8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / cmd / localedef / collate.c
bloba55c823f3bc7fe0d04da614ede7ba8b92fe0fd31
1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2017 Nexenta Systems, Inc.
17 * LC_COLLATE database generation routines for localedef.
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <errno.h>
23 #include <string.h>
24 #include <sys/types.h>
25 #include <sys/avl.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <wchar.h>
29 #include <widec.h>
30 #include <limits.h>
31 #include "localedef.h"
32 #include "parser.tab.h"
33 #include "collatefile.h"
36 * Design notes.
38 * It will be extremely helpful to the reader if they have access to
39 * the localedef and locale file format specifications available.
40 * Latest versions of these are available from www.opengroup.org.
42 * The design for the collation code is a bit complex. The goal is a
43 * single collation database as described in collate.h (in
44 * libc/port/locale). However, there are some other tidbits:
46 * a) The substitution entries are now a directly indexable array. A
47 * priority elsewhere in the table is taken as an index into the
48 * substitution table if it has a high bit (COLLATE_SUBST_PRIORITY)
49 * set. (The bit is cleared and the result is the index into the
50 * table.
52 * b) We eliminate duplicate entries into the substitution table.
53 * This saves a lot of space.
55 * c) The priorities for each level are "compressed", so that each
56 * sorting level has consecutively numbered priorities starting at 1.
57 * (O is reserved for the ignore priority.) This means sort levels
58 * which only have a few distinct priorities can represent the
59 * priority level in fewer bits, which makes the strxfrm output
60 * smaller.
62 * d) We record the total number of priorities so that strxfrm can
63 * figure out how many bytes to expand a numeric priority into.
65 * e) For the UNDEFINED pass (the last pass), we record the maximum
66 * number of bits needed to uniquely prioritize these entries, so that
67 * the last pass can also use smaller strxfrm output when possible.
69 * f) Priorities with the sign bit set are verboten. This works out
70 * because no active character set needs that bit to carry significant
71 * information once the character is in wide form.
73 * To process the entire data to make the database, we actually run
74 * multiple passes over the data.
76 * The first pass, which is done at parse time, identifies elements,
77 * substitutions, and such, and records them in priority order. As
78 * some priorities can refer to other priorities, using forward
79 * references, we use a table of references indicating whether the
80 * priority's value has been resolved, or whether it is still a
81 * reference.
83 * The second pass walks over all the items in priority order, noting
84 * that they are used directly, and not just an indirect reference.
85 * This is done by creating a "weight" structure for the item. The
86 * weights are stashed in an AVL tree sorted by relative "priority".
88 * The third pass walks over all the weight structures, in priority
89 * order, and assigns a new monotonically increasing (per sort level)
90 * weight value to them. These are the values that will actually be
91 * written to the file.
93 * The fourth pass just writes the data out.
97 * In order to resolve the priorities, we create a table of priorities.
98 * Entries in the table can be in one of three states.
100 * UNKNOWN is for newly allocated entries, and indicates that nothing
101 * is known about the priority. (For example, when new entries are created
102 * for collating-symbols, this is the value assigned for them until the
103 * collating symbol's order has been determined.
105 * RESOLVED is used for an entry where the priority indicates the final
106 * numeric weight.
108 * REFER is used for entries that reference other entries. Typically
109 * this is used for forward references. A collating-symbol can never
110 * have this value.
112 * The "pass" field is used during final resolution to aid in detection
113 * of referencing loops. (For example <A> depends on <B>, but <B> has its
114 * priority dependent on <A>.)
116 typedef enum {
117 UNKNOWN, /* priority is totally unknown */
118 RESOLVED, /* priority value fully resolved */
119 REFER /* priority is a reference (index) */
120 } res_t;
122 typedef struct weight {
123 int32_t pri;
124 int opt;
125 avl_node_t avl;
126 } weight_t;
128 typedef struct priority {
129 res_t res;
130 int32_t pri;
131 int pass;
132 int lineno;
133 } collpri_t;
135 #define NUM_WT collinfo.directive_count
138 * These are the abstract collating symbols, which are just a symbolic
139 * way to reference a priority.
141 struct collsym {
142 char *name;
143 int32_t ref;
144 avl_node_t avl;
148 * These are also abstract collating symbols, but we allow them to have
149 * different priorities at different levels.
