import less(1)
[unleashed/tickless.git] / usr / src / lib / libsqlite / tool / lemon.c
blob4722c294bd4206382571f29d4f880a6b3677afbf
1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
15 #ifndef __WIN32__
16 # if defined(_WIN32) || defined(WIN32)
17 # define __WIN32__
18 # endif
19 #endif
21 /* #define PRIVATE static */
22 #define PRIVATE
24 #ifdef TEST
25 #define MAXRHS 5 /* Set low to exercise exception code */
26 #else
27 #define MAXRHS 1000
28 #endif
30 char *msort();
31 extern void *malloc();
33 /******** From the file "action.h" *************************************/
34 struct action *Action_new();
35 struct action *Action_sort();
37 /********* From the file "assert.h" ************************************/
38 void myassert();
39 #ifndef NDEBUG
40 # define assert(X) if(!(X))myassert(__FILE__,__LINE__)
41 #else
42 # define assert(X)
43 #endif
45 /********** From the file "build.h" ************************************/
46 void FindRulePrecedences();
47 void FindFirstSets();
48 void FindStates();
49 void FindLinks();
50 void FindFollowSets();
51 void FindActions();
53 /********* From the file "configlist.h" *********************************/
54 void Configlist_init(/* void */);
55 struct config *Configlist_add(/* struct rule *, int */);
56 struct config *Configlist_addbasis(/* struct rule *, int */);
57 void Configlist_closure(/* void */);
58 void Configlist_sort(/* void */);
59 void Configlist_sortbasis(/* void */);
60 struct config *Configlist_return(/* void */);
61 struct config *Configlist_basis(/* void */);
62 void Configlist_eat(/* struct config * */);
63 void Configlist_reset(/* void */);
65 /********* From the file "error.h" ***************************************/
66 void ErrorMsg(const char *, int,const char *, ...);
68 /****** From the file "option.h" ******************************************/
69 struct s_options {
70 enum { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
71 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR} type;
72 char *label;
73 char *arg;
74 char *message;
76 int OptInit(/* char**,struct s_options*,FILE* */);
77 int OptNArgs(/* void */);
78 char *OptArg(/* int */);
79 void OptErr(/* int */);
80 void OptPrint(/* void */);
82 /******** From the file "parse.h" *****************************************/
83 void Parse(/* struct lemon *lemp */);
85 /********* From the file "plink.h" ***************************************/
86 struct plink *Plink_new(/* void */);
87 void Plink_add(/* struct plink **, struct config * */);
88 void Plink_copy(/* struct plink **, struct plink * */);
89 void Plink_delete(/* struct plink * */);
91 /********** From the file "report.h" *************************************/
92 void Reprint(/* struct lemon * */);
93 void ReportOutput(/* struct lemon * */);
94 void ReportTable(/* struct lemon * */);
95 void ReportHeader(/* struct lemon * */);
96 void CompressTables(/* struct lemon * */);
98 /********** From the file "set.h" ****************************************/
99 void SetSize(/* int N */); /* All sets will be of size N */
100 char *SetNew(/* void */); /* A new set for element 0..N */
101 void SetFree(/* char* */); /* Deallocate a set */
103 int SetAdd(/* char*,int */); /* Add element to a set */
104 int SetUnion(/* char *A,char *B */); /* A <- A U B, thru element N */
106 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
108 /********** From the file "struct.h" *************************************/
110 ** Principal data structures for the LEMON parser generator.
113 typedef enum {B_FALSE=0, B_TRUE} Boolean;
115 /* Symbols (terminals and nonterminals) of the grammar are stored
116 ** in the following: */
117 struct symbol {
118 char *name; /* Name of the symbol */
119 int index; /* Index number for this symbol */
120 enum {
121 TERMINAL,
122 NONTERMINAL
123 } type; /* Symbols are all either TERMINALS or NTs */
124 struct rule *rule; /* Linked list of rules of this (if an NT) */
125 struct symbol *fallback; /* fallback token in case this token doesn't parse */
126 int prec; /* Precedence if defined (-1 otherwise) */
127 enum e_assoc {
128 LEFT,
129 RIGHT,
130 NONE,
132 } assoc; /* Associativity if predecence is defined */
133 char *firstset; /* First-set for all rules of this symbol */
134 Boolean lambda; /* True if NT and can generate an empty string */
135 char *destructor; /* Code which executes whenever this symbol is
136 ** popped from the stack during error processing */
137 int destructorln; /* Line number of destructor code */
138 char *datatype; /* The data type of information held by this
139 ** object. Only used if type==NONTERMINAL */
140 int dtnum; /* The data type number. In the parser, the value
141 ** stack is a union. The .yy%d element of this
142 ** union is the correct data type for this object */
145 /* Each production rule in the grammar is stored in the following
146 ** structure. */
147 struct rule {
148 struct symbol *lhs; /* Left-hand side of the rule */
149 char *lhsalias; /* Alias for the LHS (NULL if none) */
150 int ruleline; /* Line number for the rule */
151 int nrhs; /* Number of RHS symbols */
152 struct symbol **rhs; /* The RHS symbols */
153 char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
154 int line; /* Line number at which code begins */
155 char *code; /* The code executed when this rule is reduced */
156 struct symbol *precsym; /* Precedence symbol for this rule */
157 int index; /* An index number for this rule */
158 Boolean canReduce; /* True if this rule is ever reduced */
159 struct rule *nextlhs; /* Next rule with the same LHS */
160 struct rule *next; /* Next rule in the global list */
163 /* A configuration is a production rule of the grammar together with
164 ** a mark (dot) showing how much of that rule has been processed so far.
165 ** Configurations also contain a follow-set which is a list of terminal
166 ** symbols which are allowed to immediately follow the end of the rule.
167 ** Every configuration is recorded as an instance of the following: */
168 struct config {
169 struct rule *rp; /* The rule upon which the configuration is based */
170 int dot; /* The parse point */
171 char *fws; /* Follow-set for this configuration only */
172 struct plink *fplp; /* Follow-set forward propagation links */
173 struct plink *bplp; /* Follow-set backwards propagation links */
174 struct state *stp; /* Pointer to state which contains this */
175 enum {
176 COMPLETE, /* The status is used during followset and */
177 INCOMPLETE /* shift computations */
178 } status;
179 struct config *next; /* Next configuration in the state */
180 struct config *bp; /* The next basis configuration */
183 /* Every shift or reduce operation is stored as one of the following */
184 struct action {
185 struct symbol *sp; /* The look-ahead symbol */
186 enum e_action {
187 SHIFT,
188 ACCEPT,
189 REDUCE,
190 ERROR,
191 CONFLICT, /* Was a reduce, but part of a conflict */
192 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
193 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
194 NOT_USED /* Deleted by compression */
195 } type;
196 union {
197 struct state *stp; /* The new state, if a shift */
198 struct rule *rp; /* The rule, if a reduce */
199 } x;
200 struct action *next; /* Next action for this state */
201 struct action *collide; /* Next action with the same hash */
204 /* Each state of the generated parser's finite state machine
205 ** is encoded as an instance of the following structure. */
206 struct state {
207 struct config *bp; /* The basis configurations for this state */
208 struct config *cfp; /* All configurations in this set */
209 int index; /* Sequencial number for this state */
210 struct action *ap; /* Array of actions for this state */
211 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
212 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
213 int iDflt; /* Default action */
215 #define NO_OFFSET (-2147483647)
217 /* A followset propagation link indicates that the contents of one
218 ** configuration followset should be propagated to another whenever
219 ** the first changes. */
220 struct plink {
221 struct config *cfp; /* The configuration to which linked */
222 struct plink *next; /* The next propagate link */
225 /* The state vector for the entire parser generator is recorded as
226 ** follows. (LEMON uses no global variables and makes little use of
227 ** static variables. Fields in the following structure can be thought
228 ** of as begin global variables in the program.) */
229 struct lemon {
230 struct state **sorted; /* Table of states sorted by state number */
231 struct rule *rule; /* List of all rules */
232 int nstate; /* Number of states */
233 int nrule; /* Number of rules */
234 int nsymbol; /* Number of terminal and nonterminal symbols */
235 int nterminal; /* Number of terminal symbols */
236 struct symbol **symbols; /* Sorted array of pointers to symbols */
237 int errorcnt; /* Number of errors */
238 struct symbol *errsym; /* The error symbol */
239 char *name; /* Name of the generated parser */
240 char *arg; /* Declaration of the 3th argument to parser */
241 char *tokentype; /* Type of terminal symbols in the parser stack */
242 char *vartype; /* The default type of non-terminal symbols */
243 char *start; /* Name of the start symbol for the grammar */
244 char *stacksize; /* Size of the parser stack */
245 char *include; /* Code to put at the start of the C file */
246 int includeln; /* Line number for start of include code */
247 char *error; /* Code to execute when an error is seen */
248 int errorln; /* Line number for start of error code */
249 char *overflow; /* Code to execute on a stack overflow */
250 int overflowln; /* Line number for start of overflow code */
251 char *failure; /* Code to execute on parser failure */
252 int failureln; /* Line number for start of failure code */
253 char *accept; /* Code to execute when the parser excepts */
254 int acceptln; /* Line number for the start of accept code */
255 char *extracode; /* Code appended to the generated file */
256 int extracodeln; /* Line number for the start of the extra code */
257 char *tokendest; /* Code to execute to destroy token data */
258 int tokendestln; /* Line number for token destroyer code */
259 char *vardest; /* Code for the default non-terminal destructor */
260 int vardestln; /* Line number for default non-term destructor code*/
261 char *filename; /* Name of the input file */
262 char *outname; /* Name of the current output file */
263 char *tokenprefix; /* A prefix added to token names in the .h file */
264 int nconflict; /* Number of parsing conflicts */
265 int tablesize; /* Size of the parse tables */
266 int basisflag; /* Print only basis configurations */
267 int has_fallback; /* True if any %fallback is seen in the grammer */
268 char *argv0; /* Name of the program */
271 #define MemoryCheck(X) if((X)==0){ \
272 extern void memory_error(); \
273 memory_error(); \
276 /**************** From the file "table.h" *********************************/
278 ** All code in this file has been automatically generated
279 ** from a specification in the file
280 ** "table.q"
281 ** by the associative array code building program "aagen".
282 ** Do not edit this file! Instead, edit the specification
283 ** file, then rerun aagen.
286 ** Code for processing tables in the LEMON parser generator.
289 /* Routines for handling a strings */
291 char *Strsafe();
293 void Strsafe_init(/* void */);
294 int Strsafe_insert(/* char * */);
295 char *Strsafe_find(/* char * */);
297 /* Routines for handling symbols of the grammar */
299 struct symbol *Symbol_new();
300 int Symbolcmpp(/* struct symbol **, struct symbol ** */);
301 void Symbol_init(/* void */);
302 int Symbol_insert(/* struct symbol *, char * */);
303 struct symbol *Symbol_find(/* char * */);
304 struct symbol *Symbol_Nth(/* int */);
305 int Symbol_count(/* */);
306 struct symbol **Symbol_arrayof(/* */);
308 /* Routines to manage the state table */
310 int Configcmp(/* struct config *, struct config * */);
311 struct state *State_new();
312 void State_init(/* void */);
313 int State_insert(/* struct state *, struct config * */);
314 struct state *State_find(/* struct config * */);
315 struct state **State_arrayof(/* */);
317 /* Routines used for efficiency in Configlist_add */
319 void Configtable_init(/* void */);
320 int Configtable_insert(/* struct config * */);
321 struct config *Configtable_find(/* struct config * */);
322 void Configtable_clear(/* int(*)(struct config *) */);
323 /****************** From the file "action.c" *******************************/
325 ** Routines processing parser actions in the LEMON parser generator.
328 /* Allocate a new parser action */
329 struct action *Action_new(){
330 static struct action *freelist = 0;
331 struct action *new;
333 if( freelist==0 ){
334 int i;
335 int amt = 100;
336 freelist = (struct action *)malloc( sizeof(struct action)*amt );
337 if( freelist==0 ){
338 fprintf(stderr,"Unable to allocate memory for a new parser action.");
339 exit(1);
341 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
342 freelist[amt-1].next = 0;
344 new = freelist;
345 freelist = freelist->next;
346 return new;
349 /* Compare two actions */
350 static int actioncmp(ap1,ap2)
351 struct action *ap1;
352 struct action *ap2;
354 int rc;
355 rc = ap1->sp->index - ap2->sp->index;
356 if( rc==0 ) rc = (int)ap1->type - (int)ap2->type;
357 if( rc==0 ){
358 assert( ap1->type==REDUCE || ap1->type==RD_RESOLVED || ap1->type==CONFLICT);
359 assert( ap2->type==REDUCE || ap2->type==RD_RESOLVED || ap2->type==CONFLICT);
360 rc = ap1->x.rp->index - ap2->x.rp->index;
362 return rc;
365 /* Sort parser actions */
366 struct action *Action_sort(ap)
367 struct action *ap;
369 ap = (struct action *)msort((char *)ap,(char **)&ap->next,actioncmp);
370 return ap;
373 void Action_add(app,type,sp,arg)
374 struct action **app;
375 enum e_action type;
376 struct symbol *sp;
377 char *arg;
379 struct action *new;
380 new = Action_new();
381 new->next = *app;
382 *app = new;
383 new->type = type;
384 new->sp = sp;
385 if( type==SHIFT ){
386 new->x.stp = (struct state *)arg;
387 }else{
388 new->x.rp = (struct rule *)arg;
391 /********************** New code to implement the "acttab" module ***********/
393 ** This module implements routines use to construct the yy_action[] table.
397 ** The state of the yy_action table under construction is an instance of
398 ** the following structure
400 typedef struct acttab acttab;
401 struct acttab {
402 int nAction; /* Number of used slots in aAction[] */
403 int nActionAlloc; /* Slots allocated for aAction[] */
404 struct {
405 int lookahead; /* Value of the lookahead token */
406 int action; /* Action to take on the given lookahead */
407 } *aAction, /* The yy_action[] table under construction */
408 *aLookahead; /* A single new transaction set */
409 int mnLookahead; /* Minimum aLookahead[].lookahead */
410 int mnAction; /* Action associated with mnLookahead */
411 int mxLookahead; /* Maximum aLookahead[].lookahead */
412 int nLookahead; /* Used slots in aLookahead[] */
413 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
416 /* Return the number of entries in the yy_action table */
417 #define acttab_size(X) ((X)->nAction)
419 /* The value for the N-th entry in yy_action */
420 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
422 /* The value for the N-th entry in yy_lookahead */
423 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
425 /* Free all memory associated with the given acttab */
426 void acttab_free(acttab *p){
427 free( p->aAction );
428 free( p->aLookahead );
429 free( p );
432 /* Allocate a new acttab structure */
433 acttab *acttab_alloc(void){
434 acttab *p = malloc( sizeof(*p) );
435 if( p==0 ){
436 fprintf(stderr,"Unable to allocate memory for a new acttab.");
437 exit(1);
439 memset(p, 0, sizeof(*p));
440 return p;
443 /* Add a new action to the current transaction set
445 void acttab_action(acttab *p, int lookahead, int action){
446 if( p->nLookahead>=p->nLookaheadAlloc ){
447 p->nLookaheadAlloc += 25;
448 p->aLookahead = reallocarray(p->aLookahead, p->nLookaheadAlloc,
449 sizeof(p->aLookahead[0]));
450 if( p->aLookahead==0 ){
451 fprintf(stderr,"malloc failed\n");
452 exit(1);
455 if( p->nLookahead==0 ){
456 p->mxLookahead = lookahead;
457 p->mnLookahead = lookahead;
458 p->mnAction = action;
459 }else{
460 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
461 if( p->mnLookahead>lookahead ){
462 p->mnLookahead = lookahead;
463 p->mnAction = action;
466 p->aLookahead[p->nLookahead].lookahead = lookahead;
467 p->aLookahead[p->nLookahead].action = action;
468 p->nLookahead++;
472 ** Add the transaction set built up with prior calls to acttab_action()
473 ** into the current action table. Then reset the transaction set back
474 ** to an empty set in preparation for a new round of acttab_action() calls.
476 ** Return the offset into the action table of the new transaction.
478 int acttab_insert(acttab *p){
479 int i, j, k, n;
480 assert( p->nLookahead>0 );
482 /* Make sure we have enough space to hold the expanded action table
483 ** in the worst case. The worst case occurs if the transaction set
484 ** must be appended to the current action table
486 n = p->mxLookahead + 1;
487 if( p->nAction + n >= p->nActionAlloc ){
488 int oldAlloc = p->nActionAlloc;
489 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
490 p->aAction = reallocarray(p->aAction, p->nActionAlloc,
491 sizeof(p->aAction[0]));
492 if( p->aAction==0 ){
493 fprintf(stderr,"malloc failed\n");
494 exit(1);
496 for(i=oldAlloc; i<p->nActionAlloc; i++){
497 p->aAction[i].lookahead = -1;
498 p->aAction[i].action = -1;
502 /* Scan the existing action table looking for an offset where we can
503 ** insert the current transaction set. Fall out of the loop when that
504 ** offset is found. In the worst case, we fall out of the loop when
505 ** i reaches p->nAction, which means we append the new transaction set.
