import less(1)
[unleashed/tickless.git] / usr / src / lib / libdtrace / common / dt_proc.c
blob39c3cc85e8964986e17b28b8413bc212f22e0ece
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
32 * DTrace Process Control
34 * This file provides a set of routines that permit libdtrace and its clients
35 * to create and grab process handles using libproc, and to share these handles
36 * between library mechanisms that need libproc access, such as ustack(), and
37 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
38 * The library provides several mechanisms in the libproc control layer:
40 * Reference Counting: The library code and client code can independently grab
41 * the same process handles without interfering with one another. Only when
42 * the reference count drops to zero and the handle is not being cached (see
43 * below for more information on caching) will Prelease() be called on it.
45 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
46 * the reference count drops to zero, the handle is not immediately released.
47 * Instead, libproc handles are maintained on dph_lrulist in order from most-
48 * recently accessed to least-recently accessed. Idle handles are maintained
49 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls
50 * to ustack() to avoid the overhead of releasing and re-grabbing processes.
52 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
53 * or created by dt_proc_create(), a control thread is created to provide
54 * callbacks on process exit and symbol table caching on dlopen()s.
56 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
57 * are provided to synchronize access to the libproc handle between libdtrace
58 * code and client code and the control thread's use of the ps_prochandle.
60 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
61 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace
62 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for
63 * synchronization between libdtrace control threads and the client thread.
65 * The ps_prochandles themselves are maintained along with a dt_proc_t struct
66 * in a hash table indexed by PID. This provides basic locking and reference
67 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist.
68 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and
69 * the current limit on the number of actively cached entries.
71 * The control thread for a process establishes breakpoints at the rtld_db
72 * locations of interest, updates mappings and symbol tables at these points,
73 * and handles exec and fork (by always following the parent). The control
74 * thread automatically exits when the process dies or control is lost.
76 * A simple notification mechanism is provided for libdtrace clients using
77 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If
78 * such an event occurs, the dt_proc_t itself is enqueued on a notification
79 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake
80 * up using this condition and will then call the client handler as necessary.
83 #include <sys/wait.h>
84 #include <sys/lwp.h>
85 #include <strings.h>
86 #include <signal.h>
87 #include <assert.h>
88 #include <errno.h>
89 #include <poll.h>
91 #include <dt_proc.h>
92 #include <dt_pid.h>
93 #include <dt_impl.h>
95 #define IS_SYS_EXEC(w) (w == SYS_execve)
96 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys)
98 static dt_bkpt_t *
99 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
101 struct ps_prochandle *P = dpr->dpr_proc;
102 dt_bkpt_t *dbp;
104 assert(MUTEX_HELD(&dpr->dpr_lock));
106 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
107 dbp->dbp_func = func;
108 dbp->dbp_data = data;
109 dbp->dbp_addr = addr;
111 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
112 dbp->dbp_active = B_TRUE;
114 dt_list_append(&dpr->dpr_bps, dbp);
117 return (dbp);
120 static void
121 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
123 int state = Pstate(dpr->dpr_proc);
124 dt_bkpt_t *dbp, *nbp;
126 assert(MUTEX_HELD(&dpr->dpr_lock));
128 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
129 if (delbkpts && dbp->dbp_active &&
130 state != PS_LOST && state != PS_UNDEAD) {
131 (void) Pdelbkpt(dpr->dpr_proc,
132 dbp->dbp_addr, dbp->dbp_instr);
134 nbp = dt_list_next(dbp);
135 dt_list_delete(&dpr->dpr_bps, dbp);
136 dt_free(dpr->dpr_hdl, dbp);
140 static void
141 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
143 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp;
144 dt_bkpt_t *dbp;
146 assert(MUTEX_HELD(&dpr->dpr_lock));
148 for (dbp = dt_list_next(&dpr->dpr_bps);
149 dbp != NULL; dbp = dt_list_next(dbp)) {
