8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / cmd / sgs / elfdump / common / elfdump.c
blob6f7c8e2ac5d7661f343275f5dcafbdc511f1d471
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Copyright (c) 2015, Joyent, Inc. All rights reserved.
32 * Dump an elf file.
34 #include <stddef.h>
35 #include <sys/elf_386.h>
36 #include <sys/elf_amd64.h>
37 #include <sys/elf_SPARC.h>
38 #include <_libelf.h>
39 #include <dwarf.h>
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <errno.h>
43 #include <strings.h>
44 #include <debug.h>
45 #include <conv.h>
46 #include <msg.h>
47 #include <_elfdump.h>
51 * VERSYM_STATE is used to maintain information about the VERSYM section
52 * in the object being analyzed. It is filled in by versions(), and used
53 * by init_symtbl_state() when displaying symbol information.
55 * There are three forms of symbol versioning known to us:
57 * 1) The original form, introduced with Solaris 2.5, in which
58 * the Versym contains indexes to Verdef records, and the
59 * Versym values for UNDEF symbols resolved by other objects
60 * are all set to 0.
61 * 2) The GNU form, which is backward compatible with the original
62 * Solaris form, but which adds several extensions:
63 * - The Versym also contains indexes to Verneed records, recording
64 * which object/version contributed the external symbol at
65 * link time. These indexes start with the next value following
66 * the final Verdef index. The index is written to the previously
67 * reserved vna_other field of the ELF Vernaux structure.
68 * - The top bit of the Versym value is no longer part of the index,
69 * but is used as a "hidden bit" to prevent binding to the symbol.
70 * - Multiple implementations of a given symbol, contained in varying
71 * versions are allowed, using special assembler pseudo ops,
72 * and encoded in the symbol name using '@' characters.
73 * 3) Modified Solaris form, in which we adopt the first GNU extension
74 * (Versym indexes to Verneed records), but not the others.
76 * elfdump can handle any of these cases. The presence of a DT_VERSYM
77 * dynamic element indicates a full GNU object. An object that lacks
78 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
79 * structures is a modified Solaris object. An object that has neither of
80 * these uses the original form.
82 * max_verndx contains the largest version index that can appear
83 * in a Versym entry. This can never be less than 1: In the case where
84 * there is no verdef/verneed sections, the [0] index is reserved
85 * for local symbols, and the [1] index for globals. If the original
86 * Solaris versioning rules are in effect and there is a verdef section,
87 * then max_verndex is the number of defined versions. If one of the
88 * other versioning forms is in effect, then:
89 * 1) If there is no verneed section, it is the same as for
90 * original Solaris versioning.
91 * 2) If there is a verneed section, the vna_other field of the
92 * Vernaux structs contain versions, and max_verndx is the
93 * largest such index.
95 * If gnu_full is True, the object uses the full GNU form of versioning.
96 * The value of the gnu_full field is based on the presence of
97 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
98 * Solaris ld does not.
100 * The gnu_needed field is True if the Versym contains indexes to
101 * Verneed records, as indicated by non-zero vna_other fields in the Verneed
102 * section. If gnu_full is True, then gnu_needed will always be true.
103 * However, gnu_needed can be true without gnu_full. This is the modified
104 * Solaris form.
106 typedef struct {
107 Cache *cache; /* Pointer to cache entry for VERSYM */
108 Versym *data; /* Pointer to versym array */
109 int gnu_full; /* True if object uses GNU versioning rules */
110 int gnu_needed; /* True if object uses VERSYM indexes for */
111 /* VERNEED (subset of gnu_full) */
112 int max_verndx; /* largest versym index value */
113 } VERSYM_STATE;
116 * SYMTBL_STATE is used to maintain information about a single symbol
117 * table section, for use by the routines that display symbol information.
119 typedef struct {
120 const char *file; /* Name of file */
121 Ehdr *ehdr; /* ELF header for file */
122 Cache *cache; /* Cache of all section headers */
123 uchar_t osabi; /* OSABI to use */
124 Word shnum; /* # of sections in cache */
125 Cache *seccache; /* Cache of symbol table section hdr */
126 Word secndx; /* Index of symbol table section hdr */
127 const char *secname; /* Name of section */
128 uint_t flags; /* Command line option flags */
129 struct { /* Extended section index data */
130 int checked; /* TRUE if already checked for shxndx */
131 Word *data; /* NULL, or extended section index */
132 /* used for symbol table entries */
133 uint_t n; /* # items in shxndx.data */
134 } shxndx;
135 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */
136 Sym *sym; /* Array of symbols */
137 Word symn; /* # of symbols */
138 } SYMTBL_STATE;
141 * A variable of this type is used to track information related to
142 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
144 typedef struct {
145 Word frame_cnt; /* # .eh_frame sections seen */
146 Word frame_ndx; /* Section index of 1st .eh_frame */
147 Word hdr_cnt; /* # .eh_frame_hdr sections seen */
148 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */
149 uint64_t frame_ptr; /* Value of FramePtr field from first */
150 /* .eh_frame_hdr section */
151 uint64_t frame_base; /* Data addr of 1st .eh_frame */
152 } gnu_eh_state_t;
155 * C++ .exception_ranges entries make use of the signed ptrdiff_t
156 * type to record self-relative pointer values. We need a type
157 * for this that is matched to the ELFCLASS being processed.
159 #if defined(_ELF64)
160 typedef int64_t PTRDIFF_T;
161 #else
162 typedef int32_t PTRDIFF_T;
163 #endif
166 * The Sun C++ ABI uses this struct to define each .exception_ranges
167 * entry. From the ABI:
169 * The field ret_addr is a self relative pointer to the start of the address
170 * range. The name was chosen because in the current implementation the range
171 * typically starts at the return address for a call site.
173 * The field length is the difference, in bytes, between the pc of the last
174 * instruction covered by the exception range and the first. When only a
175 * single call site is represented without optimization, this will equal zero.
177 * The field handler_addr is a relative pointer which stores the difference
178 * between the start of the exception range and the address of all code to
179 * catch exceptions and perform the cleanup for stack unwinding.
181 * The field type_block is a relative pointer which stores the difference
182 * between the start of the exception range and the address of an array used
183 * for storing a list of the types of exceptions which can be caught within
184 * the exception range.
186 typedef struct {
187 PTRDIFF_T ret_addr;
188 Xword length;
189 PTRDIFF_T handler_addr;
190 PTRDIFF_T type_block;
191 Xword reserved;
192 } exception_range_entry;
195 * Focal point for verifying symbol names.
197 static const char *
198 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
201 * If an error in this routine is due to a property of the string
202 * section, as opposed to a bad offset into the section (a property of
203 * the referencing section), then we will detect the same error on
204 * every call involving those sections. We use these static variables
205 * to retain the information needed to only issue each such error once.
207 static Cache *last_refsec; /* Last referencing section seen */
208 static int strsec_err; /* True if error issued */
210 const char *strs;
211 Word strn;
213 if ((strsec->c_data == NULL) || (strsec->c_data->d_buf == NULL))
214 return (NULL);
216 strs = (char *)strsec->c_data->d_buf;
217 strn = strsec->c_data->d_size;
220 * We only print a diagnostic regarding a bad string table once per
221 * input section being processed. If the refsec has changed, reset
222 * our retained error state.
224 if (last_refsec != refsec) {
225 last_refsec = refsec;
226 strsec_err = 0;
229 /* Verify that strsec really is a string table */
230 if (strsec->c_shdr->sh_type != SHT_STRTAB) {
231 if (!strsec_err) {
232 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
233 file, strsec->c_ndx, refsec->c_ndx);
234 strsec_err = 1;
236 return (MSG_INTL(MSG_STR_UNKNOWN));
240 * Is the string table offset within range of the available strings?
242 if (name >= strn) {
244 * Do we have a empty string table?
246 if (strs == NULL) {
247 if (!strsec_err) {
248 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
249 file, strsec->c_name);
250 strsec_err = 1;
252 } else {
253 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
254 file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
255 EC_WORD(name), EC_WORD(strn - 1));
259 * Return the empty string so that the calling function can
260 * continue it's output diagnostics.
262 return (MSG_INTL(MSG_STR_UNKNOWN));
264 return (strs + name);
268 * Relocations can reference section symbols and standard symbols. If the
269 * former, establish the section name.
271 static const char *
272 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
273 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
275 Sym *sym;
276 const char *name;
278 if (symndx >= symnum) {
279 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
280 file, EC_WORD(symndx), EC_WORD(relndx));
281 return (MSG_INTL(MSG_STR_UNKNOWN));
284 sym = (Sym *)(syms + symndx);
285 name = string(csec, symndx, strsec, file, sym->st_name);
288 * If the symbol represents a section offset construct an appropriate
289 * string. Note, although section symbol table entries typically have
290 * a NULL name pointer, entries do exist that point into the string
291 * table to their own NULL strings.
293 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
294 ((sym->st_name == 0) || (*name == '\0'))) {
295 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
296 cache[sym->st_shndx].c_name);
297 return ((const char *)secstr);
300 return (name);
304 * Focal point for establishing a string table section. Data such as the
305 * dynamic information simply points to a string table. Data such as
306 * relocations, reference a symbol table, which in turn is associated with a
307 * string table.
309 static int
310 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
311 Word *symnum, Cache **symsec, Cache **strsec)
313 Shdr *shdr = cache[ndx].c_shdr;
316 * If symtab is non-zero, the ndx we are called with represents a
317 * shdr which links to a symbol table (which then links to a string
318 * table)
320 if (symtab != 0) {
322 * Validate the symbol table linkage.
324 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
325 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
326 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
327 return (0);
331 * Establish the symbol table index.
333 ndx = shdr->sh_link;
334 shdr = cache[ndx].c_shdr;
336 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
337 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
338 file, cache[ndx].c_name);
339 return (0);
343 * Obtain, and verify the symbol table data.
345 if ((cache[ndx].c_data == NULL) ||
346 (cache[ndx].c_data->d_buf == NULL)) {
347 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
348 file, cache[ndx].c_name);
349 return (0);
353 * Return symbol table information.
355 if (symnum)
356 *symnum = (shdr->sh_size / shdr->sh_entsize);
357 if (symsec)
358 *symsec = &cache[ndx];
362 * Validate the string table linkage.
364 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
365 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
366 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
367 return (0);
370 if (strsec)
371 *strsec = &cache[shdr->sh_link];
373 return (1);
377 * Lookup a symbol and set Sym accordingly.
379 * entry:
380 * name - Name of symbol to lookup
381 * cache - Cache of all section headers
382 * shnum - # of sections in cache
383 * sym - Address of pointer to receive symbol
384 * target - NULL, or section to which the symbol must be associated.
385 * symtab - Symbol table to search for symbol
386 * file - Name of file
388 * exit:
389 * If the symbol is found, *sym is set to reference it, and True is
390 * returned. If target is non-NULL, the symbol must reference the given
391 * section --- otherwise the section is not checked.
393 * If no symbol is found, False is returned.
395 static int
396 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
397 Cache *target, Cache *symtab, const char *file)
399 Shdr *shdr;
400 Word symn, cnt;
401 Sym *syms;
403 if (symtab == 0)
404 return (0);
406 shdr = symtab->c_shdr;
409 * Determine the symbol data and number.
411 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
412 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
413 file, symtab->c_name);
414 return (0);
416 if ((symtab->c_data == NULL) || (symtab->c_data->d_buf == NULL))
417 return (0);
419 /* LINTED */
420 symn = (Word)(shdr->sh_size / shdr->sh_entsize);
421 syms = (Sym *)symtab->c_data->d_buf;
424 * Get the associated string table section.
426 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
427 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
428 file, symtab->c_name, EC_WORD(shdr->sh_link));
429 return (0);
433 * Loop through the symbol table to find a match.
435 *sym = NULL;
436 for (cnt = 0; cnt < symn; syms++, cnt++) {
437 const char *symname;
439 symname = string(symtab, cnt, &cache[shdr->sh_link], file,
440 syms->st_name);
442 if (symname && (strcmp(name, symname) == 0) &&
443 ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
445 * It is possible, though rare, for a local and
446 * global symbol of the same name to exist, each
447 * contributed by a different input object. If the
448 * symbol just found is local, remember it, but
449 * continue looking.
451 *sym = syms;
452 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
453 break;
457 return (*sym != NULL);
461 * Print section headers.
463 static void
464 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
466 size_t seccnt;
468 for (seccnt = 1; seccnt < shnum; seccnt++) {
469 Cache *_cache = &cache[seccnt];
470 Shdr *shdr = _cache->c_shdr;
471 const char *secname = _cache->c_name;
474 * Although numerous section header entries can be zero, it's
475 * usually a sign of trouble if the type is zero.
477 if (shdr->sh_type == 0) {
478 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
479 file, secname, EC_WORD(shdr->sh_type));
482 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
483 continue;
486 * Identify any sections that are suspicious. A .got section
487 * shouldn't exist in a relocatable object.
489 if (ehdr->e_type == ET_REL) {
490 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
491 MSG_ELF_GOT_SIZE) == 0) {
492 (void) fprintf(stderr,
493 MSG_INTL(MSG_GOT_UNEXPECTED), file,
494 secname);
498 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
499 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
500 Elf_shdr(0, osabi, ehdr->e_machine, shdr);
505 * Obtain a specified Phdr entry.
507 static Phdr *
508 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
510 Word cnt, tcnt;
511 Phdr *phdr;
513 if ((phdr = elf_getphdr(elf)) == NULL) {
514 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
515 return (NULL);
518 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
519 for (tcnt = 0; tcnt < type_cnt; tcnt++) {
520 if (phdr->p_type == type_arr[tcnt])
521 return (phdr);
524 return (NULL);
528 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
529 * sections.
531 * entry:
532 * cache - Cache of all section headers
533 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
534 * shnum - Total number of sections which exist
535 * uphdr - NULL, or unwind program header associated with
536 * the .eh_frame_hdr section.
537 * ehdr - ELF header for file
538 * eh_state - Data used across calls to this routine. The
539 * caller should zero it before the first call, and
540 * pass it on every call.
541 * osabi - OSABI to use in displaying information
542 * file - Name of file
543 * flags - Command line option flags
545 static void
546 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
547 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
549 #if defined(_ELF64)
550 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64
551 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64
552 #else
553 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32
554 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32
555 #endif
557 Cache *_cache = &cache[shndx];
558 Shdr *shdr = _cache->c_shdr;
559 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf);
560 size_t datasize = _cache->c_data->d_size;
561 Conv_dwarf_ehe_buf_t dwarf_ehe_buf;
562 uint64_t ndx, frame_ptr, fde_cnt, tabndx;
563 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc;
564 uint64_t initloc, initloc0 = 0;
565 uint64_t gotaddr = 0;
566 int cnt;
568 for (cnt = 1; cnt < shnum; cnt++) {
569 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
570 MSG_ELF_GOT_SIZE) == 0) {
571 gotaddr = cache[cnt].c_shdr->sh_addr;
572 break;
576 if ((data == NULL) || (datasize == 0)) {
577 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
578 file, _cache ->c_name);
579 return;
583 * Is this a .eh_frame_hdr?
585 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
586 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
587 MSG_SCN_FRMHDR_SIZE) == 0)) {
589 * There can only be a single .eh_frame_hdr.
590 * Flag duplicates.
592 if (++eh_state->hdr_cnt > 1)
593 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
594 file, EC_WORD(shndx), _cache->c_name);
596 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
597 ndx = 0;
599 vers = data[ndx++];
600 frame_ptr_enc = data[ndx++];
601 fde_cnt_enc = data[ndx++];
602 table_enc = data[ndx++];
604 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
606 switch (dwarf_ehe_extract(data, datasize, &ndx,
607 &frame_ptr, frame_ptr_enc, ehdr->e_ident, B_TRUE,
608 shdr->sh_addr, ndx, gotaddr)) {
609 case DW_OVERFLOW:
610 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
611 file, _cache->c_name);
612 return;
613 case DW_BAD_ENCODING:
614 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
615 file, _cache->c_name, frame_ptr_enc);
616 return;
617 case DW_SUCCESS:
618 break;
620 if (eh_state->hdr_cnt == 1) {
621 eh_state->hdr_ndx = shndx;
622 eh_state->frame_ptr = frame_ptr;
625 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
626 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
627 EC_XWORD(frame_ptr));
629 switch (dwarf_ehe_extract(data, datasize, &ndx, &fde_cnt,
630 fde_cnt_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx,
631 gotaddr)) {
632 case DW_OVERFLOW:
633 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWOVRFLW),
634 file, _cache->c_name);
635 return;
636 case DW_BAD_ENCODING:
637 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DWBADENC),
638 file, _cache->c_name, fde_cnt_enc);
639 return;
640 case DW_SUCCESS:
641 break;
644 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
645 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
646 EC_XWORD(fde_cnt));
647 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
648 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
649 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
650 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
652 for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
653 uint64_t table;
655 switch (dwarf_ehe_extract(data, datasize, &ndx,
656 &initloc, table_enc, ehdr->e_ident, B_TRUE,
657 shdr->sh_addr, ndx, gotaddr)) {
658 case DW_OVERFLOW:
659 (void) fprintf(stderr,
660 MSG_INTL(MSG_ERR_DWOVRFLW), file,
661 _cache->c_name);
662 return;
663 case DW_BAD_ENCODING:
664 (void) fprintf(stderr,
665 MSG_INTL(MSG_ERR_DWBADENC), file,
666 _cache->c_name, table_enc);
667 return;
668 case DW_SUCCESS:
669 break;
671 if ((tabndx != 0) && (initloc0 > initloc))
672 (void) fprintf(stderr,
673 MSG_INTL(MSG_ERR_BADSORT), file,
674 _cache->c_name, EC_WORD(tabndx));
675 switch (dwarf_ehe_extract(data, datasize, &ndx, &table,
676 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
677 ndx, gotaddr)) {
678 case DW_OVERFLOW:
679 (void) fprintf(stderr,
680 MSG_INTL(MSG_ERR_DWOVRFLW), file,
681 _cache->c_name);
682 return;
683 case DW_BAD_ENCODING:
684 (void) fprintf(stderr,
685 MSG_INTL(MSG_ERR_DWBADENC), file,
686 _cache->c_name, table_enc);
687 return;
688 case DW_SUCCESS:
689 break;
692 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
693 EC_XWORD(initloc),
694 EC_XWORD(table));
695 initloc0 = initloc;
697 } else { /* Display the .eh_frame section */
698 eh_state->frame_cnt++;
699 if (eh_state->frame_cnt == 1) {
700 eh_state->frame_ndx = shndx;
701 eh_state->frame_base = shdr->sh_addr;
702 } else if ((eh_state->frame_cnt > 1) &&
703 (ehdr->e_type != ET_REL)) {
704 Conv_inv_buf_t inv_buf;
706 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
707 file, EC_WORD(shndx), _cache->c_name,
708 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
710 dump_eh_frame(file, _cache->c_name, data, datasize,
711 shdr->sh_addr, ehdr->e_machine, ehdr->e_ident, gotaddr);
715 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
716 * compare the header frame_ptr to the address of the actual frame
717 * section to ensure the link-editor got this right. Note, this
718 * diagnostic is only produced when unwind information is explicitly
719 * asked for, as shared objects built with an older ld(1) may reveal
720 * this inconsistency. Although an inconsistency, it doesn't seem to
721 * have any adverse effect on existing tools.