507 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
509 for(i=0; i<p->nAction+p->mnLookahead; i++){
510 if( p->aAction[i].lookahead<0 ){
511 for(j=0; j<p->nLookahead; j++){
512 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
513 if( k<0 ) break;
514 if( p->aAction[k].lookahead>=0 ) break;
516 if( j<p->nLookahead ) continue;
517 for(j=0; j<p->nAction; j++){
518 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
520 if( j==p->nAction ){
521 break; /* Fits in empty slots */
523 }else if( p->aAction[i].lookahead==p->mnLookahead ){
524 if( p->aAction[i].action!=p->mnAction ) continue;
525 for(j=0; j<p->nLookahead; j++){
526 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
527 if( k<0 || k>=p->nAction ) break;
528 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
529 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
531 if( j<p->nLookahead ) continue;
532 n = 0;
533 for(j=0; j<p->nAction; j++){
534 if( p->aAction[j].lookahead<0 ) continue;
535 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
537 if( n==p->nLookahead ){
538 break; /* Same as a prior transaction set */
542 /* Insert transaction set at index i. */
543 for(j=0; j<p->nLookahead; j++){
544 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
545 p->aAction[k] = p->aLookahead[j];
546 if( k>=p->nAction ) p->nAction = k+1;
548 p->nLookahead = 0;
550 /* Return the offset that is added to the lookahead in order to get the
551 ** index into yy_action of the action */
552 return i - p->mnLookahead;
555 /********************** From the file "assert.c" ****************************/
557 ** A more efficient way of handling assertions.
559 void myassert(file,line)
560 char *file;
561 int line;
563 fprintf(stderr,"Assertion failed on line %d of file \"%s\"\n",line,file);
564 exit(1);
566 /********************** From the file "build.c" *****************************/
568 ** Routines to construction the finite state machine for the LEMON
569 ** parser generator.
572 /* Find a precedence symbol of every rule in the grammar.
574 ** Those rules which have a precedence symbol coded in the input
575 ** grammar using the "[symbol]" construct will already have the
576 ** rp->precsym field filled. Other rules take as their precedence
577 ** symbol the first RHS symbol with a defined precedence. If there
578 ** are not RHS symbols with a defined precedence, the precedence
579 ** symbol field is left blank.
581 void FindRulePrecedences(xp)
582 struct lemon *xp;
584 struct rule *rp;
585 for(rp=xp->rule; rp; rp=rp->next){
586 if( rp->precsym==0 ){
587 int i;
588 for(i=0; i<rp->nrhs; i++){
589 if( rp->rhs[i]->prec>=0 ){
590 rp->precsym = rp->rhs[i];
591 break;
596 return;
599 /* Find all nonterminals which will generate the empty string.
600 ** Then go back and compute the first sets of every nonterminal.
601 ** The first set is the set of all terminal symbols which can begin
602 ** a string generated by that nonterminal.
604 void FindFirstSets(lemp)
605 struct lemon *lemp;
607 int i;
608 struct rule *rp;
609 int progress;
611 for(i=0; i<lemp->nsymbol; i++){
612 lemp->symbols[i]->lambda = B_FALSE;
614 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
615 lemp->symbols[i]->firstset = SetNew();
618 /* First compute all lambdas */
620 progress = 0;
621 for(rp=lemp->rule; rp; rp=rp->next){
622 if( rp->lhs->lambda ) continue;
623 for(i=0; i<rp->nrhs; i++){
624 if( rp->rhs[i]->lambda==B_FALSE ) break;
626 if( i==rp->nrhs ){
627 rp->lhs->lambda = B_TRUE;
628 progress = 1;
631 }while( progress );
633 /* Now compute all first sets */
635 struct symbol *s1, *s2;
636 progress = 0;
637 for(rp=lemp->rule; rp; rp=rp->next){
638 s1 = rp->lhs;
639 for(i=0; i<rp->nrhs; i++){
640 s2 = rp->rhs[i];
641 if( s2->type==TERMINAL ){
642 progress += SetAdd(s1->firstset,s2->index);
643 break;
644 }else if( s1==s2 ){
645 if( s1->lambda==B_FALSE ) break;
646 }else{
647 progress += SetUnion(s1->firstset,s2->firstset);
648 if( s2->lambda==B_FALSE ) break;
652 }while( progress );
653 return;
656 /* Compute all LR(0) states for the grammar. Links
657 ** are added to between some states so that the LR(1) follow sets
658 ** can be computed later.
660 PRIVATE struct state *getstate(/* struct lemon * */); /* forward reference */
661 void FindStates(lemp)
662 struct lemon *lemp;
664 struct symbol *sp;
665 struct rule *rp;
667 Configlist_init();
669 /* Find the start symbol */
670 if( lemp->start ){
671 sp = Symbol_find(lemp->start);
672 if( sp==0 ){
673 ErrorMsg(lemp->filename,0,
674 "The specified start symbol \"%s\" is not \
675 in a nonterminal of the grammar. \"%s\" will be used as the start \
676 symbol instead.",lemp->start,lemp->rule->lhs->name);
677 lemp->errorcnt++;
678 sp = lemp->rule->lhs;
680 }else{
681 sp = lemp->rule->lhs;
684 /* Make sure the start symbol doesn't occur on the right-hand side of
685 ** any rule. Report an error if it does. (YACC would generate a new
686 ** start symbol in this case.) */
687 for(rp=lemp->rule; rp; rp=rp->next){
688 int i;
689 for(i=0; i<rp->nrhs; i++){
690 if( rp->rhs[i]==sp ){
691 ErrorMsg(lemp->filename,0,
692 "The start symbol \"%s\" occurs on the \
693 right-hand side of a rule. This will result in a parser which \
694 does not work properly.",sp->name);
695 lemp->errorcnt++;
700 /* The basis configuration set for the first state
701 ** is all rules which have the start symbol as their
702 ** left-hand side */
703 for(rp=sp->rule; rp; rp=rp->nextlhs){
704 struct config *newcfp;
705 newcfp = Configlist_addbasis(rp,0);
706 SetAdd(newcfp->fws,0);
709 /* Compute the first state. All other states will be
710 ** computed automatically during the computation of the first one.
711 ** The returned pointer to the first state is not used. */
712 (void)getstate(lemp);
713 return;
716 /* Return a pointer to a state which is described by the configuration
717 ** list which has been built from calls to Configlist_add.
719 PRIVATE void buildshifts(/* struct lemon *, struct state * */); /* Forwd ref */
720 PRIVATE struct state *getstate(lemp)
721 struct lemon *lemp;
723 struct config *cfp, *bp;
724 struct state *stp;
726 /* Extract the sorted basis of the new state. The basis was constructed
727 ** by prior calls to "Configlist_addbasis()". */
728 Configlist_sortbasis();
729 bp = Configlist_basis();
731 /* Get a state with the same basis */
732 stp = State_find(bp);
733 if( stp ){
734 /* A state with the same basis already exists! Copy all the follow-set
735 ** propagation links from the state under construction into the
736 ** preexisting state, then return a pointer to the preexisting state */
737 struct config *x, *y;
738 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
739 Plink_copy(&y->bplp,x->bplp);
740 Plink_delete(x->fplp);
741 x->fplp = x->bplp = 0;
743 cfp = Configlist_return();
744 Configlist_eat(cfp);
745 }else{
746 /* This really is a new state. Construct all the details */
747 Configlist_closure(lemp); /* Compute the configuration closure */
748 Configlist_sort(); /* Sort the configuration closure */
749 cfp = Configlist_return(); /* Get a pointer to the config list */
750 stp = State_new(); /* A new state structure */
751 MemoryCheck(stp);
752 stp->bp = bp; /* Remember the configuration basis */
753 stp->cfp = cfp; /* Remember the configuration closure */
754 stp->index = lemp->nstate++; /* Every state gets a sequence number */
755 stp->ap = 0; /* No actions, yet. */
756 State_insert(stp,stp->bp); /* Add to the state table */
757 buildshifts(lemp,stp); /* Recursively compute successor states */
759 return stp;
762 /* Construct all successor states to the given state. A "successor"
763 ** state is any state which can be reached by a shift action.
765 PRIVATE void buildshifts(lemp,stp)
766 struct lemon *lemp;
767 struct state *stp; /* The state from which successors are computed */
769 struct config *cfp; /* For looping thru the config closure of "stp" */
770 struct config *bcfp; /* For the inner loop on config closure of "stp" */
771 struct config *new; /* */
772 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
773 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
774 struct state *newstp; /* A pointer to a successor state */
776 /* Each configuration becomes complete after it contibutes to a successor
777 ** state. Initially, all configurations are incomplete */
778 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
780 /* Loop through all configurations of the state "stp" */
781 for(cfp=stp->cfp; cfp; cfp=cfp->next){
782 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
783 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
784 Configlist_reset(); /* Reset the new config set */
785 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
787 /* For every configuration in the state "stp" which has the symbol "sp"
788 ** following its dot, add the same configuration to the basis set under
789 ** construction but with the dot shifted one symbol to the right. */
790 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
791 if( bcfp->status==COMPLETE ) continue; /* Already used */
792 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
793 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
794 if( bsp!=sp ) continue; /* Must be same as for "cfp" */
795 bcfp->status = COMPLETE; /* Mark this config as used */
796 new = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
797 Plink_add(&new->bplp,bcfp);
800 /* Get a pointer to the state described by the basis configuration set
801 ** constructed in the preceding loop */
802 newstp = getstate(lemp);
804 /* The state "newstp" is reached from the state "stp" by a shift action
805 ** on the symbol "sp" */
806 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
811 ** Construct the propagation links
813 void FindLinks(lemp)
814 struct lemon *lemp;
816 int i;
817 struct config *cfp, *other;
818 struct state *stp;
819 struct plink *plp;
821 /* Housekeeping detail:
822 ** Add to every propagate link a pointer back to the state to
823 ** which the link is attached. */
824 for(i=0; i<lemp->nstate; i++){
825 stp = lemp->sorted[i];
826 for(cfp=stp->cfp; cfp; cfp=cfp->next){
827 cfp->stp = stp;
831 /* Convert all backlinks into forward links. Only the forward
832 ** links are used in the follow-set computation. */
833 for(i=0; i<lemp->nstate; i++){
834 stp = lemp->sorted[i];
835 for(cfp=stp->cfp; cfp; cfp=cfp->next){
836 for(plp=cfp->bplp; plp; plp=plp->next){
837 other = plp->cfp;
838 Plink_add(&other->fplp,cfp);
844 /* Compute all followsets.
846 ** A followset is the set of all symbols which can come immediately
847 ** after a configuration.
849 void FindFollowSets(lemp)
850 struct lemon *lemp;
852 int i;
853 struct config *cfp;
854 struct plink *plp;
855 int progress;
856 int change;
858 for(i=0; i<lemp->nstate; i++){
859 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
860 cfp->status = INCOMPLETE;
865 progress = 0;
866 for(i=0; i<lemp->nstate; i++){
867 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
868 if( cfp->status==COMPLETE ) continue;
869 for(plp=cfp->fplp; plp; plp=plp->next){
870 change = SetUnion(plp->cfp->fws,cfp->fws);
871 if( change ){
872 plp->cfp->status = INCOMPLETE;
873 progress = 1;
876 cfp->status = COMPLETE;
879 }while( progress );
882 static int resolve_conflict();
884 /* Compute the reduce actions, and resolve conflicts.
886 void FindActions(lemp)
887 struct lemon *lemp;
889 int i,j;
890 struct config *cfp;
891 struct state *stp;
892 struct symbol *sp;
893 struct rule *rp;
895 /* Add all of the reduce actions
896 ** A reduce action is added for each element of the followset of
897 ** a configuration which has its dot at the extreme right.
899 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
900 stp = lemp->sorted[i];
901 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
902 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
903 for(j=0; j<lemp->nterminal; j++){
904 if( SetFind(cfp->fws,j) ){
905 /* Add a reduce action to the state "stp" which will reduce by the
906 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
907 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
914 /* Add the accepting token */
915 if( lemp->start ){
916 sp = Symbol_find(lemp->start);
917 if( sp==0 ) sp = lemp->rule->lhs;
918 }else{
919 sp = lemp->rule->lhs;
921 /* Add to the first state (which is always the starting state of the
922 ** finite state machine) an action to ACCEPT if the lookahead is the
923 ** start nonterminal. */
924 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
926 /* Resolve conflicts */
927 for(i=0; i<lemp->nstate; i++){
928 struct action *ap, *nap;
929 struct state *stp;
930 stp = lemp->sorted[i];
931 assert( stp->ap );
932 stp->ap = Action_sort(stp->ap);
933 for(ap=stp->ap; ap && ap->next; ap=ap->next){
934 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
935 /* The two actions "ap" and "nap" have the same lookahead.
936 ** Figure out which one should be used */
937 lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
942 /* Report an error for each rule that can never be reduced. */
943 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = B_FALSE;
944 for(i=0; i<lemp->nstate; i++){
945 struct action *ap;
946 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
947 if( ap->type==REDUCE ) ap->x.rp->canReduce = B_TRUE;
950 for(rp=lemp->rule; rp; rp=rp->next){
951 if( rp->canReduce ) continue;
952 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
953 lemp->errorcnt++;
957 /* Resolve a conflict between the two given actions. If the
958 ** conflict can't be resolve, return non-zero.
960 ** NO LONGER TRUE:
961 ** To resolve a conflict, first look to see if either action
962 ** is on an error rule. In that case, take the action which
963 ** is not associated with the error rule. If neither or both
964 ** actions are associated with an error rule, then try to
965 ** use precedence to resolve the conflict.
967 ** If either action is a SHIFT, then it must be apx. This
968 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
970 static int resolve_conflict(apx,apy,errsym)
971 struct action *apx;
972 struct action *apy;
973 struct symbol *errsym; /* The error symbol (if defined. NULL otherwise) */
975 struct symbol *spx, *spy;
976 int errcnt = 0;
977 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
978 if( apx->type==SHIFT && apy->type==REDUCE ){
979 spx = apx->sp;
980 spy = apy->x.rp->precsym;
981 if( spy==0 || spx->prec<0 || spy->prec<0 ){
982 /* Not enough precedence information. */
983 apy->type = CONFLICT;
984 errcnt++;
985 }else if( spx->prec>spy->prec ){ /* Lower precedence wins */
986 apy->type = RD_RESOLVED;
987 }else if( spx->prec<spy->prec ){
988 apx->type = SH_RESOLVED;
989 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
990 apy->type = RD_RESOLVED; /* associativity */
991 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
992 apx->type = SH_RESOLVED;
993 }else{
994 assert( spx->prec==spy->prec && spx->assoc==NONE );
995 apy->type = CONFLICT;
996 errcnt++;
998 }else if( apx->type==REDUCE && apy->type==REDUCE ){
999 spx = apx->x.rp->precsym;
1000 spy = apy->x.rp->precsym;
1001 if( spx==0 || spy==0 || spx->prec<0 ||
1002 spy->prec<0 || spx->prec==spy->prec ){
1003 apy->type = CONFLICT;
1004 errcnt++;
1005 }else if( spx->prec>spy->prec ){
1006 apy->type = RD_RESOLVED;
1007 }else if( spx->prec<spy->prec ){
1008 apx->type = RD_RESOLVED;
1010 }else{
1011 assert(
1012 apx->type==SH_RESOLVED ||
1013 apx->type==RD_RESOLVED ||
1014 apx->type==CONFLICT ||
1015 apy->type==SH_RESOLVED ||
1016 apy->type==RD_RESOLVED ||
1017 apy->type==CONFLICT
1019 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1020 ** REDUCEs on the list. If we reach this point it must be because
1021 ** the parser conflict had already been resolved. */
1023 return errcnt;
1025 /********************* From the file "configlist.c" *************************/
1027 ** Routines to processing a configuration list and building a state
1028 ** in the LEMON parser generator.
