e. do it first) and then go back and cook the actions.
4130 * If this, too, fails (or if we get an error other than D_IDENT_UNDEF) we give
4131 * up and report failure back to the user. There are five possible paths:
4133 * cook actions = OK, cook predicate = OK -> OK
4134 * cook actions = OK, cook predicate = ERR -> ERR
4135 * cook actions = ERR, cook predicate = ERR -> ERR
4136 * cook actions = ERR, cook predicate = OK, cook actions = OK -> OK
4137 * cook actions = ERR, cook predicate = OK, cook actions = ERR -> ERR
4139 * The programmer can still defeat our scheme by creating circular definition
4140 * dependencies between predicates and actions, as in this example clause:
4142 * probe-description-list
4148 * but it doesn't seem worth the complexity to handle such rare cases. The
4149 * user can simply use the D variable declaration syntax to work around them.
4152 dt_cook_clause(dt_node_t
*dnp
, uint_t idflags
)
4154 volatile int err
, tries
;
4158 * Before assigning dn_ctxattr, temporarily assign the probe attribute
4159 * to 'dnp' itself to force an attribute check and minimum violation.
4161 dt_node_attr_assign(dnp
, yypcb
->pcb_pinfo
.dtp_attr
);
4162 dnp
->dn_ctxattr
= yypcb
->pcb_pinfo
.dtp_attr
;
4164 bcopy(yypcb
->pcb_jmpbuf
, ojb
, sizeof (jmp_buf));
4167 if (dnp
->dn_pred
!= NULL
&& (err
= setjmp(yypcb
->pcb_jmpbuf
)) != 0) {
4168 bcopy(ojb
, yypcb
->pcb_jmpbuf
, sizeof (jmp_buf));
4169 if (tries
++ != 0 || err
!= EDT_COMPILER
|| (
4170 yypcb
->pcb_hdl
->dt_errtag
!= dt_errtag(D_IDENT_UNDEF
) &&
4171 yypcb
->pcb_hdl
->dt_errtag
!= dt_errtag(D_VAR_UNDEF
)))
4172 longjmp(yypcb
->pcb_jmpbuf
, err
);
4176 yylabel("action list");
4178 dt_node_attr_assign(dnp
,
4179 dt_node_list_cook(&dnp
->dn_acts
, idflags
));
4181 bcopy(ojb
, yypcb
->pcb_jmpbuf
, sizeof (jmp_buf));
4185 if (dnp
->dn_pred
!= NULL
) {
4186 yylabel("predicate");
4188 dnp
->dn_pred
= dt_node_cook(dnp
->dn_pred
, idflags
);
4189 dt_node_attr_assign(dnp
,
4190 dt_attr_min(dnp
->dn_attr
, dnp
->dn_pred
->dn_attr
));
4192 if (!dt_node_is_scalar(dnp
->dn_pred
)) {
4193 xyerror(D_PRED_SCALAR
,
4194 "predicate result must be of scalar type\n");
4201 yylabel("action list");
4203 dt_node_attr_assign(dnp
,
4204 dt_node_list_cook(&dnp
->dn_acts
, idflags
));
4214 dt_cook_inline(dt_node_t
*dnp
, uint_t idflags
)
4216 dt_idnode_t
*inp
= dnp
->dn_ident
->di_iarg
;
4219 char n1
[DT_TYPE_NAMELEN
];
4220 char n2
[DT_TYPE_NAMELEN
];
4222 assert(dnp
->dn_ident
->di_flags
& DT_IDFLG_INLINE
);
4223 assert(inp
->din_root
->dn_flags
& DT_NF_COOKED
);
4226 * If we are inlining a translation, verify that the inline declaration
4227 * type exactly matches the type that is returned by the translation.
4228 * Otherwise just use dt_node_is_argcompat() to check the types.
4230 if ((rdp
= dt_node_resolve(inp
->din_root
, DT_IDENT_XLSOU
)) != NULL
||
4231 (rdp
= dt_node_resolve(inp
->din_root
, DT_IDENT_XLPTR
)) != NULL
) {
4233 ctf_file_t
*lctfp
= dnp
->dn_ctfp
;
4234 ctf_id_t ltype
= ctf_type_resolve(lctfp
, dnp
->dn_type
);
4236 dt_xlator_t
*dxp
= rdp
->di_data
;
4237 ctf_file_t
*rctfp
= dxp
->dx_dst_ctfp
;
4238 ctf_id_t rtype
= dxp
->dx_dst_base
;
4240 if (ctf_type_kind(lctfp
, ltype
) == CTF_K_POINTER
) {
4241 ltype
= ctf_type_reference(lctfp
, ltype
);
4242 ltype
= ctf_type_resolve(lctfp
, ltype
);
4245 if (ctf_type_compat(lctfp
, ltype
, rctfp
, rtype
) == 0) {
4246 dnerror(dnp
, D_OP_INCOMPAT
,
4247 "inline %s definition uses incompatible types: "
4248 "\"%s\" = \"%s\"\n", dnp
->dn_ident
->di_name
,
4249 dt_type_name(lctfp
, ltype
, n1
, sizeof (n1
)),
4250 dt_type_name(rctfp
, rtype
, n2
, sizeof (n2
)));
4253 } else if (dt_node_is_argcompat(dnp
, inp
->din_root
) == 0) {
4254 dnerror(dnp
, D_OP_INCOMPAT
,
4255 "inline %s definition uses incompatible types: "
4256 "\"%s\" = \"%s\"\n", dnp
->dn_ident
->di_name
,
4257 dt_node_type_name(dnp
, n1
, sizeof (n1
)),
4258 dt_node_type_name(inp
->din_root
, n2
, sizeof (n2
)));
4265 dt_cook_member(dt_node_t
*dnp
, uint_t idflags
)
4267 dnp
->dn_membexpr
= dt_node_cook(dnp
->dn_membexpr
, idflags
);
4268 dt_node_attr_assign(dnp
, dnp
->dn_membexpr
->dn_attr
);
4274 dt_cook_xlator(dt_node_t
*dnp
, uint_t idflags
)
4276 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
4277 dt_xlator_t
*dxp
= dnp
->dn_xlator
;
4280 char n1
[DT_TYPE_NAMELEN
];
4281 char n2
[DT_TYPE_NAMELEN
];
4283 dtrace_attribute_t attr
= _dtrace_maxattr
;
4289 * Before cooking each translator member, we push a reference to the
4290 * hash containing translator-local identifiers on to pcb_globals to
4291 * temporarily interpose these identifiers in front of other globals.