723 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
724 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
725 (eh_state->frame_ptr != eh_state->frame_base))
726 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
727 file, EC_WORD(eh_state->hdr_ndx),
728 cache[eh_state->hdr_ndx].c_name,
729 EC_XWORD(eh_state->frame_ptr),
730 EC_WORD(eh_state->frame_ndx),
731 cache[eh_state->frame_ndx].c_name,
732 EC_XWORD(eh_state->frame_base));
733 #undef MSG_UNW_BINSRTAB2
734 #undef MSG_UNW_BINSRTABENT
738 * Convert a self relative pointer into an address. A self relative
739 * pointer adds the address where the pointer resides to the offset
740 * contained in the pointer. The benefit is that the value of the
741 * pointer does not require relocation.
743 * entry:
744 * base_addr - Address of the pointer.
745 * delta - Offset relative to base_addr giving desired address
747 * exit:
748 * The computed address is returned.
750 * note:
751 * base_addr is an unsigned value, while ret_addr is signed. This routine
752 * used explicit testing and casting to explicitly control type
753 * conversion, and ensure that we handle the maximum possible range.
755 static Addr
756 srelptr(Addr base_addr, PTRDIFF_T delta)
758 if (delta < 0)
759 return (base_addr - (Addr) (-delta));
761 return (base_addr + (Addr) delta);
765 * Byte swap a PTRDIFF_T value.
767 static PTRDIFF_T
768 swap_ptrdiff(PTRDIFF_T value)
770 PTRDIFF_T r;
771 uchar_t *dst = (uchar_t *)&r;
772 uchar_t *src = (uchar_t *)&value;
774 UL_ASSIGN_BSWAP_XWORD(dst, src);
775 return (r);
779 * Display exception_range_entry items from the .exception_ranges section
780 * of a Sun C++ object.
782 static void
783 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
786 * Translate a PTRDIFF_T self-relative address field of
787 * an exception_range_entry struct into an address.
789 * entry:
790 * exc_addr - Address of base of exception_range_entry struct
791 * cur_ent - Pointer to data in the struct to be translated
793 * _f - Field of struct to be translated
795 #define SRELPTR(_f) \
796 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
798 #if defined(_ELF64)
799 #define MSG_EXR_TITLE MSG_EXR_TITLE_64
800 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64
801 #else
802 #define MSG_EXR_TITLE MSG_EXR_TITLE_32
803 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32
804 #endif
806 exception_range_entry scratch, *ent, *cur_ent = &scratch;
807 char index[MAXNDXSIZE];
808 Word i, nelts;
809 Addr addr, addr0 = 0, offset = 0;
810 Addr exc_addr = _cache->c_shdr->sh_addr;
812 dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
813 ent = (exception_range_entry *)(_cache->c_data->d_buf);
814 nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
816 for (i = 0; i < nelts; i++, ent++) {
817 if (do_swap) {
819 * Copy byte swapped values into the scratch buffer.
820 * The reserved field is not used, so we skip it.
822 scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
823 scratch.length = BSWAP_XWORD(ent->length);
824 scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
825 scratch.type_block = swap_ptrdiff(ent->type_block);
826 } else {
827 cur_ent = ent;
831 * The table is required to be sorted by the address
832 * derived from ret_addr, to allow binary searching. Ensure
833 * that addresses grow monotonically.
835 addr = SRELPTR(ret_addr);
836 if ((i != 0) && (addr0 > addr))
837 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
838 file, _cache->c_name, EC_WORD(i));
840 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
841 EC_XWORD(i));
842 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
843 EC_ADDR(addr), EC_ADDR(cur_ent->length),
844 EC_ADDR(SRELPTR(handler_addr)),
845 EC_ADDR(SRELPTR(type_block)));
847 addr0 = addr;
848 exc_addr += sizeof (exception_range_entry);
849 offset += sizeof (exception_range_entry);
852 #undef SRELPTR
853 #undef MSG_EXR_TITLE
854 #undef MSG_EXR_ENTRY
858 * Display information from unwind/exception sections:
860 * - GNU/amd64 .eh_frame and .eh_frame_hdr
861 * - Sun C++ .exception_ranges
864 static void
865 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
866 const char *file, Elf *elf, uint_t flags)
868 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
870 Word cnt;
871 Phdr *uphdr = NULL;
872 gnu_eh_state_t eh_state;
875 * Historical background: .eh_frame and .eh_frame_hdr sections
876 * come from the GNU compilers (particularly C++), and are used
877 * under all architectures. Their format is based on DWARF. When
878 * the amd64 ABI was defined, these sections were adopted wholesale
879 * from the existing practice.
881 * When amd64 support was added to Solaris, support for these
882 * sections was added, using the SHT_AMD64_UNWIND section type
883 * to identify them. At first, we ignored them in objects for
884 * non-amd64 targets, but later broadened our support to include
885 * other architectures in order to better support gcc-generated
886 * objects.
888 * .exception_ranges implement the same basic concepts, but
889 * were invented at Sun for the Sun C++ compiler.
891 * We match these sections by name, rather than section type,
892 * because they can come in as either SHT_AMD64_UNWIND, or as
893 * SHT_PROGBITS, and because the type isn't enough to determine
894 * how they should be interpreted.
896 /* Find the program header for .eh_frame_hdr if present */
897 if (phnum)
898 uphdr = getphdr(phnum, phdr_types,
899 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
902 * eh_state is used to retain data used by unwind_eh_frame()
903 * across calls.
905 bzero(&eh_state, sizeof (eh_state));
907 for (cnt = 1; cnt < shnum; cnt++) {
908 Cache *_cache = &cache[cnt];
909 Shdr *shdr = _cache->c_shdr;
910 int is_exrange;
913 * Skip sections of the wrong type. On amd64, they
914 * can be SHT_AMD64_UNWIND. On all platforms, they
915 * can be SHT_PROGBITS (including amd64, if using
916 * the GNU compilers).
918 * Skip anything other than these two types. The name
919 * test below will thin out the SHT_PROGBITS that don't apply.
921 if ((shdr->sh_type != SHT_PROGBITS) &&
922 (shdr->sh_type != SHT_AMD64_UNWIND))
923 continue;
926 * Only sections with certain well known names are of interest.
927 * These are:
929 * .eh_frame - amd64/GNU-compiler unwind sections
930 * .eh_frame_hdr - Sorted table referencing .eh_frame
931 * .exception_ranges - Sun C++ unwind sections
933 * We do a prefix comparison, allowing for naming conventions
934 * like .eh_frame.foo, hence the use of strncmp() rather than
935 * strcmp(). This means that we only really need to test for
936 * .eh_frame, as it's a prefix of .eh_frame_hdr.
938 is_exrange = strncmp(_cache->c_name,
939 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
940 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
941 MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
942 continue;
944 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
945 continue;
947 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
948 continue;
950 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
951 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
953 if (is_exrange)
954 unwind_exception_ranges(_cache, file,
955 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
956 else
957 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
958 &eh_state, osabi, file, flags);
963 * Initialize a symbol table state structure
965 * entry:
966 * state - State structure to be initialized
967 * cache - Cache of all section headers
968 * shnum - # of sections in cache
969 * secndx - Index of symbol table section
970 * ehdr - ELF header for file
971 * versym - Information about versym section
972 * file - Name of file
973 * flags - Command line option flags
975 static int
976 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
977 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
978 uint_t flags)
980 Shdr *shdr;
982 state->file = file;
983 state->ehdr = ehdr;
984 state->cache = cache;
985 state->osabi = osabi;
986 state->shnum = shnum;
987 state->seccache = &cache[secndx];
988 state->secndx = secndx;
989 state->secname = state->seccache->c_name;
990 state->flags = flags;
991 state->shxndx.checked = 0;
992 state->shxndx.data = NULL;
993 state->shxndx.n = 0;
995 shdr = state->seccache->c_shdr;
998 * Check the symbol data and per-item size.
1000 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
1001 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1002 file, state->secname);
1003 return (0);
1005 if ((state->seccache->c_data == NULL) ||
1006 (state->seccache->c_data->d_buf == NULL))
1007 return (0);
1009 /* LINTED */
1010 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
1011 state->sym = (Sym *)state->seccache->c_data->d_buf;
1014 * Check associated string table section.
1016 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
1017 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1018 file, state->secname, EC_WORD(shdr->sh_link));
1019 return (0);
1023 * Determine if there is a associated Versym section
1024 * with this Symbol Table.
1026 if (versym && versym->cache &&
1027 (versym->cache->c_shdr->sh_link == state->secndx))
1028 state->versym = versym;
1029 else
1030 state->versym = NULL;
1033 return (1);
1037 * Determine the extended section index used for symbol tables entries.
1039 static void
1040 symbols_getxindex(SYMTBL_STATE *state)
1042 uint_t symn;
1043 Word symcnt;
1045 state->shxndx.checked = 1; /* Note that we've been called */
1046 for (symcnt = 1; symcnt < state->shnum; symcnt++) {
1047 Cache *_cache = &state->cache[symcnt];
1048 Shdr *shdr = _cache->c_shdr;
1050 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
1051 (shdr->sh_link != state->secndx))
1052 continue;
1054 if ((shdr->sh_entsize) &&
1055 /* LINTED */
1056 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
1057 continue;
1059 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
1060 continue;
1062 state->shxndx.data = _cache->c_data->d_buf;
1063 state->shxndx.n = symn;
1064 return;
1069 * Produce a line of output for the given symbol
1071 * entry:
1072 * state - Symbol table state
1073 * symndx - Index of symbol within the table
1074 * info - Value of st_info (indicates local/global range)
1075 * symndx_disp - Index to display. This may not be the same
1076 * as symndx if the display is relative to the logical
1077 * combination of the SUNW_ldynsym/dynsym tables.
1078 * sym - Symbol to display
1080 static void
1081 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1082 Sym *sym)
1085 * Symbol types for which we check that the specified
1086 * address/size land inside the target section.
1088 static const int addr_symtype[] = {
1089 0, /* STT_NOTYPE */
1090 1, /* STT_OBJECT */
1091 1, /* STT_FUNC */
1092 0, /* STT_SECTION */
1093 0, /* STT_FILE */
1094 1, /* STT_COMMON */
1095 0, /* STT_TLS */
1096 0, /* 7 */
1097 0, /* 8 */
1098 0, /* 9 */
1099 0, /* 10 */
1100 0, /* 11 */
1101 0, /* 12 */
1102 0, /* STT_SPARC_REGISTER */
1103 0, /* 14 */
1104 0, /* 15 */
1106 #if STT_NUM != (STT_TLS + 1)
1107 #error "STT_NUM has grown. Update addr_symtype[]"
1108 #endif
1110 char index[MAXNDXSIZE];
1111 const char *symname, *sec;
1112 Versym verndx;
1113 int gnuver;
1114 uchar_t type;
1115 Shdr *tshdr;
1116 Word shndx;
1117 Conv_inv_buf_t inv_buf;
1119 /* Ensure symbol index is in range */
1120 if (symndx >= state->symn) {
1121 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1122 state->file, state->secname, EC_WORD(symndx));
1123 return;
1127 * If we are using extended symbol indexes, find the
1128 * corresponding SHN_SYMTAB_SHNDX table.
1130 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1131 symbols_getxindex(state);
1133 /* LINTED */
1134 symname = string(state->seccache, symndx,
1135 &state->cache[state->seccache->c_shdr->sh_link], state->file,
1136 sym->st_name);
1138 tshdr = NULL;
1139 sec = NULL;
1141 if (state->ehdr->e_type == ET_CORE) {
1142 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1143 } else if (state->flags & FLG_CTL_FAKESHDR) {
1145 * If we are using fake section headers derived from
1146 * the program headers, then the section indexes
1147 * in the symbols do not correspond to these headers.
1148 * The section names are not available, so all we can
1149 * do is to display them in numeric form.
1151 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1152 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1153 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1154 (sym->st_shndx < state->shnum)) {
1155 shndx = sym->st_shndx;
1156 tshdr = state->cache[shndx].c_shdr;
1157 sec = state->cache[shndx].c_name;
1158 } else if (sym->st_shndx == SHN_XINDEX) {
1159 if (state->shxndx.data) {
1160 Word _shxndx;
1162 if (symndx > state->shxndx.n) {
1163 (void) fprintf(stderr,
1164 MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1165 state->file, state->secname,
1166 EC_WORD(symndx));
1167 } else if ((_shxndx =
1168 state->shxndx.data[symndx]) > state->shnum) {
1169 (void) fprintf(stderr,
1170 MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1171 state->file, state->secname,
1172 EC_WORD(symndx), EC_WORD(_shxndx));
1173 } else {
1174 shndx = _shxndx;
1175 tshdr = state->cache[shndx].c_shdr;
1176 sec = state->cache[shndx].c_name;
1178 } else {
1179 (void) fprintf(stderr,
1180 MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1181 state->file, state->secname, EC_WORD(symndx));
1183 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1184 (sym->st_shndx >= state->shnum)) {
1185 (void) fprintf(stderr,
1186 MSG_INTL(MSG_ERR_BADSYM5), state->file,
1187 state->secname, EC_WORD(symndx),
1188 demangle(symname, state->flags), sym->st_shndx);
1192 * If versioning is available display the
1193 * version index. If not, then use 0.
1195 if (state->versym) {
1196 Versym test_verndx;
1198 verndx = test_verndx = state->versym->data[symndx];
1199 gnuver = state->versym->gnu_full;
1202 * Check to see if this is a defined symbol with a
1203 * version index that is outside the valid range for
1204 * the file. The interpretation of this depends on
1205 * the style of versioning used by the object.
1207 * Versions >= VER_NDX_LORESERVE have special meanings,
1208 * and are exempt from this checking.
1210 * GNU style version indexes use the top bit of the
1211 * 16-bit index value (0x8000) as the "hidden bit".
1212 * We must mask off this bit in order to compare
1213 * the version against the maximum value.
1215 if (gnuver)
1216 test_verndx &= ~0x8000;
1218 if ((test_verndx > state->versym->max_verndx) &&
1219 (verndx < VER_NDX_LORESERVE))
1220 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1221 state->file, state->secname, EC_WORD(symndx),
1222 EC_HALF(test_verndx), state->versym->max_verndx);
1223 } else {
1224 verndx = 0;
1225 gnuver = 0;
1229 * Error checking for TLS.
1231 type = ELF_ST_TYPE(sym->st_info);
1232 if (type == STT_TLS) {
1233 if (tshdr &&
1234 (sym->st_shndx != SHN_UNDEF) &&
1235 ((tshdr->sh_flags & SHF_TLS) == 0)) {
1236 (void) fprintf(stderr,
1237 MSG_INTL(MSG_ERR_BADSYM3), state->file,
1238 state->secname, EC_WORD(symndx),
1239 demangle(symname, state->flags));
1241 } else if ((type != STT_SECTION) && sym->st_size &&
1242 tshdr && (tshdr->sh_flags & SHF_TLS)) {
1243 (void) fprintf(stderr,
1244 MSG_INTL(MSG_ERR_BADSYM4), state->file,
1245 state->secname, EC_WORD(symndx),
1246 demangle(symname, state->flags));
1250 * If a symbol with non-zero size has a type that
1251 * specifies an address, then make sure the location
1252 * it references is actually contained within the
1253 * section. UNDEF symbols don't count in this case,
1254 * so we ignore them.
1256 * The meaning of the st_value field in a symbol
1257 * depends on the type of object. For a relocatable
1258 * object, it is the offset within the section.
1259 * For sharable objects, it is the offset relative to
1260 * the base of the object, and for other types, it is
1261 * the virtual address. To get an offset within the
1262 * section for non-ET_REL files, we subtract the
1263 * base address of the section.
1265 if (addr_symtype[type] && (sym->st_size > 0) &&
1266 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1267 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1268 Word v = sym->st_value;
1269 if (state->ehdr->e_type != ET_REL)
1270 v -= tshdr->sh_addr;
1271 if (((v + sym->st_size) > tshdr->sh_size)) {
1272 (void) fprintf(stderr,
1273 MSG_INTL(MSG_ERR_BADSYM6), state->file,
1274 state->secname, EC_WORD(symndx),
1275 demangle(symname, state->flags),
1276 EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1277 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1282 * A typical symbol table uses the sh_info field to indicate one greater
1283 * than the symbol table index of the last local symbol, STB_LOCAL.