1031 static struct config *freelist = 0; /* List of free configurations */
1032 static struct config *current = 0; /* Top of list of configurations */
1033 static struct config **currentend = 0; /* Last on list of configs */
1034 static struct config *basis = 0; /* Top of list of basis configs */
1035 static struct config **basisend = 0; /* End of list of basis configs */
1037 /* Return a pointer to a new configuration */
1038 PRIVATE struct config *newconfig(){
1039 struct config *new;
1040 if( freelist==0 ){
1041 int i;
1042 int amt = 3;
1043 freelist = (struct config *)malloc( sizeof(struct config)*amt );
1044 if( freelist==0 ){
1045 fprintf(stderr,"Unable to allocate memory for a new configuration.");
1046 exit(1);
1048 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
1049 freelist[amt-1].next = 0;
1051 new = freelist;
1052 freelist = freelist->next;
1053 return new;
1056 /* The configuration "old" is no longer used */
1057 PRIVATE void deleteconfig(old)
1058 struct config *old;
1060 old->next = freelist;
1061 freelist = old;
1064 /* Initialized the configuration list builder */
1065 void Configlist_init(){
1066 current = 0;
1067 currentend = &current;
1068 basis = 0;
1069 basisend = &basis;
1070 Configtable_init();
1071 return;
1074 /* Initialized the configuration list builder */
1075 void Configlist_reset(){
1076 current = 0;
1077 currentend = &current;
1078 basis = 0;
1079 basisend = &basis;
1080 Configtable_clear(0);
1081 return;
1084 /* Add another configuration to the configuration list */
1085 struct config *Configlist_add(rp,dot)
1086 struct rule *rp; /* The rule */
1087 int dot; /* Index into the RHS of the rule where the dot goes */
1089 struct config *cfp, model;
1091 assert( currentend!=0 );
1092 model.rp = rp;
1093 model.dot = dot;
1094 cfp = Configtable_find(&model);
1095 if( cfp==0 ){
1096 cfp = newconfig();
1097 cfp->rp = rp;
1098 cfp->dot = dot;
1099 cfp->fws = SetNew();
1100 cfp->stp = 0;
1101 cfp->fplp = cfp->bplp = 0;
1102 cfp->next = 0;
1103 cfp->bp = 0;
1104 *currentend = cfp;
1105 currentend = &cfp->next;
1106 Configtable_insert(cfp);
1108 return cfp;
1111 /* Add a basis configuration to the configuration list */
1112 struct config *Configlist_addbasis(rp,dot)
1113 struct rule *rp;
1114 int dot;
1116 struct config *cfp, model;
1118 assert( basisend!=0 );
1119 assert( currentend!=0 );
1120 model.rp = rp;
1121 model.dot = dot;
1122 cfp = Configtable_find(&model);
1123 if( cfp==0 ){
1124 cfp = newconfig();
1125 cfp->rp = rp;
1126 cfp->dot = dot;
1127 cfp->fws = SetNew();
1128 cfp->stp = 0;
1129 cfp->fplp = cfp->bplp = 0;
1130 cfp->next = 0;
1131 cfp->bp = 0;
1132 *currentend = cfp;
1133 currentend = &cfp->next;
1134 *basisend = cfp;
1135 basisend = &cfp->bp;
1136 Configtable_insert(cfp);
1138 return cfp;
1141 /* Compute the closure of the configuration list */
1142 void Configlist_closure(lemp)
1143 struct lemon *lemp;
1145 struct config *cfp, *newcfp;
1146 struct rule *rp, *newrp;
1147 struct symbol *sp, *xsp;
1148 int i, dot;
1150 assert( currentend!=0 );
1151 for(cfp=current; cfp; cfp=cfp->next){
1152 rp = cfp->rp;
1153 dot = cfp->dot;
1154 if( dot>=rp->nrhs ) continue;
1155 sp = rp->rhs[dot];
1156 if( sp->type==NONTERMINAL ){
1157 if( sp->rule==0 && sp!=lemp->errsym ){
1158 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1159 sp->name);
1160 lemp->errorcnt++;
1162 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1163 newcfp = Configlist_add(newrp,0);
1164 for(i=dot+1; i<rp->nrhs; i++){
1165 xsp = rp->rhs[i];
1166 if( xsp->type==TERMINAL ){
1167 SetAdd(newcfp->fws,xsp->index);
1168 break;
1169 }else{
1170 SetUnion(newcfp->fws,xsp->firstset);
1171 if( xsp->lambda==B_FALSE ) break;
1174 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1178 return;
1181 /* Sort the configuration list */
1182 void Configlist_sort(){
1183 current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
1184 currentend = 0;
1185 return;
1188 /* Sort the basis configuration list */
1189 void Configlist_sortbasis(){
1190 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
1191 basisend = 0;
1192 return;
1195 /* Return a pointer to the head of the configuration list and
1196 ** reset the list */
1197 struct config *Configlist_return(){
1198 struct config *old;
1199 old = current;
1200 current = 0;
1201 currentend = 0;
1202 return old;
1205 /* Return a pointer to the head of the configuration list and
1206 ** reset the list */
1207 struct config *Configlist_basis(){
1208 struct config *old;
1209 old = basis;
1210 basis = 0;
1211 basisend = 0;
1212 return old;
1215 /* Free all elements of the given configuration list */
1216 void Configlist_eat(cfp)
1217 struct config *cfp;
1219 struct config *nextcfp;
1220 for(; cfp; cfp=nextcfp){
1221 nextcfp = cfp->next;
1222 assert( cfp->fplp==0 );
1223 assert( cfp->bplp==0 );
1224 if( cfp->fws ) SetFree(cfp->fws);
1225 deleteconfig(cfp);
1227 return;
1229 /***************** From the file "error.c" *********************************/
1231 ** Code for printing error message.
1234 /* Find a good place to break "msg" so that its length is at least "min"
1235 ** but no more than "max". Make the point as close to max as possible.
1237 static int findbreak(msg,min,max)
1238 char *msg;
1239 int min;
1240 int max;
1242 int i,spot;
1243 char c;
1244 for(i=spot=min; i<=max; i++){
1245 c = msg[i];
1246 if( c=='\t' ) msg[i] = ' ';
1247 if( c=='\n' ){ msg[i] = ' '; spot = i; break; }
1248 if( c==0 ){ spot = i; break; }
1249 if( c=='-' && i<max-1 ) spot = i+1;
1250 if( c==' ' ) spot = i;
1252 return spot;
1256 ** The error message is split across multiple lines if necessary. The
1257 ** splits occur at a space, if there is a space available near the end
1258 ** of the line.
1260 #define ERRMSGSIZE 10000 /* Hope this is big enough. No way to error check */
1261 #define LINEWIDTH 79 /* Max width of any output line */
1262 #define PREFIXLIMIT 30 /* Max width of the prefix on each line */
1263 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1264 char errmsg[ERRMSGSIZE];
1265 char prefix[PREFIXLIMIT+10];
1266 int errmsgsize;
1267 int prefixsize;
1268 int availablewidth;
1269 va_list ap;
1270 int end, restart, base;
1272 va_start(ap, format);
1273 /* Prepare a prefix to be prepended to every output line */
1274 if( lineno>0 ){
1275 sprintf(prefix,"%.*s:%d: ",PREFIXLIMIT-10,filename,lineno);
1276 }else{
1277 sprintf(prefix,"%.*s: ",PREFIXLIMIT-10,filename);
1279 prefixsize = strlen(prefix);
1280 availablewidth = LINEWIDTH - prefixsize;
1282 /* Generate the error message */
1283 vsprintf(errmsg,format,ap);
1284 va_end(ap);
1285 errmsgsize = strlen(errmsg);
1286 /* Remove trailing '\n's from the error message. */
1287 while( errmsgsize>0 && errmsg[errmsgsize-1]=='\n' ){
1288 errmsg[--errmsgsize] = 0;
1291 /* Print the error message */
1292 base = 0;
1293 while( errmsg[base]!=0 ){
1294 end = restart = findbreak(&errmsg[base],0,availablewidth);
1295 restart += base;
1296 while( errmsg[restart]==' ' ) restart++;
1297 fprintf(stdout,"%s%.*s\n",prefix,end,&errmsg[base]);
1298 base = restart;
1301 /**************** From the file "main.c" ************************************/
1303 ** Main program file for the LEMON parser generator.
1306 /* Report an out-of-memory condition and abort. This function
1307 ** is used mostly by the "MemoryCheck" macro in struct.h
1309 void memory_error(){
1310 fprintf(stderr,"Out of memory. Aborting...\n");
1311 exit(1);
1315 /* The main program. Parse the command line and do it... */
1316 int main(argc,argv)
1317 int argc;
1318 char **argv;
1320 static int version = 0;
1321 static int rpflag = 0;
1322 static int basisflag = 0;
1323 static int compress = 0;
1324 static int quiet = 0;
1325 static int statistics = 0;
1326 static int mhflag = 0;
1327 static struct s_options options[] = {
1328 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1329 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1330 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1331 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file"},
1332 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1333 {OPT_FLAG, "s", (char*)&statistics, "Print parser stats to standard output."},
1334 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1335 {OPT_FLAG,0,0,0}
1337 int i;
1338 struct lemon lem;
1340 OptInit(argv,options,stderr);
1341 if( version ){
1342 printf("Lemon version 1.0\n");
1343 exit(0);
1345 if( OptNArgs()!=1 ){
1346 fprintf(stderr,"Exactly one filename argument is required.\n");
1347 exit(1);
1349 lem.errorcnt = 0;
1351 /* Initialize the machine */
1352 Strsafe_init();
1353 Symbol_init();
1354 State_init();
1355 lem.argv0 = argv[0];
1356 lem.filename = OptArg(0);
1357 lem.basisflag = basisflag;
1358 lem.has_fallback = 0;
1359 lem.nconflict = 0;
1360 lem.name = lem.include = lem.arg = lem.tokentype = lem.start = 0;
1361 lem.vartype = 0;
1362 lem.stacksize = 0;
1363 lem.error = lem.overflow = lem.failure = lem.accept = lem.tokendest =
1364 lem.tokenprefix = lem.outname = lem.extracode = 0;
1365 lem.vardest = 0;
1366 lem.tablesize = 0;
1367 Symbol_new("$");
1368 lem.errsym = Symbol_new("error");
1370 /* Parse the input file */
1371 Parse(&lem);
1372 if( lem.errorcnt ) exit(lem.errorcnt);
1373 if( lem.rule==0 ){
1374 fprintf(stderr,"Empty grammar.\n");
1375 exit(1);
1378 /* Count and index the symbols of the grammar */
1379 lem.nsymbol = Symbol_count();
1380 Symbol_new("{default}");
1381 lem.symbols = Symbol_arrayof();
1382 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1383 qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*),
1384 (int(*)())Symbolcmpp);
1385 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
1386 for(i=1; isupper(lem.symbols[i]->name[0]); i++);
1387 lem.nterminal = i;
1389 /* Generate a reprint of the grammar, if requested on the command line */
1390 if( rpflag ){
1391 Reprint(&lem);
1392 }else{
1393 /* Initialize the size for all follow and first sets */
1394 SetSize(lem.nterminal);
1396 /* Find the precedence for every production rule (that has one) */
1397 FindRulePrecedences(&lem);
1399 /* Compute the lambda-nonterminals and the first-sets for every
1400 ** nonterminal */
1401 FindFirstSets(&lem);
1403 /* Compute all LR(0) states. Also record follow-set propagation
1404 ** links so that the follow-set can be computed later */
1405 lem.nstate = 0;
1406 FindStates(&lem);
1407 lem.sorted = State_arrayof();
1409 /* Tie up loose ends on the propagation links */
1410 FindLinks(&lem);
1412 /* Compute the follow set of every reducible configuration */
1413 FindFollowSets(&lem);
1415 /* Compute the action tables */
1416 FindActions(&lem);
1418 /* Compress the action tables */
1419 if( compress==0 ) CompressTables(&lem);
1421 /* Generate a report of the parser generated. (the "y.output" file) */
1422 if( !quiet ) ReportOutput(&lem);
1424 /* Generate the source code for the parser */
1425 ReportTable(&lem, mhflag);
1427 /* Produce a header file for use by the scanner. (This step is
1428 ** omitted if the "-m" option is used because makeheaders will
1429 ** generate the file for us.) */
1430 if( !mhflag ) ReportHeader(&lem);
1432 if( statistics ){
1433 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
1434 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
1435 printf(" %d states, %d parser table entries, %d conflicts\n",
1436 lem.nstate, lem.tablesize, lem.nconflict);
1438 if( lem.nconflict ){
1439 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1441 exit(lem.errorcnt + lem.nconflict);
1442 return (lem.errorcnt + lem.nconflict);
1444 /******************** From the file "msort.c" *******************************/
1446 ** A generic merge-sort program.
1448 ** USAGE:
1449 ** Let "ptr" be a pointer to some structure which is at the head of
1450 ** a null-terminated list. Then to sort the list call:
1452 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1454 ** In the above, "cmpfnc" is a pointer to a function which compares
1455 ** two instances of the structure and returns an integer, as in
1456 ** strcmp. The second argument is a pointer to the pointer to the
1457 ** second element of the linked list. This address is used to compute
1458 ** the offset to the "next" field within the structure. The offset to
1459 ** the "next" field must be constant for all structures in the list.
1461 ** The function returns a new pointer which is the head of the list
1462 ** after sorting.
1464 ** ALGORITHM:
1465 ** Merge-sort.
1469 ** Return a pointer to the next structure in the linked list.
1471 #define NEXT(A) (*(char**)(((unsigned long)A)+offset))
1474 ** Inputs:
1475 ** a: A sorted, null-terminated linked list. (May be null).
1476 ** b: A sorted, null-terminated linked list. (May be null).
1477 ** cmp: A pointer to the comparison function.
1478 ** offset: Offset in the structure to the "next" field.
1480 ** Return Value:
1481 ** A pointer to the head of a sorted list containing the elements
1482 ** of both a and b.
1484 ** Side effects:
1485 ** The "next" pointers for elements in the lists a and b are
1486 ** changed.
1488 static char *merge(a,b,cmp,offset)
1489 char *a;
1490 char *b;
1491 int (*cmp)();
1492 int offset;
1494 char *ptr, *head;
1496 if( a==0 ){
1497 head = b;
1498 }else if( b==0 ){
1499 head = a;
1500 }else{
1501 if( (*cmp)(a,b)<0 ){
1502 ptr = a;
1503 a = NEXT(a);
1504 }else{
1505 ptr = b;
1506 b = NEXT(b);
1508 head = ptr;
1509 while( a && b ){
1510 if( (*cmp)(a,b)<0 ){
1511 NEXT(ptr) = a;
1512 ptr = a;
1513 a = NEXT(a);
1514 }else{
1515 NEXT(ptr) = b;
1516 ptr = b;
1517 b = NEXT(b);
1520 if( a ) NEXT(ptr) = a;
1521 else NEXT(ptr) = b;
1523 return head;
1527 ** Inputs:
1528 ** list: Pointer to a singly-linked list of structures.
1529 ** next: Pointer to pointer to the second element of the list.
1530 ** cmp: A comparison function.
1532 ** Return Value:
1533 ** A pointer to the head of a sorted list containing the elements
1534 ** orginally in list.
1536 ** Side effects:
1537 ** The "next" pointers for elements in list are changed.
1539 #define LISTSIZE 30
1540 char *msort(list,next,cmp)
1541 char *list;
1542 char **next;
1543 int (*cmp)();
1545 unsigned long offset;
1546 char *ep;
1547 char *set[LISTSIZE];
1548 int i;
1549 offset = (unsigned long)next - (unsigned long)list;
1550 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1551 while( list ){
1552 ep = list;
1553 list = NEXT(list);
1554 NEXT(ep) = 0;
1555 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1556 ep = merge(ep,set[i],cmp,offset);
1557 set[i] = 0;
1559 set[i] = ep;
1561 ep = 0;
1562 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(ep,set[i],cmp,offset);
1563 return ep;
1565 /************************ From the file "option.c" **************************/
1566 static char **argv;
1567 static struct s_options *op;
1568 static FILE *errstream;
1570 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1573 ** Print the command line with a carrot pointing to the k-th character
1574 ** of the n-th field.
1576 static void errline(n,k,err)
1577 int n;
1578 int k;
1579 FILE *err;
1581 int spcnt, i;
1582 spcnt = 0;
1583 if( argv[0] ) fprintf(err,"%s",argv[0]);
1584 spcnt = strlen(argv[0]) + 1;
1585 for(i=1; i<n && argv[i]; i++){
1586 fprintf(err," %s",argv[i]);
1587 spcnt += strlen(argv[i]+1);
1589 spcnt += k;
1590 for(; argv[i]; i++) fprintf(err," %s",argv[i]);
1591 if( spcnt<20 ){
1592 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1593 }else{
1594 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1599 ** Return the index of the N-th non-switch argument. Return -1
1600 ** if N is out of range.
1602 static int argindex(n)
1603 int n;
1605 int i;
1606 int dashdash = 0;
1607 if( argv!=0 && *argv!=0 ){
1608 for(i=1; argv[i]; i++){
1609 if( dashdash || !ISOPT(argv[i]) ){
1610 if( n==0 ) return i;
1611 n--;
1613 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1616 return -1;
1619 static char emsg[] = "Command line syntax error: ";
1622 ** Process a flag command line argument.
1624 static int handleflags(i,err)
1625 int i;
1626 FILE *err;
1628 int v;
1629 int errcnt = 0;
1630 int j;
1631 for(j=0; op[j].label; j++){
1632 if( strcmp(&argv[i][1],op[j].label)==0 ) break;
1634 v = argv[i][0]=='-' ? 1 : 0;
1635 if( op[j].label==0 ){
1636 if( err ){
1637 fprintf(err,"%sundefined option.\n",emsg);
1638 errline(i,1,err);
1640 errcnt++;
1641 }else if( op[j].type==OPT_FLAG ){
1642 *((int*)op[j].arg) = v;
1643 }else if( op[j].type==OPT_FFLAG ){
1644 (*(void(*)())(op[j].arg))(v);
1645 }else{
1646 if( err ){
1647 fprintf(err,"%smissing argument on switch.\n",emsg);
1648 errline(i,1,err);
1650 errcnt++;
1652 return errcnt;
1656 ** Process a command line switch which has an argument.