4293 dt_idstack_push(&yypcb
->pcb_globals
, dxp
->dx_locals
);
4295 for (mnp
= dnp
->dn_members
; mnp
!= NULL
; mnp
= mnp
->dn_list
) {
4296 if (ctf_member_info(dxp
->dx_dst_ctfp
, dxp
->dx_dst_type
,
4297 mnp
->dn_membname
, &ctm
) == CTF_ERR
) {
4298 xyerror(D_XLATE_MEMB
,
4299 "translator member %s is not a member of %s\n",
4300 mnp
->dn_membname
, ctf_type_name(dxp
->dx_dst_ctfp
,
4301 dxp
->dx_dst_type
, n1
, sizeof (n1
)));
4304 (void) dt_node_cook(mnp
, DT_IDFLG_REF
);
4305 ctfp
= dxp
->dx_dst_ctfp
;
4306 type
= ctm
.ctm_type
;
4310 * This probably doesn't need to be resolved, because it's of
4311 * the translator, but is done for completeness right now.
4313 dt_resolve_forward_decl(&ctfp
, &type
);
4314 dt_node_type_assign(mnp
, ctfp
, type
,
4316 attr
= dt_attr_min(attr
, mnp
->dn_attr
);
4318 if (dt_node_is_argcompat(mnp
, mnp
->dn_membexpr
) == 0) {
4319 xyerror(D_XLATE_INCOMPAT
,
4320 "translator member %s definition uses "
4321 "incompatible types: \"%s\" = \"%s\"\n",
4323 dt_node_type_name(mnp
, n1
, sizeof (n1
)),
4324 dt_node_type_name(mnp
->dn_membexpr
,
4329 dt_idstack_pop(&yypcb
->pcb_globals
, dxp
->dx_locals
);
4331 dxp
->dx_souid
.di_attr
= attr
;
4332 dxp
->dx_ptrid
.di_attr
= attr
;
4334 dt_node_type_assign(dnp
, DT_DYN_CTFP(dtp
), DT_DYN_TYPE(dtp
), B_FALSE
);
4335 dt_node_attr_assign(dnp
, _dtrace_defattr
);
4341 dt_node_provider_cmp_argv(dt_provider_t
*pvp
, dt_node_t
*pnp
, const char *kind
,
4342 uint_t old_argc
, dt_node_t
*old_argv
, uint_t new_argc
, dt_node_t
*new_argv
)
4344 dt_probe_t
*prp
= pnp
->dn_ident
->di_data
;
4347 char n1
[DT_TYPE_NAMELEN
];
4348 char n2
[DT_TYPE_NAMELEN
];
4350 if (old_argc
!= new_argc
) {
4351 dnerror(pnp
, D_PROV_INCOMPAT
,
4352 "probe %s:%s %s prototype mismatch:\n"
4353 "\t current: %u arg%s\n\tprevious: %u arg%s\n",
4354 pvp
->pv_desc
.dtvd_name
, prp
->pr_ident
->di_name
, kind
,
4355 new_argc
, new_argc
!= 1 ? "s" : "",
4356 old_argc
, old_argc
!= 1 ? "s" : "");
4359 for (i
= 0; i
< old_argc
; i
++,
4360 old_argv
= old_argv
->dn_list
, new_argv
= new_argv
->dn_list
) {
4361 if (ctf_type_cmp(old_argv
->dn_ctfp
, old_argv
->dn_type
,
4362 new_argv
->dn_ctfp
, new_argv
->dn_type
) == 0)
4365 dnerror(pnp
, D_PROV_INCOMPAT
,
4366 "probe %s:%s %s prototype argument #%u mismatch:\n"
4367 "\t current: %s\n\tprevious: %s\n",
4368 pvp
->pv_desc
.dtvd_name
, prp
->pr_ident
->di_name
, kind
, i
+ 1,
4369 dt_node_type_name(new_argv
, n1
, sizeof (n1
)),
4370 dt_node_type_name(old_argv
, n2
, sizeof (n2
)));
4375 * Compare a new probe declaration with an existing probe definition (either
4376 * from a previous declaration or cached from the kernel). If the existing
4377 * definition and declaration both have an input and output parameter list,
4378 * compare both lists. Otherwise compare only the output parameter lists.