151 typedef struct collundef {
152 char *name;
153 int32_t ref[COLL_WEIGHTS_MAX];
154 avl_node_t avl;
155 } collundef_t;
158 * These are called "chains" in libc. This records the fact that two
159 * more characters should be treated as a single collating entity when
160 * they appear together. For example, in Spanish <C><h> gets collated
161 * as a character between <C> and <D>.
163 struct collelem {
164 char *symbol;
165 wchar_t *expand;
166 int32_t ref[COLL_WEIGHTS_MAX];
167 avl_node_t avl_bysymbol;
168 avl_node_t avl_byexpand;
172 * Individual characters have a sequence of weights as well.
174 typedef struct collchar {
175 wchar_t wc;
176 int32_t ref[COLL_WEIGHTS_MAX];
177 avl_node_t avl;
178 } collchar_t;
181 * Substitution entries. The key is itself a priority. Note that
182 * when we create one of these, we *automatically* wind up with a
183 * fully resolved priority for the key, because creation of
184 * substitutions creates a resolved priority at the same time.
186 typedef struct {
187 int32_t key;
188 int32_t ref[COLLATE_STR_LEN];
189 avl_node_t avl;
190 avl_node_t avl_ref;
191 } subst_t;
193 static avl_tree_t collsyms;
194 static avl_tree_t collundefs;
195 static avl_tree_t elem_by_symbol;
196 static avl_tree_t elem_by_expand;
197 static avl_tree_t collchars;
198 static avl_tree_t substs[COLL_WEIGHTS_MAX];
199 static avl_tree_t substs_ref[COLL_WEIGHTS_MAX];
200 static avl_tree_t weights[COLL_WEIGHTS_MAX];
201 static int32_t nweight[COLL_WEIGHTS_MAX];
204 * This is state tracking for the ellipsis token. Note that we start
205 * the initial values so that the ellipsis logic will think we got a
206 * magic starting value of NUL. It starts at minus one because the
207 * starting point is exclusive -- i.e. the starting point is not
208 * itself handled by the ellipsis code.
210 static int currorder = EOF;
211 static int lastorder = EOF;
212 static collelem_t *currelem;
213 static collchar_t *currchar;
214 static collundef_t *currundef;
215 static wchar_t ellipsis_start = 0;
216 static int32_t ellipsis_weights[COLL_WEIGHTS_MAX];
219 * We keep a running tally of weights.
221 static int nextpri = 1;
222 static int nextsubst[COLL_WEIGHTS_MAX] = { 0 };
225 * This array collects up the weights for each level.
227 static int32_t order_weights[COLL_WEIGHTS_MAX];
228 static int curr_weight = 0;
229 static int32_t subst_weights[COLLATE_STR_LEN];
230 static int curr_subst = 0;
233 * Some initial priority values.
235 static int32_t pri_undefined[COLL_WEIGHTS_MAX];
236 static int32_t pri_ignore;
238 static collate_info_t collinfo;
240 static collpri_t *prilist = NULL;
241 static int numpri = 0;
242 static int maxpri = 0;
244 static void start_order(int);
246 static int32_t
247 new_pri(void)
249 int i;
251 if (numpri >= maxpri) {
252 maxpri = maxpri ? maxpri * 2 : 1024;
253 prilist = realloc(prilist, sizeof (collpri_t) * maxpri);
254 if (prilist == NULL) {
255 errf(_("out of memory"));
256 return (-1);
258 for (i = numpri; i < maxpri; i++) {
259 prilist[i].res = UNKNOWN;
260 prilist[i].pri = 0;
261 prilist[i].pass = 0;
264 return (numpri++);
267 static collpri_t *
268 get_pri(int32_t ref)
270 if ((ref < 0) || (ref > numpri)) {
271 INTERR;
272 return (NULL);
274 return (&prilist[ref]);
277 static void
278 set_pri(int32_t ref, int32_t v, res_t res)
280 collpri_t *pri;
282 pri = get_pri(ref);
284 if ((res == REFER) && ((v < 0) || (v >= numpri))) {
285 INTERR;
288 /* Resolve self references */
289 if ((res == REFER) && (ref == v)) {
290 v = nextpri;
291 res = RESOLVED;
294 if (pri->res != UNKNOWN) {
295 warn(_("repeated item in order list (first on %d)"),
296 pri->lineno);
297 return;
299 pri->lineno = lineno;
300 pri->pri = v;
301 pri->res = res;
304 static int32_t
305 resolve_pri(int32_t ref)
307 collpri_t *pri;
308 static int32_t pass = 0;
310 pri = get_pri(ref);
311 pass++;
312 while (pri->res == REFER) {
313 if (pri->pass == pass) {