150 if (psp->pr_reg[R_PC] == dbp->dbp_addr)
151 break;
154 if (dbp == NULL) {
155 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
156 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]);
157 return;
160 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
161 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
163 dbp->dbp_func(dtp, dpr, dbp->dbp_data);
164 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
167 static void
168 dt_proc_bpenable(dt_proc_t *dpr)
170 dt_bkpt_t *dbp;
172 assert(MUTEX_HELD(&dpr->dpr_lock));
174 for (dbp = dt_list_next(&dpr->dpr_bps);
175 dbp != NULL; dbp = dt_list_next(dbp)) {
176 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
177 dbp->dbp_addr, &dbp->dbp_instr) == 0)
178 dbp->dbp_active = B_TRUE;
181 dt_dprintf("breakpoints enabled\n");
184 static void
185 dt_proc_bpdisable(dt_proc_t *dpr)
187 dt_bkpt_t *dbp;
189 assert(MUTEX_HELD(&dpr->dpr_lock));
191 for (dbp = dt_list_next(&dpr->dpr_bps);
192 dbp != NULL; dbp = dt_list_next(dbp)) {
193 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
194 dbp->dbp_addr, dbp->dbp_instr) == 0)
195 dbp->dbp_active = B_FALSE;
198 dt_dprintf("breakpoints disabled\n");
201 static void
202 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
203 const char *msg)
205 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
207 if (dprn == NULL) {
208 dt_dprintf("failed to allocate notification for %d %s\n",
209 (int)dpr->dpr_pid, msg);
210 } else {
211 dprn->dprn_dpr = dpr;
212 if (msg == NULL)
213 dprn->dprn_errmsg[0] = '\0';
214 else
215 (void) strlcpy(dprn->dprn_errmsg, msg,
216 sizeof (dprn->dprn_errmsg));
218 (void) pthread_mutex_lock(&dph->dph_lock);
220 dprn->dprn_next = dph->dph_notify;
221 dph->dph_notify = dprn;
223 (void) pthread_cond_broadcast(&dph->dph_cv);
224 (void) pthread_mutex_unlock(&dph->dph_lock);
229 * Check to see if the control thread was requested to stop when the victim
230 * process reached a particular event (why) rather than continuing the victim.
231 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
232 * If 'why' is not set, this function returns immediately and does nothing.
234 static void
235 dt_proc_stop(dt_proc_t *dpr, uint8_t why)
237 assert(MUTEX_HELD(&dpr->dpr_lock));
238 assert(why != DT_PROC_STOP_IDLE);
240 if (dpr->dpr_stop & why) {
241 dpr->dpr_stop |= DT_PROC_STOP_IDLE;
242 dpr->dpr_stop &= ~why;
244 (void) pthread_cond_broadcast(&dpr->dpr_cv);
247 * We disable breakpoints while stopped to preserve the
248 * integrity of the program text for both our own disassembly
249 * and that of the kernel.
251 dt_proc_bpdisable(dpr);
253 while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
254 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
256 dt_proc_bpenable(dpr);
260 /*ARGSUSED*/
261 static void
262 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
264 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
265 dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
268 static void
269 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
271 rd_event_msg_t rdm;
272 rd_err_e err;
274 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
275 dt_dprintf("pid %d: failed to get %s event message: %s\n",
276 (int)dpr->dpr_pid, evname, rd_errstr(err));
277 return;
280 dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
281 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
283 switch (rdm.type) {
284 case RD_DLACTIVITY:
285 if (rdm.u.state != RD_CONSISTENT)
286 break;
288 Pupdate_syms(dpr->dpr_proc);
289 if (dt_pid_create_probes_module(dtp, dpr) != 0)
290 dt_proc_notify(dtp, dtp->dt_procs, dpr,
291 dpr->dpr_errmsg);
293 break;
294 case RD_PREINIT:
295 Pupdate_syms(dpr->dpr_proc);
296 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
297 break;
298 case RD_POSTINIT:
299 Pupdate_syms(dpr->dpr_proc);
300 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
301 break;
305 static void
306 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
308 rd_notify_t rdn;
309 rd_err_e err;
311 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
312 dt_dprintf("pid %d: failed to get event address for %s: %s\n",
313 (int)dpr->dpr_pid, evname, rd_errstr(err));
314 return;
317 if (rdn.type != RD_NOTIFY_BPT) {
318 dt_dprintf("pid %d: event %s has unexpected type %d\n",
319 (int)dpr->dpr_pid, evname, rdn.type);
320 return;
323 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
324 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname);
328 * Common code for enabling events associated with the run-time linker after
329 * attaching to a process or after a victim process completes an exec(2).