1284 * Therefore, symbol indexes less than sh_info should have local
1285 * binding. Symbol indexes greater than, or equal to sh_info, should
1286 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero
1287 * value and size, as these symbols may be the result of an mcs(1)
1288 * section deletion.
1290 if (info) {
1291 uchar_t bind = ELF_ST_BIND(sym->st_info);
1293 if ((symndx < info) && (bind != STB_LOCAL)) {
1294 (void) fprintf(stderr,
1295 MSG_INTL(MSG_ERR_BADSYM7), state->file,
1296 state->secname, EC_WORD(symndx),
1297 demangle(symname, state->flags), EC_XWORD(info));
1299 } else if ((symndx >= info) && (bind == STB_LOCAL) &&
1300 ((sym->st_shndx != SHN_UNDEF) ||
1301 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1302 (sym->st_size != 0) || (sym->st_value != 0))) {
1303 (void) fprintf(stderr,
1304 MSG_INTL(MSG_ERR_BADSYM8), state->file,
1305 state->secname, EC_WORD(symndx),
1306 demangle(symname, state->flags), EC_XWORD(info));
1310 (void) snprintf(index, MAXNDXSIZE,
1311 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1312 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1313 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1317 * Process a SHT_SUNW_cap capabilities section.
1319 static int
1320 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1321 uchar_t osabi, Ehdr *ehdr, uint_t flags)
1323 SYMTBL_STATE state;
1324 Word cnum, capnum, nulls, symcaps;
1325 int descapndx, objcap, title;
1326 Cap *cap = (Cap *)ccache->c_data->d_buf;
1327 Shdr *cishdr, *cshdr = ccache->c_shdr;
1328 Cache *cicache, *strcache;
1329 Capinfo *capinfo = NULL;
1330 Word capinfonum;
1331 const char *strs = NULL;
1332 size_t strs_size;
1334 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1335 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1336 file, ccache->c_name);
1337 return (0);
1341 * If this capabilities section is associated with symbols, then the
1342 * sh_link field points to the associated capabilities information
1343 * section. The sh_link field of the capabilities information section
1344 * points to the associated symbol table.
1346 if (cshdr->sh_link) {
1347 Cache *scache;
1348 Shdr *sshdr;
1351 * Validate that the sh_link field points to a capabilities
1352 * information section.
1354 if (cshdr->sh_link >= shnum) {
1355 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1356 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1357 return (0);
1360 cicache = &cache[cshdr->sh_link];
1361 cishdr = cicache->c_shdr;
1363 if (cishdr->sh_type != SHT_SUNW_capinfo) {
1364 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1365 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1366 return (0);
1369 capinfo = cicache->c_data->d_buf;
1370 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1373 * Validate that the sh_link field of the capabilities
1374 * information section points to a valid symbol table.
1376 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1377 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1378 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1379 return (0);
1381 scache = &cache[cishdr->sh_link];
1382 sshdr = scache->c_shdr;
1384 if ((sshdr->sh_type != SHT_SYMTAB) &&
1385 (sshdr->sh_type != SHT_DYNSYM)) {
1386 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1387 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1388 return (0);
1391 if (!init_symtbl_state(&state, cache, shnum,
1392 cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1393 return (0);
1397 * If this capabilities section contains capability string entries,
1398 * then determine the associated string table. Capabilities entries
1399 * that define names require that the capability section indicate
1400 * which string table to use via sh_info.
1402 if (cshdr->sh_info) {
1403 Shdr *strshdr;
1406 * Validate that the sh_info field points to a string table.
1408 if (cshdr->sh_info >= shnum) {
1409 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1410 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1411 return (0);
1414 strcache = &cache[cshdr->sh_info];
1415 strshdr = strcache->c_shdr;
1417 if (strshdr->sh_type != SHT_STRTAB) {
1418 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1419 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1420 return (0);
1422 strs = (const char *)strcache->c_data->d_buf;
1423 strs_size = strcache->c_data->d_size;
1426 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1427 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1429 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1431 nulls = symcaps = 0;
1432 objcap = title = 1;
1433 descapndx = -1;
1436 * Traverse the capabilities section printing each capability group.
1437 * The first capabilities group defines any object capabilities. Any
1438 * following groups define symbol capabilities. In the case where no
1439 * object capabilities exist, but symbol capabilities do, a single
1440 * CA_SUNW_NULL terminator for the object capabilities exists.
1442 for (cnum = 0; cnum < capnum; cap++, cnum++) {
1443 if (cap->c_tag == CA_SUNW_NULL) {
1445 * A CA_SUNW_NULL tag terminates a capabilities group.
1446 * If the first capabilities tag is CA_SUNW_NULL, then
1447 * no object capabilities exist.
1449 if ((nulls++ == 0) && (cnum == 0))
1450 objcap = 0;
1451 title = 1;
1452 } else {
1453 if (title) {
1454 if (nulls == 0) {
1456 * If this capabilities group represents
1457 * the object capabilities (i.e., no
1458 * CA_SUNW_NULL tag has been processed
1459 * yet), then display an object
1460 * capabilities title.
1462 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1463 dbg_print(0,
1464 MSG_INTL(MSG_OBJ_CAP_TITLE));
1465 } else {
1467 * If this is a symbols capabilities
1468 * group (i.e., a CA_SUNW_NULL tag has
1469 * already be found that terminates
1470 * the object capabilities group), then
1471 * display a symbol capabilities title,
1472 * and retain this capabilities index
1473 * for later processing.
1475 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1476 dbg_print(0,
1477 MSG_INTL(MSG_SYM_CAP_TITLE));
1478 descapndx = cnum;
1480 Elf_cap_title(0);
1481 title = 0;
1485 * Print the capabilities data.
1487 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1488 * entries require a string table, which should have
1489 * already been established.
1491 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1492 (cap->c_tag == CA_SUNW_MACH) ||
1493 (cap->c_tag == CA_SUNW_ID))) {
1494 (void) fprintf(stderr,
1495 MSG_INTL(MSG_WARN_INVCAP4), file,
1496 EC_WORD(elf_ndxscn(ccache->c_scn)),
1497 ccache->c_name, EC_WORD(cshdr->sh_info));
1499 Elf_cap_entry(0, cap, cnum, strs, strs_size,
1500 ehdr->e_machine);
1504 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1505 * group, determine the associated symbols.
1507 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1508 (descapndx != -1)) {
1509 Capinfo *cip;
1510 Word inum;
1512 symcaps++;
1515 * Make sure we've discovered a SHT_SUNW_capinfo table.
1517 if ((cip = capinfo) == NULL) {
1518 (void) fprintf(stderr,
1519 MSG_INTL(MSG_ERR_INVCAP), file,
1520 ccache->c_name, EC_WORD(cshdr->sh_link));
1521 return (0);
1525 * Determine what symbols reference this capabilities
1526 * group.
1528 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1529 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1530 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1532 for (inum = 1, cip++; inum < capinfonum;
1533 inum++, cip++) {
1534 Word gndx = (Word)ELF_C_GROUP(*cip);
1536 if (gndx && (gndx == descapndx)) {
1537 output_symbol(&state, inum, 0,
1538 inum, state.sym + inum);
1541 descapndx = -1;
1542 continue;
1546 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1547 * object is suspicious as it has no effect.
1549 if ((cap->c_tag == CA_SUNW_SF_1) &&
1550 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1551 (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1552 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1553 file, ccache->c_name);
1558 * If this is a dynamic object, with symbol capabilities, then a
1559 * .SUNW_capchain section should exist. This section contains a chain
1560 * of symbol indexes for each capabilities family. This is the list
1561 * that is searched by ld.so.1 to determine the best capabilities
1562 * candidate.
1564 * Note, more than one capabilities lead symbol can point to the same
1565 * family chain. For example, a weak/global pair of symbols can both
1566 * represent the same family of capabilities symbols. Therefore, to
1567 * display all possible families we traverse the capabilities
1568 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1569 * From these we determine the associated capabilities chain to inspect.
1571 if (symcaps &&
1572 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1573 Capinfo *cip;
1574 Capchain *chain;
1575 Cache *chcache;
1576 Shdr *chshdr;
1577 Word chainnum, inum;
1580 * Validate that the sh_info field of the capabilities
1581 * information section points to a capabilities chain section.
1583 if (cishdr->sh_info >= shnum) {
1584 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1585 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1586 return (0);
1589 chcache = &cache[cishdr->sh_info];
1590 chshdr = chcache->c_shdr;
1592 if (chshdr->sh_type != SHT_SUNW_capchain) {
1593 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1594 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1595 return (0);
1598 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1599 chain = (Capchain *)chcache->c_data->d_buf;
1601 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1602 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1605 * Traverse the capabilities information section looking for
1606 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1608 cip = capinfo;
1609 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1610 const char *name;
1611 Sym *sym;
1612 Word sndx, cndx;
1613 Word gndx = (Word)ELF_C_GROUP(*cip);
1615 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1616 continue;
1619 * Determine the symbol that is associated with this
1620 * capability information entry, and use this to
1621 * identify this capability family.
1623 sym = (Sym *)(state.sym + inum);
1624 name = string(cicache, inum, strcache, file,
1625 sym->st_name);
1627 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1628 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1629 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1631 cndx = (Word)ELF_C_SYM(*cip);
1634 * Traverse this families chain and identify each
1635 * family member.
1637 for (;;) {
1638 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1640 if (cndx >= chainnum) {
1641 (void) fprintf(stderr,
1642 MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1643 cicache->c_name, EC_WORD(inum),
1644 EC_WORD(cndx));
1645 break;
1647 if ((sndx = chain[cndx]) == 0)
1648 break;
1651 * Determine this entries symbol reference.
1653 if (sndx > state.symn) {
1654 (void) fprintf(stderr,
1655 MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1656 EC_WORD(sndx), chcache->c_name,
1657 EC_WORD(cndx));
1658 name = MSG_INTL(MSG_STR_UNKNOWN);
1659 } else {
1660 sym = (Sym *)(state.sym + sndx);
1661 name = string(chcache, sndx,
1662 strcache, file, sym->st_name);
1666 * Display the family member.
1668 (void) snprintf(_chain, MAXNDXSIZE,
1669 MSG_ORIG(MSG_FMT_INTEGER), cndx);
1670 (void) snprintf(_symndx, MAXNDXSIZE,
1671 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1672 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1673 _chain, _symndx, demangle(name, flags));
1675 cndx++;
1679 return (objcap);
1683 * Print the capabilities.
1685 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1686 * capabilities groups. The first group defines the object capabilities.
1687 * This group defines the minimum capability requirements of the entire
1688 * object file. If this is a dynamic object, this group should be associated
1689 * with a PT_SUNWCAP program header.
1691 * Additional capabilities groups define the association of individual symbols
1692 * to specific capabilities.
1694 static void
1695 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1696 uchar_t osabi, Elf *elf, uint_t flags)
1698 Word cnt;
1699 Shdr *cshdr = NULL;
1700 Cache *ccache;
1701 Off cphdr_off = 0;
1702 Xword cphdr_sz;
1705 * Determine if a global capabilities header exists.
1707 if (phnum) {
1708 Phdr *phdr;
1710 if ((phdr = elf_getphdr(elf)) == NULL) {
1711 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1712 return;
1715 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1716 if (phdr->p_type == PT_SUNWCAP) {
1717 cphdr_off = phdr->p_offset;
1718 cphdr_sz = phdr->p_filesz;
1719 break;
1725 * Determine if a capabilities section exists.
1727 for (cnt = 1; cnt < shnum; cnt++) {
1728 Cache *_cache = &cache[cnt];
1729 Shdr *shdr = _cache->c_shdr;
1732 * Process any capabilities information.
1734 if (shdr->sh_type == SHT_SUNW_cap) {
1735 if (cap_section(file, cache, shnum, _cache, osabi,
1736 ehdr, flags)) {
1738 * If this section defined an object capability
1739 * group, retain the section information for
1740 * program header validation.
1742 ccache = _cache;
1743 cshdr = shdr;
1745 continue;
1749 if ((cshdr == NULL) && (cphdr_off == 0))
1750 return;
1752 if (cphdr_off && (cshdr == NULL))
1753 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1756 * If this object is an executable or shared object, and it provided
1757 * an object capabilities group, then the group should have an
1758 * accompanying PT_SUNWCAP program header.
1760 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1761 if (cphdr_off == 0) {
1762 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1763 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1764 ccache->c_name);
1765 } else if ((cphdr_off != cshdr->sh_offset) ||
1766 (cphdr_sz != cshdr->sh_size)) {
1767 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1768 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1769 ccache->c_name);
1775 * Print the interpretor.
1777 static void
1778 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1780 static Word phdr_types[] = { PT_INTERP };
1783 Word cnt;
1784 Shdr *ishdr = NULL;
1785 Cache *icache = NULL;
1786 Off iphdr_off = 0;
1787 Xword iphdr_fsz;
1790 * Determine if an interp header exists.
1792 if (phnum) {
1793 Phdr *phdr;
1795 phdr = getphdr(phnum, phdr_types,
1796 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1797 if (phdr != NULL) {
1798 iphdr_off = phdr->p_offset;
1799 iphdr_fsz = phdr->p_filesz;
1803 if (iphdr_off == 0)
1804 return;
1807 * Determine if an interp section exists.
1809 for (cnt = 1; cnt < shnum; cnt++) {
1810 Cache *_cache = &cache[cnt];
1811 Shdr *shdr = _cache->c_shdr;
1814 * Scan sections to find a section which contains the PT_INTERP
1815 * string. The target section can't be in a NOBITS section.
1817 if ((shdr->sh_type == SHT_NOBITS) ||
1818 (iphdr_off < shdr->sh_offset) ||
1819 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1820 continue;
1822 icache = _cache;
1823 ishdr = shdr;
1824 break;
1828 * Print the interpreter string based on the offset defined in the
1829 * program header, as this is the offset used by the kernel.
1831 if ((ishdr != NULL) &&
1832 (icache != NULL) &&
1833 (icache->c_data != NULL) &&
1834 (icache->c_data->d_buf != NULL) &&
1835 (icache->c_data->d_size > 0)) {
1836 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1837 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1838 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1839 (char *)icache->c_data->d_buf +
1840 (iphdr_off - ishdr->sh_offset));
1841 } else
1842 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1845 * If there are any inconsistences between the program header and
1846 * section information, flag them.
1848 if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1849 (iphdr_fsz != ishdr->sh_size))) {
1850 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1851 icache->c_name);
1856 * Print the syminfo section.
1858 static void
1859 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1861 Shdr *infoshdr;
1862 Syminfo *info;
1863 Sym *syms;
1864 Dyn *dyns;
1865 Word infonum, cnt, ndx, symnum, dynnum;
1866 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1867 Boolean *dynerr;
1869 for (cnt = 1; cnt < shnum; cnt++) {
1870 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1871 infocache = &cache[cnt];
1872 break;
1875 if (infocache == NULL)
1876 return;
1878 infoshdr = infocache->c_shdr;
1879 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1880 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1881 file, infocache->c_name);
1882 return;
1884 if ((infocache->c_data == NULL) || (infocache->c_data->d_buf == NULL))
1885 return;
1887 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1888 info = (Syminfo *)infocache->c_data->d_buf;
1891 * If there is no associated dynamic section, determine if one
1892 * is needed, and if so issue a warning. If there is an
1893 * associated dynamic section, validate it and get the data buffer
1894 * for it.
1896 dyns = NULL;
1897 dynnum = 0;
1898 if (infoshdr->sh_info == 0) {
1899 Syminfo *_info = info + 1;
1901 for (ndx = 1; ndx < infonum; ndx++, _info++) {
1902 if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1903 continue;
1905 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1906 (void) fprintf(stderr,
1907 MSG_INTL(MSG_ERR_BADSHINFO), file,
1908 infocache->c_name,
1909 EC_WORD(infoshdr->sh_info));
1911 } else if ((infoshdr->sh_info >= shnum) ||
1912 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1913 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1914 file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1915 } else {
1916 dyncache = &cache[infoshdr->sh_info];
1917 if ((dyncache->c_data == NULL) ||
1918 ((dyns = dyncache->c_data->d_buf) == NULL)) {
1919 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1920 file, dyncache->c_name);
1922 if (dyns != NULL) {
1923 if ((dyncache->c_shdr->sh_entsize == 0) ||
1924 (dyncache->c_shdr->sh_size == 0)) {
1925 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1926 file, dyncache->c_name);
1927 return;
1930 dynnum = dyncache->c_shdr->sh_size /
1931 dyncache->c_shdr->sh_entsize;
1934 * We validate the type of dynamic elements referenced
1935 * from the syminfo. This array is used report any
1936 * bad dynamic entries.
1938 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1939 NULL) {
1940 int err = errno;
1941 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1942 file, strerror(err));
1943 return;
1949 * Get the data buffer for the associated symbol table and string table.
1951 if (stringtbl(cache, 1, cnt, shnum, file,
1952 &symnum, &symsec, &strsec) == 0)
1953 return;
1955 syms = symsec->c_data->d_buf;
1958 * Loop through the syminfo entries.