4381 dt_node_provider_cmp(dt_provider_t
*pvp
, dt_node_t
*pnp
,
4382 dt_probe_t
*old
, dt_probe_t
*new)
4384 dt_node_provider_cmp_argv(pvp
, pnp
, "output",
4385 old
->pr_xargc
, old
->pr_xargs
, new->pr_xargc
, new->pr_xargs
);
4387 if (old
->pr_nargs
!= old
->pr_xargs
&& new->pr_nargs
!= new->pr_xargs
) {
4388 dt_node_provider_cmp_argv(pvp
, pnp
, "input",
4389 old
->pr_nargc
, old
->pr_nargs
, new->pr_nargc
, new->pr_nargs
);
4392 if (old
->pr_nargs
== old
->pr_xargs
&& new->pr_nargs
!= new->pr_xargs
) {
4393 if (pvp
->pv_flags
& DT_PROVIDER_IMPL
) {
4394 dnerror(pnp
, D_PROV_INCOMPAT
,
4395 "provider interface mismatch: %s\n"
4396 "\t current: probe %s:%s has an output prototype\n"
4397 "\tprevious: probe %s:%s has no output prototype\n",
4398 pvp
->pv_desc
.dtvd_name
, pvp
->pv_desc
.dtvd_name
,
4399 new->pr_ident
->di_name
, pvp
->pv_desc
.dtvd_name
,
4400 old
->pr_ident
->di_name
);
4403 if (old
->pr_ident
->di_gen
== yypcb
->pcb_hdl
->dt_gen
)
4404 old
->pr_ident
->di_flags
|= DT_IDFLG_ORPHAN
;
4406 dt_idhash_delete(pvp
->pv_probes
, old
->pr_ident
);
4407 dt_probe_declare(pvp
, new);
4412 dt_cook_probe(dt_node_t
*dnp
, dt_provider_t
*pvp
)
4414 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
4415 dt_probe_t
*prp
= dnp
->dn_ident
->di_data
;
4420 char n1
[DT_TYPE_NAMELEN
];
4421 char n2
[DT_TYPE_NAMELEN
];
4423 if (prp
->pr_nargs
== prp
->pr_xargs
)
4426 for (i
= 0; i
< prp
->pr_xargc
; i
++) {
4427 dt_node_t
*xnp
= prp
->pr_xargv
[i
];
4428 dt_node_t
*nnp
= prp
->pr_nargv
[prp
->pr_mapping
[i
]];
4430 if ((dxp
= dt_xlator_lookup(dtp
,
4431 nnp
, xnp
, DT_XLATE_FUZZY
)) != NULL
) {
4432 if (dt_provider_xref(dtp
, pvp
, dxp
->dx_id
) != 0)
4433 longjmp(yypcb
->pcb_jmpbuf
, EDT_NOMEM
);
4437 if (dt_node_is_argcompat(nnp
, xnp
))
4438 continue; /* no translator defined and none required */
4440 dnerror(dnp
, D_PROV_PRXLATOR
, "translator for %s:%s output "
4441 "argument #%u from %s to %s is not defined\n",
4442 pvp
->pv_desc
.dtvd_name
, dnp
->dn_ident
->di_name
, i
+ 1,
4443 dt_node_type_name(nnp
, n1
, sizeof (n1
)),
4444 dt_node_type_name(xnp
, n2
, sizeof (n2
)));
4450 dt_cook_provider(dt_node_t
*dnp
, uint_t idflags
)
4452 dt_provider_t
*pvp
= dnp
->dn_provider
;
4456 * If we're declaring a provider for the first time and it is unknown
4457 * to dtrace(7D), insert the probe definitions into the provider's hash.
4458 * If we're redeclaring a known provider, verify the interface matches.
4460 for (pnp
= dnp
->dn_probes
; pnp
!= NULL
; pnp
= pnp
->dn_list
) {
4461 const char *probename
= pnp
->dn_ident
->di_name
;
4462 dt_probe_t
*prp
= dt_probe_lookup(pvp
, probename
);
4464 assert(pnp
->dn_kind
== DT_NODE_PROBE
);
4466 if (prp
!= NULL
&& dnp
->dn_provred
) {
4467 dt_node_provider_cmp(pvp
, pnp
,
4468 prp
, pnp
->dn_ident
->di_data
);
4469 } else if (prp
== NULL
&& dnp
->dn_provred
) {
4470 dnerror(pnp
, D_PROV_INCOMPAT
,
4471 "provider interface mismatch: %s\n"
4472 "\t current: probe %s:%s defined\n"
4473 "\tprevious: probe %s:%s not defined\n",
4474 dnp
->dn_provname
, dnp
->dn_provname
,
4475 probename
, dnp
->dn_provname
, probename
);
4476 } else if (prp
!= NULL
) {
4477 dnerror(pnp
, D_PROV_PRDUP
, "probe redeclared: %s:%s\n",
4478 dnp
->dn_provname
, probename
);
4480 dt_probe_declare(pvp
, pnp
->dn_ident
->di_data
);
4482 dt_cook_probe(pnp
, pvp
);
4490 dt_cook_none(dt_node_t
*dnp
, uint_t idflags
)
4495 static dt_node_t
*(*dt_cook_funcs
[])(dt_node_t
*, uint_t
) = {
4496 dt_cook_none
, /* DT_NODE_FREE */
4497 dt_cook_none
, /* DT_NODE_INT */
4498 dt_cook_none
, /* DT_NODE_STRING */
4499 dt_cook_ident
, /* DT_NODE_IDENT */
4500 dt_cook_var
, /* DT_NODE_VAR */
4501 dt_cook_none
, /* DT_NODE_SYM */
4502 dt_cook_none
, /* DT_NODE_TYPE */
4503 dt_cook_func
, /* DT_NODE_FUNC */
4504 dt_cook_op1
, /* DT_NODE_OP1 */
4505 dt_cook_op2
, /* DT_NODE_OP2 */
4506 dt_cook_op3
, /* DT_NODE_OP3 */
4507 dt_cook_statement
, /* DT_NODE_DEXPR */
4508 dt_cook_statement
, /* DT_NODE_DFUNC */
4509 dt_cook_aggregation
, /* DT_NODE_AGG */
4510 dt_cook_none
, /* DT_NODE_PDESC */
4511 dt_cook_clause
, /* DT_NODE_CLAUSE */
4512 dt_cook_inline
, /* DT_NODE_INLINE */
4513 dt_cook_member
, /* DT_NODE_MEMBER */
4514 dt_cook_xlator
, /* DT_NODE_XLATOR */
4515 dt_cook_none
, /* DT_NODE_PROBE */
4516 dt_cook_provider
, /* DT_NODE_PROVIDER */
4517 dt_cook_none
, /* DT_NODE_PROG */
4518 dt_cook_none
, /* DT_NODE_IF */
4522 * Recursively cook the parse tree starting at the specified node. The idflags
4523 * parameter is used to indicate the type of reference (r/w) and is applied to
4524 * the resulting identifier if it is a D variable or D aggregation.