331 static void
332 dt_proc_attach(dt_proc_t *dpr, int exec)
334 const pstatus_t *psp = Pstatus(dpr->dpr_proc);
335 rd_err_e err;
336 GElf_Sym sym;
338 assert(MUTEX_HELD(&dpr->dpr_lock));
340 if (exec) {
341 if (psp->pr_lwp.pr_errno != 0)
342 return; /* exec failed: nothing needs to be done */
344 dt_proc_bpdestroy(dpr, B_FALSE);
345 Preset_maps(dpr->dpr_proc);
348 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
349 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
350 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT");
351 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
352 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY");
353 } else {
354 dt_dprintf("pid %d: failed to enable rtld events: %s\n",
355 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
356 "rtld_db agent initialization failed");
359 Pupdate_maps(dpr->dpr_proc);
361 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
362 "a.out", "main", &sym, NULL) == 0) {
363 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
364 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
365 } else {
366 dt_dprintf("pid %d: failed to find a.out`main: %s\n",
367 (int)dpr->dpr_pid, strerror(errno));
372 * Wait for a stopped process to be set running again by some other debugger.
373 * This is typically not required by /proc-based debuggers, since the usual
374 * model is that one debugger controls one victim. But DTrace, as usual, has
375 * its own needs: the stop() action assumes that prun(1) or some other tool
376 * will be applied to resume the victim process. This could be solved by
377 * adding a PCWRUN directive to /proc, but that seems like overkill unless
378 * other debuggers end up needing this functionality, so we implement a cheap
379 * equivalent to PCWRUN using the set of existing kernel mechanisms.
381 * Our intent is really not just to wait for the victim to run, but rather to
382 * wait for it to run and then stop again for a reason other than the current
383 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly
384 * to a stopped process and will return the same result without affecting the
385 * victim, we can just perform these operations repeatedly until Pstate()
386 * changes, the representative LWP ID changes, or the stop timestamp advances.
387 * dt_proc_control() will then rediscover the new state and continue as usual.
388 * When the process is still stopped in the same exact state, we sleep for a
389 * brief interval before waiting again so as not to spin consuming CPU cycles.
391 static void
392 dt_proc_waitrun(dt_proc_t *dpr)
394 struct ps_prochandle *P = dpr->dpr_proc;
395 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp;
397 int krflag = psp->pr_flags & (PR_KLC | PR_RLC);
398 timestruc_t tstamp = psp->pr_tstamp;
399 lwpid_t lwpid = psp->pr_lwpid;
401 const long wstop = PCWSTOP;
402 int pfd = Pctlfd(P);
404 assert(MUTEX_HELD(&dpr->dpr_lock));
405 assert(psp->pr_flags & PR_STOPPED);
406 assert(Pstate(P) == PS_STOP);
409 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC
410 * so that if the libdtrace client is killed, the victim stays stopped.
411 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG.
413 (void) Punsetflags(P, krflag);
414 Psync(P);
416 (void) pthread_mutex_unlock(&dpr->dpr_lock);
418 while (!dpr->dpr_quit) {
419 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
420 continue; /* check dpr_quit and continue waiting */
422 (void) pthread_mutex_lock(&dpr->dpr_lock);
423 (void) Pstopstatus(P, PCNULL, 0);
424 psp = &Pstatus(P)->pr_lwp;
427 * If we've reached a new state, found a new representative, or
428 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its
429 * original setting and then return with dpr_lock held.
431 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid ||
432 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) {
433 (void) Psetflags(P, krflag);
434 Psync(P);
435 return;
438 (void) pthread_mutex_unlock(&dpr->dpr_lock);
439 (void) poll(NULL, 0, MILLISEC / 2);
442 (void) pthread_mutex_lock(&dpr->dpr_lock);
445 typedef struct dt_proc_control_data {
446 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */
447 dt_proc_t *dpcd_proc; /* proccess to control */
448 } dt_proc_control_data_t;
451 * Main loop for all victim process control threads. We initialize all the
452 * appropriate /proc control mechanisms, and then enter a loop waiting for
453 * the process to stop on an event or die. We process any events by calling
454 * appropriate subroutines, and exit when the victim dies or we lose control.