1960 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1961 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1962 Elf_syminfo_title(0);
1964 for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1965 Sym *sym;
1966 const char *needed, *name;
1967 Word expect_dt;
1968 Word boundto = info->si_boundto;
1970 if ((info->si_flags == 0) && (boundto == 0))
1971 continue;
1973 sym = &syms[ndx];
1974 name = string(infocache, ndx, strsec, file, sym->st_name);
1976 /* Is si_boundto set to one of the reserved values? */
1977 if (boundto >= SYMINFO_BT_LOWRESERVE) {
1978 Elf_syminfo_entry(0, ndx, info, name, NULL);
1979 continue;
1983 * si_boundto is referencing a dynamic section. If we don't
1984 * have one, an error was already issued above, so it suffices
1985 * to display an empty string. If we are out of bounds, then
1986 * report that and then display an empty string.
1988 if ((dyns == NULL) || (boundto >= dynnum)) {
1989 if (dyns != NULL)
1990 (void) fprintf(stderr,
1991 MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
1992 infocache->c_ndx, infocache->c_name,
1993 EC_WORD(ndx), EC_WORD(dynnum - 1),
1994 EC_WORD(boundto));
1995 Elf_syminfo_entry(0, ndx, info, name,
1996 MSG_ORIG(MSG_STR_EMPTY));
1997 continue;
2001 * The si_boundto reference expects a specific dynamic element
2002 * type at the given index. The dynamic element is always a
2003 * string that gives an object name. The specific type depends
2004 * on the si_flags present. Ensure that we've got the right
2005 * type.
2007 if (info->si_flags & SYMINFO_FLG_FILTER)
2008 expect_dt = DT_SUNW_FILTER;
2009 else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
2010 expect_dt = DT_SUNW_AUXILIARY;
2011 else if (info->si_flags & (SYMINFO_FLG_DIRECT |
2012 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
2013 expect_dt = DT_NEEDED;
2014 else
2015 expect_dt = DT_NULL; /* means we ignore the type */
2017 if ((dyns[boundto].d_tag != expect_dt) &&
2018 (expect_dt != DT_NULL)) {
2019 Conv_inv_buf_t buf1, buf2;
2021 /* Only complain about each dynamic element once */
2022 if (!dynerr[boundto]) {
2023 (void) fprintf(stderr,
2024 MSG_INTL(MSG_ERR_BADSIDYNTAG),
2025 file, infocache->c_ndx, infocache->c_name,
2026 EC_WORD(ndx), dyncache->c_ndx,
2027 dyncache->c_name, EC_WORD(boundto),
2028 conv_dyn_tag(expect_dt, osabi,
2029 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
2030 conv_dyn_tag(dyns[boundto].d_tag, osabi,
2031 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
2032 dynerr[boundto] = TRUE;
2037 * Whether or not the DT item we're pointing at is
2038 * of the right type, if it's a type we recognize as
2039 * providing a string, go ahead and show it. Otherwise
2040 * an empty string.
2042 switch (dyns[boundto].d_tag) {
2043 case DT_NEEDED:
2044 case DT_SONAME:
2045 case DT_RPATH:
2046 case DT_RUNPATH:
2047 case DT_CONFIG:
2048 case DT_DEPAUDIT:
2049 case DT_USED:
2050 case DT_AUDIT:
2051 case DT_SUNW_AUXILIARY:
2052 case DT_SUNW_FILTER:
2053 case DT_FILTER:
2054 case DT_AUXILIARY:
2055 needed = string(infocache, boundto,
2056 strsec, file, dyns[boundto].d_un.d_val);
2057 break;
2058 default:
2059 needed = MSG_ORIG(MSG_STR_EMPTY);
2061 Elf_syminfo_entry(0, ndx, info, name, needed);
2063 if (dyns != NULL)
2064 free(dynerr);
2068 * Print version definition section entries.
2070 static void
2071 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
2072 const char *file)
2074 Word cnt;
2075 char index[MAXNDXSIZE];
2077 Elf_ver_def_title(0);
2079 for (cnt = 1; cnt <= vdf_num; cnt++,
2080 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2081 Conv_ver_flags_buf_t ver_flags_buf;
2082 const char *name, *dep;
2083 Half vcnt = vdf->vd_cnt - 1;
2084 Half ndx = vdf->vd_ndx;
2085 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2088 * Obtain the name and first dependency (if any).
2090 name = string(vcache, cnt, scache, file, vdap->vda_name);
2091 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2092 if (vcnt)
2093 dep = string(vcache, cnt, scache, file, vdap->vda_name);
2094 else
2095 dep = MSG_ORIG(MSG_STR_EMPTY);
2097 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2098 EC_XWORD(ndx));
2099 Elf_ver_line_1(0, index, name, dep,
2100 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2103 * Print any additional dependencies.
2105 if (vcnt) {
2106 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2107 for (vcnt--; vcnt; vcnt--,
2108 vdap = (Verdaux *)((uintptr_t)vdap +
2109 vdap->vda_next)) {
2110 dep = string(vcache, cnt, scache, file,
2111 vdap->vda_name);
2112 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2119 * Print version needed section entries.
2121 * entry:
2122 * vnd - Address of verneed data
2123 * vnd_num - # of Verneed entries
2124 * vcache - Cache of verneed section being processed
2125 * scache - Cache of associated string table section
2126 * file - Name of object being processed.
2127 * versym - Information about versym section
2129 * exit:
2130 * The versions have been printed. If GNU style versioning
2131 * is in effect, versym->max_verndx has been updated to
2132 * contain the largest version index seen.
2134 * note:
2135 * The versym section of an object that follows the original
2136 * Solaris versioning rules only contains indexes into the verdef
2137 * section. Symbols defined in other objects (UNDEF) are given
2138 * a version of 0, indicating that they are not defined by
2139 * this file, and the Verneed entries do not have associated version
2140 * indexes. For these reasons, we do not display a version index
2141 * for original-style Verneed sections.
2143 * The GNU versioning extensions alter this: Symbols defined in other
2144 * objects receive a version index in the range above those defined
2145 * by the Verdef section, and the vna_other field of the Vernaux
2146 * structs inside the Verneed section contain the version index for
2147 * that item. We therefore display the index when showing the
2148 * contents of a GNU style Verneed section. You should not
2149 * necessarily expect these indexes to appear in sorted
2150 * order --- it seems that the GNU ld assigns the versions as
2151 * symbols are encountered during linking, and then the results
2152 * are assembled into the Verneed section afterwards.
2154 static void
2155 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2156 const char *file, VERSYM_STATE *versym)
2158 Word cnt;
2159 char index[MAXNDXSIZE];
2160 const char *index_str;
2162 Elf_ver_need_title(0, versym->gnu_needed);
2164 for (cnt = 1; cnt <= vnd_num; cnt++,
2165 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2166 Conv_ver_flags_buf_t ver_flags_buf;
2167 const char *name, *dep;
2168 Half vcnt = vnd->vn_cnt;
2169 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2172 * Obtain the name of the needed file and the version name
2173 * within it that we're dependent on. Note that the count
2174 * should be at least one, otherwise this is a pretty bogus
2175 * entry.
2177 name = string(vcache, cnt, scache, file, vnd->vn_file);
2178 if (vcnt)
2179 dep = string(vcache, cnt, scache, file, vnap->vna_name);
2180 else
2181 dep = MSG_INTL(MSG_STR_NULL);
2183 if (vnap->vna_other == 0) { /* Traditional form */
2184 index_str = MSG_ORIG(MSG_STR_EMPTY);
2185 } else { /* GNU form */
2186 index_str = index;
2187 /* Format the version index value */
2188 (void) snprintf(index, MAXNDXSIZE,
2189 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2190 if (vnap->vna_other > versym->max_verndx)
2191 versym->max_verndx = vnap->vna_other;
2193 Elf_ver_line_1(0, index_str, name, dep,
2194 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2197 * Print any additional version dependencies.
2199 if (vcnt) {
2200 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2201 for (vcnt--; vcnt; vcnt--,
2202 vnap = (Vernaux *)((uintptr_t)vnap +
2203 vnap->vna_next)) {
2204 dep = string(vcache, cnt, scache, file,
2205 vnap->vna_name);
2206 if (vnap->vna_other > 0) {
2207 /* Format the next index value */
2208 (void) snprintf(index, MAXNDXSIZE,
2209 MSG_ORIG(MSG_FMT_INDEX),
2210 EC_XWORD(vnap->vna_other));
2211 Elf_ver_line_1(0, index,
2212 MSG_ORIG(MSG_STR_EMPTY), dep,
2213 conv_ver_flags(vnap->vna_flags,
2214 0, &ver_flags_buf));
2215 if (vnap->vna_other >
2216 versym->max_verndx)
2217 versym->max_verndx =
2218 vnap->vna_other;
2219 } else {
2220 Elf_ver_line_3(0,
2221 MSG_ORIG(MSG_STR_EMPTY), dep,
2222 conv_ver_flags(vnap->vna_flags,
2223 0, &ver_flags_buf));
2231 * Examine the Verneed section for information related to GNU
2232 * style Versym indexing:
2233 * - A non-zero vna_other field indicates that Versym indexes can
2234 * reference Verneed records.
2235 * - If the object uses GNU style Versym indexing, the
2236 * maximum index value is needed to detect bad Versym entries.
2238 * entry:
2239 * vnd - Address of verneed data
2240 * vnd_num - # of Verneed entries
2241 * versym - Information about versym section
2243 * exit:
2244 * If a non-zero vna_other field is seen, versym->gnu_needed is set.
2246 * versym->max_verndx has been updated to contain the largest
2247 * version index seen.
2249 static void
2250 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2252 Word cnt;
2254 for (cnt = 1; cnt <= vnd_num; cnt++,
2255 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2256 Half vcnt = vnd->vn_cnt;
2257 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2260 * A non-zero value of vna_other indicates that this
2261 * object references VERNEED items from the VERSYM
2262 * array.
2264 if (vnap->vna_other != 0) {
2265 versym->gnu_needed = 1;
2266 if (vnap->vna_other > versym->max_verndx)
2267 versym->max_verndx = vnap->vna_other;
2271 * Check any additional version dependencies.
2273 if (vcnt) {
2274 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2275 for (vcnt--; vcnt; vcnt--,
2276 vnap = (Vernaux *)((uintptr_t)vnap +
2277 vnap->vna_next)) {
2278 if (vnap->vna_other == 0)
2279 continue;
2281 versym->gnu_needed = 1;
2282 if (vnap->vna_other > versym->max_verndx)
2283 versym->max_verndx = vnap->vna_other;
2290 * Display version section information if the flags require it.
2291 * Return version information needed by other output.
2293 * entry:
2294 * cache - Cache of all section headers
2295 * shnum - # of sections in cache
2296 * file - Name of file
2297 * flags - Command line option flags
2298 * versym - VERSYM_STATE block to be filled in.
2300 static void
2301 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2302 VERSYM_STATE *versym)
2304 GElf_Word cnt;
2305 Cache *verdef_cache = NULL, *verneed_cache = NULL;
2308 /* Gather information about the version sections */
2309 versym->max_verndx = 1;
2310 for (cnt = 1; cnt < shnum; cnt++) {
2311 Cache *_cache = &cache[cnt];
2312 Shdr *shdr = _cache->c_shdr;
2313 Dyn *dyn;
2314 ulong_t numdyn;
2316 switch (shdr->sh_type) {
2317 case SHT_DYNAMIC:
2319 * The GNU ld puts a DT_VERSYM entry in the dynamic
2320 * section so that the runtime linker can use it to
2321 * implement their versioning rules. They allow multiple
2322 * incompatible functions with the same name to exist
2323 * in different versions. The Solaris ld does not
2324 * support this mechanism, and as such, does not
2325 * produce DT_VERSYM. We use this fact to determine
2326 * which ld produced this object, and how to interpret
2327 * the version values.
2329 if ((shdr->sh_entsize == 0) ||
2330 (shdr->sh_size == 0) ||
2331 (_cache->c_data == NULL) ||
2332 (_cache->c_data->d_buf == NULL))
2333 continue;
2334 numdyn = shdr->sh_size / shdr->sh_entsize;
2335 dyn = (Dyn *)_cache->c_data->d_buf;
2336 for (; numdyn-- > 0; dyn++)
2337 if (dyn->d_tag == DT_VERSYM) {
2338 versym->gnu_full =
2339 versym->gnu_needed = 1;
2340 break;
2342 break;
2344 case SHT_SUNW_versym:
2345 /* Record data address for later symbol processing */
2346 if (_cache->c_data != NULL) {
2347 versym->cache = _cache;
2348 versym->data = _cache->c_data->d_buf;
2349 continue;
2351 break;
2353 case SHT_SUNW_verdef:
2354 case SHT_SUNW_verneed:
2356 * Ensure the data is non-NULL and the number
2357 * of items is non-zero. Otherwise, we don't
2358 * understand the section, and will not use it.
2360 if ((_cache->c_data == NULL) ||
2361 (_cache->c_data->d_buf == NULL)) {
2362 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2363 file, _cache->c_name);
2364 continue;
2366 if (shdr->sh_info == 0) {
2367 (void) fprintf(stderr,
2368 MSG_INTL(MSG_ERR_BADSHINFO),
2369 file, _cache->c_name,
2370 EC_WORD(shdr->sh_info));
2371 continue;
2374 /* Make sure the string table index is in range */
2375 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2376 (void) fprintf(stderr,
2377 MSG_INTL(MSG_ERR_BADSHLINK), file,
2378 _cache->c_name, EC_WORD(shdr->sh_link));
2379 continue;
2383 * The section is usable. Save the cache entry.
2385 if (shdr->sh_type == SHT_SUNW_verdef) {
2386 verdef_cache = _cache;
2388 * Under Solaris rules, if there is a verdef
2389 * section, the max versym index is number
2390 * of version definitions it supplies.
2392 versym->max_verndx = shdr->sh_info;
2393 } else {
2394 verneed_cache = _cache;
2396 break;
2401 * If there is a Verneed section, examine it for information
2402 * related to GNU style versioning.
2404 if (verneed_cache != NULL)
2405 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2406 verneed_cache->c_shdr->sh_info, versym);
2409 * Now that all the information is available, display the
2410 * Verdef and Verneed section contents, if requested.
2412 if ((flags & FLG_SHOW_VERSIONS) == 0)
2413 return;
2414 if (verdef_cache != NULL) {
2415 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2416 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2417 verdef_cache->c_name);
2418 version_def((Verdef *)verdef_cache->c_data->d_buf,
2419 verdef_cache->c_shdr->sh_info, verdef_cache,
2420 &cache[verdef_cache->c_shdr->sh_link], file);
2422 if (verneed_cache != NULL) {
2423 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2424 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2425 verneed_cache->c_name);
2427 * If GNU versioning applies to this object, version_need()
2428 * will update versym->max_verndx, and it is not
2429 * necessary to call update_gnu_verndx().
2431 version_need((Verneed *)verneed_cache->c_data->d_buf,
2432 verneed_cache->c_shdr->sh_info, verneed_cache,
2433 &cache[verneed_cache->c_shdr->sh_link], file, versym);
2438 * Search for and process any symbol tables.
2440 void
2441 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2442 VERSYM_STATE *versym, const char *file, uint_t flags)
2444 SYMTBL_STATE state;
2445 Cache *_cache;
2446 Word secndx;
2448 for (secndx = 1; secndx < shnum; secndx++) {
2449 Word symcnt;
2450 Shdr *shdr;
2452 _cache = &cache[secndx];
2453 shdr = _cache->c_shdr;
2455 if ((shdr->sh_type != SHT_SYMTAB) &&
2456 (shdr->sh_type != SHT_DYNSYM) &&
2457 ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2458 (osabi != ELFOSABI_SOLARIS)))
2459 continue;
2460 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2461 continue;
2463 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2464 osabi, versym, file, flags))
2465 continue;
2467 * Loop through the symbol tables entries.
2469 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2470 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2471 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2473 for (symcnt = 0; symcnt < state.symn; symcnt++)
2474 output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2475 state.sym + symcnt);
2480 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2481 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2483 static void
2484 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2485 VERSYM_STATE *versym, const char *file, uint_t flags)
2487 SYMTBL_STATE ldynsym_state, dynsym_state;
2488 Cache *sortcache, *symcache;
2489 Shdr *sortshdr, *symshdr;
2490 Word sortsecndx, symsecndx;
2491 Word ldynsym_cnt;
2492 Word *ndx;
2493 Word ndxn;
2494 int output_cnt = 0;
2495 Conv_inv_buf_t inv_buf;
2497 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2499 sortcache = &cache[sortsecndx];
2500 sortshdr = sortcache->c_shdr;
2502 if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2503 (sortshdr->sh_type != SHT_SUNW_tlssort))
2504 continue;
2505 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2506 sortshdr->sh_type))
2507 continue;
2510 * If the section references a SUNW_ldynsym, then we
2511 * expect to see the associated .dynsym immediately
2512 * following. If it references a .dynsym, there is no
2513 * SUNW_ldynsym. If it is any other type, then we don't
2514 * know what to do with it.
2516 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2517 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2518 file, sortcache->c_name,
2519 EC_WORD(sortshdr->sh_link));
2520 continue;
2522 symcache = &cache[sortshdr->sh_link];
2523 symshdr = symcache->c_shdr;
2524 symsecndx = sortshdr->sh_link;
2525 ldynsym_cnt = 0;
2526 switch (symshdr->sh_type) {
2527 case SHT_SUNW_LDYNSYM:
2528 if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2529 symsecndx, ehdr, osabi, versym, file, flags))
2530 continue;
2531 ldynsym_cnt = ldynsym_state.symn;
2533 * We know that the dynsym follows immediately
2534 * after the SUNW_ldynsym, and so, should be at
2535 * (sortshdr->sh_link + 1). However, elfdump is a
2536 * diagnostic tool, so we do the full paranoid
2537 * search instead.