1658 static int handleswitch(i,err)
1659 int i;
1660 FILE *err;
1662 int lv = 0;
1663 double dv = 0.0;
1664 char *sv = 0, *end;
1665 char *cp;
1666 int j;
1667 int errcnt = 0;
1668 cp = strchr(argv[i],'=');
1669 *cp = 0;
1670 for(j=0; op[j].label; j++){
1671 if( strcmp(argv[i],op[j].label)==0 ) break;
1673 *cp = '=';
1674 if( op[j].label==0 ){
1675 if( err ){
1676 fprintf(err,"%sundefined option.\n",emsg);
1677 errline(i,0,err);
1679 errcnt++;
1680 }else{
1681 cp++;
1682 switch( op[j].type ){
1683 case OPT_FLAG:
1684 case OPT_FFLAG:
1685 if( err ){
1686 fprintf(err,"%soption requires an argument.\n",emsg);
1687 errline(i,0,err);
1689 errcnt++;
1690 break;
1691 case OPT_DBL:
1692 case OPT_FDBL:
1693 dv = strtod(cp,&end);
1694 if( *end ){
1695 if( err ){
1696 fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
1697 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1699 errcnt++;
1701 break;
1702 case OPT_INT:
1703 case OPT_FINT:
1704 lv = strtol(cp,&end,0);
1705 if( *end ){
1706 if( err ){
1707 fprintf(err,"%sillegal character in integer argument.\n",emsg);
1708 errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
1710 errcnt++;
1712 break;
1713 case OPT_STR:
1714 case OPT_FSTR:
1715 sv = cp;
1716 break;
1718 switch( op[j].type ){
1719 case OPT_FLAG:
1720 case OPT_FFLAG:
1721 break;
1722 case OPT_DBL:
1723 *(double*)(op[j].arg) = dv;
1724 break;
1725 case OPT_FDBL:
1726 (*(void(*)())(op[j].arg))(dv);
1727 break;
1728 case OPT_INT:
1729 *(int*)(op[j].arg) = lv;
1730 break;
1731 case OPT_FINT:
1732 (*(void(*)())(op[j].arg))((int)lv);
1733 break;
1734 case OPT_STR:
1735 *(char**)(op[j].arg) = sv;
1736 break;
1737 case OPT_FSTR:
1738 (*(void(*)())(op[j].arg))(sv);
1739 break;
1742 return errcnt;
1745 int OptInit(a,o,err)
1746 char **a;
1747 struct s_options *o;
1748 FILE *err;
1750 int errcnt = 0;
1751 argv = a;
1752 op = o;
1753 errstream = err;
1754 if( argv && *argv && op ){
1755 int i;
1756 for(i=1; argv[i]; i++){
1757 if( argv[i][0]=='+' || argv[i][0]=='-' ){
1758 errcnt += handleflags(i,err);
1759 }else if( strchr(argv[i],'=') ){
1760 errcnt += handleswitch(i,err);
1764 if( errcnt>0 ){
1765 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
1766 OptPrint();
1767 exit(1);
1769 return 0;
1772 int OptNArgs(){
1773 int cnt = 0;
1774 int dashdash = 0;
1775 int i;
1776 if( argv!=0 && argv[0]!=0 ){
1777 for(i=1; argv[i]; i++){
1778 if( dashdash || !ISOPT(argv[i]) ) cnt++;
1779 if( strcmp(argv[i],"--")==0 ) dashdash = 1;
1782 return cnt;
1785 char *OptArg(n)
1786 int n;
1788 int i;
1789 i = argindex(n);
1790 return i>=0 ? argv[i] : 0;
1793 void OptErr(n)
1794 int n;
1796 int i;
1797 i = argindex(n);
1798 if( i>=0 ) errline(i,0,errstream);
1801 void OptPrint(){
1802 int i;
1803 int max, len;
1804 max = 0;
1805 for(i=0; op[i].label; i++){
1806 len = strlen(op[i].label) + 1;
1807 switch( op[i].type ){
1808 case OPT_FLAG:
1809 case OPT_FFLAG:
1810 break;
1811 case OPT_INT:
1812 case OPT_FINT:
1813 len += 9; /* length of "<integer>" */
1814 break;
1815 case OPT_DBL:
1816 case OPT_FDBL:
1817 len += 6; /* length of "<real>" */
1818 break;
1819 case OPT_STR:
1820 case OPT_FSTR:
1821 len += 8; /* length of "<string>" */
1822 break;
1824 if( len>max ) max = len;
1826 for(i=0; op[i].label; i++){
1827 switch( op[i].type ){
1828 case OPT_FLAG:
1829 case OPT_FFLAG:
1830 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
1831 break;
1832 case OPT_INT:
1833 case OPT_FINT:
1834 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
1835 (int)(max-strlen(op[i].label)-9),"",op[i].message);
1836 break;
1837 case OPT_DBL:
1838 case OPT_FDBL:
1839 fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
1840 (int)(max-strlen(op[i].label)-6),"",op[i].message);
1841 break;
1842 case OPT_STR:
1843 case OPT_FSTR:
1844 fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
1845 (int)(max-strlen(op[i].label)-8),"",op[i].message);
1846 break;
1850 /*********************** From the file "parse.c" ****************************/
1852 ** Input file parser for the LEMON parser generator.
1855 /* The state of the parser */
1856 struct pstate {
1857 char *filename; /* Name of the input file */
1858 int tokenlineno; /* Linenumber at which current token starts */
1859 int errorcnt; /* Number of errors so far */
1860 char *tokenstart; /* Text of current token */
1861 struct lemon *gp; /* Global state vector */
1862 enum e_state {
1863 INITIALIZE,
1864 WAITING_FOR_DECL_OR_RULE,
1865 WAITING_FOR_DECL_KEYWORD,
1866 WAITING_FOR_DECL_ARG,
1867 WAITING_FOR_PRECEDENCE_SYMBOL,
1868 WAITING_FOR_ARROW,
1869 IN_RHS,
1870 LHS_ALIAS_1,
1871 LHS_ALIAS_2,
1872 LHS_ALIAS_3,
1873 RHS_ALIAS_1,
1874 RHS_ALIAS_2,
1875 PRECEDENCE_MARK_1,
1876 PRECEDENCE_MARK_2,
1877 RESYNC_AFTER_RULE_ERROR,
1878 RESYNC_AFTER_DECL_ERROR,
1879 WAITING_FOR_DESTRUCTOR_SYMBOL,
1880 WAITING_FOR_DATATYPE_SYMBOL,
1881 WAITING_FOR_FALLBACK_ID
1882 } state; /* The state of the parser */
1883 struct symbol *fallback; /* The fallback token */
1884 struct symbol *lhs; /* Left-hand side of current rule */
1885 char *lhsalias; /* Alias for the LHS */
1886 int nrhs; /* Number of right-hand side symbols seen */
1887 struct symbol *rhs[MAXRHS]; /* RHS symbols */
1888 char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
1889 struct rule *prevrule; /* Previous rule parsed */
1890 char *declkeyword; /* Keyword of a declaration */
1891 char **declargslot; /* Where the declaration argument should be put */
1892 int *decllnslot; /* Where the declaration linenumber is put */
1893 enum e_assoc declassoc; /* Assign this association to decl arguments */
1894 int preccounter; /* Assign this precedence to decl arguments */
1895 struct rule *firstrule; /* Pointer to first rule in the grammar */
1896 struct rule *lastrule; /* Pointer to the most recently parsed rule */
1899 /* Parse a single token */
1900 static void parseonetoken(psp)
1901 struct pstate *psp;
1903 char *x;
1904 x = Strsafe(psp->tokenstart); /* Save the token permanently */
1905 #if 0
1906 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
1907 x,psp->state);
1908 #endif
1909 switch( psp->state ){
1910 case INITIALIZE:
1911 psp->prevrule = 0;
1912 psp->preccounter = 0;
1913 psp->firstrule = psp->lastrule = 0;
1914 psp->gp->nrule = 0;
1915 /* Fall thru to next case */
1916 case WAITING_FOR_DECL_OR_RULE:
1917 if( x[0]=='%' ){
1918 psp->state = WAITING_FOR_DECL_KEYWORD;
1919 }else if( islower(x[0]) ){
1920 psp->lhs = Symbol_new(x);
1921 psp->nrhs = 0;
1922 psp->lhsalias = 0;
1923 psp->state = WAITING_FOR_ARROW;
1924 }else if( x[0]=='{' ){
1925 if( psp->prevrule==0 ){
1926 ErrorMsg(psp->filename,psp->tokenlineno,
1927 "There is not prior rule opon which to attach the code \
1928 fragment which begins on this line.");
1929 psp->errorcnt++;
1930 }else if( psp->prevrule->code!=0 ){
1931 ErrorMsg(psp->filename,psp->tokenlineno,
1932 "Code fragment beginning on this line is not the first \
1933 to follow the previous rule.");
1934 psp->errorcnt++;
1935 }else{
1936 psp->prevrule->line = psp->tokenlineno;
1937 psp->prevrule->code = &x[1];
1939 }else if( x[0]=='[' ){
1940 psp->state = PRECEDENCE_MARK_1;
1941 }else{
1942 ErrorMsg(psp->filename,psp->tokenlineno,
1943 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
1945 psp->errorcnt++;
1947 break;
1948 case PRECEDENCE_MARK_1:
1949 if( !isupper(x[0]) ){
1950 ErrorMsg(psp->filename,psp->tokenlineno,
1951 "The precedence symbol must be a terminal.");
1952 psp->errorcnt++;
1953 }else if( psp->prevrule==0 ){
1954 ErrorMsg(psp->filename,psp->tokenlineno,
1955 "There is no prior rule to assign precedence \"[%s]\".",x);
1956 psp->errorcnt++;
1957 }else if( psp->prevrule->precsym!=0 ){
1958 ErrorMsg(psp->filename,psp->tokenlineno,
1959 "Precedence mark on this line is not the first \
1960 to follow the previous rule.");
1961 psp->errorcnt++;
1962 }else{
1963 psp->prevrule->precsym = Symbol_new(x);
1965 psp->state = PRECEDENCE_MARK_2;
1966 break;
1967 case PRECEDENCE_MARK_2:
1968 if( x[0]!=']' ){
1969 ErrorMsg(psp->filename,psp->tokenlineno,
1970 "Missing \"]\" on precedence mark.");
1971 psp->errorcnt++;
1973 psp->state = WAITING_FOR_DECL_OR_RULE;
1974 break;
1975 case WAITING_FOR_ARROW:
1976 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
1977 psp->state = IN_RHS;
1978 }else if( x[0]=='(' ){
1979 psp->state = LHS_ALIAS_1;
1980 }else{
1981 ErrorMsg(psp->filename,psp->tokenlineno,
1982 "Expected to see a \":\" following the LHS symbol \"%s\".",
1983 psp->lhs->name);
1984 psp->errorcnt++;
1985 psp->state = RESYNC_AFTER_RULE_ERROR;
1987 break;
1988 case LHS_ALIAS_1:
1989 if( isalpha(x[0]) ){
1990 psp->lhsalias = x;
1991 psp->state = LHS_ALIAS_2;
1992 }else{
1993 ErrorMsg(psp->filename,psp->tokenlineno,
1994 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
1995 x,psp->lhs->name);
1996 psp->errorcnt++;
1997 psp->state = RESYNC_AFTER_RULE_ERROR;
1999 break;
2000 case LHS_ALIAS_2:
2001 if( x[0]==')' ){
2002 psp->state = LHS_ALIAS_3;
2003 }else{
2004 ErrorMsg(psp->filename,psp->tokenlineno,
2005 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2006 psp->errorcnt++;
2007 psp->state = RESYNC_AFTER_RULE_ERROR;
2009 break;
2010 case LHS_ALIAS_3:
2011 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2012 psp->state = IN_RHS;
2013 }else{
2014 ErrorMsg(psp->filename,psp->tokenlineno,
2015 "Missing \"->\" following: \"%s(%s)\".",
2016 psp->lhs->name,psp->lhsalias);
2017 psp->errorcnt++;
2018 psp->state = RESYNC_AFTER_RULE_ERROR;
2020 break;
2021 case IN_RHS:
2022 if( x[0]=='.' ){
2023 struct rule *rp;
2024 rp = (struct rule *)malloc( sizeof(struct rule) +
2025 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs );
2026 if( rp==0 ){
2027 ErrorMsg(psp->filename,psp->tokenlineno,
2028 "Can't allocate enough memory for this rule.");
2029 psp->errorcnt++;
2030 psp->prevrule = 0;
2031 }else{
2032 int i;
2033 rp->ruleline = psp->tokenlineno;
2034 rp->rhs = (struct symbol**)&rp[1];
2035 rp->rhsalias = (char**)&(rp->rhs[psp->nrhs]);
2036 for(i=0; i<psp->nrhs; i++){
2037 rp->rhs[i] = psp->rhs[i];
2038 rp->rhsalias[i] = psp->alias[i];
2040 rp->lhs = psp->lhs;
2041 rp->lhsalias = psp->lhsalias;
2042 rp->nrhs = psp->nrhs;
2043 rp->code = 0;
2044 rp->precsym = 0;
2045 rp->index = psp->gp->nrule++;
2046 rp->nextlhs = rp->lhs->rule;
2047 rp->lhs->rule = rp;
2048 rp->next = 0;
2049 if( psp->firstrule==0 ){
2050 psp->firstrule = psp->lastrule = rp;
2051 }else{
2052 psp->lastrule->next = rp;
2053 psp->lastrule = rp;
2055 psp->prevrule = rp;
2057 psp->state = WAITING_FOR_DECL_OR_RULE;
2058 }else if( isalpha(x[0]) ){
2059 if( psp->nrhs>=MAXRHS ){
2060 ErrorMsg(psp->filename,psp->tokenlineno,
2061 "Too many symbol on RHS or rule beginning at \"%s\".",
2063 psp->errorcnt++;
2064 psp->state = RESYNC_AFTER_RULE_ERROR;
2065 }else{
2066 psp->rhs[psp->nrhs] = Symbol_new(x);
2067 psp->alias[psp->nrhs] = 0;
2068 psp->nrhs++;
2070 }else if( x[0]=='(' && psp->nrhs>0 ){
2071 psp->state = RHS_ALIAS_1;
2072 }else{
2073 ErrorMsg(psp->filename,psp->tokenlineno,
2074 "Illegal character on RHS of rule: \"%s\".",x);
2075 psp->errorcnt++;
2076 psp->state = RESYNC_AFTER_RULE_ERROR;
2078 break;
2079 case RHS_ALIAS_1:
2080 if( isalpha(x[0]) ){
2081 psp->alias[psp->nrhs-1] = x;
2082 psp->state = RHS_ALIAS_2;
2083 }else{
2084 ErrorMsg(psp->filename,psp->tokenlineno,
2085 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2086 x,psp->rhs[psp->nrhs-1]->name);
2087 psp->errorcnt++;
2088 psp->state = RESYNC_AFTER_RULE_ERROR;
2090 break;
2091 case RHS_ALIAS_2:
2092 if( x[0]==')' ){
2093 psp->state = IN_RHS;
2094 }else{
2095 ErrorMsg(psp->filename,psp->tokenlineno,
2096 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2097 psp->errorcnt++;
2098 psp->state = RESYNC_AFTER_RULE_ERROR;
2100 break;
2101 case WAITING_FOR_DECL_KEYWORD:
2102 if( isalpha(x[0]) ){
2103 psp->declkeyword = x;
2104 psp->declargslot = 0;
2105 psp->decllnslot = 0;
2106 psp->state = WAITING_FOR_DECL_ARG;
2107 if( strcmp(x,"name")==0 ){
2108 psp->declargslot = &(psp->gp->name);
2109 }else if( strcmp(x,"include")==0 ){
2110 psp->declargslot = &(psp->gp->include);
2111 psp->decllnslot = &psp->gp->includeln;
2112 }else if( strcmp(x,"code")==0 ){
2113 psp->declargslot = &(psp->gp->extracode);
2114 psp->decllnslot = &psp->gp->extracodeln;
2115 }else if( strcmp(x,"token_destructor")==0 ){
2116 psp->declargslot = &psp->gp->tokendest;
2117 psp->decllnslot = &psp->gp->tokendestln;
2118 }else if( strcmp(x,"default_destructor")==0 ){
2119 psp->declargslot = &psp->gp->vardest;
2120 psp->decllnslot = &psp->gp->vardestln;
2121 }else if( strcmp(x,"token_prefix")==0 ){
2122 psp->declargslot = &psp->gp->tokenprefix;
2123 }else if( strcmp(x,"syntax_error")==0 ){
2124 psp->declargslot = &(psp->gp->error);
2125 psp->decllnslot = &psp->gp->errorln;
2126 }else if( strcmp(x,"parse_accept")==0 ){
2127 psp->declargslot = &(psp->gp->accept);
2128 psp->decllnslot = &psp->gp->acceptln;
2129 }else if( strcmp(x,"parse_failure")==0 ){
2130 psp->declargslot = &(psp->gp->failure);
2131 psp->decllnslot = &psp->gp->failureln;
2132 }else if( strcmp(x,"stack_overflow")==0 ){
2133 psp->declargslot = &(psp->gp->overflow);
2134 psp->decllnslot = &psp->gp->overflowln;
2135 }else if( strcmp(x,"extra_argument")==0 ){
2136 psp->declargslot = &(psp->gp->arg);
2137 }else if( strcmp(x,"token_type")==0 ){
2138 psp->declargslot = &(psp->gp->tokentype);
2139 }else if( strcmp(x,"default_type")==0 ){
2140 psp->declargslot = &(psp->gp->vartype);
2141 }else if( strcmp(x,"stack_size")==0 ){
2142 psp->declargslot = &(psp->gp->stacksize);
2143 }else if( strcmp(x,"start_symbol")==0 ){
2144 psp->declargslot = &(psp->gp->start);
2145 }else if( strcmp(x,"left")==0 ){
2146 psp->preccounter++;
2147 psp->declassoc = LEFT;
2148 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2149 }else if( strcmp(x,"right")==0 ){
2150 psp->preccounter++;
2151 psp->declassoc = RIGHT;
2152 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2153 }else if( strcmp(x,"nonassoc")==0 ){
2154 psp->preccounter++;
2155 psp->declassoc = NONE;
2156 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2157 }else if( strcmp(x,"destructor")==0 ){
2158 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2159 }else if( strcmp(x,"type")==0 ){
2160 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2161 }else if( strcmp(x,"fallback")==0 ){
2162 psp->fallback = 0;
2163 psp->state = WAITING_FOR_FALLBACK_ID;
2164 }else{
2165 ErrorMsg(psp->filename,psp->tokenlineno,
2166 "Unknown declaration keyword: \"%%%s\".",x);
2167 psp->errorcnt++;
2168 psp->state = RESYNC_AFTER_DECL_ERROR;
2170 }else{
2171 ErrorMsg(psp->filename,psp->tokenlineno,
2172 "Illegal declaration keyword: \"%s\".",x);
2173 psp->errorcnt++;
2174 psp->state = RESYNC_AFTER_DECL_ERROR;
2176 break;
2177 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2178 if( !isalpha(x[0]) ){
2179 ErrorMsg(psp->filename,psp->tokenlineno,
2180 "Symbol name missing after %destructor keyword");
2181 psp->errorcnt++;
2182 psp->state = RESYNC_AFTER_DECL_ERROR;
2183 }else{
2184 struct symbol *sp = Symbol_new(x);
2185 psp->declargslot = &sp->destructor;
2186 psp->decllnslot = &sp->destructorln;
2187 psp->state = WAITING_FOR_DECL_ARG;
2189 break;
2190 case WAITING_FOR_DATATYPE_SYMBOL:
2191 if( !isalpha(x[0]) ){
2192 ErrorMsg(psp->filename,psp->tokenlineno,
2193 "Symbol name missing after %destructor keyword");
2194 psp->errorcnt++;
2195 psp->state = RESYNC_AFTER_DECL_ERROR;
2196 }else{
2197 struct symbol *sp = Symbol_new(x);
2198 psp->declargslot = &sp->datatype;
2199 psp->decllnslot = 0;
2200 psp->state = WAITING_FOR_DECL_ARG;
2202 break;
2203 case WAITING_FOR_PRECEDENCE_SYMBOL:
2204 if( x[0]=='.' ){
2205 psp->state = WAITING_FOR_DECL_OR_RULE;
2206 }else if( isupper(x[0]) ){
2207 struct symbol *sp;
2208 sp = Symbol_new(x);
2209 if( sp->prec>=0 ){
2210 ErrorMsg(psp->filename,psp->tokenlineno,
2211 "Symbol \"%s\" has already be given a precedence.",x);
2212 psp->errorcnt++;
2213 }else{
2214 sp->prec = psp->preccounter;
2215 sp->assoc = psp->declassoc;
2217 }else{
2218 ErrorMsg(psp->filename,psp->tokenlineno,
2219 "Can't assign a precedence to \"%s\".",x);
2220 psp->errorcnt++;
2222 break;
2223 case WAITING_FOR_DECL_ARG:
2224 if( (x[0]=='{' || x[0]=='\"' || isalnum(x[0])) ){
2225 if( *(psp->declargslot)!=0 ){
2226 ErrorMsg(psp->filename,psp->tokenlineno,
2227 "The argument \"%s\" to declaration \"%%%s\" is not the first.",
2228 x[0]=='\"' ? &x[1] : x,psp->declkeyword);
2229 psp->errorcnt++;
2230 psp->state = RESYNC_AFTER_DECL_ERROR;
2231 }else{
2232 *(psp->declargslot) = (x[0]=='\"' || x[0]=='{') ? &x[1] : x;
2233 if( psp->decllnslot ) *psp->decllnslot = psp->tokenlineno;
2234 psp->state = WAITING_FOR_DECL_OR_RULE;
2236 }else{
2237 ErrorMsg(psp->filename,psp->tokenlineno,
2238 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2239 psp->errorcnt++;
2240 psp->state = RESYNC_AFTER_DECL_ERROR;
2242 break;
2243 case WAITING_FOR_FALLBACK_ID:
2244 if( x[0]=='.' ){
2245 psp->state = WAITING_FOR_DECL_OR_RULE;
2246 }else if( !isupper(x[0]) ){
2247 ErrorMsg(psp->filename, psp->tokenlineno,
2248 "%%fallback argument \"%s\" should be a token", x);
2249 psp->errorcnt++;
2250 }else{
2251 struct symbol *sp = Symbol_new(x);
2252 if( psp->fallback==0 ){
2253 psp->fallback = sp;
2254 }else if( sp->fallback ){
2255 ErrorMsg(psp->filename, psp->tokenlineno,
2256 "More than one fallback assigned to token %s", x);
2257 psp->errorcnt++;
2258 }else{
2259 sp->fallback = psp->fallback;
2260 psp->gp->has_fallback = 1;
2263 break;
2264 case RESYNC_AFTER_RULE_ERROR:
2265 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2266 ** break; */
2267 case RESYNC_AFTER_DECL_ERROR:
2268 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2269 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2270 break;
2274 /* In spite of its name, this function is really a scanner. It read
2275 ** in the entire input file (all at once) then tokenizes it. Each
2276 ** token is passed to the function "parseonetoken" which builds all
2277 ** the appropriate data structures in the global state vector "gp".