456 * The control thread synchronizes the use of dpr_proc with other libdtrace
457 * threads using dpr_lock. We hold the lock for all of our operations except
458 * waiting while the process is running: this is accomplished by writing a
459 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the
460 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
462 static void *
463 dt_proc_control(void *arg)
465 dt_proc_control_data_t *datap = arg;
466 dtrace_hdl_t *dtp = datap->dpcd_hdl;
467 dt_proc_t *dpr = datap->dpcd_proc;
468 dt_proc_hash_t *dph = dtp->dt_procs;
469 struct ps_prochandle *P = dpr->dpr_proc;
471 int pfd = Pctlfd(P);
472 int pid = dpr->dpr_pid;
474 const long wstop = PCWSTOP;
475 int notify = B_FALSE;
478 * We disable the POSIX thread cancellation mechanism so that the
479 * client program using libdtrace can't accidentally cancel our thread.
480 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
481 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
483 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
486 * Set up the corresponding process for tracing by libdtrace. We want
487 * to be able to catch breakpoints and efficiently single-step over
488 * them, and we need to enable librtld_db to watch libdl activity.
490 (void) pthread_mutex_lock(&dpr->dpr_lock);
492 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */
493 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */
494 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */
496 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */
497 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */
500 * We must trace exit from exec() system calls so that if the exec is
501 * successful, we can reset our breakpoints and re-initialize libproc.
503 (void) Psysexit(P, SYS_execve, B_TRUE);
506 * We must trace entry and exit for fork() system calls in order to
507 * disable our breakpoints temporarily during the fork. We do not set
508 * the PR_FORK flag, so if fork succeeds the child begins executing and
509 * does not inherit any other tracing behaviors or a control thread.
511 (void) Psysentry(P, SYS_vfork, B_TRUE);
512 (void) Psysexit(P, SYS_vfork, B_TRUE);
513 (void) Psysentry(P, SYS_forksys, B_TRUE);
514 (void) Psysexit(P, SYS_forksys, B_TRUE);
516 Psync(P); /* enable all /proc changes */
517 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */
520 * If PR_KLC is set, we created the process; otherwise we grabbed it.
521 * Check for an appropriate stop request and wait for dt_proc_continue.
523 if (Pstatus(P)->pr_flags & PR_KLC)
524 dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
525 else
526 dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
528 if (Psetrun(P, 0, 0) == -1) {
529 dt_dprintf("pid %d: failed to set running: %s\n",
530 (int)dpr->dpr_pid, strerror(errno));
533 (void) pthread_mutex_unlock(&dpr->dpr_lock);
536 * Wait for the process corresponding to this control thread to stop,
537 * process the event, and then set it running again. We want to sleep
538 * with dpr_lock *unheld* so that other parts of libdtrace can use the
539 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write
540 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
541 * Once the process stops, we wake up, grab dpr_lock, and then call
542 * Pwait() (which will return immediately) and do our processing.
544 while (!dpr->dpr_quit) {
545 const lwpstatus_t *psp;
547 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
548 continue; /* check dpr_quit and continue waiting */
550 (void) pthread_mutex_lock(&dpr->dpr_lock);
551 pwait_locked:
552 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) {
553 (void) pthread_mutex_unlock(&dpr->dpr_lock);
554 continue; /* check dpr_quit and continue waiting */
557 switch (Pstate(P)) {
558 case PS_STOP:
559 psp = &Pstatus(P)->pr_lwp;
561 dt_dprintf("pid %d: proc stopped showing %d/%d\n",
562 pid, psp->pr_why, psp->pr_what);
565 * If the process stops showing PR_REQUESTED, then the
566 * DTrace stop() action was applied to it or another
567 * debugging utility (e.g. pstop(1)) asked it to stop.