2539 for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2540 symcache = &cache[symsecndx];
2541 symshdr = symcache->c_shdr;
2542 if (symshdr->sh_type == SHT_DYNSYM)
2543 break;
2545 if (symsecndx >= shnum) { /* Dynsym not found! */
2546 (void) fprintf(stderr,
2547 MSG_INTL(MSG_ERR_NODYNSYM),
2548 file, sortcache->c_name);
2549 continue;
2551 /* Fallthrough to process associated dynsym */
2552 /* FALLTHROUGH */
2553 case SHT_DYNSYM:
2554 if (!init_symtbl_state(&dynsym_state, cache, shnum,
2555 symsecndx, ehdr, osabi, versym, file, flags))
2556 continue;
2557 break;
2558 default:
2559 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2560 file, sortcache->c_name,
2561 conv_sec_type(osabi, ehdr->e_machine,
2562 symshdr->sh_type, 0, &inv_buf));
2563 continue;
2567 * Output header
2569 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2570 if (ldynsym_cnt > 0) {
2571 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2572 sortcache->c_name, ldynsym_state.secname,
2573 dynsym_state.secname);
2575 * The data for .SUNW_ldynsym and dynsym sections
2576 * is supposed to be adjacent with SUNW_ldynsym coming
2577 * first. Check, and issue a warning if it isn't so.
2579 if (((ldynsym_state.sym + ldynsym_state.symn)
2580 != dynsym_state.sym) &&
2581 ((flags & FLG_CTL_FAKESHDR) == 0))
2582 (void) fprintf(stderr,
2583 MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2584 ldynsym_state.secname,
2585 dynsym_state.secname);
2586 } else {
2587 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2588 sortcache->c_name, dynsym_state.secname);
2590 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2592 /* If not first one, insert a line of white space */
2593 if (output_cnt++ > 0)
2594 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2597 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2598 * symbol indices. Iterate over the array entries,
2599 * dispaying the referenced symbols.
2601 ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2602 ndx = (Word *)sortcache->c_data->d_buf;
2603 for (; ndxn-- > 0; ndx++) {
2604 if (*ndx >= ldynsym_cnt) {
2605 Word sec_ndx = *ndx - ldynsym_cnt;
2607 output_symbol(&dynsym_state, sec_ndx, 0,
2608 *ndx, dynsym_state.sym + sec_ndx);
2609 } else {
2610 output_symbol(&ldynsym_state, *ndx, 0,
2611 *ndx, ldynsym_state.sym + *ndx);
2618 * Search for and process any relocation sections.
2620 static void
2621 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2623 Word cnt;
2625 for (cnt = 1; cnt < shnum; cnt++) {
2626 Word type, symnum;
2627 Xword relndx, relnum, relsize;
2628 void *rels;
2629 Sym *syms;
2630 Cache *symsec, *strsec;
2631 Cache *_cache = &cache[cnt];
2632 Shdr *shdr = _cache->c_shdr;
2633 char *relname = _cache->c_name;
2634 Conv_inv_buf_t inv_buf;
2636 if (((type = shdr->sh_type) != SHT_RELA) &&
2637 (type != SHT_REL))
2638 continue;
2639 if (!match(MATCH_F_ALL, relname, cnt, type))
2640 continue;
2643 * Decide entry size.
2645 if (((relsize = shdr->sh_entsize) == 0) ||
2646 (relsize > shdr->sh_size)) {
2647 if (type == SHT_RELA)
2648 relsize = sizeof (Rela);
2649 else
2650 relsize = sizeof (Rel);
2654 * Determine the number of relocations available.
2656 if (shdr->sh_size == 0) {
2657 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2658 file, relname);
2659 continue;
2661 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
2662 continue;
2664 rels = _cache->c_data->d_buf;
2665 relnum = shdr->sh_size / relsize;
2668 * Get the data buffer for the associated symbol table and
2669 * string table.
2671 if (stringtbl(cache, 1, cnt, shnum, file,
2672 &symnum, &symsec, &strsec) == 0)
2673 continue;
2675 syms = symsec->c_data->d_buf;
2678 * Loop through the relocation entries.
2680 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2681 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2682 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2684 for (relndx = 0; relndx < relnum; relndx++,
2685 rels = (void *)((char *)rels + relsize)) {
2686 Half mach = ehdr->e_machine;
2687 char section[BUFSIZ];
2688 const char *symname;
2689 Word symndx, reltype;
2690 Rela *rela;
2691 Rel *rel;
2694 * Unravel the relocation and determine the symbol with
2695 * which this relocation is associated.
2697 if (type == SHT_RELA) {
2698 rela = (Rela *)rels;
2699 symndx = ELF_R_SYM(rela->r_info);
2700 reltype = ELF_R_TYPE(rela->r_info, mach);
2701 } else {
2702 rel = (Rel *)rels;
2703 symndx = ELF_R_SYM(rel->r_info);
2704 reltype = ELF_R_TYPE(rel->r_info, mach);
2707 symname = relsymname(cache, _cache, strsec, symndx,
2708 symnum, relndx, syms, section, BUFSIZ, file);
2711 * A zero symbol index is only valid for a few
2712 * relocations.
2714 if (symndx == 0) {
2715 int badrel = 0;
2717 if ((mach == EM_SPARC) ||
2718 (mach == EM_SPARC32PLUS) ||
2719 (mach == EM_SPARCV9)) {
2720 if ((reltype != R_SPARC_NONE) &&
2721 (reltype != R_SPARC_REGISTER) &&
2722 (reltype != R_SPARC_RELATIVE))
2723 badrel++;
2724 } else if (mach == EM_386) {
2725 if ((reltype != R_386_NONE) &&
2726 (reltype != R_386_RELATIVE))
2727 badrel++;
2728 } else if (mach == EM_AMD64) {
2729 if ((reltype != R_AMD64_NONE) &&
2730 (reltype != R_AMD64_RELATIVE))
2731 badrel++;
2734 if (badrel) {
2735 (void) fprintf(stderr,
2736 MSG_INTL(MSG_ERR_BADREL1), file,
2737 conv_reloc_type(mach, reltype,
2738 0, &inv_buf));
2742 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2743 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2744 rels, relname, symname, 0);
2751 * This value controls which test dyn_test() performs.
2753 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2756 * Used by dynamic() to compare the value of a dynamic element against
2757 * the starting address of the section it references.
2759 * entry:
2760 * test_type - Specify which dyn item is being tested.
2761 * sh_type - SHT_* type value for required section.
2762 * sec_cache - Cache entry for section, or NULL if the object lacks
2763 * a section of this type.
2764 * dyn - Dyn entry to be tested
2765 * dynsec_cnt - # of dynamic section being examined. The first
2766 * dynamic section is 1, the next is 2, and so on...
2767 * ehdr - ELF header for file
2768 * file - Name of file
2770 static void
2771 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2772 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2774 Conv_inv_buf_t buf1, buf2;
2777 * These tests are based around the implicit assumption that
2778 * there is only one dynamic section in an object, and also only
2779 * one of the sections it references. We have therefore gathered
2780 * all of the necessary information to test this in a single pass
2781 * over the section headers, which is very efficient. We are not
2782 * aware of any case where more than one dynamic section would
2783 * be meaningful in an ELF object, so this is a reasonable solution.
2785 * To test multiple dynamic sections correctly would be more
2786 * expensive in code and time. We would have to build a data structure
2787 * containing all the dynamic elements. Then, we would use the address
2788 * to locate the section it references and ensure the section is of
2789 * the right type and that the address in the dynamic element is
2790 * to the start of the section. Then, we could check the size and
2791 * entsize values against those same sections. This is O(n^2), and
2792 * also complicated.
2794 * In the highly unlikely case that there is more than one dynamic
2795 * section, we only test the first one, and simply allow the values
2796 * of the subsequent one to be displayed unchallenged.
2798 if (dynsec_cnt != 1)
2799 return;
2802 * A DT_ item that references a section address should always find
2803 * the section in the file.
2805 if (sec_cache == NULL) {
2806 const char *name;
2809 * Supply section names instead of section types for
2810 * things that reference progbits so that the error
2811 * message will make more sense.
2813 switch (dyn->d_tag) {
2814 case DT_INIT:
2815 name = MSG_ORIG(MSG_ELF_INIT);
2816 break;
2817 case DT_FINI:
2818 name = MSG_ORIG(MSG_ELF_FINI);
2819 break;
2820 default:
2821 name = conv_sec_type(osabi, ehdr->e_machine,
2822 sh_type, 0, &buf1);
2823 break;
2825 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2826 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2827 CONV_FMT_ALT_CF, &buf2));
2828 return;
2832 switch (test_type) {
2833 case DYN_TEST_ADDR:
2834 /* The section address should match the DT_ item value */
2835 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2836 (void) fprintf(stderr,
2837 MSG_INTL(MSG_ERR_DYNBADADDR), file,
2838 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2839 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2840 sec_cache->c_ndx, sec_cache->c_name,
2841 EC_ADDR(sec_cache->c_shdr->sh_addr));
2842 break;
2844 case DYN_TEST_SIZE:
2845 /* The section size should match the DT_ item value */
2846 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2847 (void) fprintf(stderr,
2848 MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2849 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2850 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2851 sec_cache->c_ndx, sec_cache->c_name,
2852 EC_XWORD(sec_cache->c_shdr->sh_size));
2853 break;
2855 case DYN_TEST_ENTSIZE:
2856 /* The sh_entsize value should match the DT_ item value */
2857 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2858 (void) fprintf(stderr,
2859 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2860 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2861 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2862 sec_cache->c_ndx, sec_cache->c_name,
2863 EC_XWORD(sec_cache->c_shdr->sh_entsize));
2864 break;
2869 * There are some DT_ entries that have corresponding symbols
2870 * (e.g. DT_INIT and _init). It is expected that these items will
2871 * both have the same value if both are present. This routine
2872 * examines the well known symbol tables for such symbols and
2873 * issues warnings for any that don't match.
2875 * entry:
2876 * dyn - Dyn entry to be tested
2877 * symname - Name of symbol that corresponds to dyn
2878 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2879 * target_cache - Section the symname section is expected to be
2880 * associated with.
2881 * cache - Cache of all section headers
2882 * shnum - # of sections in cache
2883 * ehdr - ELF header for file
2884 * osabi - OSABI to apply when interpreting object
2885 * file - Name of file
2887 static void
2888 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2889 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2890 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2892 Conv_inv_buf_t buf;
2893 int i;
2894 Sym *sym;
2895 Cache *_cache;
2897 for (i = 0; i < 3; i++) {
2898 switch (i) {
2899 case 0:
2900 _cache = symtab_cache;
2901 break;
2902 case 1:
2903 _cache = dynsym_cache;
2904 break;
2905 case 2:
2906 _cache = ldynsym_cache;
2907 break;
2910 if ((_cache != NULL) &&
2911 symlookup(symname, cache, shnum, &sym, target_cache,
2912 _cache, file) && (sym->st_value != dyn->d_un.d_val))
2913 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2914 file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2915 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2916 symname, EC_ADDR(sym->st_value));
2921 * Search for and process a .dynamic section.
2923 static void
2924 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2926 struct {
2927 Cache *symtab;
2928 Cache *dynstr;
2929 Cache *dynsym;
2930 Cache *hash;
2931 Cache *fini;
2932 Cache *fini_array;
2933 Cache *init;
2934 Cache *init_array;
2935 Cache *preinit_array;
2936 Cache *rel;
2937 Cache *rela;
2938 Cache *sunw_cap;
2939 Cache *sunw_capinfo;
2940 Cache *sunw_capchain;
2941 Cache *sunw_ldynsym;
2942 Cache *sunw_move;
2943 Cache *sunw_syminfo;
2944 Cache *sunw_symsort;
2945 Cache *sunw_tlssort;
2946 Cache *sunw_verdef;
2947 Cache *sunw_verneed;
2948 Cache *sunw_versym;
2949 } sec;
2950 Word dynsec_ndx;
2951 Word dynsec_num;
2952 int dynsec_cnt;
2953 Word cnt;
2954 int osabi_solaris = osabi == ELFOSABI_SOLARIS;
2957 * Make a pass over all the sections, gathering section information
2958 * we'll need below.
2960 dynsec_num = 0;
2961 bzero(&sec, sizeof (sec));
2962 for (cnt = 1; cnt < shnum; cnt++) {
2963 Cache *_cache = &cache[cnt];
2965 switch (_cache->c_shdr->sh_type) {
2966 case SHT_DYNAMIC:
2967 if (dynsec_num == 0) {
2968 dynsec_ndx = cnt;
2970 /* Does it have a valid string table? */
2971 (void) stringtbl(cache, 0, cnt, shnum, file,
2972 0, 0, &sec.dynstr);
2974 dynsec_num++;
2975 break;
2978 case SHT_PROGBITS:
2980 * We want to detect the .init and .fini sections,
2981 * if present. These are SHT_PROGBITS, so all we
2982 * have to go on is the section name. Normally comparing
2983 * names is a bad idea, but there are some special
2984 * names (i.e. .init/.fini/.interp) that are very
2985 * difficult to use in any other context, and for
2986 * these symbols, we do the heuristic match.
2988 if (strcmp(_cache->c_name,
2989 MSG_ORIG(MSG_ELF_INIT)) == 0) {
2990 if (sec.init == NULL)
2991 sec.init = _cache;
2992 } else if (strcmp(_cache->c_name,
2993 MSG_ORIG(MSG_ELF_FINI)) == 0) {
2994 if (sec.fini == NULL)
2995 sec.fini = _cache;
2997 break;
2999 case SHT_REL:
3001 * We want the SHT_REL section with the lowest
3002 * offset. The linker gathers them together,
3003 * and puts the address of the first one
3004 * into the DT_REL dynamic element.
3006 if ((sec.rel == NULL) ||
3007 (_cache->c_shdr->sh_offset <
3008 sec.rel->c_shdr->sh_offset))
3009 sec.rel = _cache;
3010 break;
3012 case SHT_RELA:
3013 /* RELA is handled just like RELA above */
3014 if ((sec.rela == NULL) ||
3015 (_cache->c_shdr->sh_offset <
3016 sec.rela->c_shdr->sh_offset))
3017 sec.rela = _cache;
3018 break;
3021 * The GRAB macro is used for the simple case in which
3022 * we simply grab the first section of the desired type.
3024 #define GRAB(_sec_type, _sec_field) \
3025 case _sec_type: \
3026 if (sec._sec_field == NULL) \
3027 sec._sec_field = _cache; \
3028 break
3029 GRAB(SHT_SYMTAB, symtab);
3030 GRAB(SHT_DYNSYM, dynsym);
3031 GRAB(SHT_FINI_ARRAY, fini_array);
3032 GRAB(SHT_HASH, hash);
3033 GRAB(SHT_INIT_ARRAY, init_array);
3034 GRAB(SHT_SUNW_move, sunw_move);
3035 GRAB(SHT_PREINIT_ARRAY, preinit_array);
3036 GRAB(SHT_SUNW_cap, sunw_cap);
3037 GRAB(SHT_SUNW_capinfo, sunw_capinfo);
3038 GRAB(SHT_SUNW_capchain, sunw_capchain);
3039 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3040 GRAB(SHT_SUNW_syminfo, sunw_syminfo);
3041 GRAB(SHT_SUNW_symsort, sunw_symsort);
3042 GRAB(SHT_SUNW_tlssort, sunw_tlssort);
3043 GRAB(SHT_SUNW_verdef, sunw_verdef);
3044 GRAB(SHT_SUNW_verneed, sunw_verneed);
3045 GRAB(SHT_SUNW_versym, sunw_versym);
3046 #undef GRAB
3051 * If no dynamic section, return immediately. If more than one
3052 * dynamic section, then something odd is going on and an error
3053 * is in order, but then continue on and display them all.
3055 if (dynsec_num == 0)
3056 return;
3057 if (dynsec_num > 1)
3058 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
3059 file, EC_WORD(dynsec_num));
3062 dynsec_cnt = 0;
3063 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
3064 cnt++) {
3065 Dyn *dyn;
3066 ulong_t numdyn;
3067 int ndx, end_ndx;
3068 Cache *_cache = &cache[cnt], *strsec;
3069 Shdr *shdr = _cache->c_shdr;
3070 int dumped = 0;
3072 if (shdr->sh_type != SHT_DYNAMIC)
3073 continue;
3074 dynsec_cnt++;
3077 * Verify the associated string table section.
3079 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
3080 continue;
3082 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3083 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3084 file, _cache->c_name);
3085 continue;
3087 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
3088 continue;
3090 numdyn = shdr->sh_size / shdr->sh_entsize;
3091 dyn = (Dyn *)_cache->c_data->d_buf;
3094 * We expect the REL/RELA entries to reference the reloc
3095 * section with the lowest address. However, this is
3096 * not true for dumped objects. Detect if this object has
3097 * been dumped so that we can skip the reloc address test
3098 * in that case.
3100 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3101 if (dyn->d_tag == DT_FLAGS_1) {
3102 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3103 break;
3106 dyn = (Dyn *)_cache->c_data->d_buf;
3108 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3109 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3111 Elf_dyn_title(0);
3113 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3114 union {
3115 Conv_inv_buf_t inv;
3116 Conv_dyn_flag_buf_t flag;
3117 Conv_dyn_flag1_buf_t flag1;
3118 Conv_dyn_posflag1_buf_t posflag1;
3119 Conv_dyn_feature1_buf_t feature1;
3120 } c_buf;
3121 const char *name = NULL;
3124 * Print the information numerically, and if possible
3125 * as a string. If a string is available, name is
3126 * set to reference it.
3128 * Also, take this opportunity to sanity check
3129 * the values of DT elements. In the code above,
3130 * we gathered information on sections that are
3131 * referenced by the dynamic section. Here, we
3132 * compare the attributes of those sections to
3133 * the DT_ items that reference them and report
3134 * on inconsistencies.
