2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.
13 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
14 * Copyright 2012 Garrett D'Amore <garrett@damore.org> All rights reserved.
18 * The functions in this file convert from the standard multibyte forms
19 * to the wide character forms used internally by libc. Unfortunately,
20 * this approach means that we need a method for each and every encoding.
27 #include <sys/types.h>
28 #include "localedef.h"
30 static int towide_none(wchar_t *, const char *, unsigned);
31 static int towide_utf8(wchar_t *, const char *, unsigned);
32 static int towide_big5(wchar_t *, const char *, unsigned);
33 static int towide_gbk(wchar_t *, const char *, unsigned);
34 static int towide_gb2312(wchar_t *, const char *, unsigned);
35 static int towide_gb18030(wchar_t *, const char *, unsigned);
36 static int towide_mskanji(wchar_t *, const char *, unsigned);
37 static int towide_euccn(wchar_t *, const char *, unsigned);
38 static int towide_eucjp(wchar_t *, const char *, unsigned);
39 static int towide_euckr(wchar_t *, const char *, unsigned);
40 static int towide_euctw(wchar_t *, const char *, unsigned);
42 static int tomb_none(char *, wchar_t);
43 static int tomb_utf8(char *, wchar_t);
44 static int tomb_mbs(char *, wchar_t);
46 static int (*_towide
)(wchar_t *, const char *, unsigned) = towide_none
;
47 static int (*_tomb
)(char *, wchar_t) = tomb_none
;
48 static const char *_encoding
= "NONE";
49 static int _nbits
= 7;
52 * Table of supported encodings. We only bother to list the multibyte
53 * encodings here, because single byte locales are handed by "NONE".
57 /* the name that the underlying libc implemenation uses */
59 /* the maximum number of bits required for priorities */
61 int (*towide
)(wchar_t *, const char *, unsigned);
62 int (*tomb
)(char *, wchar_t);
65 * UTF8 values max out at 0x1fffff (although in theory there could
66 * be later extensions, but it won't happen.) This means we only need
67 * 21 bits to be able to encode the entire range of priorities.
69 { "UTF-8", "UTF-8", 21, towide_utf8
, tomb_utf8
},
70 { "UTF8", "UTF-8", 21, towide_utf8
, tomb_utf8
},
71 { "utf8", "UTF-8", 21, towide_utf8
, tomb_utf8
},
72 { "utf-8", "UTF-8", 21, towide_utf8
, tomb_utf8
},
74 { "EUC-CN", "EUC-CN", 16, towide_euccn
, tomb_mbs
},
75 { "eucCN", "EUC-CN", 16, towide_euccn
, tomb_mbs
},
77 * Becuase the 3-byte form of EUC-JP use the same leading byte,
78 * only 17 bits required to provide unique priorities. (The low
79 * bit of that first byte is set.) By setting this value low,
80 * we can get by with only 3 bytes in the strxfrm expansion.
82 { "EUC-JP", "EUC-JP", 17, towide_eucjp
, tomb_mbs
},
83 { "eucJP", "EUC-JP", 17, towide_eucjp
, tomb_mbs
},
85 { "EUC-KR", "EUC-KR", 16, towide_euckr
, tomb_mbs
},
86 { "eucKR", "EUC-KR", 16, towide_euckr
, tomb_mbs
},
88 * EUC-TW uses 2 bytes most of the time, but 4 bytes if the
89 * high order byte is 0x8E. However, with 4 byte encodings,
90 * the third byte will be A0-B0. So we only need to consider
91 * the lower order 24 bits for collation.
93 { "EUC-TW", "EUC-TW", 24, towide_euctw
, tomb_mbs
},
94 { "eucTW", "EUC-TW", 24, towide_euctw
, tomb_mbs
},
96 { "MS_Kanji", "MSKanji", 16, towide_mskanji
, tomb_mbs
},
97 { "MSKanji", "MSKanji", 16, towide_mskanji
, tomb_mbs
},
98 { "PCK", "MSKanji", 16, towide_mskanji
, tomb_mbs
},
99 { "SJIS", "MSKanji", 16, towide_mskanji
, tomb_mbs
},
100 { "Shift_JIS", "MSKanji", 16, towide_mskanji
, tomb_mbs
},
102 { "BIG5", "BIG5", 16, towide_big5
, tomb_mbs
},
103 { "big5", "BIG5", 16, towide_big5
, tomb_mbs
},
104 { "Big5", "BIG5", 16, towide_big5
, tomb_mbs
},
106 { "GBK", "GBK", 16, towide_gbk
, tomb_mbs
},
109 * GB18030 can get away with just 31 bits. This is because the
110 * high order bit is always set for 4 byte values, and the
111 * at least one of the other bits in that 4 byte value will
114 { "GB18030", "GB18030", 31, towide_gb18030
, tomb_mbs
},
117 * This should probably be an aliase for euc-cn, or vice versa.