314 /* report a line with the circular symbol */
315 lineno = pri->lineno;
316 errf(_("circular reference in order list"));
317 return (-1);
319 if ((pri->pri < 0) || (pri->pri >= numpri)) {
320 INTERR;
321 return (-1);
323 pri->pass = pass;
324 pri = &prilist[pri->pri];
327 if (pri->res == UNKNOWN) {
328 return (-1);
330 if (pri->res != RESOLVED)
331 INTERR;
333 return (pri->pri);
336 static int
337 weight_compare(const void *n1, const void *n2)
339 int32_t k1 = ((const weight_t *)n1)->pri;
340 int32_t k2 = ((const weight_t *)n2)->pri;
342 return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
345 static int
346 collsym_compare(const void *n1, const void *n2)
348 const collsym_t *c1 = n1;
349 const collsym_t *c2 = n2;
350 int rv;
352 rv = strcmp(c1->name, c2->name);
353 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
356 static int
357 collundef_compare(const void *n1, const void *n2)
359 const collundef_t *c1 = n1;
360 const collundef_t *c2 = n2;
361 int rv;
363 rv = strcmp(c1->name, c2->name);
364 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
367 static int
368 element_compare_symbol(const void *n1, const void *n2)
370 const collelem_t *c1 = n1;
371 const collelem_t *c2 = n2;
372 int rv;
374 rv = strcmp(c1->symbol, c2->symbol);
375 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
378 static int
379 element_compare_expand(const void *n1, const void *n2)
381 const collelem_t *c1 = n1;
382 const collelem_t *c2 = n2;
383 int rv;
385 rv = wcscmp(c1->expand, c2->expand);
386 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
389 static int
390 collchar_compare(const void *n1, const void *n2)
392 wchar_t k1 = ((const collchar_t *)n1)->wc;
393 wchar_t k2 = ((const collchar_t *)n2)->wc;
395 return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
398 static int
399 subst_compare(const void *n1, const void *n2)
401 int32_t k1 = ((const subst_t *)n1)->key;
402 int32_t k2 = ((const subst_t *)n2)->key;
404 return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
407 static int
408 subst_compare_ref(const void *n1, const void *n2)
410 int32_t *c1 = ((subst_t *)n1)->ref;
411 int32_t *c2 = ((subst_t *)n2)->ref;
412 int rv;
414 rv = wcscmp((wchar_t *)c1, (wchar_t *)c2);
415 return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
418 void
419 init_collate(void)
421 int i;
423 avl_create(&collsyms, collsym_compare, sizeof (collsym_t),
424 offsetof(collsym_t, avl));
426 avl_create(&collundefs, collundef_compare, sizeof (collsym_t),
427 offsetof(collundef_t, avl));
429 avl_create(&elem_by_symbol, element_compare_symbol, sizeof (collelem_t),
430 offsetof(collelem_t, avl_bysymbol));
431 avl_create(&elem_by_expand, element_compare_expand, sizeof (collelem_t),
432 offsetof(collelem_t, avl_byexpand));
434 avl_create(&collchars, collchar_compare, sizeof (collchar_t),
435 offsetof(collchar_t, avl));
437 for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
438 avl_create(&substs[i], subst_compare, sizeof (subst_t),
439 offsetof(subst_t, avl));
440 avl_create(&substs_ref[i], subst_compare_ref,
441 sizeof (subst_t), offsetof(subst_t, avl_ref));
442 avl_create(&weights[i], weight_compare, sizeof (weight_t),
443 offsetof(weight_t, avl));
444 nweight[i] = 1;
447 (void) memset(&collinfo, 0, sizeof (collinfo));
449 /* allocate some initial priorities */
450 pri_ignore = new_pri();
452 set_pri(pri_ignore, 0, RESOLVED);
454 for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
455 pri_undefined[i] = new_pri();
457 /* we will override this later */
458 set_pri(pri_undefined[i], COLLATE_MAX_PRIORITY, UNKNOWN);
462 void
463 define_collsym(char *name)
465 collsym_t *sym;
466 avl_index_t where;
468 if ((sym = calloc(1, sizeof (*sym))) == NULL) {
469 errf(_("out of memory"));
470 return;
472 sym->name = name;
473 sym->ref = new_pri();
475 if (avl_find(&collsyms, sym, &where) != NULL) {
477 * This should never happen because we are only called
478 * for undefined symbols.