3136 * Things not currently tested that could be improved
3137 * in later revisions include:
3138 * - We don't check PLT or GOT related items
3139 * - We don't handle computing the lengths of
3140 * relocation arrays. To handle this
3141 * requires examining data that spans
3142 * across sections, in a contiguous span
3143 * within a single segment.
3144 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be
3145 * verified without parsing the sections.
3146 * - We don't handle DT_SUNW_SYMSZ, which would
3147 * be the sum of the lengths of .dynsym and
3148 * .SUNW_ldynsym
3149 * - DT_SUNW_STRPAD can't be verified other than
3150 * to check that it's not larger than
3151 * the string table.
3152 * - Some items come in "all or none" clusters
3153 * that give an address, element size,
3154 * and data length in bytes. We don't
3155 * verify that there are no missing items
3156 * in such groups.
3158 switch (dyn->d_tag) {
3159 case DT_NULL:
3161 * Special case: DT_NULLs can come in groups
3162 * that we prefer to reduce to a single line.
3164 end_ndx = ndx;
3165 while ((end_ndx < (numdyn - 1)) &&
3166 ((dyn + 1)->d_tag == DT_NULL)) {
3167 dyn++;
3168 end_ndx++;
3170 Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3171 ndx = end_ndx;
3172 continue;
3175 * String items all reference the dynstr. The string()
3176 * function does the necessary sanity checking.
3178 case DT_NEEDED:
3179 case DT_SONAME:
3180 case DT_FILTER:
3181 case DT_AUXILIARY:
3182 case DT_CONFIG:
3183 case DT_RPATH:
3184 case DT_RUNPATH:
3185 case DT_USED:
3186 case DT_DEPAUDIT:
3187 case DT_AUDIT:
3188 name = string(_cache, ndx, strsec,
3189 file, dyn->d_un.d_ptr);
3190 break;
3192 case DT_SUNW_AUXILIARY:
3193 case DT_SUNW_FILTER:
3194 if (osabi_solaris)
3195 name = string(_cache, ndx, strsec,
3196 file, dyn->d_un.d_ptr);
3197 break;
3199 case DT_FLAGS:
3200 name = conv_dyn_flag(dyn->d_un.d_val,
3201 0, &c_buf.flag);
3202 break;
3203 case DT_FLAGS_1:
3204 name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3205 &c_buf.flag1);
3206 break;
3207 case DT_POSFLAG_1:
3208 name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3209 &c_buf.posflag1);
3210 break;
3211 case DT_FEATURE_1:
3212 name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3213 &c_buf.feature1);
3214 break;
3215 case DT_DEPRECATED_SPARC_REGISTER:
3216 name = MSG_INTL(MSG_STR_DEPRECATED);
3217 break;
3219 case DT_SUNW_LDMACH:
3220 if (!osabi_solaris)
3221 break;
3222 name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3223 0, &c_buf.inv);
3224 break;
3227 * Cases below this point are strictly sanity checking,
3228 * and do not generate a name string. The TEST_ macros
3229 * are used to hide the boiler plate arguments neeeded
3230 * by dyn_test().
3232 #define TEST_ADDR(_sh_type, _sec_field) \
3233 dyn_test(DYN_TEST_ADDR, _sh_type, \
3234 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3235 osabi, file)
3236 #define TEST_SIZE(_sh_type, _sec_field) \
3237 dyn_test(DYN_TEST_SIZE, _sh_type, \
3238 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3239 osabi, file)
3240 #define TEST_ENTSIZE(_sh_type, _sec_field) \
3241 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3242 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3243 osabi, file)
3245 case DT_FINI:
3246 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3247 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3248 sec.fini, cache, shnum, ehdr, osabi, file);
3249 TEST_ADDR(SHT_PROGBITS, fini);
3250 break;
3252 case DT_FINI_ARRAY:
3253 TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3254 break;
3256 case DT_FINI_ARRAYSZ:
3257 TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3258 break;
3260 case DT_HASH:
3261 TEST_ADDR(SHT_HASH, hash);
3262 break;
3264 case DT_INIT:
3265 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3266 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3267 sec.init, cache, shnum, ehdr, osabi, file);
3268 TEST_ADDR(SHT_PROGBITS, init);
3269 break;
3271 case DT_INIT_ARRAY:
3272 TEST_ADDR(SHT_INIT_ARRAY, init_array);
3273 break;
3275 case DT_INIT_ARRAYSZ:
3276 TEST_SIZE(SHT_INIT_ARRAY, init_array);
3277 break;
3279 case DT_MOVEENT:
3280 TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3281 break;
3283 case DT_MOVESZ:
3284 TEST_SIZE(SHT_SUNW_move, sunw_move);
3285 break;
3287 case DT_MOVETAB:
3288 TEST_ADDR(SHT_SUNW_move, sunw_move);
3289 break;
3291 case DT_PREINIT_ARRAY:
3292 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3293 break;
3295 case DT_PREINIT_ARRAYSZ:
3296 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3297 break;
3299 case DT_REL:
3300 if (!dumped)
3301 TEST_ADDR(SHT_REL, rel);
3302 break;
3304 case DT_RELENT:
3305 TEST_ENTSIZE(SHT_REL, rel);
3306 break;
3308 case DT_RELA:
3309 if (!dumped)
3310 TEST_ADDR(SHT_RELA, rela);
3311 break;
3313 case DT_RELAENT:
3314 TEST_ENTSIZE(SHT_RELA, rela);
3315 break;
3317 case DT_STRTAB:
3318 TEST_ADDR(SHT_STRTAB, dynstr);
3319 break;
3321 case DT_STRSZ:
3322 TEST_SIZE(SHT_STRTAB, dynstr);
3323 break;
3325 case DT_SUNW_CAP:
3326 if (osabi_solaris)
3327 TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3328 break;
3330 case DT_SUNW_CAPINFO:
3331 if (osabi_solaris)
3332 TEST_ADDR(SHT_SUNW_capinfo,
3333 sunw_capinfo);
3334 break;
3336 case DT_SUNW_CAPCHAIN:
3337 if (osabi_solaris)
3338 TEST_ADDR(SHT_SUNW_capchain,
3339 sunw_capchain);
3340 break;
3342 case DT_SUNW_SYMTAB:
3343 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3344 break;
3346 case DT_SYMENT:
3347 TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3348 break;
3350 case DT_SYMINENT:
3351 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3352 break;
3354 case DT_SYMINFO:
3355 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3356 break;
3358 case DT_SYMINSZ:
3359 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3360 break;
3362 case DT_SYMTAB:
3363 TEST_ADDR(SHT_DYNSYM, dynsym);
3364 break;
3366 case DT_SUNW_SORTENT:
3368 * This entry is related to both the symsort and
3369 * tlssort sections.
3371 if (osabi_solaris) {
3372 int test_tls =
3373 (sec.sunw_tlssort != NULL);
3374 int test_sym =
3375 (sec.sunw_symsort != NULL) ||
3376 !test_tls;
3377 if (test_sym)
3378 TEST_ENTSIZE(SHT_SUNW_symsort,
3379 sunw_symsort);
3380 if (test_tls)
3381 TEST_ENTSIZE(SHT_SUNW_tlssort,
3382 sunw_tlssort);
3384 break;
3387 case DT_SUNW_SYMSORT:
3388 if (osabi_solaris)
3389 TEST_ADDR(SHT_SUNW_symsort,
3390 sunw_symsort);
3391 break;
3393 case DT_SUNW_SYMSORTSZ:
3394 if (osabi_solaris)
3395 TEST_SIZE(SHT_SUNW_symsort,
3396 sunw_symsort);
3397 break;
3399 case DT_SUNW_TLSSORT:
3400 if (osabi_solaris)
3401 TEST_ADDR(SHT_SUNW_tlssort,
3402 sunw_tlssort);
3403 break;
3405 case DT_SUNW_TLSSORTSZ:
3406 if (osabi_solaris)
3407 TEST_SIZE(SHT_SUNW_tlssort,
3408 sunw_tlssort);
3409 break;
3411 case DT_VERDEF:
3412 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3413 break;
3415 case DT_VERNEED:
3416 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3417 break;
3419 case DT_VERSYM:
3420 TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3421 break;
3422 #undef TEST_ADDR
3423 #undef TEST_SIZE
3424 #undef TEST_ENTSIZE
3427 if (name == NULL)
3428 name = MSG_ORIG(MSG_STR_EMPTY);
3429 Elf_dyn_entry(0, dyn, ndx, name,
3430 osabi, ehdr->e_machine);
3436 * Search for and process a MOVE section.
3438 static void
3439 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3441 Word cnt;
3442 const char *fmt = NULL;
3444 for (cnt = 1; cnt < shnum; cnt++) {
3445 Word movenum, symnum, ndx;
3446 Sym *syms;
3447 Cache *_cache = &cache[cnt];
3448 Shdr *shdr = _cache->c_shdr;
3449 Cache *symsec, *strsec;
3450 Move *move;
3452 if (shdr->sh_type != SHT_SUNW_move)
3453 continue;
3454 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3455 continue;
3458 * Determine the move data and number.
3460 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3461 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3462 file, _cache->c_name);
3463 continue;
3465 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
3466 continue;
3468 move = (Move *)_cache->c_data->d_buf;
3469 movenum = shdr->sh_size / shdr->sh_entsize;
3472 * Get the data buffer for the associated symbol table and
3473 * string table.
3475 if (stringtbl(cache, 1, cnt, shnum, file,
3476 &symnum, &symsec, &strsec) == 0)
3477 return;
3479 syms = (Sym *)symsec->c_data->d_buf;
3481 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3482 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3483 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3485 if (fmt == NULL)
3486 fmt = MSG_INTL(MSG_MOVE_ENTRY);
3488 for (ndx = 0; ndx < movenum; move++, ndx++) {
3489 const char *symname;
3490 char index[MAXNDXSIZE], section[BUFSIZ];
3491 Word symndx, shndx;
3492 Sym *sym;
3495 * Check for null entries
3497 if ((move->m_info == 0) && (move->m_value == 0) &&
3498 (move->m_poffset == 0) && (move->m_repeat == 0) &&
3499 (move->m_stride == 0)) {
3500 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3501 EC_XWORD(move->m_poffset), 0, 0, 0,
3502 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3503 continue;
3505 if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3506 (symndx >= symnum)) {
3507 (void) fprintf(stderr,
3508 MSG_INTL(MSG_ERR_BADMINFO), file,
3509 _cache->c_name, EC_XWORD(move->m_info));
3511 (void) snprintf(index, MAXNDXSIZE,
3512 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3513 dbg_print(0, fmt, index,
3514 EC_XWORD(move->m_poffset),
3515 ELF_M_SIZE(move->m_info), move->m_repeat,
3516 move->m_stride, move->m_value,
3517 MSG_INTL(MSG_STR_UNKNOWN));
3518 continue;
3521 symname = relsymname(cache, _cache, strsec,
3522 symndx, symnum, ndx, syms, section, BUFSIZ, file);
3523 sym = (Sym *)(syms + symndx);
3526 * Additional sanity check.
3528 shndx = sym->st_shndx;
3529 if (!((shndx == SHN_COMMON) ||
3530 (((shndx >= 1) && (shndx <= shnum)) &&
3531 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3532 (void) fprintf(stderr,
3533 MSG_INTL(MSG_ERR_BADSYM2), file,
3534 _cache->c_name, EC_WORD(symndx),
3535 demangle(symname, flags));
3538 (void) snprintf(index, MAXNDXSIZE,
3539 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3540 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3541 ELF_M_SIZE(move->m_info), move->m_repeat,
3542 move->m_stride, move->m_value,
3543 demangle(symname, flags));
3549 * parse_note_t is used to track the state used by parse_note_entry()
3550 * between calls, and also to return the results of each call.
3552 typedef struct {
3553 /* pns_ fields track progress through the data */
3554 const char *pns_file; /* File name */
3555 Cache *pns_cache; /* Note section cache entry */
3556 size_t pns_size; /* # unprocessed data bytes */
3557 Word *pns_data; /* # to next unused data byte */
3559 /* pn_ fields return the results for a single call */
3560 Word pn_namesz; /* Value of note namesz field */
3561 Word pn_descsz; /* Value of note descsz field */
3562 Word pn_type; /* Value of note type field */
3563 const char *pn_name; /* if (namesz > 0) ptr to name bytes */
3564 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */
3565 } parse_note_t;
3568 * Extract the various sub-parts of a note entry, and advance the
3569 * data pointer past it.
3571 * entry:
3572 * The state pns_ fields contain current values for the Note section
3574 * exit:
3575 * On success, True (1) is returned, the state pns_ fields have been
3576 * advanced to point at the start of the next entry, and the information
3577 * for the recovered note entry is found in the state pn_ fields.
3579 * On failure, False (0) is returned. The values contained in state
3580 * are undefined.
3582 static int
3583 parse_note_entry(parse_note_t *state)
3585 size_t pad, noteoff;
3587 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3589 * Make sure we can at least reference the 3 initial entries
3590 * (4-byte words) of the note information block.
3592 if (state->pns_size >= (sizeof (Word) * 3)) {
3593 state->pns_size -= (sizeof (Word) * 3);
3594 } else {
3595 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3596 state->pns_file, state->pns_cache->c_name,
3597 EC_WORD(noteoff));
3598 return (0);
3602 * Make sure any specified name string can be referenced.
3604 if ((state->pn_namesz = *state->pns_data++) != 0) {
3605 if (state->pns_size >= state->pn_namesz) {
3606 state->pns_size -= state->pn_namesz;
3607 } else {
3608 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3609 state->pns_file, state->pns_cache->c_name,
3610 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3611 return (0);
3616 * Make sure any specified descriptor can be referenced.
3618 if ((state->pn_descsz = *state->pns_data++) != 0) {
3620 * If namesz isn't a 4-byte multiple, account for any
3621 * padding that must exist before the descriptor.
3623 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3624 pad = sizeof (Word) - pad;
3625 state->pns_size -= pad;
3627 if (state->pns_size >= state->pn_descsz) {
3628 state->pns_size -= state->pn_descsz;
3629 } else {
3630 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3631 state->pns_file, state->pns_cache->c_name,
3632 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3633 return (0);
3637 state->pn_type = *state->pns_data++;
3639 /* Name */
3640 if (state->pn_namesz) {
3641 state->pn_name = (char *)state->pns_data;
3642 pad = (state->pn_namesz +
3643 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3644 /* LINTED */
3645 state->pns_data = (Word *)(state->pn_name + pad);
3649 * If multiple information blocks exist within a .note section
3650 * account for any padding that must exist before the next
3651 * information block.
3653 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3654 pad = sizeof (Word) - pad;
3655 if (state->pns_size > pad)
3656 state->pns_size -= pad;
3659 /* Data */
3660 if (state->pn_descsz) {
3661 state->pn_desc = (const char *)state->pns_data;
3662 /* LINTED */
3663 state->pns_data = (Word *)(state->pn_desc +
3664 state->pn_descsz + pad);
3667 return (1);
3671 * Callback function for use with conv_str_to_c_literal() below.
3673 /*ARGSUSED2*/
3674 static void
3675 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3677 (void) fwrite(ptr, size, 1, stdout);
3681 * Traverse a note section analyzing each note information block.
3682 * The data buffers size is used to validate references before they are made,
3683 * and is decremented as each element is processed.
3685 void
3686 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3688 int cnt = 0;
3689 int is_corenote;
3690 int do_swap;
3691 Conv_inv_buf_t inv_buf;
3692 parse_note_t pnstate;
3694 pnstate.pns_file = file;
3695 pnstate.pns_cache = cache;
3696 pnstate.pns_size = size;
3697 pnstate.pns_data = data;
3698 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3701 * Print out a single `note' information block.
3703 while (pnstate.pns_size > 0) {
3705 if (parse_note_entry(&pnstate) == 0)
3706 return;
3709 * Is this a Solaris core note? Such notes all have
3710 * the name "CORE".
3712 is_corenote = (ehdr->e_type == ET_CORE) &&
3713 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3714 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3715 MSG_STR_CORE_SIZE + 1) == 0);
3717 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3718 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3719 cnt++;
3720 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3721 EC_WORD(pnstate.pn_namesz));
3722 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3723 EC_WORD(pnstate.pn_descsz));
3725 if (is_corenote)
3726 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3727 conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3728 else
3729 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3730 EC_WORD(pnstate.pn_type));
3731 if (pnstate.pn_namesz) {
3732 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3734 * The name string can contain embedded 'null'
3735 * bytes and/or unprintable characters. Also,
3736 * the final NULL is documented in the ELF ABI
3737 * as being included in the namesz. So, display
3738 * the name using C literal string notation, and
3739 * include the terminating NULL in the output.
3740 * We don't show surrounding double quotes, as
3741 * that implies the termination that we are showing
3742 * explicitly.
3744 (void) fwrite(MSG_ORIG(MSG_STR_8SP),
3745 MSG_STR_8SP_SIZE, 1, stdout);
3746 conv_str_to_c_literal(pnstate.pn_name,
3747 pnstate.pn_namesz, c_literal_cb, NULL);
3748 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3751 if (pnstate.pn_descsz) {
3752 int hexdump = 1;
3755 * If this is a core note, let the corenote()
3756 * function handle it.