4527 dt_node_cook(dt_node_t
*dnp
, uint_t idflags
)
4529 int oldlineno
= yylineno
;
4531 yylineno
= dnp
->dn_line
;
4533 assert(dnp
->dn_kind
<
4534 sizeof (dt_cook_funcs
) / sizeof (dt_cook_funcs
[0]));
4535 dnp
= dt_cook_funcs
[dnp
->dn_kind
](dnp
, idflags
);
4536 dnp
->dn_flags
|= DT_NF_COOKED
;
4538 if (dnp
->dn_kind
== DT_NODE_VAR
|| dnp
->dn_kind
== DT_NODE_AGG
)
4539 dnp
->dn_ident
->di_flags
|= idflags
;
4541 yylineno
= oldlineno
;
4546 dt_node_list_cook(dt_node_t
**pnp
, uint_t idflags
)
4548 dtrace_attribute_t attr
= _dtrace_defattr
;
4549 dt_node_t
*dnp
, *nnp
;
4551 for (dnp
= (pnp
!= NULL
? *pnp
: NULL
); dnp
!= NULL
; dnp
= nnp
) {
4553 dnp
= *pnp
= dt_node_cook(dnp
, idflags
);
4554 attr
= dt_attr_min(attr
, dnp
->dn_attr
);
4556 pnp
= &dnp
->dn_list
;
4563 dt_node_list_free(dt_node_t
**pnp
)
4565 dt_node_t
*dnp
, *nnp
;
4567 for (dnp
= (pnp
!= NULL
? *pnp
: NULL
); dnp
!= NULL
; dnp
= nnp
) {
4577 dt_node_link_free(dt_node_t
**pnp
)
4579 dt_node_t
*dnp
, *nnp
;
4581 for (dnp
= (pnp
!= NULL
? *pnp
: NULL
); dnp
!= NULL
; dnp
= nnp
) {
4586 for (dnp
= (pnp
!= NULL
? *pnp
: NULL
); dnp
!= NULL
; dnp
= nnp
) {
4596 dt_node_link(dt_node_t
*lp
, dt_node_t
*rp
)
4602 else if (rp
== NULL
)
4605 for (dnp
= lp
; dnp
->dn_list
!= NULL
; dnp
= dnp
->dn_list
)
4613 * Compute the DOF dtrace_diftype_t representation of a node's type. This is
4614 * called from a variety of places in the library so it cannot assume yypcb
4615 * is valid: any references to handle-specific data must be made through 'dtp'.
4618 dt_node_diftype(dtrace_hdl_t
*dtp
, const dt_node_t
*dnp
, dtrace_diftype_t
*tp
)
4620 if (dnp
->dn_ctfp
== DT_STR_CTFP(dtp
) &&
4621 dnp
->dn_type
== DT_STR_TYPE(dtp
)) {
4622 tp
->dtdt_kind
= DIF_TYPE_STRING
;
4623 tp
->dtdt_ckind
= CTF_K_UNKNOWN
;
4625 tp
->dtdt_kind
= DIF_TYPE_CTF
;
4626 tp
->dtdt_ckind
= ctf_type_kind(dnp
->dn_ctfp
,
4627 ctf_type_resolve(dnp
->dn_ctfp
, dnp
->dn_type
));
4630 tp
->dtdt_flags
= (dnp
->dn_flags
& DT_NF_REF
) ?
4631 (dnp
->dn_flags
& DT_NF_USERLAND
) ? DIF_TF_BYUREF
:
4634 tp
->dtdt_size
= ctf_type_size(dnp
->dn_ctfp
, dnp
->dn_type
);
4638 * Output the parse tree as D. The "-xtree=8" argument will call this
4639 * function to print out the program after any syntactic sugar
4640 * transformations have been applied (e.g. to implement "if"). The
4641 * resulting output can be used to understand the transformations
4642 * applied by these features, or to run such a script on a system that
4643 * does not support these features
4645 * Note that the output does not express precisely the same program as
4646 * the input. In particular:
4647 * - Only the clauses are output. #pragma options, variable
4648 * declarations, etc. are excluded.