119 { "GB2312", "GB2312", 16, towide_gb2312
, tomb_mbs
},
125 show_mb(const char *mb
)
129 /* ASCII stuff we just print */
130 if (isascii(*mb
) && isgraph(*mb
)) {
138 (void) snprintf(scr
, sizeof (scr
), "\\x%02x", *mb
);
139 (void) strlcat(buf
, scr
, sizeof (buf
));
145 static char *widemsg
;
148 werr(const char *fmt
, ...)
154 (void) vasprintf(&msg
, fmt
, va
);
162 * This is used for 8-bit encodings.
165 towide_none(wchar_t *c
, const char *mb
, unsigned n
)
169 if (mb_cur_max
!= 1) {
170 werr("invalid or unsupported multibyte locale");
178 tomb_none(char *mb
, wchar_t wc
)
180 if (mb_cur_max
!= 1) {
181 werr("invalid or unsupported multibyte locale");
184 *(uint8_t *)mb
= (wc
& 0xff);
190 * UTF-8 stores wide characters in UTF-32 form.
193 towide_utf8(wchar_t *wc
, const char *mb
, unsigned n
)
197 int lv
; /* lowest legal value */
199 const uint8_t *s
= (const uint8_t *)mb
;
203 if ((c
& 0x80) == 0) {
207 } else if ((c
& 0xe0) == 0xc0) {
208 /* u80-u7ff - two bytes encoded */
212 } else if ((c
& 0xf0) == 0xe0) {
213 /* u800-uffff - three bytes encoded */
217 } else if ((c
& 0xf8) == 0xf0) {
218 /* u1000-u1fffff - four bytes encoded */
223 /* 5 and 6 byte encodings are not legal unicode */
224 werr("utf8 encoding too large (%s)", show_mb(mb
));
228 werr("incomplete utf8 sequence (%s)", show_mb(mb
));
232 for (i
= 1; i
< nb
; i
++) {
233 if (((s
[i
]) & 0xc0) != 0x80) {
234 werr("illegal utf8 byte (%x)", s
[i
]);
242 werr("illegal redundant utf8 encoding (%s)", show_mb(mb
));
250 tomb_utf8(char *mb
, wchar_t wc
)
252 uint8_t *s
= (uint8_t *)mb
;
265 } else if (wc
<= 0xffff) {
268 } else if (wc
<= 0x1fffff) {
272 werr("illegal uf8 char (%x)", wc
);
275 for (i
= cnt
- 1; i
; i
--) {
276 s
[i
] = (wc
& 0x3f) | 0x80;
285 * Several encodings share a simplistic dual byte encoding. In these
286 * forms, they all indicate that a two byte sequence is to be used if
287 * the first byte has its high bit set. They all store this simple
288 * encoding as a 16-bit value, although a great many of the possible
289 * code points are not used in most character sets. This gives a possible
290 * set of just over 32,000 valid code points.
292 * 0x00 - 0x7f - 1 byte encoding
293 * 0x80 - 0x7fff - illegal
294 * 0x8000 - 0xffff - 2 byte encoding
297 towide_dbcs(wchar_t *wc
, const char *mb
, unsigned n
)
303 if ((c
& 0x80) == 0) {
309 werr("incomplete character sequence (%s)", show_mb(mb
));
313 /* Store both bytes as a single 16-bit wide. */
315 c
|= (uint8_t)(mb
[1]);
321 * Most multibyte locales just convert the wide character to the multibyte
322 * form by stripping leading null bytes, and writing the 32-bit quantity
323 * in big-endian order.
326 tomb_mbs(char *mb
, wchar_t wc
)
328 uint8_t *s
= (uint8_t *)mb
;
331 if ((wc
& 0xff000000U
) != 0) {
333 } else if ((wc
& 0x00ff0000U
) != 0) {
335 } else if ((wc
& 0x0000ff00U
) != 0) {
346 /* ensure null termination */
353 * big5 is a simple dual byte character set.
356 towide_big5(wchar_t *wc
, const char *mb
, unsigned n
)
358 return (towide_dbcs(wc
, mb
, n
));
362 * GBK encodes wides in the same way that big5 does, the high order
363 * bit of the first byte indicates a double byte character.
366 towide_gbk(wchar_t *wc
, const char *mb
, unsigned n
)
368 return (towide_dbcs(wc
, mb
, n
));
372 * GB2312 is another DBCS. Its cleaner than others in that the second
373 * byte does not encode ASCII, but it supports characters.
376 towide_gb2312(wchar_t *wc
, const char *mb
, unsigned n
)
378 return (towide_dbcs(wc
, mb
, n
));
382 * GB18030. This encodes as 8, 16, or 32-bits.
383 * 7-bit values are in 1 byte, 4 byte sequences are used when
384 * the second byte encodes 0x30-39 and all other sequences are 2 bytes.