480 free(sym);
481 INTERR;
482 return;
484 avl_insert(&collsyms, sym, where);
487 collsym_t *
488 lookup_collsym(char *name)
490 collsym_t srch;
492 srch.name = name;
493 return (avl_find(&collsyms, &srch, NULL));
496 collelem_t *
497 lookup_collelem(char *symbol)
499 collelem_t srch;
501 srch.symbol = symbol;
502 return (avl_find(&elem_by_symbol, &srch, NULL));
505 static collundef_t *
506 get_collundef(char *name)
508 collundef_t srch;
509 collundef_t *ud;
510 avl_index_t where;
511 int i;
513 srch.name = name;
514 if ((ud = avl_find(&collundefs, &srch, &where)) == NULL) {
515 if (((ud = calloc(1, sizeof (*ud))) == NULL) ||
516 ((ud->name = strdup(name)) == NULL)) {
517 errf(_("out of memory"));
518 free(ud);
519 return (NULL);
521 for (i = 0; i < NUM_WT; i++) {
522 ud->ref[i] = new_pri();
524 avl_insert(&collundefs, ud, where);
526 add_charmap_undefined(name);
527 return (ud);
530 static collchar_t *
531 get_collchar(wchar_t wc, int create)
533 collchar_t srch;
534 collchar_t *cc;
535 avl_index_t where;
536 int i;
538 srch.wc = wc;
539 cc = avl_find(&collchars, &srch, &where);
540 if ((cc == NULL) && create) {
541 if ((cc = calloc(1, sizeof (*cc))) == NULL) {
542 errf(_("out of memory"));
543 return (NULL);
545 for (i = 0; i < NUM_WT; i++) {
546 cc->ref[i] = new_pri();
548 cc->wc = wc;
549 avl_insert(&collchars, cc, where);
551 return (cc);
554 void
555 end_order_collsym(collsym_t *sym)
557 start_order(T_COLLSYM);
558 /* update the weight */
560 set_pri(sym->ref, nextpri, RESOLVED);
561 nextpri++;
564 void
565 end_order(void)
567 int i;
568 int32_t pri;
569 int32_t ref;
570 collpri_t *p;
572 /* advance the priority/weight */
573 pri = nextpri;
575 switch (currorder) {
576 case T_CHAR:
577 for (i = 0; i < NUM_WT; i++) {
578 if (((ref = order_weights[i]) < 0) ||
579 ((p = get_pri(ref)) == NULL) ||
580 (p->pri == -1)) {
581 /* unspecified weight is a self reference */
582 set_pri(currchar->ref[i], pri, RESOLVED);
583 } else {
584 set_pri(currchar->ref[i], ref, REFER);
586 order_weights[i] = -1;
589 /* leave a cookie trail in case next symbol is ellipsis */
590 ellipsis_start = currchar->wc + 1;
591 currchar = NULL;
592 break;
594 case T_ELLIPSIS:
595 /* save off the weights were we can find them */
596 for (i = 0; i < NUM_WT; i++) {
597 ellipsis_weights[i] = order_weights[i];
598 order_weights[i] = -1;
600 break;
602 case T_COLLELEM:
603 if (currelem == NULL) {
604 INTERR;
605 } else {
606 for (i = 0; i < NUM_WT; i++) {
608 if (((ref = order_weights[i]) < 0) ||
609 ((p = get_pri(ref)) == NULL) ||
610 (p->pri == -1)) {
611 set_pri(currelem->ref[i], pri,
612 RESOLVED);
613 } else {
614 set_pri(currelem->ref[i], ref, REFER);
616 order_weights[i] = -1;
619 break;
621 case T_UNDEFINED:
622 for (i = 0; i < NUM_WT; i++) {
623 if (((ref = order_weights[i]) < 0) ||
624 ((p = get_pri(ref)) == NULL) ||
625 (p->pri == -1)) {
626 set_pri(pri_undefined[i], -1, RESOLVED);
627 } else {
628 set_pri(pri_undefined[i], ref, REFER);
630 order_weights[i] = -1;
632 break;