2279 void Parse(gp)
2280 struct lemon *gp;
2282 struct pstate ps;
2283 FILE *fp;
2284 char *filebuf;
2285 int filesize;
2286 int lineno;
2287 int c;
2288 char *cp, *nextcp;
2289 int startline = 0;
2291 ps.gp = gp;
2292 ps.filename = gp->filename;
2293 ps.errorcnt = 0;
2294 ps.state = INITIALIZE;
2296 /* Begin by reading the input file */
2297 fp = fopen(ps.filename,"rb");
2298 if( fp==0 ){
2299 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2300 gp->errorcnt++;
2301 return;
2303 fseek(fp,0,2);
2304 filesize = ftell(fp);
2305 rewind(fp);
2306 filebuf = (char *)malloc( filesize+1 );
2307 if( filebuf==0 ){
2308 ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
2309 filesize+1);
2310 gp->errorcnt++;
2311 return;
2313 if( fread(filebuf,1,filesize,fp)!=filesize ){
2314 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2315 filesize);
2316 free(filebuf);
2317 gp->errorcnt++;
2318 return;
2320 fclose(fp);
2321 filebuf[filesize] = 0;
2323 /* Now scan the text of the input file */
2324 lineno = 1;
2325 for(cp=filebuf; (c= *cp)!=0; ){
2326 if( c=='\n' ) lineno++; /* Keep track of the line number */
2327 if( isspace(c) ){ cp++; continue; } /* Skip all white space */
2328 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
2329 cp+=2;
2330 while( (c= *cp)!=0 && c!='\n' ) cp++;
2331 continue;
2333 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
2334 cp+=2;
2335 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
2336 if( c=='\n' ) lineno++;
2337 cp++;
2339 if( c ) cp++;
2340 continue;
2342 ps.tokenstart = cp; /* Mark the beginning of the token */
2343 ps.tokenlineno = lineno; /* Linenumber on which token begins */
2344 if( c=='\"' ){ /* String literals */
2345 cp++;
2346 while( (c= *cp)!=0 && c!='\"' ){
2347 if( c=='\n' ) lineno++;
2348 cp++;
2350 if( c==0 ){
2351 ErrorMsg(ps.filename,startline,
2352 "String starting on this line is not terminated before the end of the file.");
2353 ps.errorcnt++;
2354 nextcp = cp;
2355 }else{
2356 nextcp = cp+1;
2358 }else if( c=='{' ){ /* A block of C code */
2359 int level;
2360 cp++;
2361 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
2362 if( c=='\n' ) lineno++;
2363 else if( c=='{' ) level++;
2364 else if( c=='}' ) level--;
2365 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
2366 int prevc;
2367 cp = &cp[2];
2368 prevc = 0;
2369 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
2370 if( c=='\n' ) lineno++;
2371 prevc = c;
2372 cp++;
2374 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
2375 cp = &cp[2];
2376 while( (c= *cp)!=0 && c!='\n' ) cp++;
2377 if( c ) lineno++;
2378 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
2379 int startchar, prevc;
2380 startchar = c;
2381 prevc = 0;
2382 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
2383 if( c=='\n' ) lineno++;
2384 if( prevc=='\\' ) prevc = 0;
2385 else prevc = c;
2389 if( c==0 ){
2390 ErrorMsg(ps.filename,ps.tokenlineno,
2391 "C code starting on this line is not terminated before the end of the file.");
2392 ps.errorcnt++;
2393 nextcp = cp;
2394 }else{
2395 nextcp = cp+1;
2397 }else if( isalnum(c) ){ /* Identifiers */
2398 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
2399 nextcp = cp;
2400 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
2401 cp += 3;
2402 nextcp = cp;
2403 }else{ /* All other (one character) operators */
2404 cp++;
2405 nextcp = cp;
2407 c = *cp;
2408 *cp = 0; /* Null terminate the token */
2409 parseonetoken(&ps); /* Parse the token */
2410 *cp = c; /* Restore the buffer */
2411 cp = nextcp;
2413 free(filebuf); /* Release the buffer after parsing */
2414 gp->rule = ps.firstrule;
2415 gp->errorcnt = ps.errorcnt;
2417 /*************************** From the file "plink.c" *********************/
2419 ** Routines processing configuration follow-set propagation links
2420 ** in the LEMON parser generator.
2422 static struct plink *plink_freelist = 0;
2424 /* Allocate a new plink */
2425 struct plink *Plink_new(){
2426 struct plink *new;
2428 if( plink_freelist==0 ){
2429 int i;
2430 int amt = 100;
2431 plink_freelist = (struct plink *)malloc( sizeof(struct plink)*amt );
2432 if( plink_freelist==0 ){
2433 fprintf(stderr,
2434 "Unable to allocate memory for a new follow-set propagation link.\n");
2435 exit(1);
2437 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
2438 plink_freelist[amt-1].next = 0;
2440 new = plink_freelist;
2441 plink_freelist = plink_freelist->next;
2442 return new;
2445 /* Add a plink to a plink list */
2446 void Plink_add(plpp,cfp)
2447 struct plink **plpp;
2448 struct config *cfp;
2450 struct plink *new;
2451 new = Plink_new();
2452 new->next = *plpp;
2453 *plpp = new;
2454 new->cfp = cfp;
2457 /* Transfer every plink on the list "from" to the list "to" */
2458 void Plink_copy(to,from)
2459 struct plink **to;
2460 struct plink *from;
2462 struct plink *nextpl;
2463 while( from ){
2464 nextpl = from->next;
2465 from->next = *to;
2466 *to = from;
2467 from = nextpl;
2471 /* Delete every plink on the list */
2472 void Plink_delete(plp)
2473 struct plink *plp;
2475 struct plink *nextpl;
2477 while( plp ){
2478 nextpl = plp->next;
2479 plp->next = plink_freelist;
2480 plink_freelist = plp;
2481 plp = nextpl;
2484 /*********************** From the file "report.c" **************************/
2486 ** Procedures for generating reports and tables in the LEMON parser generator.
2489 /* Generate a filename with the given suffix. Space to hold the
2490 ** name comes from malloc() and must be freed by the calling
2491 ** function.
2493 PRIVATE char *file_makename(lemp,suffix)
2494 struct lemon *lemp;
2495 char *suffix;
2497 char *name;
2498 char *cp;
2500 name = malloc( strlen(lemp->filename) + strlen(suffix) + 5 );
2501 if( name==0 ){
2502 fprintf(stderr,"Can't allocate space for a filename.\n");
2503 exit(1);
2505 strcpy(name,lemp->filename);
2506 cp = strrchr(name,'.');
2507 if( cp ) *cp = 0;
2508 strcat(name,suffix);
2509 return name;
2512 /* Open a file with a name based on the name of the input file,
2513 ** but with a different (specified) suffix, and return a pointer
2514 ** to the stream */
2515 PRIVATE FILE *file_open(lemp,suffix,mode)
2516 struct lemon *lemp;
2517 char *suffix;
2518 char *mode;
2520 FILE *fp;
2522 free(lemp->outname);
2523 lemp->outname = file_makename(lemp, suffix);
2524 fp = fopen(lemp->outname,mode);
2525 if( fp==0 && *mode=='w' ){
2526 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
2527 lemp->errorcnt++;
2528 return 0;
2530 return fp;
2533 /* Duplicate the input file without comments and without actions
2534 ** on rules */
2535 void Reprint(lemp)
2536 struct lemon *lemp;
2538 struct rule *rp;
2539 struct symbol *sp;
2540 int i, j, maxlen, len, ncolumns, skip;
2541 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
2542 maxlen = 10;
2543 for(i=0; i<lemp->nsymbol; i++){
2544 sp = lemp->symbols[i];
2545 len = strlen(sp->name);
2546 if( len>maxlen ) maxlen = len;
2548 ncolumns = 76/(maxlen+5);
2549 if( ncolumns<1 ) ncolumns = 1;
2550 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
2551 for(i=0; i<skip; i++){
2552 printf("//");
2553 for(j=i; j<lemp->nsymbol; j+=skip){
2554 sp = lemp->symbols[j];
2555 assert( sp->index==j );
2556 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
2558 printf("\n");
2560 for(rp=lemp->rule; rp; rp=rp->next){
2561 printf("%s",rp->lhs->name);
2562 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
2563 printf(" ::=");
2564 for(i=0; i<rp->nrhs; i++){
2565 printf(" %s",rp->rhs[i]->name);
2566 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
2568 printf(".");
2569 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
2570 /* if( rp->code ) printf("\n %s",rp->code); */
2571 printf("\n");
2575 void ConfigPrint(fp,cfp)
2576 FILE *fp;
2577 struct config *cfp;
2579 struct rule *rp;
2580 int i;
2581 rp = cfp->rp;
2582 fprintf(fp,"%s ::=",rp->lhs->name);
2583 for(i=0; i<=rp->nrhs; i++){
2584 if( i==cfp->dot ) fprintf(fp," *");
2585 if( i==rp->nrhs ) break;
2586 fprintf(fp," %s",rp->rhs[i]->name);
2590 /* #define TEST */
2591 #ifdef TEST
2592 /* Print a set */
2593 PRIVATE void SetPrint(out,set,lemp)
2594 FILE *out;
2595 char *set;
2596 struct lemon *lemp;
2598 int i;
2599 char *spacer;
2600 spacer = "";
2601 fprintf(out,"%12s[","");
2602 for(i=0; i<lemp->nterminal; i++){
2603 if( SetFind(set,i) ){
2604 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
2605 spacer = " ";
2608 fprintf(out,"]\n");
2611 /* Print a plink chain */
2612 PRIVATE void PlinkPrint(out,plp,tag)
2613 FILE *out;
2614 struct plink *plp;
2615 char *tag;
2617 while( plp ){
2618 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->index);
2619 ConfigPrint(out,plp->cfp);
2620 fprintf(out,"\n");
2621 plp = plp->next;
2624 #endif
2626 /* Print an action to the given file descriptor. Return FALSE if
2627 ** nothing was actually printed.
2629 int PrintAction(struct action *ap, FILE *fp, int indent){
2630 int result = 1;
2631 switch( ap->type ){
2632 case SHIFT:
2633 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->index);
2634 break;
2635 case REDUCE:
2636 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
2637 break;
2638 case ACCEPT:
2639 fprintf(fp,"%*s accept",indent,ap->sp->name);
2640 break;
2641 case ERROR:
2642 fprintf(fp,"%*s error",indent,ap->sp->name);
2643 break;
2644 case CONFLICT:
2645 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
2646 indent,ap->sp->name,ap->x.rp->index);
2647 break;
2648 case SH_RESOLVED:
2649 case RD_RESOLVED:
2650 case NOT_USED:
2651 result = 0;
2652 break;
2654 return result;
2657 /* Generate the "y.output" log file */
2658 void ReportOutput(lemp)
2659 struct lemon *lemp;
2661 int i;
2662 struct state *stp;
2663 struct config *cfp;
2664 struct action *ap;
2665 FILE *fp;
2667 fp = file_open(lemp,".out","w");
2668 if( fp==0 ) return;
2669 fprintf(fp," \b");
2670 for(i=0; i<lemp->nstate; i++){
2671 stp = lemp->sorted[i];
2672 fprintf(fp,"State %d:\n",stp->index);
2673 if( lemp->basisflag ) cfp=stp->bp;
2674 else cfp=stp->cfp;
2675 while( cfp ){
2676 char buf[20];
2677 if( cfp->dot==cfp->rp->nrhs ){
2678 sprintf(buf,"(%d)",cfp->rp->index);
2679 fprintf(fp," %5s ",buf);
2680 }else{
2681 fprintf(fp," ");
2683 ConfigPrint(fp,cfp);
2684 fprintf(fp,"\n");
2685 #ifdef TEST
2686 SetPrint(fp,cfp->fws,lemp);
2687 PlinkPrint(fp,cfp->fplp,"To ");
2688 PlinkPrint(fp,cfp->bplp,"From");
2689 #endif
2690 if( lemp->basisflag ) cfp=cfp->bp;
2691 else cfp=cfp->next;
2693 fprintf(fp,"\n");
2694 for(ap=stp->ap; ap; ap=ap->next){
2695 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
2697 fprintf(fp,"\n");
2699 fclose(fp);
2700 return;
2703 /* Search for the file "name" which is in the same directory as
2704 ** the exacutable */
2705 PRIVATE char *pathsearch(argv0,name,modemask)
2706 char *argv0;
2707 char *name;
2708 int modemask;
2710 char *pathlist;
2711 char *path,*cp;
2712 char c;
2713 extern int access();
2715 #ifdef __WIN32__
2716 cp = strrchr(argv0,'\\');
2717 #else
2718 cp = strrchr(argv0,'/');
2719 #endif
2720 if( cp ){
2721 c = *cp;
2722 *cp = 0;
2723 path = (char *)malloc( strlen(argv0) + strlen(name) + 2 );
2724 if( path ) sprintf(path,"%s/%s",argv0,name);
2725 *cp = c;
2726 }else{
2727 extern char *getenv();
2728 pathlist = getenv("PATH");
2729 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
2730 path = (char *)malloc( strlen(pathlist)+strlen(name)+2 );
2731 if( path!=0 ){
2732 while( *pathlist ){
2733 cp = strchr(pathlist,':');
2734 if( cp==0 ) cp = &pathlist[strlen(pathlist)];
2735 c = *cp;
2736 *cp = 0;
2737 sprintf(path,"%s/%s",pathlist,name);
2738 *cp = c;
2739 if( c==0 ) pathlist = "";
2740 else pathlist = &cp[1];
2741 if( access(path,modemask)==0 ) break;
2745 return path;
2748 /* Given an action, compute the integer value for that action
2749 ** which is to be put in the action table of the generated machine.