3758 if (is_corenote) {
3759 /* We only issue the bad arch error once */
3760 static int badnote_done = 0;
3761 corenote_ret_t corenote_ret;
3763 corenote_ret = corenote(ehdr->e_machine,
3764 do_swap, pnstate.pn_type, pnstate.pn_desc,
3765 pnstate.pn_descsz);
3766 switch (corenote_ret) {
3767 case CORENOTE_R_OK_DUMP:
3768 hexdump = 1;
3769 break;
3770 case CORENOTE_R_OK:
3771 hexdump = 0;
3772 break;
3773 case CORENOTE_R_BADDATA:
3774 (void) fprintf(stderr,
3775 MSG_INTL(MSG_NOTE_BADCOREDATA),
3776 file);
3777 break;
3778 case CORENOTE_R_BADARCH:
3779 if (badnote_done)
3780 break;
3781 (void) fprintf(stderr,
3782 MSG_INTL(MSG_NOTE_BADCOREARCH),
3783 file,
3784 conv_ehdr_mach(ehdr->e_machine,
3785 0, &inv_buf));
3786 break;
3787 case CORENOTE_R_BADTYPE:
3788 (void) fprintf(stderr,
3789 MSG_INTL(MSG_NOTE_BADCORETYPE),
3790 file,
3791 EC_WORD(pnstate.pn_type));
3792 break;
3798 * The default thing when we don't understand
3799 * the note data is to display it as hex bytes.
3801 if (hexdump) {
3802 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3803 dump_hex_bytes(pnstate.pn_desc,
3804 pnstate.pn_descsz, 8, 4, 4);
3811 * Search for and process .note sections.
3813 * Returns the number of note sections seen.
3815 static Word
3816 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3818 Word cnt, note_cnt = 0;
3821 * Otherwise look for any .note sections.
3823 for (cnt = 1; cnt < shnum; cnt++) {
3824 Cache *_cache = &cache[cnt];
3825 Shdr *shdr = _cache->c_shdr;
3827 if (shdr->sh_type != SHT_NOTE)
3828 continue;
3829 note_cnt++;
3830 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3831 continue;
3834 * As these sections are often hand rolled, make sure they're
3835 * properly aligned before proceeding, and issue an error
3836 * as necessary.
3838 * Note that we will continue on to display the note even
3839 * if it has bad alignment. We can do this safely, because
3840 * libelf knows the alignment required for SHT_NOTE, and
3841 * takes steps to deliver a properly aligned buffer to us
3842 * even if the actual file is misaligned.
3844 if (shdr->sh_offset & (sizeof (Word) - 1))
3845 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3846 file, _cache->c_name);
3848 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
3849 continue;
3851 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3852 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3853 note_entry(_cache, (Word *)_cache->c_data->d_buf,
3854 /* LINTED */
3855 (Word)_cache->c_data->d_size, ehdr, file);
3858 return (note_cnt);
3862 * The Linux Standard Base defines a special note named .note.ABI-tag
3863 * that is used to maintain Linux ABI information. Presence of this section
3864 * is a strong indication that the object should be considered to be
3865 * ELFOSABI_LINUX.
3867 * This function returns True (1) if such a note is seen, and False (0)
3868 * otherwise.
3870 static int
3871 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3873 Word cnt;
3875 for (cnt = 1; cnt < shnum; cnt++) {
3876 parse_note_t pnstate;
3877 Cache *_cache = &cache[cnt];
3878 Shdr *shdr = _cache->c_shdr;
3881 * Section must be SHT_NOTE, must have the name
3882 * .note.ABI-tag, and must have data.
3884 if ((shdr->sh_type != SHT_NOTE) ||
3885 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3886 _cache->c_name) != 0) ||
3887 (_cache->c_data == NULL) ||
3888 (_cache->c_data->d_buf == NULL))
3889 continue;
3891 pnstate.pns_file = file;
3892 pnstate.pns_cache = _cache;
3893 pnstate.pns_size = _cache->c_data->d_size;
3894 pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3896 while (pnstate.pns_size > 0) {
3897 Word *w;
3899 if (parse_note_entry(&pnstate) == 0)
3900 break;
3903 * The type must be 1, and the name must be "GNU".
3904 * The descsz must be at least 16 bytes.
3906 if ((pnstate.pn_type != 1) ||
3907 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3908 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3909 MSG_STR_CORE_SIZE + 1) != 0) ||
3910 (pnstate.pn_descsz < 16))
3911 continue;
3914 * desc contains 4 32-bit fields. Field 0 must be 0,
3915 * indicating Linux. The second, third, and fourth
3916 * fields represent the earliest Linux kernel
3917 * version compatible with this object.
3919 /*LINTED*/
3920 w = (Word *) pnstate.pn_desc;
3921 if (*w == 0)
3922 return (1);
3926 return (0);
3930 * Determine an individual hash entry. This may be the initial hash entry,
3931 * or an associated chain entry.
3933 static void
3934 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3935 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3936 uint_t flags, int chain)
3938 Sym *sym;
3939 const char *symname, *str;
3940 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3941 ulong_t nbkt, nhash;
3943 if (symndx > symn) {
3944 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3945 EC_WORD(symndx), EC_WORD(hashndx));
3946 symname = MSG_INTL(MSG_STR_UNKNOWN);
3947 } else {
3948 sym = (Sym *)(syms + symndx);
3949 symname = string(refsec, symndx, strsec, file, sym->st_name);
3952 if (chain == 0) {
3953 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3954 hashndx);
3955 str = (const char *)_bucket;
3956 } else
3957 str = MSG_ORIG(MSG_STR_EMPTY);
3959 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3960 EC_WORD(symndx));
3961 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3962 demangle(symname, flags));
3965 * Determine if this string is in the correct bucket.
3967 nhash = elf_hash(symname);
3968 nbkt = nhash % bkts;
3970 if (nbkt != hashndx) {
3971 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3972 hsecname, symname, EC_WORD(hashndx), nbkt);
3976 #define MAXCOUNT 500
3978 static void
3979 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3981 static int count[MAXCOUNT];
3982 Word cnt;
3983 Word ndx, bkts, nchain;
3984 char number[MAXNDXSIZE];
3986 for (cnt = 1; cnt < shnum; cnt++) {
3987 Word *hash, *chain;
3988 Cache *_cache = &cache[cnt];
3989 Shdr *sshdr, *hshdr = _cache->c_shdr;
3990 char *ssecname, *hsecname = _cache->c_name;
3991 Sym *syms;
3992 Word symn;
3994 if (hshdr->sh_type != SHT_HASH)
3995 continue;
3998 * Check the hash table data and size.
4000 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
4001 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4002 file, hsecname);
4003 continue;
4005 if ((_cache->c_data == NULL) ||
4006 (_cache->c_data->d_buf == NULL)) {
4007 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4008 file, hsecname);
4009 continue;
4012 hash = (Word *)_cache->c_data->d_buf;
4013 bkts = *hash++;
4014 nchain = *hash++;
4015 chain = hash + bkts;
4018 * The section holds the sizes in addition to the buckets and
4019 * chains.
4021 if (_cache->c_data->d_size <
4022 (bkts + nchain + 2) * sizeof (uint_t)) {
4023 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4024 file, hsecname);
4025 continue;
4029 * Get the data buffer for the associated symbol table.
4031 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
4032 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
4033 file, hsecname, EC_WORD(hshdr->sh_link));
4034 continue;
4037 _cache = &cache[hshdr->sh_link];
4038 ssecname = _cache->c_name;
4040 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
4041 continue;
4043 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
4044 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4045 file, ssecname);
4046 continue;
4049 sshdr = _cache->c_shdr;
4051 if ((sshdr->sh_entsize == 0) || (sshdr->sh_size == 0)) {
4052 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4053 file, ssecname);
4054 continue;
4057 /* LINTED */
4058 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
4061 * Check that there is a chain for each symbol.
4063 if (symn > nchain) {
4064 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4065 file, ssecname);
4066 continue;
4070 * Get the associated string table section.
4072 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
4073 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
4074 file, ssecname, EC_WORD(sshdr->sh_link));
4075 continue;
4078 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4079 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
4080 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
4083 * Loop through the hash buckets, printing the appropriate
4084 * symbols.
4086 for (ndx = 0; ndx < bkts; ndx++, hash++) {
4087 Word _ndx, _cnt;
4089 if (*hash == 0) {
4090 count[0]++;
4091 continue;
4095 * Each hash bucket must contain to a valid chain index.
4096 * Because the symbol table is checked to be the same
4097 * length as the chain array, this also implicitly
4098 * checks those bounds.
4100 if (*hash > nchain) {
4101 (void) fprintf(stderr,
4102 MSG_INTL(MSG_ERR_BADCHAINIDX), file,
4103 ssecname, EC_WORD(*hash), EC_WORD(ndx),
4104 EC_WORD(nchain));
4105 continue;
4108 hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
4109 ndx, *hash, symn, syms, file, bkts, flags, 0);
4112 * Determine if any other symbols are chained to this
4113 * bucket.
4115 _ndx = chain[*hash];
4116 _cnt = 1;
4117 while (_ndx) {
4118 if (_ndx > nchain) {
4119 (void) fprintf(stderr,
4120 MSG_INTL(MSG_ERR_BADCHAINIDX), file,
4121 ssecname, EC_WORD(_ndx),
4122 EC_WORD(ndx), EC_WORD(nchain));
4123 break;
4125 hash_entry(_cache, &cache[sshdr->sh_link],
4126 hsecname, ndx, _ndx, symn, syms, file,
4127 bkts, flags, 1);
4128 _ndx = chain[_ndx];
4129 _cnt++;
4132 if (_cnt >= MAXCOUNT) {
4133 (void) fprintf(stderr,
4134 MSG_INTL(MSG_HASH_OVERFLW), file,
4135 _cache->c_name, EC_WORD(ndx),
4136 EC_WORD(_cnt));
4137 } else
4138 count[_cnt]++;
4140 break;
4144 * Print out the count information.
4146 bkts = cnt = 0;
4147 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4149 for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4150 Word _cnt;
4152 if ((_cnt = count[ndx]) == 0)
4153 continue;
4155 (void) snprintf(number, MAXNDXSIZE,
4156 MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4157 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4158 EC_WORD(ndx));
4159 bkts += _cnt;
4160 cnt += (Word)(ndx * _cnt);
4162 if (cnt) {
4163 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4164 bkts);
4165 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4166 EC_WORD(cnt));
4170 static void
4171 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4173 Word scnt;
4175 for (scnt = 1; scnt < shnum; scnt++) {
4176 Cache *_cache = &cache[scnt];
4177 Shdr *shdr = _cache->c_shdr;
4178 Word *grpdata, gcnt, grpcnt, symnum, unknown;
4179 Cache *symsec, *strsec;
4180 Sym *syms, *sym;
4181 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4182 const char *grpnam;
4184 if (shdr->sh_type != SHT_GROUP)
4185 continue;
4186 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4187 continue;
4188 if ((_cache->c_data == NULL) ||
4189 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4190 continue;
4191 grpcnt = shdr->sh_size / sizeof (Word);
4194 * Get the data buffer for the associated symbol table and
4195 * string table.
4197 if (stringtbl(cache, 1, scnt, shnum, file,
4198 &symnum, &symsec, &strsec) == 0)
4199 return;
4201 syms = symsec->c_data->d_buf;
4203 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4204 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4205 dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4208 * The first element of the group defines the group. The
4209 * associated symbol is defined by the sh_link field.
4211 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4212 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4213 file, _cache->c_name, EC_WORD(shdr->sh_info));
4214 return;
4217 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4218 if (grpdata[0] & GRP_COMDAT) {
4219 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4221 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4222 size_t len = strlen(flgstrbuf);
4224 (void) snprintf(&flgstrbuf[len],
4225 (MSG_GRP_COMDAT_SIZE + 10 - len),
4226 MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4228 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4229 sym = (Sym *)(syms + shdr->sh_info);
4232 * The GNU assembler can use section symbols as the signature
4233 * symbol as described by this comment in the gold linker
4234 * (found via google):
4236 * It seems that some versions of gas will create a
4237 * section group associated with a section symbol, and
4238 * then fail to give a name to the section symbol. In
4239 * such a case, use the name of the section.
4241 * In order to support such objects, we do the same.
4243 grpnam = string(_cache, 0, strsec, file, sym->st_name);
4244 if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4245 (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4246 grpnam = cache[sym->st_shndx].c_name;
4248 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4249 demangle(grpnam, flags));
4251 for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4252 char index[MAXNDXSIZE];
4253 const char *name;
4255 (void) snprintf(index, MAXNDXSIZE,
4256 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4258 if (grpdata[gcnt] >= shnum)
4259 name = MSG_INTL(MSG_GRP_INVALSCN);
4260 else
4261 name = cache[grpdata[gcnt]].c_name;
4263 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4264 EC_XWORD(grpdata[gcnt]));
4269 static void
4270 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4272 Cache *gotcache = NULL, *symtab = NULL;
4273 Addr gotbgn, gotend;
4274 Shdr *gotshdr;
4275 Word cnt, gotents, gotndx;
4276 size_t gentsize;
4277 Got_info *gottable;
4278 char *gotdata;
4279 Sym *gotsym;
4280 Xword gotsymaddr;
4281 uint_t sys_encoding;
4284 * First, find the got.
4286 for (cnt = 1; cnt < shnum; cnt++) {
4287 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4288 MSG_ELF_GOT_SIZE) == 0) {
4289 gotcache = &cache[cnt];
4290 break;
4293 if (gotcache == NULL)
4294 return;
4297 * A got section within a relocatable object is suspicious.
4299 if (ehdr->e_type == ET_REL) {
4300 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4301 gotcache->c_name);
4304 gotshdr = gotcache->c_shdr;
4305 if (gotshdr->sh_size == 0) {
4306 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4307 file, gotcache->c_name);
4308 return;
4311 gotbgn = gotshdr->sh_addr;
4312 gotend = gotbgn + gotshdr->sh_size;
4315 * Some architectures don't properly set the sh_entsize for the GOT
4316 * table. If it's not set, default to a size of a pointer.
4318 if ((gentsize = gotshdr->sh_entsize) == 0)
4319 gentsize = sizeof (Xword);
4321 if ((gotcache->c_data == NULL) || (gotcache->c_data->d_buf == NULL))
4322 return;
4324 /* LINTED */
4325 gotents = (Word)(gotshdr->sh_size / gentsize);
4326 gotdata = gotcache->c_data->d_buf;
4328 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4329 int err = errno;
4330 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4331 strerror(err));
4332 return;
4336 * Now we scan through all the sections looking for any relocations
4337 * that may be against the GOT. Since these may not be isolated to a
4338 * .rel[a].got section we check them all.
4339 * While scanning sections save the symbol table entry (a symtab
4340 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4342 for (cnt = 1; cnt < shnum; cnt++) {
4343 Word type, symnum;
4344 Xword relndx, relnum, relsize;
4345 void *rels;
4346 Sym *syms;
4347 Cache *symsec, *strsec;
4348 Cache *_cache = &cache[cnt];
4349 Shdr *shdr;
4351 shdr = _cache->c_shdr;
4352 type = shdr->sh_type;
4354 if ((symtab == 0) && (type == SHT_DYNSYM)) {
4355 symtab = _cache;
4356 continue;
4358 if (type == SHT_SYMTAB) {
4359 symtab = _cache;
4360 continue;
4362 if ((type != SHT_RELA) && (type != SHT_REL))
4363 continue;
4366 * Decide entry size.
4368 if (((relsize = shdr->sh_entsize) == 0) ||
4369 (relsize > shdr->sh_size)) {
4370 if (type == SHT_RELA)
4371 relsize = sizeof (Rela);
4372 else
4373 relsize = sizeof (Rel);
4377 * Determine the number of relocations available.
4379 if (shdr->sh_size == 0) {
4380 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4381 file, _cache->c_name);
4382 continue;
4384 if ((_cache->c_data == NULL) || (_cache->c_data->d_buf == NULL))
4385 continue;
4387 rels = _cache->c_data->d_buf;
4388 relnum = shdr->sh_size / relsize;
4391 * Get the data buffer for the associated symbol table and
4392 * string table.
4394 if (stringtbl(cache, 1, cnt, shnum, file,
4395 &symnum, &symsec, &strsec) == 0)
4396 continue;
4398 syms = symsec->c_data->d_buf;
4401 * Loop through the relocation entries.
4403 for (relndx = 0; relndx < relnum; relndx++,
4404 rels = (void *)((char *)rels + relsize)) {
4405 char section[BUFSIZ];
4406 Addr offset;
4407 Got_info *gip;
4408 Word symndx, reltype;
4409 Rela *rela;
4410 Rel *rel;
4413 * Unravel the relocation.
4415 if (type == SHT_RELA) {
4416 rela = (Rela *)rels;
4417 symndx = ELF_R_SYM(rela->r_info);
4418 reltype = ELF_R_TYPE(rela->r_info,
4419 ehdr->e_machine);
4420 offset = rela->r_offset;
4421 } else {
4422 rel = (Rel *)rels;
4423 symndx = ELF_R_SYM(rel->r_info);
4424 reltype = ELF_R_TYPE(rel->r_info,
4425 ehdr->e_machine);
4426 offset = rel->r_offset;
4430 * Only pay attention to relocations against the GOT.