568 * In either case, the user's intention is for the
569 * process to remain stopped until another external
570 * mechanism (e.g. prun(1)) is applied. So instead of
571 * setting the process running ourself, we wait for
572 * someone else to do so. Once that happens, we return
573 * to our normal loop waiting for an event of interest.
575 if (psp->pr_why == PR_REQUESTED) {
576 dt_proc_waitrun(dpr);
577 (void) pthread_mutex_unlock(&dpr->dpr_lock);
578 continue;
582 * If the process stops showing one of the events that
583 * we are tracing, perform the appropriate response.
584 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
585 * PR_JOBCONTROL by design: if one of these conditions
586 * occurs, we will fall through to Psetrun() but the
587 * process will remain stopped in the kernel by the
588 * corresponding mechanism (e.g. job control stop).
590 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
591 dt_proc_bpmatch(dtp, dpr);
592 else if (psp->pr_why == PR_SYSENTRY &&
593 IS_SYS_FORK(psp->pr_what))
594 dt_proc_bpdisable(dpr);
595 else if (psp->pr_why == PR_SYSEXIT &&
596 IS_SYS_FORK(psp->pr_what))
597 dt_proc_bpenable(dpr);
598 else if (psp->pr_why == PR_SYSEXIT &&
599 IS_SYS_EXEC(psp->pr_what))
600 dt_proc_attach(dpr, B_TRUE);
601 break;
603 case PS_LOST:
604 if (Preopen(P) == 0)
605 goto pwait_locked;
607 dt_dprintf("pid %d: proc lost: %s\n",
608 pid, strerror(errno));
610 dpr->dpr_quit = B_TRUE;
611 notify = B_TRUE;
612 break;
614 case PS_UNDEAD:
615 dt_dprintf("pid %d: proc died\n", pid);
616 dpr->dpr_quit = B_TRUE;
617 notify = B_TRUE;
618 break;
621 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) {
622 dt_dprintf("pid %d: failed to set running: %s\n",
623 (int)dpr->dpr_pid, strerror(errno));
626 (void) pthread_mutex_unlock(&dpr->dpr_lock);
630 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
631 * the dt_proc_t structure on the dt_proc_hash_t notification list.
633 if (notify)
634 dt_proc_notify(dtp, dph, dpr, NULL);
637 * Destroy and remove any remaining breakpoints, set dpr_done and clear
638 * dpr_tid to indicate the control thread has exited, and notify any
639 * waiting thread in dt_proc_destroy() that we have succesfully exited.
641 (void) pthread_mutex_lock(&dpr->dpr_lock);
643 dt_proc_bpdestroy(dpr, B_TRUE);
644 dpr->dpr_done = B_TRUE;
645 dpr->dpr_tid = 0;
647 (void) pthread_cond_broadcast(&dpr->dpr_cv);
648 (void) pthread_mutex_unlock(&dpr->dpr_lock);
650 return (NULL);
653 /*PRINTFLIKE3*/
654 static struct ps_prochandle *
655 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
657 va_list ap;
659 va_start(ap, format);
660 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
661 va_end(ap);
663 if (dpr->dpr_proc != NULL)
664 Prelease(dpr->dpr_proc, 0);
666 dt_free(dtp, dpr);
667 (void) dt_set_errno(dtp, EDT_COMPILER);
668 return (NULL);
671 dt_proc_t *
672 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
674 dt_proc_hash_t *dph = dtp->dt_procs;
675 pid_t pid = Pstatus(P)->pr_pid;
676 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
678 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
679 if (dpr->dpr_pid == pid)
680 break;
681 else
682 dpp = &dpr->dpr_hash;
685 assert(dpr != NULL);
686 assert(dpr->dpr_proc == P);
688 if (remove)
689 *dpp = dpr->dpr_hash; /* remove from pid hash chain */
691 return (dpr);
694 static void
695 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
697 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
698 dt_proc_hash_t *dph = dtp->dt_procs;
699 dt_proc_notify_t *npr, **npp;
700 int rflag;
702 assert(dpr != NULL);
705 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by
706 * an external debugger and we were waiting in dt_proc_waitrun().
707 * Leave the process in this condition using PRELEASE_HANG.