2750 ** Return negative if no action should be generated.
2752 PRIVATE int compute_action(lemp,ap)
2753 struct lemon *lemp;
2754 struct action *ap;
2756 int act;
2757 switch( ap->type ){
2758 case SHIFT: act = ap->x.stp->index; break;
2759 case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
2760 case ERROR: act = lemp->nstate + lemp->nrule; break;
2761 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
2762 default: act = -1; break;
2764 return act;
2767 #define LINESIZE 1000
2768 /* The next cluster of routines are for reading the template file
2769 ** and writing the results to the generated parser */
2770 /* The first function transfers data from "in" to "out" until
2771 ** a line is seen which begins with "%%". The line number is
2772 ** tracked.
2774 ** if name!=0, then any word that begin with "Parse" is changed to
2775 ** begin with *name instead.
2777 PRIVATE void tplt_xfer(name,in,out,lineno)
2778 char *name;
2779 FILE *in;
2780 FILE *out;
2781 int *lineno;
2783 int i, iStart;
2784 char line[LINESIZE];
2785 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
2786 (*lineno)++;
2787 iStart = 0;
2788 if( name ){
2789 for(i=0; line[i]; i++){
2790 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
2791 && (i==0 || !isalpha(line[i-1]))
2793 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
2794 fprintf(out,"%s",name);
2795 i += 4;
2796 iStart = i+1;
2800 fprintf(out,"%s",&line[iStart]);
2804 /* The next function finds the template file and opens it, returning
2805 ** a pointer to the opened file. */
2806 PRIVATE FILE *tplt_open(lemp)
2807 struct lemon *lemp;
2809 static char templatename[] = "lempar.c";
2810 char buf[1000];
2811 FILE *in;
2812 char *tpltname;
2813 char *cp;
2815 cp = strrchr(lemp->filename,'.');
2816 if( cp ){
2817 sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
2818 }else{
2819 sprintf(buf,"%s.lt",lemp->filename);
2821 if( access(buf,004)==0 ){
2822 tpltname = buf;
2823 }else if( access(templatename,004)==0 ){
2824 tpltname = templatename;
2825 }else{
2826 tpltname = pathsearch(lemp->argv0,templatename,0);
2828 if( tpltname==0 ){
2829 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
2830 templatename);
2831 lemp->errorcnt++;
2832 return 0;
2834 in = fopen(tpltname,"r");
2835 if( in==0 ){
2836 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
2837 lemp->errorcnt++;
2838 return 0;
2840 return in;
2843 /* Print a string to the file and keep the linenumber up to date */
2844 PRIVATE void tplt_print(out,lemp,str,strln,lineno)
2845 FILE *out;
2846 struct lemon *lemp;
2847 char *str;
2848 int strln;
2849 int *lineno;
2851 if( str==0 ) return;
2852 fprintf(out,"#line %d \"%s\"\n",strln,lemp->filename); (*lineno)++;
2853 while( *str ){
2854 if( *str=='\n' ) (*lineno)++;
2855 putc(*str,out);
2856 str++;
2858 fprintf(out,"\n#line %d \"%s\"\n",*lineno+2,lemp->outname); (*lineno)+=2;
2859 return;
2863 ** The following routine emits code for the destructor for the
2864 ** symbol sp
2866 void emit_destructor_code(out,sp,lemp,lineno)
2867 FILE *out;
2868 struct symbol *sp;
2869 struct lemon *lemp;
2870 int *lineno;
2872 char *cp = 0;
2874 int linecnt = 0;
2875 if( sp->type==TERMINAL ){
2876 cp = lemp->tokendest;
2877 if( cp==0 ) return;
2878 fprintf(out,"#line %d \"%s\"\n{",lemp->tokendestln,lemp->filename);
2879 }else if( sp->destructor ){
2880 cp = sp->destructor;
2881 fprintf(out,"#line %d \"%s\"\n{",sp->destructorln,lemp->filename);
2882 }else if( lemp->vardest ){
2883 cp = lemp->vardest;
2884 if( cp==0 ) return;
2885 fprintf(out,"#line %d \"%s\"\n{",lemp->vardestln,lemp->filename);
2886 }else{
2887 assert( 0 ); /* Cannot happen */
2889 for(; *cp; cp++){
2890 if( *cp=='$' && cp[1]=='$' ){
2891 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
2892 cp++;
2893 continue;
2895 if( *cp=='\n' ) linecnt++;
2896 fputc(*cp,out);
2898 (*lineno) += 3 + linecnt;
2899 fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2900 return;
2904 ** Return TRUE (non-zero) if the given symbol has a destructor.
2906 int has_destructor(sp, lemp)
2907 struct symbol *sp;
2908 struct lemon *lemp;
2910 int ret;
2911 if( sp->type==TERMINAL ){
2912 ret = lemp->tokendest!=0;
2913 }else{
2914 ret = lemp->vardest!=0 || sp->destructor!=0;
2916 return ret;
2920 ** Generate code which executes when the rule "rp" is reduced. Write
2921 ** the code to "out". Make sure lineno stays up-to-date.
2923 PRIVATE void emit_code(out,rp,lemp,lineno)
2924 FILE *out;
2925 struct rule *rp;
2926 struct lemon *lemp;
2927 int *lineno;
2929 char *cp, *xp;
2930 int linecnt = 0;
2931 int i;
2932 char lhsused = 0; /* True if the LHS element has been used */
2933 char used[MAXRHS]; /* True for each RHS element which is used */
2935 for(i=0; i<rp->nrhs; i++) used[i] = 0;
2936 lhsused = 0;
2938 /* Generate code to do the reduce action */
2939 if( rp->code ){
2940 fprintf(out,"#line %d \"%s\"\n{",rp->line,lemp->filename);
2941 for(cp=rp->code; *cp; cp++){
2942 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
2943 char saved;
2944 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
2945 saved = *xp;
2946 *xp = 0;
2947 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
2948 fprintf(out,"yygotominor.yy%d",rp->lhs->dtnum);
2949 cp = xp;
2950 lhsused = 1;
2951 }else{
2952 for(i=0; i<rp->nrhs; i++){
2953 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
2954 fprintf(out,"yymsp[%d].minor.yy%d",i-rp->nrhs+1,rp->rhs[i]->dtnum);
2955 cp = xp;
2956 used[i] = 1;
2957 break;
2961 *xp = saved;
2963 if( *cp=='\n' ) linecnt++;
2964 fputc(*cp,out);
2965 } /* End loop */
2966 (*lineno) += 3 + linecnt;
2967 fprintf(out,"}\n#line %d \"%s\"\n",*lineno,lemp->outname);
2968 } /* End if( rp->code ) */
2970 /* Check to make sure the LHS has been used */
2971 if( rp->lhsalias && !lhsused ){
2972 ErrorMsg(lemp->filename,rp->ruleline,
2973 "Label \"%s\" for \"%s(%s)\" is never used.",
2974 rp->lhsalias,rp->lhs->name,rp->lhsalias);
2975 lemp->errorcnt++;
2978 /* Generate destructor code for RHS symbols which are not used in the
2979 ** reduce code */
2980 for(i=0; i<rp->nrhs; i++){
2981 if( rp->rhsalias[i] && !used[i] ){
2982 ErrorMsg(lemp->filename,rp->ruleline,
2983 "Label %s for \"%s(%s)\" is never used.",
2984 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
2985 lemp->errorcnt++;
2986 }else if( rp->rhsalias[i]==0 ){
2987 if( has_destructor(rp->rhs[i],lemp) ){
2988 fprintf(out," yy_destructor(%d,&yymsp[%d].minor);\n",
2989 rp->rhs[i]->index,i-rp->nrhs+1); (*lineno)++;
2990 }else{
2991 fprintf(out," /* No destructor defined for %s */\n",
2992 rp->rhs[i]->name);
2993 (*lineno)++;
2997 return;
3001 ** Print the definition of the union used for the parser's data stack.
3002 ** This union contains fields for every possible data type for tokens
3003 ** and nonterminals. In the process of computing and printing this
3004 ** union, also set the ".dtnum" field of every terminal and nonterminal
3005 ** symbol.
3007 void print_stack_union(out,lemp,plineno,mhflag)
3008 FILE *out; /* The output stream */
3009 struct lemon *lemp; /* The main info structure for this parser */
3010 int *plineno; /* Pointer to the line number */
3011 int mhflag; /* True if generating makeheaders output */
3013 int lineno = *plineno; /* The line number of the output */
3014 char **types; /* A hash table of datatypes */
3015 int arraysize; /* Size of the "types" array */
3016 int maxdtlength; /* Maximum length of any ".datatype" field. */
3017 char *stddt; /* Standardized name for a datatype */
3018 int i,j; /* Loop counters */
3019 int hash; /* For hashing the name of a type */
3020 char *name; /* Name of the parser */
3022 /* Allocate and initialize types[] and allocate stddt[] */
3023 arraysize = lemp->nsymbol * 2;
3024 types = (char**)malloc( arraysize * sizeof(char*) );
3025 for(i=0; i<arraysize; i++) types[i] = 0;
3026 maxdtlength = 0;
3027 if( lemp->vartype ){
3028 maxdtlength = strlen(lemp->vartype);
3030 for(i=0; i<lemp->nsymbol; i++){
3031 int len;
3032 struct symbol *sp = lemp->symbols[i];
3033 if( sp->datatype==0 ) continue;
3034 len = strlen(sp->datatype);
3035 if( len>maxdtlength ) maxdtlength = len;
3037 stddt = (char*)malloc( maxdtlength*2 + 1 );
3038 if( types==0 || stddt==0 ){
3039 fprintf(stderr,"Out of memory.\n");
3040 exit(1);
3043 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
3044 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
3045 ** used for terminal symbols. If there is no %default_type defined then
3046 ** 0 is also used as the .dtnum value for nonterminals which do not specify
3047 ** a datatype using the %type directive.
3049 for(i=0; i<lemp->nsymbol; i++){
3050 struct symbol *sp = lemp->symbols[i];
3051 char *cp;
3052 if( sp==lemp->errsym ){
3053 sp->dtnum = arraysize+1;
3054 continue;
3056 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
3057 sp->dtnum = 0;
3058 continue;
3060 cp = sp->datatype;
3061 if( cp==0 ) cp = lemp->vartype;
3062 j = 0;
3063 while( isspace(*cp) ) cp++;
3064 while( *cp ) stddt[j++] = *cp++;
3065 while( j>0 && isspace(stddt[j-1]) ) j--;
3066 stddt[j] = 0;
3067 hash = 0;
3068 for(j=0; stddt[j]; j++){
3069 hash = hash*53 + stddt[j];
3071 hash = (hash & 0x7fffffff)%arraysize;
3072 while( types[hash] ){
3073 if( strcmp(types[hash],stddt)==0 ){
3074 sp->dtnum = hash + 1;
3075 break;
3077 hash++;
3078 if( hash>=arraysize ) hash = 0;
3080 if( types[hash]==0 ){
3081 sp->dtnum = hash + 1;
3082 types[hash] = (char*)malloc( strlen(stddt)+1 );
3083 if( types[hash]==0 ){
3084 fprintf(stderr,"Out of memory.\n");
3085 exit(1);
3087 strcpy(types[hash],stddt);
3091 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
3092 name = lemp->name ? lemp->name : "Parse";
3093 lineno = *plineno;
3094 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
3095 fprintf(out,"#define %sTOKENTYPE %s\n",name,
3096 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
3097 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
3098 fprintf(out,"typedef union {\n"); lineno++;
3099 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
3100 for(i=0; i<arraysize; i++){
3101 if( types[i]==0 ) continue;
3102 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
3103 free(types[i]);
3105 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
3106 free(stddt);
3107 free(types);
3108 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
3109 *plineno = lineno;
3113 ** Return the name of a C datatype able to represent values between
3114 ** lwr and upr, inclusive.
3116 static const char *minimum_size_type(int lwr, int upr){
3117 if( lwr>=0 ){
3118 if( upr<=255 ){
3119 return "unsigned char";
3120 }else if( upr<65535 ){
3121 return "unsigned short int";
3122 }else{
3123 return "unsigned int";
3125 }else if( lwr>=-127 && upr<=127 ){
3126 return "signed char";
3127 }else if( lwr>=-32767 && upr<32767 ){
3128 return "short";
3129 }else{
3130 return "int";
3135 ** Each state contains a set of token transaction and a set of
3136 ** nonterminal transactions. Each of these sets makes an instance
3137 ** of the following structure. An array of these structures is used
3138 ** to order the creation of entries in the yy_action[] table.
3140 struct axset {
3141 struct state *stp; /* A pointer to a state */
3142 int isTkn; /* True to use tokens. False for non-terminals */
3143 int nAction; /* Number of actions */
3147 ** Compare to axset structures for sorting purposes
3149 static int axset_compare(const void *a, const void *b){
3150 struct axset *p1 = (struct axset*)a;
3151 struct axset *p2 = (struct axset*)b;
3152 return p2->nAction - p1->nAction;
3155 /* Generate C source code for the parser */
3156 void ReportTable(lemp, mhflag)
3157 struct lemon *lemp;
3158 int mhflag; /* Output in makeheaders format if true */
3160 FILE *out, *in;
3161 char line[LINESIZE];
3162 int lineno;
3163 struct state *stp;
3164 struct action *ap;
3165 struct rule *rp;
3166 struct acttab *pActtab;
3167 int i, j, n;
3168 char *name;
3169 int mnTknOfst, mxTknOfst;
3170 int mnNtOfst, mxNtOfst;
3171 struct axset *ax;
3173 in = tplt_open(lemp);
3174 if( in==0 ) return;
3175 out = file_open(lemp,".c","w");
3176 if( out==0 ){
3177 fclose(in);
3178 return;
3180 lineno = 1;
3181 tplt_xfer(lemp->name,in,out,&lineno);
3183 /* Generate the include code, if any */
3184 tplt_print(out,lemp,lemp->include,lemp->includeln,&lineno);
3185 if( mhflag ){
3186 char *name = file_makename(lemp, ".h");
3187 fprintf(out,"#include \"%s\"\n", name); lineno++;
3188 free(name);
3190 tplt_xfer(lemp->name,in,out,&lineno);
3192 /* Generate #defines for all tokens */
3193 if( mhflag ){
3194 char *prefix;
3195 fprintf(out,"#if INTERFACE\n"); lineno++;
3196 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3197 else prefix = "";
3198 for(i=1; i<lemp->nterminal; i++){
3199 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3200 lineno++;
3202 fprintf(out,"#endif\n"); lineno++;
3204 tplt_xfer(lemp->name,in,out,&lineno);
3206 /* Generate the defines */
3207 fprintf(out,"/* \001 */\n");
3208 fprintf(out,"#define YYCODETYPE %s\n",
3209 minimum_size_type(0, lemp->nsymbol+5)); lineno++;
3210 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
3211 fprintf(out,"#define YYACTIONTYPE %s\n",
3212 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
3213 print_stack_union(out,lemp,&lineno,mhflag);
3214 if( lemp->stacksize ){
3215 if( atoi(lemp->stacksize)<=0 ){
3216 ErrorMsg(lemp->filename,0,
3217 "Illegal stack size: [%s]. The stack size should be an integer constant.",
3218 lemp->stacksize);
3219 lemp->errorcnt++;
3220 lemp->stacksize = "100";
3222 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
3223 }else{
3224 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
3226 if( mhflag ){
3227 fprintf(out,"#if INTERFACE\n"); lineno++;
3229 name = lemp->name ? lemp->name : "Parse";
3230 if( lemp->arg && lemp->arg[0] ){
3231 int i;
3232 i = strlen(lemp->arg);
3233 while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
3234 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
3235 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
3236 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
3237 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
3238 name,lemp->arg,&lemp->arg[i]); lineno++;
3239 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
3240 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
3241 }else{
3242 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
3243 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
3244 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
3245 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
3247 if( mhflag ){
3248 fprintf(out,"#endif\n"); lineno++;
3250 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
3251 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
3252 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
3253 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
3254 if( lemp->has_fallback ){
3255 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
3257 tplt_xfer(lemp->name,in,out,&lineno);
3259 /* Generate the action table and its associates:
3261 ** yy_action[] A single table containing all actions.
3262 ** yy_lookahead[] A table containing the lookahead for each entry in
3263 ** yy_action. Used to detect hash collisions.
3264 ** yy_shift_ofst[] For each state, the offset into yy_action for
3265 ** shifting terminals.