634 case T_SYMBOL:
635 for (i = 0; i < NUM_WT; i++) {
636 if (((ref = order_weights[i]) < 0) ||
637 ((p = get_pri(ref)) == NULL) ||
638 (p->pri == -1)) {
639 set_pri(currundef->ref[i], pri, RESOLVED);
640 } else {
641 set_pri(currundef->ref[i], ref, REFER);
643 order_weights[i] = -1;
645 break;
647 default:
648 INTERR;
651 nextpri++;
654 static void
655 start_order(int type)
657 int i;
659 lastorder = currorder;
660 currorder = type;
662 /* this is used to protect ELLIPSIS processing */
663 if ((lastorder == T_ELLIPSIS) && (type != T_CHAR)) {
664 errf(_("character value expected"));
667 for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
668 order_weights[i] = -1;
670 curr_weight = 0;
673 void
674 start_order_undefined(void)
676 start_order(T_UNDEFINED);
679 void
680 start_order_symbol(char *name)
682 currundef = get_collundef(name);
683 start_order(T_SYMBOL);
686 void
687 start_order_char(wchar_t wc)
689 collchar_t *cc;
690 int32_t ref;
692 start_order(T_CHAR);
695 * If we last saw an ellipsis, then we need to close the range.
696 * Handle that here. Note that we have to be careful because the
697 * items *inside* the range are treated exclusiveley to the items
698 * outside of the range. The ends of the range can have quite
699 * different weights than the range members.
701 if (lastorder == T_ELLIPSIS) {
702 int i;
704 if (wc < ellipsis_start) {
705 errf(_("malformed range!"));
706 return;
708 while (ellipsis_start < wc) {
710 * pick all of the saved weights for the
711 * ellipsis. note that -1 encodes for the
712 * ellipsis itself, which means to take the
713 * current relative priority.
715 if ((cc = get_collchar(ellipsis_start, 1)) == NULL) {
716 INTERR;
717 return;
719 for (i = 0; i < NUM_WT; i++) {
720 collpri_t *p;
721 if (((ref = ellipsis_weights[i]) == -1) ||
722 ((p = get_pri(ref)) == NULL) ||
723 (p->pri == -1)) {
724 set_pri(cc->ref[i], nextpri, RESOLVED);
725 } else {
726 set_pri(cc->ref[i], ref, REFER);
728 ellipsis_weights[i] = 0;
730 ellipsis_start++;
731 nextpri++;
735 currchar = get_collchar(wc, 1);
738 void
739 start_order_collelem(collelem_t *e)
741 start_order(T_COLLELEM);
742 currelem = e;
745 void
746 start_order_ellipsis(void)
748 int i;
750 start_order(T_ELLIPSIS);
752 if (lastorder != T_CHAR) {
753 errf(_("illegal starting point for range"));
754 return;
757 for (i = 0; i < NUM_WT; i++) {
758 ellipsis_weights[i] = order_weights[i];
762 void
763 define_collelem(char *name, wchar_t *wcs)
765 collelem_t *e;
766 avl_index_t where1;
767 avl_index_t where2;
768 int i;
770 if (wcslen(wcs) >= COLLATE_STR_LEN) {
771 errf(_("expanded collation element too long"));
772 return;
775 if ((e = calloc(1, sizeof (*e))) == NULL) {
776 errf(_("out of memory"));
777 return;
779 e->expand = wcs;
780 e->symbol = name;
783 * This is executed before the order statement, so we don't
784 * know how many priorities we *really* need. We allocate one
785 * for each possible weight. Not a big deal, as collating-elements
786 * prove to be quite rare.