709 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) {
710 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid);
711 rflag = PRELEASE_HANG;
712 } else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) {
713 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
714 rflag = PRELEASE_KILL; /* apply kill-on-last-close */
715 } else {
716 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
717 rflag = 0; /* apply run-on-last-close */
720 if (dpr->dpr_tid) {
722 * Set the dpr_quit flag to tell the daemon thread to exit. We
723 * send it a SIGCANCEL to poke it out of PCWSTOP or any other
724 * long-term /proc system call. Our daemon threads have POSIX
725 * cancellation disabled, so EINTR will be the only effect. We
726 * then wait for dpr_done to indicate the thread has exited.
728 * We can't use pthread_kill() to send SIGCANCEL because the
729 * interface forbids it and we can't use pthread_cancel()
730 * because with cancellation disabled it won't actually
731 * send SIGCANCEL to the target thread, so we use _lwp_kill()
732 * to do the job. This is all built on evil knowledge of
733 * the details of the cancellation mechanism in libc.
735 (void) pthread_mutex_lock(&dpr->dpr_lock);
736 dpr->dpr_quit = B_TRUE;
737 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL);
740 * If the process is currently idling in dt_proc_stop(), re-
741 * enable breakpoints and poke it into running again.
743 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
744 dt_proc_bpenable(dpr);
745 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
746 (void) pthread_cond_broadcast(&dpr->dpr_cv);
749 while (!dpr->dpr_done)
750 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
752 (void) pthread_mutex_unlock(&dpr->dpr_lock);
756 * Before we free the process structure, remove this dt_proc_t from the
757 * lookup hash, and then walk the dt_proc_hash_t's notification list
758 * and remove this dt_proc_t if it is enqueued.
760 (void) pthread_mutex_lock(&dph->dph_lock);
761 (void) dt_proc_lookup(dtp, P, B_TRUE);
762 npp = &dph->dph_notify;
764 while ((npr = *npp) != NULL) {
765 if (npr->dprn_dpr == dpr) {
766 *npp = npr->dprn_next;
767 dt_free(dtp, npr);
768 } else {
769 npp = &npr->dprn_next;
773 (void) pthread_mutex_unlock(&dph->dph_lock);
776 * Remove the dt_proc_list from the LRU list, release the underlying
777 * libproc handle, and free our dt_proc_t data structure.
779 if (dpr->dpr_cacheable) {
780 assert(dph->dph_lrucnt != 0);
781 dph->dph_lrucnt--;
784 dt_list_delete(&dph->dph_lrulist, dpr);
785 Prelease(dpr->dpr_proc, rflag);
786 dt_free(dtp, dpr);
789 static int
790 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
792 dt_proc_control_data_t data;
793 sigset_t nset, oset;
794 pthread_attr_t a;
795 int err;
797 (void) pthread_mutex_lock(&dpr->dpr_lock);
798 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
800 (void) pthread_attr_init(&a);
801 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
803 (void) sigfillset(&nset);
804 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */
805 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */
807 data.dpcd_hdl = dtp;
808 data.dpcd_proc = dpr;
810 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
811 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
812 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
815 * If the control thread was created, then wait on dpr_cv for either
816 * dpr_done to be set (the victim died or the control thread failed)
817 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
818 * stopped by /proc and the control thread is at the rendezvous event.
819 * On success, we return with the process and control thread stopped:
820 * the caller can then apply dt_proc_continue() to resume both.
822 if (err == 0) {
823 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
824 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
827 * If dpr_done is set, the control thread aborted before it
828 * reached the rendezvous event. This is either due to PS_LOST
829 * or PS_UNDEAD (i.e. the process died). We try to provide a
830 * small amount of useful information to help figure it out.