4649 * - Command argument substitution has already been done, so the output
4650 * will not contain e.g. $$1, but rather the substituted string.
4653 dt_printd(dt_node_t
*dnp
, FILE *fp
, int depth
)
4657 switch (dnp
->dn_kind
) {
4659 (void) fprintf(fp
, "0x%llx", (u_longlong_t
)dnp
->dn_value
);
4660 if (!(dnp
->dn_flags
& DT_NF_SIGNED
))
4661 (void) fprintf(fp
, "u");
4664 case DT_NODE_STRING
: {
4665 char *escd
= strchr2esc(dnp
->dn_string
, strlen(dnp
->dn_string
));
4666 (void) fprintf(fp
, "\"%s\"", escd
);
4672 (void) fprintf(fp
, "%s", dnp
->dn_string
);
4676 (void) fprintf(fp
, "%s%s",
4677 (dnp
->dn_ident
->di_flags
& DT_IDFLG_LOCAL
) ? "this->" :
4678 (dnp
->dn_ident
->di_flags
& DT_IDFLG_TLS
) ? "self->" : "",
4679 dnp
->dn_ident
->di_name
);
4681 if (dnp
->dn_args
!= NULL
) {
4682 (void) fprintf(fp
, "[");
4684 for (arg
= dnp
->dn_args
; arg
!= NULL
;
4685 arg
= arg
->dn_list
) {
4686 dt_printd(arg
, fp
, 0);
4687 if (arg
->dn_list
!= NULL
)
4688 (void) fprintf(fp
, ", ");
4691 (void) fprintf(fp
, "]");
4696 const dtrace_syminfo_t
*dts
= dnp
->dn_ident
->di_data
;
4697 (void) fprintf(fp
, "%s`%s", dts
->dts_object
, dts
->dts_name
);
4701 (void) fprintf(fp
, "%s(", dnp
->dn_ident
->di_name
);
4703 for (arg
= dnp
->dn_args
; arg
!= NULL
; arg
= arg
->dn_list
) {
4704 dt_printd(arg
, fp
, 0);
4705 if (arg
->dn_list
!= NULL
)
4706 (void) fprintf(fp
, ", ");
4708 (void) fprintf(fp
, ")");
4712 (void) fprintf(fp
, "%s(", opstr(dnp
->dn_op
));
4713 dt_printd(dnp
->dn_child
, fp
, 0);
4714 (void) fprintf(fp
, ")");
4718 (void) fprintf(fp
, "(");
4719 dt_printd(dnp
->dn_left
, fp
, 0);
4720 if (dnp
->dn_op
== DT_TOK_LPAR
) {
4721 (void) fprintf(fp
, ")");
4722 dt_printd(dnp
->dn_right
, fp
, 0);
4725 if (dnp
->dn_op
== DT_TOK_PTR
|| dnp
->dn_op
== DT_TOK_DOT
||
4726 dnp
->dn_op
== DT_TOK_LBRAC
)
4727 (void) fprintf(fp
, "%s", opstr(dnp
->dn_op
));
4729 (void) fprintf(fp
, " %s ", opstr(dnp
->dn_op
));
4730 dt_printd(dnp
->dn_right
, fp
, 0);
4731 if (dnp
->dn_op
== DT_TOK_LBRAC
) {
4732 dt_node_t
*ln
= dnp
->dn_right
;
4733 while (ln
->dn_list
!= NULL
) {
4734 (void) fprintf(fp
, ", ");
4735 dt_printd(ln
->dn_list
, fp
, depth
);
4738 (void) fprintf(fp
, "]");
4740 (void) fprintf(fp
, ")");
4744 (void) fprintf(fp
, "(");
4745 dt_printd(dnp
->dn_expr
, fp
, 0);
4746 (void) fprintf(fp
, " ? ");
4747 dt_printd(dnp
->dn_left
, fp
, 0);
4748 (void) fprintf(fp
, " : ");
4749 dt_printd(dnp
->dn_right
, fp
, 0);
4750 (void) fprintf(fp
, ")");
4755 (void) fprintf(fp
, "%*s", depth
* 8, "");
4756 dt_printd(dnp
->dn_expr
, fp
, depth
+ 1);
4757 (void) fprintf(fp
, ";\n");
4761 (void) fprintf(fp
, "%s:%s:%s:%s",
4762 dnp
->dn_desc
->dtpd_provider
, dnp
->dn_desc
->dtpd_mod
,
4763 dnp
->dn_desc
->dtpd_func
, dnp
->dn_desc
->dtpd_name
);
4766 case DT_NODE_CLAUSE
:
4767 for (arg
= dnp
->dn_pdescs
; arg
!= NULL
; arg
= arg
->dn_list
) {
4768 dt_printd(arg
, fp
, 0);
4769 if (arg
->dn_list
!= NULL
)
4770 (void) fprintf(fp
, ",");
4771 (void) fprintf(fp
, "\n");
4774 if (dnp
->dn_pred
!= NULL
) {
4775 (void) fprintf(fp
, "/");
4776 dt_printd(dnp
->dn_pred
, fp
, 0);
4777 (void) fprintf(fp
, "/\n");
4779 (void) fprintf(fp
, "{\n");
4781 for (arg
= dnp
->dn_acts
; arg
!= NULL
; arg
= arg
->dn_list
)
4782 dt_printd(arg
, fp
, depth
+ 1);
4783 (void) fprintf(fp
, "}\n");
4784 (void) fprintf(fp