788 for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
789 e->ref[i] = new_pri();
792 /* A character sequence can only reduce to one element. */
793 if ((avl_find(&elem_by_symbol, e, &where1) != NULL) ||
794 (avl_find(&elem_by_expand, e, &where2) != NULL)) {
795 errf(_("duplicate collating element definition"));
796 free(e);
797 return;
799 avl_insert(&elem_by_symbol, e, where1);
800 avl_insert(&elem_by_expand, e, where2);
803 void
804 add_order_bit(int kw)
806 uint8_t bit = DIRECTIVE_UNDEF;
808 switch (kw) {
809 case T_FORWARD:
810 bit = DIRECTIVE_FORWARD;
811 break;
812 case T_BACKWARD:
813 bit = DIRECTIVE_BACKWARD;
814 break;
815 case T_POSITION:
816 bit = DIRECTIVE_POSITION;
817 break;
818 default:
819 INTERR;
820 break;
822 collinfo.directive[collinfo.directive_count] |= bit;
825 void
826 add_order_directive(void)
828 if (collinfo.directive_count >= COLL_WEIGHTS_MAX) {
829 errf(_("too many directives (max %d)"), COLL_WEIGHTS_MAX);
831 collinfo.directive_count++;
834 static void
835 add_order_pri(int32_t ref)
837 if (curr_weight >= NUM_WT) {
838 errf(_("too many weights (max %d)"), NUM_WT);
839 return;
841 order_weights[curr_weight] = ref;
842 curr_weight++;
845 void
846 add_order_collsym(collsym_t *s)
848 add_order_pri(s->ref);
851 void
852 add_order_char(wchar_t wc)
854 collchar_t *cc;
856 if ((cc = get_collchar(wc, 1)) == NULL) {
857 INTERR;
858 return;
861 add_order_pri(cc->ref[curr_weight]);
864 void
865 add_order_collelem(collelem_t *e)
867 add_order_pri(e->ref[curr_weight]);
870 void
871 add_order_ignore(void)
873 add_order_pri(pri_ignore);
876 void
877 add_order_symbol(char *sym)
879 collundef_t *c;
880 if ((c = get_collundef(sym)) == NULL) {
881 INTERR;
882 return;
884 add_order_pri(c->ref[curr_weight]);
887 void
888 add_order_ellipsis(void)
890 /* special 0 value indicates self reference */
891 add_order_pri(0);
894 void
895 add_order_subst(void)
897 subst_t srch;
898 subst_t *s;
899 avl_index_t where;
900 int i;
902 (void) memset(&srch, 0, sizeof (srch));
903 for (i = 0; i < curr_subst; i++) {
904 srch.ref[i] = subst_weights[i];
905 subst_weights[i] = 0;
907 s = avl_find(&substs_ref[curr_weight], &srch, &where);
909 if (s == NULL) {
910 if ((s = calloc(1, sizeof (*s))) == NULL) {
911 errf(_("out of memory"));
912 return;
914 s->key = new_pri();
917 * We use a self reference for our key, but we set a
918 * high bit to indicate that this is a substitution
919 * reference. This will expedite table lookups later,
920 * and prevent table lookups for situations that don't
921 * require it. (In short, its a big win, because we
922 * can skip a lot of binary searching.)
924 set_pri(s->key,
925 (nextsubst[curr_weight] | COLLATE_SUBST_PRIORITY),
926 RESOLVED);
927 nextsubst[curr_weight] += 1;
929 for (i = 0; i < curr_subst; i++) {
930 s->ref[i] = srch.ref[i];
933 avl_insert(&substs_ref[curr_weight], s, where);
935 if (avl_find(&substs[curr_weight], s, &where) != NULL) {
936 INTERR;
937 return;
939 avl_insert(&substs[curr_weight], s, where);
941 curr_subst = 0;
945 * We are using the current (unique) priority as a search key
946 * in the substitution table.