832 if (dpr->dpr_done) {
833 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc);
834 int stat = prp ? prp->pr_wstat : 0;
835 int pid = dpr->dpr_pid;
837 if (Pstate(dpr->dpr_proc) == PS_LOST) {
838 (void) dt_proc_error(dpr->dpr_hdl, dpr,
839 "failed to control pid %d: process exec'd "
840 "set-id or unobservable program\n", pid);
841 } else if (WIFSIGNALED(stat)) {
842 (void) dt_proc_error(dpr->dpr_hdl, dpr,
843 "failed to control pid %d: process died "
844 "from signal %d\n", pid, WTERMSIG(stat));
845 } else {
846 (void) dt_proc_error(dpr->dpr_hdl, dpr,
847 "failed to control pid %d: process exited "
848 "with status %d\n", pid, WEXITSTATUS(stat));
851 err = ESRCH; /* cause grab() or create() to fail */
853 } else {
854 (void) dt_proc_error(dpr->dpr_hdl, dpr,
855 "failed to create control thread for process-id %d: %s\n",
856 (int)dpr->dpr_pid, strerror(err));
859 (void) pthread_mutex_unlock(&dpr->dpr_lock);
860 (void) pthread_attr_destroy(&a);
862 return (err);
865 struct ps_prochandle *
866 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
868 dt_proc_hash_t *dph = dtp->dt_procs;
869 dt_proc_t *dpr;
870 int err;
872 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
873 return (NULL); /* errno is set for us */
875 (void) pthread_mutex_init(&dpr->dpr_lock, NULL);
876 (void) pthread_cond_init(&dpr->dpr_cv, NULL);
878 dpr->dpr_proc = Pxcreate(file, argv, dtp->dt_proc_env, &err, NULL, 0);
879 if (dpr->dpr_proc == NULL) {
880 return (dt_proc_error(dtp, dpr,
881 "failed to execute %s: %s\n", file, Pcreate_error(err)));
884 dpr->dpr_hdl = dtp;
885 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid;
887 (void) Punsetflags(dpr->dpr_proc, PR_RLC);
888 (void) Psetflags(dpr->dpr_proc, PR_KLC);
890 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
891 return (NULL); /* dt_proc_error() has been called for us */
893 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
894 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
895 dt_list_prepend(&dph->dph_lrulist, dpr);
897 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
898 dpr->dpr_refs++;
900 return (dpr->dpr_proc);
903 struct ps_prochandle *
904 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
906 dt_proc_hash_t *dph = dtp->dt_procs;
907 uint_t h = pid & (dph->dph_hashlen - 1);
908 dt_proc_t *dpr, *opr;
909 int err;
912 * Search the hash table for the pid. If it is already grabbed or
913 * created, move the handle to the front of the lrulist, increment
914 * the reference count, and return the existing ps_prochandle.
916 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
917 if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
919 * If the cached handle was opened read-only and
920 * this request is for a writeable handle, mark
921 * the cached handle as stale and open a new handle.
922 * Since it's stale, unmark it as cacheable.
924 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
925 dt_dprintf("upgrading pid %d\n", (int)pid);
926 dpr->dpr_stale = B_TRUE;
927 dpr->dpr_cacheable = B_FALSE;
928 dph->dph_lrucnt--;
929 break;
932 dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
933 dt_list_delete(&dph->dph_lrulist, dpr);
934 dt_list_prepend(&dph->dph_lrulist, dpr);
935 dpr->dpr_refs++;
936 return (dpr->dpr_proc);
940 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
941 return (NULL); /* errno is set for us */
943 (void) pthread_mutex_init(&dpr->dpr_lock, NULL);
944 (void) pthread_cond_init(&dpr->dpr_cv, NULL);
946 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) {
947 return (dt_proc_error(dtp, dpr,
948 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
951 dpr->dpr_hdl = dtp;
952 dpr->dpr_pid = pid;
954 (void) Punsetflags(dpr->dpr_proc, PR_KLC);
955 (void) Psetflags(dpr->dpr_proc, PR_RLC);
958 * If we are attempting to grab the process without a monitor
959 * thread, then mark the process cacheable only if it's being
960 * grabbed read-only. If we're currently caching more process
961 * handles than dph_lrulim permits, attempt to find the
962 * least-recently-used handle that is currently unreferenced and
963 * release it from the cache. Otherwise we are grabbing the process
964 * for control: create a control thread for this process and store
965 * its ID in dpr->dpr_tid.