, "\n");
4788 (void) fprintf(fp
, "%*sif (", depth
* 8, "");
4789 dt_printd(dnp
->dn_conditional
, fp
, 0);
4790 (void) fprintf(fp
, ") {\n");
4792 for (arg
= dnp
->dn_body
; arg
!= NULL
; arg
= arg
->dn_list
)
4793 dt_printd(arg
, fp
, depth
+ 1);
4794 if (dnp
->dn_alternate_body
== NULL
) {
4795 (void) fprintf(fp
, "%*s}\n", depth
* 8, "");
4797 (void) fprintf(fp
, "%*s} else {\n", depth
* 8, "");
4798 for (arg
= dnp
->dn_alternate_body
; arg
!= NULL
;
4800 dt_printd(arg
, fp
, depth
+ 1);
4801 (void) fprintf(fp
, "%*s}\n", depth
* 8, "");
4807 (void) fprintf(fp
, "/* bad node %p, kind %d */\n",
4808 (void *)dnp
, dnp
->dn_kind
);
4813 dt_node_printr(dt_node_t
*dnp
, FILE *fp
, int depth
)
4815 char n
[DT_TYPE_NAMELEN
], buf
[BUFSIZ
], a
[8];
4816 const dtrace_syminfo_t
*dts
;
4817 const dt_idnode_t
*inp
;
4820 (void) fprintf(fp
, "%*s", depth
* 2, "");
4821 (void) dt_attr_str(dnp
->dn_attr
, a
, sizeof (a
));
4823 if (dnp
->dn_ctfp
!= NULL
&& dnp
->dn_type
!= CTF_ERR
&&
4824 ctf_type_name(dnp
->dn_ctfp
, dnp
->dn_type
, n
, sizeof (n
)) != NULL
) {
4825 (void) snprintf(buf
, BUFSIZ
, "type=<%s> attr=%s flags=", n
, a
);
4827 (void) snprintf(buf
, BUFSIZ
, "type=<%ld> attr=%s flags=",
4831 if (dnp
->dn_flags
!= 0) {
4833 if (dnp
->dn_flags
& DT_NF_SIGNED
)
4834 (void) strcat(n
, ",SIGN");
4835 if (dnp
->dn_flags
& DT_NF_COOKED
)
4836 (void) strcat(n
, ",COOK");
4837 if (dnp
->dn_flags
& DT_NF_REF
)
4838 (void) strcat(n
, ",REF");
4839 if (dnp
->dn_flags
& DT_NF_LVALUE
)
4840 (void) strcat(n
, ",LVAL");
4841 if (dnp
->dn_flags
& DT_NF_WRITABLE
)
4842 (void) strcat(n
, ",WRITE");
4843 if (dnp
->dn_flags
& DT_NF_BITFIELD
)
4844 (void) strcat(n
, ",BITF");
4845 if (dnp
->dn_flags
& DT_NF_USERLAND
)
4846 (void) strcat(n
, ",USER");
4847 (void) strcat(buf
, n
+ 1);
4849 (void) strcat(buf
, "0");
4851 switch (dnp
->dn_kind
) {
4853 (void) fprintf(fp
, "FREE <node %p>\n", (void *)dnp
);
4857 (void) fprintf(fp
, "INT 0x%llx (%s)\n",
4858 (u_longlong_t
)dnp
->dn_value
, buf
);
4861 case DT_NODE_STRING
:
4862 (void) fprintf(fp
, "STRING \"%s\" (%s)\n", dnp
->dn_string
, buf
);
4866 (void) fprintf(fp
, "IDENT %s (%s)\n", dnp
->dn_string
, buf
);
4870 (void) fprintf(fp
, "VARIABLE %s%s (%s)\n",
4871 (dnp
->dn_ident
->di_flags
& DT_IDFLG_LOCAL
) ? "this->" :
4872 (dnp
->dn_ident
->di_flags
& DT_IDFLG_TLS
) ? "self->" : "",
4873 dnp
->dn_ident
->di_name
, buf
);
4875 if (dnp
->dn_args
!= NULL
)
4876 (void) fprintf(fp
, "%*s[\n", depth
* 2, "");
4878 for (arg
= dnp
->dn_args
; arg
!= NULL
; arg
= arg
->dn_list
) {
4879 dt_node_printr(arg
, fp
, depth
+ 1);
4880 if (arg
->dn_list
!= NULL
)
4881 (void) fprintf(fp
, "%*s,\n", depth
* 2, "");
4884 if (dnp
->dn_args
!= NULL
)
4885 (void) fprintf(fp
, "%*s]\n", depth
* 2, "");
4889 dts
= dnp
->dn_ident
->di_data
;
4890 (void) fprintf(fp
, "SYMBOL %s`%s (%s)\n",
4891 dts
->dts_object
, dts
->dts_name
, buf
);
4895 if (dnp
->dn_string
!= NULL
) {
4896 (void) fprintf(fp
, "TYPE (%s) %s\n",
4897 buf
, dnp
->dn_string
);
4899 (void) fprintf(fp
, "TYPE (%s)\n", buf
);
4903 (void) fprintf(fp
, "FUNC %s (%s)\n",
4904 dnp
->dn_ident
->di_name
, buf
);
4906 for (arg
= dnp
->dn_args
; arg
!= NULL
; arg
= arg
->dn_list
) {
4907 dt_node_printr(arg
, fp
, depth
+ 1);
4908 if (arg
->dn_list
!= NULL
)
4909 (void) fprintf(fp
, "%*s,\n", depth
* 2, "");
4914 (void) fprintf(fp