3266 ** yy_reduce_ofst[] For each state, the offset into yy_action for
3267 ** shifting non-terminals after a reduce.
3268 ** yy_default[] Default action for each state.
3271 /* Compute the actions on all states and count them up */
3272 ax = malloc( sizeof(ax[0])*lemp->nstate*2 );
3273 if( ax==0 ){
3274 fprintf(stderr,"malloc failed\n");
3275 exit(1);
3277 for(i=0; i<lemp->nstate; i++){
3278 stp = lemp->sorted[i];
3279 stp->nTknAct = stp->nNtAct = 0;
3280 stp->iDflt = lemp->nstate + lemp->nrule;
3281 stp->iTknOfst = NO_OFFSET;
3282 stp->iNtOfst = NO_OFFSET;
3283 for(ap=stp->ap; ap; ap=ap->next){
3284 if( compute_action(lemp,ap)>=0 ){
3285 if( ap->sp->index<lemp->nterminal ){
3286 stp->nTknAct++;
3287 }else if( ap->sp->index<lemp->nsymbol ){
3288 stp->nNtAct++;
3289 }else{
3290 stp->iDflt = compute_action(lemp, ap);
3294 ax[i*2].stp = stp;
3295 ax[i*2].isTkn = 1;
3296 ax[i*2].nAction = stp->nTknAct;
3297 ax[i*2+1].stp = stp;
3298 ax[i*2+1].isTkn = 0;
3299 ax[i*2+1].nAction = stp->nNtAct;
3301 mxTknOfst = mnTknOfst = 0;
3302 mxNtOfst = mnNtOfst = 0;
3304 /* Compute the action table. In order to try to keep the size of the
3305 ** action table to a minimum, the heuristic of placing the largest action
3306 ** sets first is used.
3308 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
3309 pActtab = acttab_alloc();
3310 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
3311 stp = ax[i].stp;
3312 if( ax[i].isTkn ){
3313 for(ap=stp->ap; ap; ap=ap->next){
3314 int action;
3315 if( ap->sp->index>=lemp->nterminal ) continue;
3316 action = compute_action(lemp, ap);
3317 if( action<0 ) continue;
3318 acttab_action(pActtab, ap->sp->index, action);
3320 stp->iTknOfst = acttab_insert(pActtab);
3321 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
3322 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
3323 }else{
3324 for(ap=stp->ap; ap; ap=ap->next){
3325 int action;
3326 if( ap->sp->index<lemp->nterminal ) continue;
3327 if( ap->sp->index==lemp->nsymbol ) continue;
3328 action = compute_action(lemp, ap);
3329 if( action<0 ) continue;
3330 acttab_action(pActtab, ap->sp->index, action);
3332 stp->iNtOfst = acttab_insert(pActtab);
3333 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
3334 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
3337 free(ax);
3339 /* Output the yy_action table */
3340 fprintf(out,"static YYACTIONTYPE yy_action[] = {\n"); lineno++;
3341 n = acttab_size(pActtab);
3342 for(i=j=0; i<n; i++){
3343 int action = acttab_yyaction(pActtab, i);
3344 if( action<0 ) action = lemp->nsymbol + lemp->nrule + 2;
3345 if( j==0 ) fprintf(out," /* %5d */ ", i);
3346 fprintf(out, " %4d,", action);
3347 if( j==9 || i==n-1 ){
3348 fprintf(out, "\n"); lineno++;
3349 j = 0;
3350 }else{
3351 j++;
3354 fprintf(out, "};\n"); lineno++;
3356 /* Output the yy_lookahead table */
3357 fprintf(out,"static YYCODETYPE yy_lookahead[] = {\n"); lineno++;
3358 for(i=j=0; i<n; i++){
3359 int la = acttab_yylookahead(pActtab, i);
3360 if( la<0 ) la = lemp->nsymbol;
3361 if( j==0 ) fprintf(out," /* %5d */ ", i);
3362 fprintf(out, " %4d,", la);
3363 if( j==9 || i==n-1 ){
3364 fprintf(out, "\n"); lineno++;
3365 j = 0;
3366 }else{
3367 j++;
3370 fprintf(out, "};\n"); lineno++;
3372 /* Output the yy_shift_ofst[] table */
3373 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
3374 fprintf(out, "static %s yy_shift_ofst[] = {\n",
3375 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
3376 n = lemp->nstate;
3377 for(i=j=0; i<n; i++){
3378 int ofst;
3379 stp = lemp->sorted[i];
3380 ofst = stp->iTknOfst;
3381 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
3382 if( j==0 ) fprintf(out," /* %5d */ ", i);
3383 fprintf(out, " %4d,", ofst);
3384 if( j==9 || i==n-1 ){
3385 fprintf(out, "\n"); lineno++;
3386 j = 0;
3387 }else{
3388 j++;
3391 fprintf(out, "};\n"); lineno++;
3393 /* Output the yy_reduce_ofst[] table */
3394 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
3395 fprintf(out, "static %s yy_reduce_ofst[] = {\n",
3396 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
3397 n = lemp->nstate;
3398 for(i=j=0; i<n; i++){
3399 int ofst;
3400 stp = lemp->sorted[i];
3401 ofst = stp->iNtOfst;
3402 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
3403 if( j==0 ) fprintf(out," /* %5d */ ", i);
3404 fprintf(out, " %4d,", ofst);
3405 if( j==9 || i==n-1 ){
3406 fprintf(out, "\n"); lineno++;
3407 j = 0;
3408 }else{
3409 j++;
3412 fprintf(out, "};\n"); lineno++;
3414 /* Output the default action table */
3415 fprintf(out, "static YYACTIONTYPE yy_default[] = {\n"); lineno++;
3416 n = lemp->nstate;
3417 for(i=j=0; i<n; i++){
3418 stp = lemp->sorted[i];
3419 if( j==0 ) fprintf(out," /* %5d */ ", i);
3420 fprintf(out, " %4d,", stp->iDflt);
3421 if( j==9 || i==n-1 ){
3422 fprintf(out, "\n"); lineno++;
3423 j = 0;
3424 }else{
3425 j++;
3428 fprintf(out, "};\n"); lineno++;
3429 tplt_xfer(lemp->name,in,out,&lineno);
3431 /* Generate the table of fallback tokens.
3433 if( lemp->has_fallback ){
3434 for(i=0; i<lemp->nterminal; i++){
3435 struct symbol *p = lemp->symbols[i];
3436 if( p->fallback==0 ){
3437 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
3438 }else{
3439 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
3440 p->name, p->fallback->name);
3442 lineno++;
3445 tplt_xfer(lemp->name, in, out, &lineno);
3447 /* Generate a table containing the symbolic name of every symbol
3449 for(i=0; i<lemp->nsymbol; i++){
3450 sprintf(line,"\"%s\",",lemp->symbols[i]->name);
3451 fprintf(out," %-15s",line);
3452 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
3454 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
3455 tplt_xfer(lemp->name,in,out,&lineno);
3457 /* Generate a table containing a text string that describes every
3458 ** rule in the rule set of the grammer. This information is used
3459 ** when tracing REDUCE actions.
3461 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
3462 assert( rp->index==i );
3463 fprintf(out," /* %3d */ \"%s ::=", i, rp->lhs->name);
3464 for(j=0; j<rp->nrhs; j++) fprintf(out," %s",rp->rhs[j]->name);
3465 fprintf(out,"\",\n"); lineno++;
3467 tplt_xfer(lemp->name,in,out,&lineno);
3469 /* Generate code which executes every time a symbol is popped from
3470 ** the stack while processing errors or while destroying the parser.
3471 ** (In other words, generate the %destructor actions)
3473 if( lemp->tokendest ){
3474 for(i=0; i<lemp->nsymbol; i++){
3475 struct symbol *sp = lemp->symbols[i];
3476 if( sp==0 || sp->type!=TERMINAL ) continue;
3477 fprintf(out," case %d:\n",sp->index); lineno++;
3479 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
3480 if( i<lemp->nsymbol ){
3481 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3482 fprintf(out," break;\n"); lineno++;
3485 for(i=0; i<lemp->nsymbol; i++){
3486 struct symbol *sp = lemp->symbols[i];
3487 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
3488 fprintf(out," case %d:\n",sp->index); lineno++;
3489 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
3490 fprintf(out," break;\n"); lineno++;
3492 if( lemp->vardest ){
3493 struct symbol *dflt_sp = 0;
3494 for(i=0; i<lemp->nsymbol; i++){
3495 struct symbol *sp = lemp->symbols[i];
3496 if( sp==0 || sp->type==TERMINAL ||
3497 sp->index<=0 || sp->destructor!=0 ) continue;
3498 fprintf(out," case %d:\n",sp->index); lineno++;
3499 dflt_sp = sp;
3501 if( dflt_sp!=0 ){
3502 emit_destructor_code(out,dflt_sp,lemp,&lineno);
3503 fprintf(out," break;\n"); lineno++;
3506 tplt_xfer(lemp->name,in,out,&lineno);
3508 /* Generate code which executes whenever the parser stack overflows */
3509 tplt_print(out,lemp,lemp->overflow,lemp->overflowln,&lineno);
3510 tplt_xfer(lemp->name,in,out,&lineno);
3512 /* Generate the table of rule information
3514 ** Note: This code depends on the fact that rules are number
3515 ** sequentually beginning with 0.
3517 for(rp=lemp->rule; rp; rp=rp->next){
3518 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
3520 tplt_xfer(lemp->name,in,out,&lineno);
3522 /* Generate code which execution during each REDUCE action */
3523 for(rp=lemp->rule; rp; rp=rp->next){
3524 fprintf(out," case %d:\n",rp->index); lineno++;
3525 emit_code(out,rp,lemp,&lineno);
3526 fprintf(out," break;\n"); lineno++;
3528 tplt_xfer(lemp->name,in,out,&lineno);
3530 /* Generate code which executes if a parse fails */
3531 tplt_print(out,lemp,lemp->failure,lemp->failureln,&lineno);
3532 tplt_xfer(lemp->name,in,out,&lineno);
3534 /* Generate code which executes when a syntax error occurs */
3535 tplt_print(out,lemp,lemp->error,lemp->errorln,&lineno);
3536 tplt_xfer(lemp->name,in,out,&lineno);
3538 /* Generate code which executes when the parser accepts its input */
3539 tplt_print(out,lemp,lemp->accept,lemp->acceptln,&lineno);
3540 tplt_xfer(lemp->name,in,out,&lineno);
3542 /* Append any addition code the user desires */
3543 tplt_print(out,lemp,lemp->extracode,lemp->extracodeln,&lineno);
3545 fclose(in);
3546 fclose(out);
3547 return;
3550 /* Generate a header file for the parser */
3551 void ReportHeader(lemp)
3552 struct lemon *lemp;
3554 FILE *out, *in;
3555 char *prefix;
3556 char line[LINESIZE];
3557 char pattern[LINESIZE];
3558 int i;
3560 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
3561 else prefix = "";
3562 in = file_open(lemp,".h","r");
3563 if( in ){
3564 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
3565 sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3566 if( strcmp(line,pattern) ) break;
3568 fclose(in);
3569 if( i==lemp->nterminal ){
3570 /* No change in the file. Don't rewrite it. */
3571 return;
3574 out = file_open(lemp,".h","w");
3575 if( out ){
3576 for(i=1; i<lemp->nterminal; i++){
3577 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
3579 fclose(out);
3581 return;
3584 /* Reduce the size of the action tables, if possible, by making use
3585 ** of defaults.
3587 ** In this version, we take the most frequent REDUCE action and make
3588 ** it the default. Only default a reduce if there are more than one.
3590 void CompressTables(lemp)
3591 struct lemon *lemp;
3593 struct state *stp;
3594 struct action *ap, *ap2;
3595 struct rule *rp, *rp2, *rbest;
3596 int nbest, n;
3597 int i;
3599 for(i=0; i<lemp->nstate; i++){
3600 stp = lemp->sorted[i];
3601 nbest = 0;
3602 rbest = 0;
3604 for(ap=stp->ap; ap; ap=ap->next){
3605 if( ap->type!=REDUCE ) continue;
3606 rp = ap->x.rp;
3607 if( rp==rbest ) continue;
3608 n = 1;
3609 for(ap2=ap->next; ap2; ap2=ap2->next){
3610 if( ap2->type!=REDUCE ) continue;
3611 rp2 = ap2->x.rp;
3612 if( rp2==rbest ) continue;
3613 if( rp2==rp ) n++;
3615 if( n>nbest ){
3616 nbest = n;
3617 rbest = rp;
3621 /* Do not make a default if the number of rules to default
3622 ** is not at least 2 */
3623 if( nbest<2 ) continue;
3626 /* Combine matching REDUCE actions into a single default */
3627 for(ap=stp->ap; ap; ap=ap->next){
3628 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
3630 assert( ap );
3631 ap->sp = Symbol_new("{default}");
3632 for(ap=ap->next; ap; ap=ap->next){
3633 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
3635 stp->ap = Action_sort(stp->ap);
3639 /***************** From the file "set.c" ************************************/
3641 ** Set manipulation routines for the LEMON parser generator.
3644 static int size = 0;
3646 /* Set the set size */
3647 void SetSize(n)
3648 int n;
3650 size = n+1;
3653 /* Allocate a new set */
3654 char *SetNew(){
3655 char *s;
3656 int i;
3657 s = (char*)malloc( size );
3658 if( s==0 ){
3659 extern void memory_error();
3660 memory_error();
3662 for(i=0; i<size; i++) s[i] = 0;
3663 return s;
3666 /* Deallocate a set */
3667 void SetFree(s)
3668 char *s;
3670 free(s);
3673 /* Add a new element to the set. Return TRUE if the element was added
3674 ** and FALSE if it was already there. */
3675 int SetAdd(s,e)
3676 char *s;
3677 int e;
3679 int rv;
3680 rv = s[e];
3681 s[e] = 1;
3682 return !rv;
3685 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
3686 int SetUnion(s1,s2)
3687 char *s1;
3688 char *s2;
3690 int i, progress;
3691 progress = 0;
3692 for(i=0; i<size; i++){
3693 if( s2[i]==0 ) continue;
3694 if( s1[i]==0 ){
3695 progress = 1;
3696 s1[i] = 1;
3699 return progress;
3701 /********************** From the file "table.c" ****************************/
3703 ** All code in this file has been automatically generated
3704 ** from a specification in the file
3705 ** "table.q"
3706 ** by the associative array code building program "aagen".
3707 ** Do not edit this file! Instead, edit the specification
3708 ** file, then rerun aagen.
3711 ** Code for processing tables in the LEMON parser generator.
3714 PRIVATE int strhash(x)
3715 char *x;
3717 int h = 0;
3718 while( *x) h = h*13 + *(x++);
3719 return h;
3722 /* Works like strdup, sort of. Save a string in malloced memory, but
3723 ** keep strings in a table so that the same string is not in more
3724 ** than one place.
3726 char *Strsafe(y)
3727 char *y;
3729 char *z;
3731 z = Strsafe_find(y);
3732 if( z==0 && (z=malloc( strlen(y)+1 ))!=0 ){
3733 strcpy(z,y);
3734 Strsafe_insert(z);
3736 MemoryCheck(z);
3737 return z;
3740 /* There is one instance of the following structure for each
3741 ** associative array of type "x1".
3743 struct s_x1 {
3744 int size; /* The number of available slots. */
3745 /* Must be a power of 2 greater than or */
3746 /* equal to 1 */
3747 int count; /* Number of currently slots filled */
3748 struct s_x1node *tbl; /* The data stored here */
3749 struct s_x1node **ht; /* Hash table for lookups */
3752 /* There is one instance of this structure for every data element
3753 ** in an associative array of type "x1".
3755 typedef struct s_x1node {
3756 char *data; /* The data */
3757 struct s_x1node *next; /* Next entry with the same hash */
3758 struct s_x1node **from; /* Previous link */
3759 } x1node;
3761 /* There is only one instance of the array, which is the following */
3762 static struct s_x1 *x1a;
3764 /* Allocate a new associative array */
3765 void Strsafe_init(){
3766 if( x1a ) return;
3767 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
3768 if( x1a ){
3769 x1a->size = 1024;
3770 x1a->count = 0;
3771 x1a->tbl = (x1node*)malloc(
3772 (sizeof(x1node) + sizeof(x1node*))*1024 );
3773 if( x1a->tbl==0 ){
3774 free(x1a);
3775 x1a = 0;
3776 }else{
3777 int i;
3778 x1a->ht = (x1node**)&(x1a->tbl[1024]);
3779 for(i=0; i<1024; i++) x1a->ht[i] = 0;
3783 /* Insert a new record into the array. Return TRUE if successful.