967 if (nomonitor || (flags & PGRAB_RDONLY)) {
968 if (dph->dph_lrucnt >= dph->dph_lrulim) {
969 for (opr = dt_list_prev(&dph->dph_lrulist);
970 opr != NULL; opr = dt_list_prev(opr)) {
971 if (opr->dpr_cacheable && opr->dpr_refs == 0) {
972 dt_proc_destroy(dtp, opr->dpr_proc);
973 break;
978 if (flags & PGRAB_RDONLY) {
979 dpr->dpr_cacheable = B_TRUE;
980 dpr->dpr_rdonly = B_TRUE;
981 dph->dph_lrucnt++;
984 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
985 return (NULL); /* dt_proc_error() has been called for us */
987 dpr->dpr_hash = dph->dph_hash[h];
988 dph->dph_hash[h] = dpr;
989 dt_list_prepend(&dph->dph_lrulist, dpr);
991 dt_dprintf("grabbed pid %d\n", (int)pid);
992 dpr->dpr_refs++;
994 return (dpr->dpr_proc);
997 void
998 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1000 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1001 dt_proc_hash_t *dph = dtp->dt_procs;
1003 assert(dpr != NULL);
1004 assert(dpr->dpr_refs != 0);
1006 if (--dpr->dpr_refs == 0 &&
1007 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
1008 dt_proc_destroy(dtp, P);
1011 void
1012 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1014 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1016 (void) pthread_mutex_lock(&dpr->dpr_lock);
1018 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
1019 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
1020 (void) pthread_cond_broadcast(&dpr->dpr_cv);
1023 (void) pthread_mutex_unlock(&dpr->dpr_lock);
1026 void
1027 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1029 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1030 int err = pthread_mutex_lock(&dpr->dpr_lock);
1031 assert(err == 0); /* check for recursion */
1034 void
1035 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1037 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1038 int err = pthread_mutex_unlock(&dpr->dpr_lock);
1039 assert(err == 0); /* check for unheld lock */
1042 void
1043 dt_proc_init(dtrace_hdl_t *dtp)
1045 extern char **environ;
1046 static char *envdef[] = {
1047 "LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */
1048 NULL
1050 char **p;
1051 int i;
1053 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
1054 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL)
1055 return;
1057 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
1058 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
1060 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
1061 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
1065 * Count how big our environment needs to be.
1067 for (i = 1, p = environ; *p != NULL; i++, p++)
1068 continue;
1069 for (p = envdef; *p != NULL; i++, p++)
1070 continue;
1072 if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL)
1073 return;
1075 for (i = 0, p = environ; *p != NULL; i++, p++) {
1076 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
1077 goto err;
1079 for (p = envdef; *p != NULL; i++, p++) {
1080 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
1081 goto err;
1084 return;
1086 err:
1087 while (--i != 0) {
1088 dt_free(dtp, dtp->dt_proc_env[i]);
1090 dt_free(dtp, dtp->dt_proc_env);
1091 dtp->dt_proc_env = NULL;
1094 void
1095 dt_proc_fini(dtrace_hdl_t *dtp)
1097 dt_proc_hash_t *dph = dtp->dt_procs;
1098 dt_proc_t *dpr;
1099 char **p;
1101 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
1102 dt_proc_destroy(dtp, dpr->dpr_proc);
1104 dtp->dt_procs = NULL;
1105 dt_free(dtp, dph);
1107 for (p = dtp->dt_proc_env; *p != NULL; p++)
1108 dt_free(dtp, *p);
1110 dt_free(dtp, dtp->dt_proc_env);
1111 dtp->dt_proc_env = NULL;
1114 struct ps_prochandle *
1115 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
1117 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1118 struct ps_prochandle *P = dt_proc_create(dtp, file, argv);
1120 if (P != NULL && idp != NULL && idp->di_id == 0)
1121 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */
1123 return (P);
1126 struct ps_prochandle *
1127 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
1129 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1130 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
1132 if (P != NULL && idp != NULL && idp->di_id == 0)
1133 idp->di_id = pid; /* $target = grabbed pid */
1135 return (P);
1138 void
1139 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1141 dt_proc_release(dtp, P);
1144 void
1145 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1147 dt_proc_continue(dtp, P);