, "OP1 %s (%s)\n", opstr(dnp
->dn_op
), buf
);
4915 dt_node_printr(dnp
->dn_child
, fp
, depth
+ 1);
4919 (void) fprintf(fp
, "OP2 %s (%s)\n", opstr(dnp
->dn_op
), buf
);
4920 dt_node_printr(dnp
->dn_left
, fp
, depth
+ 1);
4921 dt_node_printr(dnp
->dn_right
, fp
, depth
+ 1);
4922 if (dnp
->dn_op
== DT_TOK_LBRAC
) {
4923 dt_node_t
*ln
= dnp
->dn_right
;
4924 while (ln
->dn_list
!= NULL
) {
4925 dt_node_printr(ln
->dn_list
, fp
, depth
+ 1);
4932 (void) fprintf(fp
, "OP3 (%s)\n", buf
);
4933 dt_node_printr(dnp
->dn_expr
, fp
, depth
+ 1);
4934 (void) fprintf(fp
, "%*s?\n", depth
* 2, "");
4935 dt_node_printr(dnp
->dn_left
, fp
, depth
+ 1);
4936 (void) fprintf(fp
, "%*s:\n", depth
* 2, "");
4937 dt_node_printr(dnp
->dn_right
, fp
, depth
+ 1);
4942 (void) fprintf(fp
, "D EXPRESSION attr=%s\n", a
);
4943 dt_node_printr(dnp
->dn_expr
, fp
, depth
+ 1);
4947 (void) fprintf(fp
, "AGGREGATE @%s attr=%s [\n",
4948 dnp
->dn_ident
->di_name
, a
);
4950 for (arg
= dnp
->dn_aggtup
; arg
!= NULL
; arg
= arg
->dn_list
) {
4951 dt_node_printr(arg
, fp
, depth
+ 1);
4952 if (arg
->dn_list
!= NULL
)
4953 (void) fprintf(fp
, "%*s,\n", depth
* 2, "");
4956 if (dnp
->dn_aggfun
) {
4957 (void) fprintf(fp
, "%*s] = ", depth
* 2, "");
4958 dt_node_printr(dnp
->dn_aggfun
, fp
, depth
+ 1);
4960 (void) fprintf(fp
, "%*s]\n", depth
* 2, "");
4963 (void) fprintf(fp
, "%*s)\n", depth
* 2, "");
4967 (void) fprintf(fp
, "PDESC %s:%s:%s:%s [%u]\n",
4968 dnp
->dn_desc
->dtpd_provider
, dnp
->dn_desc
->dtpd_mod
,
4969 dnp
->dn_desc
->dtpd_func
, dnp
->dn_desc
->dtpd_name
,
4970 dnp
->dn_desc
->dtpd_id
);
4973 case DT_NODE_CLAUSE
:
4974 (void) fprintf(fp
, "CLAUSE attr=%s\n", a
);
4976 for (arg
= dnp
->dn_pdescs
; arg
!= NULL
; arg
= arg
->dn_list
)
4977 dt_node_printr(arg
, fp
, depth
+ 1);
4979 (void) fprintf(fp
, "%*sCTXATTR %s\n", depth
* 2, "",
4980 dt_attr_str(dnp
->dn_ctxattr
, a
, sizeof (a
)));
4982 if (dnp
->dn_pred
!= NULL
) {
4983 (void) fprintf(fp
, "%*sPREDICATE /\n", depth
* 2, "");
4984 dt_node_printr(dnp
->dn_pred
, fp
, depth
+ 1);
4985 (void) fprintf(fp
, "%*s/\n", depth
* 2, "");
4988 for (arg
= dnp
->dn_acts
; arg
!= NULL
; arg
= arg
->dn_list
)
4989 dt_node_printr(arg
, fp
, depth
+ 1);
4990 (void) fprintf(fp
, "\n");
4993 case DT_NODE_INLINE
:
4994 inp
= dnp
->dn_ident
->di_iarg
;
4996 (void) fprintf(fp
, "INLINE %s (%s)\n",
4997 dnp
->dn_ident
->di_name
, buf
);
4998 dt_node_printr(inp
->din_root
, fp
, depth
+ 1);
5001 case DT_NODE_MEMBER
:
5002 (void) fprintf(fp
, "MEMBER %s (%s)\n", dnp
->dn_membname
, buf
);
5003 if (dnp
->dn_membexpr
)
5004 dt_node_printr(dnp
->dn_membexpr
, fp
, depth
+ 1);
5007 case DT_NODE_XLATOR
:
5008 (void) fprintf(fp
, "XLATOR (%s)", buf
);
5010 if (ctf_type_name(dnp
->dn_xlator
->dx_src_ctfp
,
5011 dnp
->dn_xlator
->dx_src_type
, n
, sizeof (n
)) != NULL
)
5012 (void) fprintf(fp
, " from <%s>", n
);
5014 if (ctf_type_name(dnp
->dn_xlator
->dx_dst_ctfp
,
5015 dnp
->dn_xlator
->dx_dst_type
, n
, sizeof (n
)) != NULL
)
5016 (void) fprintf(fp
, " to <%s>", n
);
5018 (void) fprintf(fp
, "\n");
5020 for (arg
= dnp
->dn_members
; arg
!= NULL
; arg
= arg
->dn_list
)
5021 dt_node_printr(arg
, fp
, depth
+ 1);
5025 (void) fprintf(fp
, "PROBE %s\n", dnp
->dn_ident
->di_name
);
5028 case DT_NODE_PROVIDER
:
5029 (void) fprintf(fp
, "PROVIDER %s (%s)\n",
5030 dnp