3784 ** Prior data with the same key is NOT overwritten */
3785 int Strsafe_insert(data)
3786 char *data;
3788 x1node *np;
3789 int h;
3790 int ph;
3792 if( x1a==0 ) return 0;
3793 ph = strhash(data);
3794 h = ph & (x1a->size-1);
3795 np = x1a->ht[h];
3796 while( np ){
3797 if( strcmp(np->data,data)==0 ){
3798 /* An existing entry with the same key is found. */
3799 /* Fail because overwrite is not allows. */
3800 return 0;
3802 np = np->next;
3804 if( x1a->count>=x1a->size ){
3805 /* Need to make the hash table bigger */
3806 int i,size;
3807 struct s_x1 array;
3808 array.size = size = x1a->size*2;
3809 array.count = x1a->count;
3810 array.tbl = (x1node*)malloc(
3811 (sizeof(x1node) + sizeof(x1node*))*size );
3812 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
3813 array.ht = (x1node**)&(array.tbl[size]);
3814 for(i=0; i<size; i++) array.ht[i] = 0;
3815 for(i=0; i<x1a->count; i++){
3816 x1node *oldnp, *newnp;
3817 oldnp = &(x1a->tbl[i]);
3818 h = strhash(oldnp->data) & (size-1);
3819 newnp = &(array.tbl[i]);
3820 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3821 newnp->next = array.ht[h];
3822 newnp->data = oldnp->data;
3823 newnp->from = &(array.ht[h]);
3824 array.ht[h] = newnp;
3826 free(x1a->tbl);
3827 *x1a = array;
3829 /* Insert the new data */
3830 h = ph & (x1a->size-1);
3831 np = &(x1a->tbl[x1a->count++]);
3832 np->data = data;
3833 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
3834 np->next = x1a->ht[h];
3835 x1a->ht[h] = np;
3836 np->from = &(x1a->ht[h]);
3837 return 1;
3840 /* Return a pointer to data assigned to the given key. Return NULL
3841 ** if no such key. */
3842 char *Strsafe_find(key)
3843 char *key;
3845 int h;
3846 x1node *np;
3848 if( x1a==0 ) return 0;
3849 h = strhash(key) & (x1a->size-1);
3850 np = x1a->ht[h];
3851 while( np ){
3852 if( strcmp(np->data,key)==0 ) break;
3853 np = np->next;
3855 return np ? np->data : 0;
3858 /* Return a pointer to the (terminal or nonterminal) symbol "x".
3859 ** Create a new symbol if this is the first time "x" has been seen.
3861 struct symbol *Symbol_new(x)
3862 char *x;
3864 struct symbol *sp;
3866 sp = Symbol_find(x);
3867 if( sp==0 ){
3868 sp = (struct symbol *)malloc( sizeof(struct symbol) );
3869 MemoryCheck(sp);
3870 sp->name = Strsafe(x);
3871 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
3872 sp->rule = 0;
3873 sp->fallback = 0;
3874 sp->prec = -1;
3875 sp->assoc = UNK;
3876 sp->firstset = 0;
3877 sp->lambda = B_FALSE;
3878 sp->destructor = 0;
3879 sp->datatype = 0;
3880 Symbol_insert(sp,sp->name);
3882 return sp;
3885 /* Compare two symbols for working purposes
3887 ** Symbols that begin with upper case letters (terminals or tokens)
3888 ** must sort before symbols that begin with lower case letters
3889 ** (non-terminals). Other than that, the order does not matter.
3891 ** We find experimentally that leaving the symbols in their original
3892 ** order (the order they appeared in the grammar file) gives the
3893 ** smallest parser tables in SQLite.
3895 int Symbolcmpp(struct symbol **a, struct symbol **b){
3896 int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
3897 int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
3898 return i1-i2;
3901 /* There is one instance of the following structure for each
3902 ** associative array of type "x2".
3904 struct s_x2 {
3905 int size; /* The number of available slots. */
3906 /* Must be a power of 2 greater than or */
3907 /* equal to 1 */
3908 int count; /* Number of currently slots filled */
3909 struct s_x2node *tbl; /* The data stored here */
3910 struct s_x2node **ht; /* Hash table for lookups */
3913 /* There is one instance of this structure for every data element
3914 ** in an associative array of type "x2".
3916 typedef struct s_x2node {
3917 struct symbol *data; /* The data */
3918 char *key; /* The key */
3919 struct s_x2node *next; /* Next entry with the same hash */
3920 struct s_x2node **from; /* Previous link */
3921 } x2node;
3923 /* There is only one instance of the array, which is the following */
3924 static struct s_x2 *x2a;
3926 /* Allocate a new associative array */
3927 void Symbol_init(){
3928 if( x2a ) return;
3929 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
3930 if( x2a ){
3931 x2a->size = 128;
3932 x2a->count = 0;
3933 x2a->tbl = (x2node*)malloc(
3934 (sizeof(x2node) + sizeof(x2node*))*128 );
3935 if( x2a->tbl==0 ){
3936 free(x2a);
3937 x2a = 0;
3938 }else{
3939 int i;
3940 x2a->ht = (x2node**)&(x2a->tbl[128]);
3941 for(i=0; i<128; i++) x2a->ht[i] = 0;
3945 /* Insert a new record into the array. Return TRUE if successful.
3946 ** Prior data with the same key is NOT overwritten */
3947 int Symbol_insert(data,key)
3948 struct symbol *data;
3949 char *key;
3951 x2node *np;
3952 int h;
3953 int ph;
3955 if( x2a==0 ) return 0;
3956 ph = strhash(key);
3957 h = ph & (x2a->size-1);
3958 np = x2a->ht[h];
3959 while( np ){
3960 if( strcmp(np->key,key)==0 ){
3961 /* An existing entry with the same key is found. */
3962 /* Fail because overwrite is not allows. */
3963 return 0;
3965 np = np->next;
3967 if( x2a->count>=x2a->size ){
3968 /* Need to make the hash table bigger */
3969 int i,size;
3970 struct s_x2 array;
3971 array.size = size = x2a->size*2;
3972 array.count = x2a->count;
3973 array.tbl = (x2node*)malloc(
3974 (sizeof(x2node) + sizeof(x2node*))*size );
3975 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
3976 array.ht = (x2node**)&(array.tbl[size]);
3977 for(i=0; i<size; i++) array.ht[i] = 0;
3978 for(i=0; i<x2a->count; i++){
3979 x2node *oldnp, *newnp;
3980 oldnp = &(x2a->tbl[i]);
3981 h = strhash(oldnp->key) & (size-1);
3982 newnp = &(array.tbl[i]);
3983 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
3984 newnp->next = array.ht[h];
3985 newnp->key = oldnp->key;
3986 newnp->data = oldnp->data;
3987 newnp->from = &(array.ht[h]);
3988 array.ht[h] = newnp;
3990 free(x2a->tbl);
3991 *x2a = array;
3993 /* Insert the new data */
3994 h = ph & (x2a->size-1);
3995 np = &(x2a->tbl[x2a->count++]);
3996 np->key = key;
3997 np->data = data;
3998 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
3999 np->next = x2a->ht[h];
4000 x2a->ht[h] = np;
4001 np->from = &(x2a->ht[h]);
4002 return 1;
4005 /* Return a pointer to data assigned to the given key. Return NULL
4006 ** if no such key. */
4007 struct symbol *Symbol_find(key)
4008 char *key;
4010 int h;
4011 x2node *np;
4013 if( x2a==0 ) return 0;
4014 h = strhash(key) & (x2a->size-1);
4015 np = x2a->ht[h];
4016 while( np ){
4017 if( strcmp(np->key,key)==0 ) break;
4018 np = np->next;
4020 return np ? np->data : 0;
4023 /* Return the n-th data. Return NULL if n is out of range. */
4024 struct symbol *Symbol_Nth(n)
4025 int n;
4027 struct symbol *data;
4028 if( x2a && n>0 && n<=x2a->count ){
4029 data = x2a->tbl[n-1].data;
4030 }else{
4031 data = 0;
4033 return data;
4036 /* Return the size of the array */
4037 int Symbol_count()
4039 return x2a ? x2a->count : 0;
4042 /* Return an array of pointers to all data in the table.
4043 ** The array is obtained from malloc. Return NULL if memory allocation
4044 ** problems, or if the array is empty. */
4045 struct symbol **Symbol_arrayof()
4047 struct symbol **array;
4048 int i,size;
4049 if( x2a==0 ) return 0;
4050 size = x2a->count;
4051 array = (struct symbol **)malloc( sizeof(struct symbol *)*size );
4052 if( array ){
4053 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
4055 return array;
4058 /* Compare two configurations */
4059 int Configcmp(a,b)
4060 struct config *a;
4061 struct config *b;
4063 int x;
4064 x = a->rp->index - b->rp->index;
4065 if( x==0 ) x = a->dot - b->dot;
4066 return x;
4069 /* Compare two states */
4070 PRIVATE int statecmp(a,b)
4071 struct config *a;
4072 struct config *b;
4074 int rc;
4075 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
4076 rc = a->rp->index - b->rp->index;
4077 if( rc==0 ) rc = a->dot - b->dot;
4079 if( rc==0 ){
4080 if( a ) rc = 1;
4081 if( b ) rc = -1;
4083 return rc;
4086 /* Hash a state */
4087 PRIVATE int statehash(a)
4088 struct config *a;
4090 int h=0;
4091 while( a ){
4092 h = h*571 + a->rp->index*37 + a->dot;
4093 a = a->bp;
4095 return h;
4098 /* Allocate a new state structure */
4099 struct state *State_new()
4101 struct state *new;
4102 new = (struct state *)malloc( sizeof(struct state) );
4103 MemoryCheck(new);
4104 return new;
4107 /* There is one instance of the following structure for each
4108 ** associative array of type "x3".
4110 struct s_x3 {
4111 int size; /* The number of available slots. */
4112 /* Must be a power of 2 greater than or */
4113 /* equal to 1 */
4114 int count; /* Number of currently slots filled */
4115 struct s_x3node *tbl; /* The data stored here */
4116 struct s_x3node **ht; /* Hash table for lookups */
4119 /* There is one instance of this structure for every data element
4120 ** in an associative array of type "x3".
4122 typedef struct s_x3node {
4123 struct state *data; /* The data */
4124 struct config *key; /* The key */
4125 struct s_x3node *next; /* Next entry with the same hash */
4126 struct s_x3node **from; /* Previous link */
4127 } x3node;
4129 /* There is only one instance of the array, which is the following */
4130 static struct s_x3 *x3a;
4132 /* Allocate a new associative array */
4133 void State_init(){
4134 if( x3a ) return;
4135 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
4136 if( x3a ){
4137 x3a->size = 128;
4138 x3a->count = 0;
4139 x3a->tbl = (x3node*)malloc(
4140 (sizeof(x3node) + sizeof(x3node*))*128 );
4141 if( x3a->tbl==0 ){
4142 free(x3a);
4143 x3a = 0;
4144 }else{
4145 int i;
4146 x3a->ht = (x3node**)&(x3a->tbl[128]);
4147 for(i=0; i<128; i++) x3a->ht[i] = 0;
4151 /* Insert a new record into the array. Return TRUE if successful.
4152 ** Prior data with the same key is NOT overwritten */
4153 int State_insert(data,key)
4154 struct state *data;
4155 struct config *key;
4157 x3node *np;
4158 int h;
4159 int ph;
4161 if( x3a==0 ) return 0;
4162 ph = statehash(key);
4163 h = ph & (x3a->size-1);
4164 np = x3a->ht[h];
4165 while( np ){
4166 if( statecmp(np->key,key)==0 ){
4167 /* An existing entry with the same key is found. */
4168 /* Fail because overwrite is not allows. */
4169 return 0;
4171 np = np->next;
4173 if( x3a->count>=x3a->size ){
4174 /* Need to make the hash table bigger */
4175 int i,size;
4176 struct s_x3 array;
4177 array.size = size = x3a->size*2;
4178 array.count = x3a->count;
4179 array.tbl = (x3node*)malloc(
4180 (sizeof(x3node) + sizeof(x3node*))*size );
4181 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4182 array.ht = (x3node**)&(array.tbl[size]);
4183 for(i=0; i<size; i++) array.ht[i] = 0;
4184 for(i=0; i<x3a->count; i++){
4185 x3node *oldnp, *newnp;
4186 oldnp = &(x3a->tbl[i]);
4187 h = statehash(oldnp->key) & (size-1);
4188 newnp = &(array.tbl[i]);
4189 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4190 newnp->next = array.ht[h];
4191 newnp->key = oldnp->key;
4192 newnp->data = oldnp->data;
4193 newnp->from = &(array.ht[h]);
4194 array.ht[h] = newnp;
4196 free(x3a->tbl);
4197 *x3a = array;
4199 /* Insert the new data */
4200 h = ph & (x3a->size-1);
4201 np = &(x3a->tbl[x3a->count++]);
4202 np->key = key;
4203 np->data = data;
4204 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
4205 np->next = x3a->ht[h];
4206 x3a->ht[h] = np;
4207 np->from = &(x3a->ht[h]);
4208 return 1;
4211 /* Return a pointer to data assigned to the given key. Return NULL
4212 ** if no such key. */
4213 struct state *State_find(key)
4214 struct config *key;
4216 int h;
4217 x3node *np;
4219 if( x3a==0 ) return 0;
4220 h = statehash(key) & (x3a->size-1);
4221 np = x3a->ht[h];
4222 while( np ){
4223 if( statecmp(np->key,key)==0 ) break;
4224 np = np->next;
4226 return np ? np->data : 0;
4229 /* Return an array of pointers to all data in the table.
4230 ** The array is obtained from malloc. Return NULL if memory allocation
4231 ** problems, or if the array is empty. */
4232 struct state **State_arrayof()
4234 struct state **array;
4235 int i,size;
4236 if( x3a==0 ) return 0;
4237 size = x3a->count;
4238 array = (struct state **)malloc( sizeof(struct state *)*size );
4239 if( array ){
4240 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
4242 return array;
4245 /* Hash a configuration */
4246 PRIVATE int confighash(a)
4247 struct config *a;
4249 int h=0;
4250 h = h*571 + a->rp->index*37 + a->dot;
4251 return h;
4254 /* There is one instance of the following structure for each
4255 ** associative array of type "x4".
4257 struct s_x4 {
4258 int size; /* The number of available slots. */
4259 /* Must be a power of 2 greater than or */
4260 /* equal to 1 */
4261 int count; /* Number of currently slots filled */
4262 struct s_x4node *tbl; /* The data stored here */
4263 struct s_x4node **ht; /* Hash table for lookups */
4266 /* There is one instance of this structure for every data element
4267 ** in an associative array of type "x4".
4269 typedef struct s_x4node {
4270 struct config *data; /* The data */
4271 struct s_x4node *next; /* Next entry with the same hash */
4272 struct s_x4node **from; /* Previous link */
4273 } x4node;
4275 /* There is only one instance of the array, which is the following */
4276 static struct s_x4 *x4a;
4278 /* Allocate a new associative array */
4279 void Configtable_init(){
4280 if( x4a ) return;
4281 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
4282 if( x4a ){
4283 x4a->size = 64;
4284 x4a->count = 0;
4285 x4a->tbl = (x4node*)malloc(
4286 (sizeof(x4node) + sizeof(x4node*))*64 );
4287 if( x4a->tbl==0 ){
4288 free(x4a);
4289 x4a = 0;
4290 }else{
4291 int i;
4292 x4a->ht = (x4node**)&(x4a->tbl[64]);
4293 for(i=0; i<64; i++) x4a->ht[i] = 0;
4297 /* Insert a new record into the array. Return TRUE if successful.
4298 ** Prior data with the same key is NOT overwritten */
4299 int Configtable_insert(data)
4300 struct config *data;
4302 x4node *np;
4303 int h;
4304 int ph;
4306 if( x4a==0 ) return 0;
4307 ph = confighash(data);
4308 h = ph & (x4a->size-1);
4309 np = x4a->ht[h];
4310 while( np ){
4311 if( Configcmp(np->data,data)==0 ){
4312 /* An existing entry with the same key is found. */
4313 /* Fail because overwrite is not allows. */
4314 return 0;
4316 np = np->next;
4318 if( x4a->count>=x4a->size ){
4319 /* Need to make the hash table bigger */
4320 int i,size;
4321 struct s_x4 array;
4322 array.size = size = x4a->size*2;
4323 array.count = x4a->count;
4324 array.tbl = (x4node*)malloc(
4325 (sizeof(x4node) + sizeof(x4node*))*size );
4326 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
4327 array.ht = (x4node**)&(array.tbl[size]);
4328 for(i=0; i<size; i++) array.ht[i] = 0;
4329 for(i=0; i<x4a->count; i++){
4330 x4node *oldnp, *newnp;
4331 oldnp = &(x4a->tbl[i]);
4332 h = confighash(oldnp->data) & (size-1);
4333 newnp = &(array.tbl[i]);
4334 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
4335 newnp->next = array.ht[h];
4336 newnp->data = oldnp->data;
4337 newnp->from = &(array.ht[h]);
4338 array.ht[h] = newnp;
4340 free(x4a->tbl);
4341 *x4a = array;
4343 /* Insert the new data */
4344 h = ph & (x4a->size-1);
4345 np = &(x4a->tbl[x4a->count++]);
4346 np->data = data;
4347 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
4348 np->next = x4a->ht[h];
4349 x4a->ht[h] = np;
4350 np->from = &(x4a->ht[h]);
4351 return 1;
4354 /* Return a pointer to data assigned to the given key. Return NULL
4355 ** if no such key. */
4356 struct config *Configtable_find(key)
4357 struct config *key;
4359 int h;
4360 x4node *np;
4362 if( x4a==0 ) return 0;
4363 h = confighash(key) & (x4a->size-1);
4364 np = x4a->ht[h];
4365 while( np ){
4366 if( Configcmp(np->data,key)==0 ) break;
4367 np = np->next;
4369 return np ? np->data : 0;
4372 /* Remove all data from the table. Pass each data to the function "f"
4373 ** as it is removed. ("f" may be null to avoid this step.) */
4374 void Configtable_clear(f)
4375 int(*f)(/* struct config * */);
4377 int i;
4378 if( x4a==0 || x4a->count==0 ) return;
4379 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
4380 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
4381 x4a->count = 0;
4382 return;