948 add_order_pri(s->key);
951 static void
952 add_subst_pri(int32_t ref)
954 if (curr_subst >= COLLATE_STR_LEN) {
955 errf(_("substitution string is too long"));
956 return;
958 subst_weights[curr_subst] = ref;
959 curr_subst++;
962 void
963 add_subst_char(wchar_t wc)
965 collchar_t *cc;
968 if (((cc = get_collchar(wc, 1)) == NULL) ||
969 (cc->wc != wc)) {
970 INTERR;
971 return;
973 /* we take the weight for the character at that position */
974 add_subst_pri(cc->ref[curr_weight]);
977 void
978 add_subst_collelem(collelem_t *e)
980 add_subst_pri(e->ref[curr_weight]);
983 void
984 add_subst_collsym(collsym_t *s)
986 add_subst_pri(s->ref);
989 void
990 add_subst_symbol(char *ptr)
992 collundef_t *cu;
994 if ((cu = get_collundef(ptr)) != NULL) {
995 add_subst_pri(cu->ref[curr_weight]);
999 void
1000 add_weight(int32_t ref, int pass)
1002 weight_t srch;
1003 weight_t *w;
1004 avl_index_t where;
1006 srch.pri = resolve_pri(ref);
1008 /* No translation of ignores */
1009 if (srch.pri == 0)
1010 return;
1012 /* Substitution priorities are not weights */
1013 if (srch.pri & COLLATE_SUBST_PRIORITY)
1014 return;
1016 if (avl_find(&weights[pass], &srch, &where) != NULL)
1017 return;
1019 if ((w = calloc(1, sizeof (*w))) == NULL) {
1020 errf(_("out of memory"));
1021 return;
1023 w->pri = srch.pri;
1024 avl_insert(&weights[pass], w, where);
1027 void
1028 add_weights(int32_t *refs)
1030 int i;
1031 for (i = 0; i < NUM_WT; i++) {
1032 add_weight(refs[i], i);
1036 int32_t
1037 get_weight(int32_t ref, int pass)
1039 weight_t srch;
1040 weight_t *w;
1041 int32_t pri;
1043 pri = resolve_pri(ref);
1044 if (pri & COLLATE_SUBST_PRIORITY) {
1045 return (pri);
1047 if (pri <= 0) {
1048 return (pri);
1050 srch.pri = pri;
1051 if ((w = avl_find(&weights[pass], &srch, NULL)) == NULL) {
1052 INTERR;
1053 return (-1);
1055 return (w->opt);
1058 void
1059 dump_collate(void)
1061 FILE *f;
1062 int i, j, n;
1063 size_t sz;
1064 int32_t pri;
1065 collelem_t *ce;
1066 collchar_t *cc;
1067 subst_t *sb;
1068 char vers[COLLATE_STR_LEN];
1069 collate_char_t chars[UCHAR_MAX + 1];
1070 collate_large_t *large;
1071 collate_subst_t *subst[COLL_WEIGHTS_MAX];
1072 collate_chain_t *chain;
1075 * We have to run through a preliminary pass to identify all the
1076 * weights that we use for each sorting level.
1078 for (i = 0; i < NUM_WT; i++) {
1079 add_weight(pri_ignore, i);
1081 for (i = 0; i < NUM_WT; i++) {
1082 for (sb = avl_first(&substs[i]); sb;
1083 sb = AVL_NEXT(&substs[i], sb)) {
1084 for (j = 0; sb->ref[j]; j++) {
1085 add_weight(sb->ref[j], i);
1089 for (ce = avl_first(&elem_by_expand);
1090 ce != NULL;
1091 ce = AVL_NEXT(&elem_by_expand, ce)) {
1092 add_weights(ce->ref);
1094 for (cc = avl_first(&collchars); cc; cc = AVL_NEXT(&collchars, cc)) {
1095 add_weights(cc->ref);
1099 * Now we walk the entire set of weights, removing the gaps
1100 * in the weights. This gives us optimum usage. The walk
1101 * occurs in priority.
1103 for (i = 0; i < NUM_WT; i++) {
1104 weight_t *w;
1105 for (w = avl_first(&weights[i]); w;
1106 w = AVL_NEXT(&weights[i], w)) {
1107 w->opt = nweight[i];
1108 nweight[i] += 1;
1112 (void) memset(&chars, 0, sizeof (chars));
1113 (void) memset(vers, 0, COLLATE_STR_LEN);
1114 (void) strlcpy(vers, COLLATE_VERSION, sizeof (vers));
1117 * We need to make sure we arrange for the UNDEFINED field
1118 * to show up. Also, set the total weight counts.
1120 for (i = 0; i < NUM_WT; i++) {
1121 if (resolve_pri(pri_undefined[i]) == -1) {
1122 set_pri(pri_undefined[i], -1, RESOLVED);
1123 /* they collate at the end of everything else */
1124 collinfo.undef_pri[i] = COLLATE_MAX_PRIORITY;
1126 collinfo.pri_count[i] = nweight[i];
1129 collinfo.pri_count[NUM_WT] = max_wide();
1130 collinfo.undef_pri[NUM_WT] = COLLATE_MAX_PRIORITY;
1131 collinfo.directive[NUM_WT] = DIRECTIVE_UNDEFINED;
1134 * Ordinary character priorities
1136 for (i = 0; i <= UCHAR_MAX; i++) {
1137 if ((cc = get_collchar(i, 0)) != NULL) {
1138 for (j = 0; j < NUM_WT; j++) {
1139 chars[i].pri[j] = get_weight(cc->ref[j], j);
1141 } else {
1142 for (j = 0; j < NUM_WT; j++) {
1143 chars[i].pri[j] =
1144 get_weight(pri_undefined[j], j);
1147 * Per POSIX, for undefined characters, we
1148 * also have to add a last item, which is the
1149 * character code.