->dn_provname
, dnp
->dn_provred
? "redecl" : "decl");
5031 for (arg
= dnp
->dn_probes
; arg
!= NULL
; arg
= arg
->dn_list
)
5032 dt_node_printr(arg
, fp
, depth
+ 1);
5036 (void) fprintf(fp
, "PROGRAM attr=%s\n", a
);
5037 for (arg
= dnp
->dn_list
; arg
!= NULL
; arg
= arg
->dn_list
)
5038 dt_node_printr(arg
, fp
, depth
+ 1);
5042 (void) fprintf(fp
, "IF attr=%s CONDITION:\n", a
);
5044 dt_node_printr(dnp
->dn_conditional
, fp
, depth
+ 1);
5046 (void) fprintf(fp
, "%*sIF BODY: \n", depth
* 2, "");
5047 for (arg
= dnp
->dn_body
; arg
!= NULL
; arg
= arg
->dn_list
)
5048 dt_node_printr(arg
, fp
, depth
+ 1);
5050 if (dnp
->dn_alternate_body
!= NULL
) {
5051 (void) fprintf(fp
, "%*sIF ELSE: \n", depth
* 2, "");
5052 for (arg
= dnp
->dn_alternate_body
; arg
!= NULL
;
5054 dt_node_printr(arg
, fp
, depth
+ 1);
5060 (void) fprintf(fp
, "<bad node %p, kind %d>\n",
5061 (void *)dnp
, dnp
->dn_kind
);
5066 dt_node_root(dt_node_t
*dnp
)
5068 yypcb
->pcb_root
= dnp
;
5074 dnerror(const dt_node_t
*dnp
, dt_errtag_t tag
, const char *format
, ...)
5076 int oldlineno
= yylineno
;
5079 yylineno
= dnp
->dn_line
;
5081 va_start(ap
, format
);
5082 xyvwarn(tag
, format
, ap
);
5085 yylineno
= oldlineno
;
5086 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
5091 dnwarn(const dt_node_t
*dnp
, dt_errtag_t tag
, const char *format
, ...)
5093 int oldlineno
= yylineno
;
5096 yylineno
= dnp
->dn_line
;
5098 va_start(ap
, format
);
5099 xyvwarn(tag
, format
, ap
);
5102 yylineno
= oldlineno
;
5107 xyerror(dt_errtag_t tag
, const char *format
, ...)
5111 va_start(ap
, format
);
5112 xyvwarn(tag
, format
, ap
);
5115 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
5120 xywarn(dt_errtag_t tag
, const char *format
, ...)
5124 va_start(ap
, format
);
5125 xyvwarn(tag
, format
, ap
);
5130 xyvwarn(dt_errtag_t tag
, const char *format
, va_list ap
)
5133 return; /* compiler is not currently active: act as a no-op */
5135 dt_set_errmsg(yypcb
->pcb_hdl
, dt_errtag(tag
), yypcb
->pcb_region
,
5136 yypcb
->pcb_filetag
, yypcb
->pcb_fileptr
? yylineno
: 0, format
, ap
);
5141 yyerror(const char *format
, ...)
5145 va_start(ap
, format
);
5146 yyvwarn(format
, ap
);
5149 longjmp(yypcb
->pcb_jmpbuf
, EDT_COMPILER
);
5154 yywarn(const char *format
, ...)
5158 va_start(ap
, format
);
5159 yyvwarn(format
, ap
);
5164 yyvwarn(const char *format
, va_list ap
)
5167 return; /* compiler is not currently active: act as a no-op */
5169 dt_set_errmsg(yypcb
->pcb_hdl
, dt_errtag(D_SYNTAX
), yypcb
->pcb_region
,
5170 yypcb
->pcb_filetag
, yypcb
->pcb_fileptr
? yylineno
: 0, format
, ap
);
5172 if (strchr(format
, '\n') == NULL
) {
5173 dtrace_hdl_t
*dtp
= yypcb
->pcb_hdl
;
5174 size_t len
= strlen(dtp
->dt_errmsg
);
5175 char *p
, *s
= dtp
->dt_errmsg
+ len
;
5176 size_t n
= sizeof (dtp
->dt_errmsg
) - len
;
5178 if (yytext
[0] == '\0')
5179 (void) snprintf(s
, n
, " near end of input");
5180 else if (yytext
[0] == '\n')
5181 (void) snprintf(s
, n
, " near end of line");
5183 if ((p
= strchr(yytext
, '\n')) != NULL
)
5184 *p
= '\0'; /* crop at newline */
5185 (void) snprintf(s
, n
, " near \"%s\"", yytext
);
5191 yylabel(const char *label
)
5193 dt_dprintf("set label to <%s>\n", label
? label
: "NULL");
5194 yypcb
->pcb_region
= label
;
5200 return (1); /* indicate that lex should return a zero token for EOF */