387 towide_gb18030(wchar_t *wc
, const char *mb
, unsigned n
)
393 if ((c
& 0x80) == 0) {
399 werr("incomplete character sequence (%s)", show_mb(mb
));
403 /* pull in the second byte */
405 c
|= (uint8_t)(mb
[1]);
407 if (((c
& 0xff) >= 0x30) && ((c
& 0xff) <= 0x39)) {
409 werr("incomplete 4-byte character sequence (%s)",
414 c
|= (uint8_t)(mb
[2]);
416 c
|= (uint8_t)(mb
[3]);
426 * MS-Kanji (aka SJIS) is almost a clean DBCS like the others, but it
427 * also has a range of single byte characters above 0x80. (0xa1-0xdf).
430 towide_mskanji(wchar_t *wc
, const char *mb
, unsigned n
)
436 if ((c
< 0x80) || ((c
> 0xa0) && (c
< 0xe0))) {
443 werr("incomplete character sequence (%s)", show_mb(mb
));
447 /* Store both bytes as a single 16-bit wide. */
449 c
|= (uint8_t)(mb
[1]);
455 * EUC forms. EUC encodings are "variable". FreeBSD carries some additional
456 * variable data to encode these, but we're going to treat each as independent
457 * instead. Its the only way we can sensibly move forward.
459 * Note that the way in which the different EUC forms vary is how wide
460 * CS2 and CS3 are and what the first byte of them is.
463 towide_euc_impl(wchar_t *wc
, const char *mb
, unsigned n
,
464 uint8_t cs2
, uint8_t cs2width
, uint8_t cs3
, uint8_t cs3width
)
473 * All variations of EUC encode 7-bit ASCII as one byte, and use
474 * additional bytes for more than that.
476 if ((c
& 0x80) == 0) {
483 * All EUC variants reserve 0xa1-0xff to identify CS1, which
484 * is always two bytes wide. Note that unused CS will be zero,
485 * and that cannot be true because we know that the high order
490 } else if (c
== cs2
) {
492 } else if (c
== cs3
) {
497 werr("incomplete character sequence (%s)", show_mb(mb
));
501 for (i
= 1; i
< width
; i
++) {
502 /* pull in the next byte */
504 c
|= (uint8_t)(mb
[i
]);
512 * EUC-CN encodes as follows:
514 * Code set 0 (ASCII): 0x21-0x7E
515 * Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE
520 towide_euccn(wchar_t *wc
, const char *mb
, unsigned n
)
522 return (towide_euc_impl(wc
, mb
, n
, 0x8e, 4, 0, 0));
526 * EUC-JP encodes as follows:
528 * Code set 0 (ASCII or JIS X 0201-1976 Roman): 0x21-0x7E
529 * Code set 1 (JIS X 0208): 0xA1A1-0xFEFE
530 * Code set 2 (half-width katakana): 0x8EA1-0x8EDF
531 * Code set 3 (JIS X 0212-1990): 0x8FA1A1-0x8FFEFE
534 towide_eucjp(wchar_t *wc
, const char *mb
, unsigned n
)
536 return (towide_euc_impl(wc
, mb
, n
, 0x8e, 2, 0x8f, 3));
540 * EUC-KR encodes as follows:
542 * Code set 0 (ASCII or KS C 5636-1993): 0x21-0x7E
543 * Code set 1 (KS C 5601-1992): 0xA1A1-0xFEFE
548 towide_euckr(wchar_t *wc
, const char *mb
, unsigned n
)
550 return (towide_euc_impl(wc
, mb
, n
, 0, 0, 0, 0));
554 * EUC-TW encodes as follows:
556 * Code set 0 (ASCII): 0x21-0x7E
557 * Code set 1 (CNS 11643-1992 Plane 1): 0xA1A1-0xFEFE
558 * Code set 2 (CNS 11643-1992 Planes 1-16): 0x8EA1A1A1-0x8EB0FEFE
562 towide_euctw(wchar_t *wc
, const char *mb
, unsigned n
)
564 return (towide_euc_impl(wc
, mb
, n
, 0x8e, 4, 0, 0));
568 * Public entry points.
572 to_wide(wchar_t *wc
, const char *mb
)
574 /* this won't fail hard */
575 return (_towide(wc
, mb
, strlen(mb
)));
579 to_mb(char *mb
, wchar_t wc
)
583 if ((rv
= _tomb(mb
, wc
)) < 0) {
592 to_mb_string(const wchar_t *wcs
)
598 mbs
= malloc((wcslen(wcs
) * mb_cur_max
) + 1);
600 errf("out of memory");
605 if ((len
= to_mb(ptr
, *wcs
)) < 0) {
618 set_wide_encoding(const char *encoding
)
622 _towide
= towide_none
;
627 for (i
= 0; mb_encodings
[i
].name
; i
++) {
628 if (strcasecmp(encoding
, mb_encodings
[i
].name
) == 0) {
629 _towide
= mb_encodings
[i
].towide
;
630 _tomb
= mb_encodings
[i
].tomb
;
631 _encoding
= mb_encodings
[i
].cname
;
632 _nbits
= mb_encodings
[i
].nbits
;
639 get_wide_encoding(void)
647 return ((int)((1U << _nbits
) - 1));