1151 chars[i].pri[NUM_WT] = i;
1156 * Substitution tables
1158 for (i = 0; i < NUM_WT; i++) {
1159 collate_subst_t *st = NULL;
1160 n = collinfo.subst_count[i] = avl_numnodes(&substs[i]);
1161 if ((st = calloc(n, sizeof (collate_subst_t))) == NULL) {
1162 errf(_("out of memory"));
1163 return;
1165 n = 0;
1166 for (sb = avl_first(&substs[i]); sb;
1167 sb = AVL_NEXT(&substs[i], sb)) {
1168 if ((st[n].key = resolve_pri(sb->key)) < 0) {
1169 /* by definition these resolve! */
1170 INTERR;
1172 if (st[n].key != (n | COLLATE_SUBST_PRIORITY)) {
1173 INTERR;
1175 for (j = 0; sb->ref[j]; j++) {
1176 st[n].pri[j] = get_weight(sb->ref[j], i);
1178 n++;
1180 if (n != collinfo.subst_count[i])
1181 INTERR;
1182 subst[i] = st;
1187 * Chains, i.e. collating elements
1189 collinfo.chain_count = avl_numnodes(&elem_by_expand);
1190 chain = calloc(collinfo.chain_count, sizeof (collate_chain_t));
1191 if (chain == NULL) {
1192 errf(_("out of memory"));
1193 return;
1195 for (n = 0, ce = avl_first(&elem_by_expand);
1196 ce != NULL;
1197 ce = AVL_NEXT(&elem_by_expand, ce), n++) {
1198 (void) wsncpy(chain[n].str, ce->expand, COLLATE_STR_LEN);
1199 for (i = 0; i < NUM_WT; i++) {
1200 chain[n].pri[i] = get_weight(ce->ref[i], i);
1203 if (n != collinfo.chain_count)
1204 INTERR;
1207 * Large (> UCHAR_MAX) character priorities
1209 large = calloc(avl_numnodes(&collchars), sizeof (collate_large_t));
1210 if (large == NULL) {
1211 errf(_("out of memory"));
1212 return;
1215 i = 0;
1216 for (cc = avl_first(&collchars); cc; cc = AVL_NEXT(&collchars, cc)) {
1217 int undef = 0;
1218 /* we already gathered those */
1219 if (cc->wc <= UCHAR_MAX)
1220 continue;
1221 for (j = 0; j < NUM_WT; j++) {
1222 if ((pri = get_weight(cc->ref[j], j)) < 0) {
1223 undef = 1;
1225 if (undef && (pri >= 0)) {
1226 /* if undefined, then all priorities are */
1227 INTERR;
1228 } else {
1229 large[i].pri.pri[j] = pri;
1232 if (!undef) {
1233 large[i].val = cc->wc;
1234 collinfo.large_count = i++;
1238 if ((f = open_category()) == NULL) {
1239 return;
1242 /* Time to write the entire data set out */
1244 if ((wr_category(vers, COLLATE_STR_LEN, f) < 0) ||
1245 (wr_category(&collinfo, sizeof (collinfo), f) < 0) ||
1246 (wr_category(&chars, sizeof (chars), f) < 0)) {
1247 delete_category(f);
1248 return;
1251 for (i = 0; i < NUM_WT; i++) {
1252 sz = sizeof (collate_subst_t) * collinfo.subst_count[i];
1253 if (wr_category(subst[i], sz, f) < 0) {
1254 delete_category(f);
1255 return;
1258 sz = sizeof (collate_chain_t) * collinfo.chain_count;
1259 if (wr_category(chain, sz, f) < 0) {
1260 delete_category(f);
1261 return;
1263 sz = sizeof (collate_large_t) * collinfo.large_count;
1264 if (wr_category(large, sz, f) < 0) {
1265 delete_category(f);
1266 return;
1269 close_category(f);