4432 if ((offset < gotbgn) || (offset >= gotend))
4433 continue;
4435 if ((gotshdr->sh_entsize == 0) ||
4436 (gotshdr->sh_size == 0)) {
4437 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4438 file, gotcache->c_name);
4439 continue;
4442 /* LINTED */
4443 gotndx = (Word)((offset - gotbgn) /
4444 gotshdr->sh_entsize);
4445 gip = &gottable[gotndx];
4447 if (gip->g_reltype != 0) {
4448 (void) fprintf(stderr,
4449 MSG_INTL(MSG_GOT_MULTIPLE), file,
4450 EC_WORD(gotndx), EC_ADDR(offset));
4451 continue;
4454 if (symndx)
4455 gip->g_symname = relsymname(cache, _cache,
4456 strsec, symndx, symnum, relndx, syms,
4457 section, BUFSIZ, file);
4458 gip->g_reltype = reltype;
4459 gip->g_rel = rels;
4463 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4464 symtab, file))
4465 gotsymaddr = gotsym->st_value;
4466 else
4467 gotsymaddr = gotbgn;
4469 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4470 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4471 Elf_got_title(0);
4473 sys_encoding = _elf_sys_encoding();
4474 for (gotndx = 0; gotndx < gotents; gotndx++) {
4475 Got_info *gip;
4476 Sword gindex;
4477 Addr gaddr;
4478 Xword gotentry;
4480 gip = &gottable[gotndx];
4482 gaddr = gotbgn + (gotndx * gentsize);
4483 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4485 if (gentsize == sizeof (Word))
4486 /* LINTED */
4487 gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4488 else
4489 /* LINTED */
4490 gotentry = *((Xword *)(gotdata) + gotndx);
4492 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4493 ehdr->e_ident[EI_DATA], sys_encoding,
4494 gip->g_reltype, gip->g_rel, gip->g_symname);
4496 free(gottable);
4499 void
4500 checksum(Elf *elf)
4502 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4503 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4507 * This variable is used by regular() to communicate the address of
4508 * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4509 * the qsort() interface does not include a userdata argument by which
4510 * such arbitrary data can be passed, so we are stuck using global data.
4512 static Cache *sort_shdr_ndx_arr_cache;
4516 * Used with qsort() to sort the section indices so that they can be
4517 * used to access the section headers in order of increasing data offset.
4519 * entry:
4520 * sort_shdr_ndx_arr_cache - Contains address of
4521 * section header cache.
4522 * v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4524 * exit:
4525 * Returns -1 (less than), 0 (equal) or 1 (greater than).
4527 static int
4528 sort_shdr_ndx_arr(const void *v1, const void *v2)
4530 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4531 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4533 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4534 return (-1);
4536 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4537 return (1);
4539 return (0);
4543 static int
4544 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4545 size_t shnum, Cache **cache_ret, Word flags)
4547 Elf_Scn *scn;
4548 Elf_Data *data;
4549 size_t ndx;
4550 Shdr *nameshdr;
4551 char *names = NULL;
4552 Cache *cache, *_cache;
4553 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt;
4557 * Obtain the .shstrtab data buffer to provide the required section
4558 * name strings.
4560 if (shstrndx == SHN_UNDEF) {
4562 * It is rare, but legal, for an object to lack a
4563 * header string table section.
4565 names = NULL;
4566 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4567 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4568 failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4569 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4570 EC_XWORD(shstrndx));
4572 } else if ((data = elf_getdata(scn, NULL)) == NULL) {
4573 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4574 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4575 EC_XWORD(shstrndx));
4577 } else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4578 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4579 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4580 EC_WORD(elf_ndxscn(scn)));
4582 } else if ((names = data->d_buf) == NULL)
4583 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4586 * Allocate a cache to maintain a descriptor for each section.
4588 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4589 int err = errno;
4590 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4591 file, strerror(err));
4592 return (0);
4595 *cache = cache_init;
4596 _cache = cache;
4597 _cache++;
4600 * Allocate an array that will hold the section index for
4601 * each section that has data in the ELF file:
4603 * - Is not a NOBITS section
4604 * - Data has non-zero length
4606 * Note that shnum is an upper bound on the size required. It
4607 * is likely that we won't use a few of these array elements.
4608 * Allocating a modest amount of extra memory in this case means
4609 * that we can avoid an extra loop to count the number of needed
4610 * items, and can fill this array immediately in the first loop
4611 * below.
4613 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4614 int err = errno;
4615 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4616 file, strerror(err));
4617 return (0);
4619 shdr_ndx_arr_cnt = 0;
4622 * Traverse the sections of the file. This gathering of data is
4623 * carried out in two passes. First, the section headers are captured
4624 * and the section header names are evaluated. A verification pass is
4625 * then carried out over the section information. Files have been
4626 * known to exhibit overlapping (and hence erroneous) section header
4627 * information.
4629 * Finally, the data for each section is obtained. This processing is
4630 * carried out after section verification because should any section
4631 * header overlap occur, and a file needs translating (ie. xlate'ing
4632 * information from a non-native architecture file), then the process
4633 * of translation can corrupt the section header information. Of
4634 * course, if there is any section overlap, the data related to the
4635 * sections is going to be compromised. However, it is the translation
4636 * of this data that has caused problems with elfdump()'s ability to
4637 * extract the data.
4639 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4640 ndx++, _cache++) {
4641 char scnndxnm[100];
4643 _cache->c_ndx = ndx;
4644 _cache->c_scn = scn;
4646 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4647 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4648 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4649 EC_WORD(elf_ndxscn(scn)));
4653 * If this section has data in the file, include it in
4654 * the array of sections to check for address overlap.
4656 if ((_cache->c_shdr->sh_size != 0) &&
4657 (_cache->c_shdr->sh_type != SHT_NOBITS))
4658 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4661 * If a shstrtab exists, assign the section name.
4663 if (names && _cache->c_shdr) {
4664 if (_cache->c_shdr->sh_name &&
4665 /* LINTED */
4666 (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4667 const char *symname;
4668 char *secname;
4670 secname = names + _cache->c_shdr->sh_name;
4673 * A SUN naming convention employs a "%" within
4674 * a section name to indicate a section/symbol
4675 * name. This originated from the compilers
4676 * -xF option, that places functions into their
4677 * own sections. This convention (which has no
4678 * formal standard) has also been followed for
4679 * COMDAT sections. To demangle the symbol
4680 * name, the name must be separated from the
4681 * section name.
4683 if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4684 ((symname = strchr(secname, '%')) == NULL))
4685 _cache->c_name = secname;
4686 else {
4687 size_t secsz = ++symname - secname;
4688 size_t strsz;
4690 symname = demangle(symname, flags);
4691 strsz = secsz + strlen(symname) + 1;
4693 if ((_cache->c_name =
4694 malloc(strsz)) == NULL) {
4695 int err = errno;
4696 (void) fprintf(stderr,
4697 MSG_INTL(MSG_ERR_MALLOC),
4698 file, strerror(err));
4699 return (0);
4701 (void) snprintf(_cache->c_name, strsz,
4702 MSG_ORIG(MSG_FMT_SECSYM),
4703 EC_WORD(secsz), secname, symname);
4706 continue;
4710 * Generate an error if the section name index is zero
4711 * or exceeds the shstrtab data. Fall through to
4712 * fabricate a section name.
4714 if ((_cache->c_shdr->sh_name == 0) ||
4715 /* LINTED */
4716 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4717 (void) fprintf(stderr,
4718 MSG_INTL(MSG_ERR_BADSHNAME), file,
4719 EC_WORD(ndx),
4720 EC_XWORD(_cache->c_shdr->sh_name));
4725 * If there exists no shstrtab data, or a section header has no
4726 * name (an invalid index of 0), then compose a name for the
4727 * section.
4729 (void) snprintf(scnndxnm, sizeof (scnndxnm),
4730 MSG_INTL(MSG_FMT_SCNNDX), ndx);
4732 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4733 int err = errno;
4734 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4735 file, strerror(err));
4736 return (0);
4738 (void) strcpy(_cache->c_name, scnndxnm);
4742 * Having collected all the sections, validate their address range.
4743 * Cases have existed where the section information has been invalid.
4744 * This can lead to all sorts of other, hard to diagnose errors, as
4745 * each section is processed individually (ie. with elf_getdata()).
4746 * Here, we carry out some address comparisons to catch a family of
4747 * overlapping memory issues we have observed (likely, there are others
4748 * that we have yet to discover).
4750 * Note, should any memory overlap occur, obtaining any additional
4751 * data from the file is questionable. However, it might still be
4752 * possible to inspect the ELF header, Programs headers, or individual
4753 * sections, so rather than bailing on an error condition, continue
4754 * processing to see if any data can be salvaged.
4756 if (shdr_ndx_arr_cnt > 1) {
4757 sort_shdr_ndx_arr_cache = cache;
4758 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4759 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4761 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4762 Cache *_cache = cache + shdr_ndx_arr[ndx];
4763 Shdr *shdr = _cache->c_shdr;
4764 Off bgn1, bgn = shdr->sh_offset;
4765 Off end1, end = shdr->sh_offset + shdr->sh_size;
4766 size_t ndx1;
4769 * Check the section against all following ones, reporting
4770 * any overlaps. Since we've sorted the sections by offset,
4771 * we can stop after the first comparison that fails. There
4772 * are no overlaps in a properly formed ELF file, in which
4773 * case this algorithm runs in O(n) time. This will degenerate
4774 * to O(n^2) for a completely broken file. Such a file is
4775 * (1) highly unlikely, and (2) unusable, so it is reasonable
4776 * for the analysis to take longer.
4778 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4779 Cache *_cache1 = cache + shdr_ndx_arr[ndx1];
4780 Shdr *shdr1 = _cache1->c_shdr;
4782 bgn1 = shdr1->sh_offset;
4783 end1 = shdr1->sh_offset + shdr1->sh_size;
4785 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4786 ((bgn1 < end) && (end1 >= end))) {
4787 (void) fprintf(stderr,
4788 MSG_INTL(MSG_ERR_SECMEMOVER), file,
4789 EC_WORD(elf_ndxscn(_cache->c_scn)),
4790 _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4791 EC_WORD(elf_ndxscn(_cache1->c_scn)),
4792 _cache1->c_name, EC_OFF(bgn1),
4793 EC_OFF(end1));
4794 } else { /* No overlap, so can stop */
4795 break;
4800 * In addition to checking for sections overlapping
4801 * each other (done above), we should also make sure
4802 * the section doesn't overlap the section header array.
4804 bgn1 = ehdr->e_shoff;
4805 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4807 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4808 ((bgn1 < end) && (end1 >= end))) {
4809 (void) fprintf(stderr,
4810 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4811 EC_OFF(end1),
4812 EC_WORD(elf_ndxscn(_cache->c_scn)),
4813 _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4818 * Obtain the data for each section.
4820 for (ndx = 1; ndx < shnum; ndx++) {
4821 Cache *_cache = &cache[ndx];
4822 Elf_Scn *scn = _cache->c_scn;
4824 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4825 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4826 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4827 EC_WORD(elf_ndxscn(scn)));
4831 * If a string table, verify that it has NULL first and
4832 * final bytes.
4834 if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4835 (_cache->c_data != NULL) &&
4836 (_cache->c_data->d_buf != NULL) &&
4837 (_cache->c_data->d_size > 0)) {
4838 const char *s = _cache->c_data->d_buf;
4840 if ((*s != '\0') ||
4841 (*(s + _cache->c_data->d_size - 1) != '\0'))
4842 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4843 file, _cache->c_name);
4847 return (1);
4853 * Generate a cache of section headers and related information
4854 * for use by the rest of elfdump. If requested (or the file
4855 * contains no section headers), we generate a fake set of
4856 * headers from the information accessible from the program headers.
4857 * Otherwise, we use the real section headers contained in the file.
4859 static int
4860 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4861 size_t shstrndx, size_t *shnum, uint_t *flags)
4864 * If there are no section headers, then resort to synthesizing
4865 * section headers from the program headers. This is normally
4866 * only done by explicit request, but in this case there's no
4867 * reason not to go ahead, since the alternative is simply to quit.
4869 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4870 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4871 *flags |= FLG_CTL_FAKESHDR;
4874 if (*flags & FLG_CTL_FAKESHDR) {
4875 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4876 return (0);
4877 } else {
4878 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4879 cache, *flags) == 0)
4880 return (0);
4883 return (1);
4887 regular(const char *file, int fd, Elf *elf, uint_t flags,
4888 const char *wname, int wfd, uchar_t osabi)
4890 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4891 Elf_Scn *scn;
4892 Ehdr *ehdr;
4893 size_t ndx, shstrndx, shnum, phnum;
4894 Shdr *shdr;
4895 Cache *cache;
4896 VERSYM_STATE versym = { 0 };
4897 int ret = 0;
4898 int addr_align;
4900 if ((ehdr = elf_getehdr(elf)) == NULL) {
4901 failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4902 return (ret);
4905 if (elf_getshdrnum(elf, &shnum) == -1) {
4906 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4907 return (ret);
4910 if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4911 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4912 return (ret);
4915 if (elf_getphdrnum(elf, &phnum) == -1) {
4916 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4917 return (ret);
4920 * If the user requested section headers derived from the
4921 * program headers (-P option) and this file doesn't have
4922 * any program headers (i.e. ET_REL), then we can't do it.
4924 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4925 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4926 return (ret);
4930 if ((scn = elf_getscn(elf, 0)) != NULL) {
4931 if ((shdr = elf_getshdr(scn)) == NULL) {
4932 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4933 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4934 return (ret);
4936 } else
4937 shdr = NULL;
4940 * Print the elf header.
4942 if (flags & FLG_SHOW_EHDR)
4943 Elf_ehdr(0, ehdr, shdr);
4946 * If the section headers or program headers have inadequate
4947 * alignment for the class of object, print a warning. libelf
4948 * can handle such files, but programs that use them can crash
4949 * when they dereference unaligned items.
4951 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4952 * allows access to data types smaller than 128-bits to be on
4953 * word alignment.
4955 if (ehdr->e_machine == EM_AMD64)
4956 addr_align = sizeof (Word);
4957 else
4958 addr_align = sizeof (Addr);
4960 if (ehdr->e_phoff & (addr_align - 1))
4961 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4962 if (ehdr->e_shoff & (addr_align - 1))
4963 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4967 * Determine the Operating System ABI (osabi) we will use to
4968 * interpret the object.
4970 if (flags & FLG_CTL_OSABI) {
4972 * If the user explicitly specifies '-O none', we need
4973 * to display a completely generic view of the file.
4974 * However, libconv is written to assume that ELFOSABI_NONE
4975 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4976 * effect, we use an osabi that libconv has no knowledge of.
4978 if (osabi == ELFOSABI_NONE)
4979 osabi = ELFOSABI_UNKNOWN4;
4980 } else {
4981 /* Determine osabi from file */
4982 osabi = ehdr->e_ident[EI_OSABI];
4983 if (osabi == ELFOSABI_NONE) {
4985 * Chicken/Egg scenario:
4987 * Ideally, we wait to create the section header cache
4988 * until after the program headers are printed. If we
4989 * only output program headers, we can skip building
4990 * the cache entirely.
4992 * Proper interpretation of program headers requires
4993 * the osabi, which is supposed to be in the ELF header.
4994 * However, many systems (Solaris and Linux included)
4995 * have a history of setting the osabi to the generic
4996 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4997 * in such cases, but would like to check the object
4998 * to see if it has a Linux .note.ABI-tag section,
4999 * which implies ELFOSABI_LINUX. This requires a
5000 * section header cache.
5002 * To break the cycle, we create section headers now
5003 * if osabi is ELFOSABI_NONE, and later otherwise.
5004 * If it succeeds, we use them, if not, we defer
5005 * exiting until after the program headers are out.
5007 if (create_cache(file, fd, elf, ehdr, &cache,
5008 shstrndx, &shnum, &flags) == 0) {
5009 cache_state = CACHE_FAIL;
5010 } else {
5011 cache_state = CACHE_OK;
5012 if (has_linux_abi_note(cache, shnum, file)) {
5013 Conv_inv_buf_t ibuf1, ibuf2;
5015 (void) fprintf(stderr,
5016 MSG_INTL(MSG_INFO_LINUXOSABI), file,
5017 conv_ehdr_osabi(osabi, 0, &ibuf1),
5018 conv_ehdr_osabi(ELFOSABI_LINUX,
5019 0, &ibuf2));
5020 osabi = ELFOSABI_LINUX;
5025 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
5026 * Mapping NONE to SOLARIS simplifies the required test.
5028 if (osabi == ELFOSABI_NONE)
5029 osabi = ELFOSABI_SOLARIS;
5033 * Print the program headers.
5035 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
5036 Phdr *phdr;
5038 if ((phdr = elf_getphdr(elf)) == NULL) {
5039 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
5040 return (ret);
5043 for (ndx = 0; ndx < phnum; phdr++, ndx++) {
5044 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
5045 NULL, ndx, phdr->p_type))
5046 continue;
5048 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
5049 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
5050 Elf_phdr(0, osabi, ehdr->e_machine, phdr);
5055 * If we have flag bits set that explicitly require a show or calc
5056 * operation, but none of them require the section headers, then
5057 * we are done and can return now.
5059 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
5060 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
5061 return (ret);
5064 * Everything from this point on requires section headers.
5065 * If we have no section headers, there is no reason to continue.
5067 * If we tried above to create the section header cache and failed,
5068 * it is time to exit. Otherwise, create it if needed.
5070 switch (cache_state) {
5071 case CACHE_NEEDED:
5072 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
5073 &shnum, &flags) == 0)
5074 return (ret);
5075 break;
5076 case CACHE_OK:
5077 break;
5078 case CACHE_FAIL:
5079 return (ret);
5081 if (shnum <= 1)
5082 goto done;
5085 * If -w was specified, find and write out the section(s) data.
5087 if (wfd) {
5088 for (ndx = 1; ndx < shnum; ndx++) {
5089 Cache *_cache = &cache[ndx];
5091 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5092 ndx, _cache->c_shdr->sh_type) &&
5093 _cache->c_data && _cache->c_data->d_buf) {
5094 if (write(wfd, _cache->c_data->d_buf,
5095 _cache->c_data->d_size) !=
5096 _cache->c_data->d_size) {
5097 int err = errno;
5098 (void) fprintf(stderr,
5099 MSG_INTL(MSG_ERR_WRITE), wname,
5100 strerror(err));
5102 * Return an exit status of 1, because
5103 * the failure is not related to the
5104 * ELF file, but by system resources.
5106 ret = 1;
5107 goto done;
5114 * If we have no flag bits set that explicitly require a show or calc
5115 * operation, but match options (-I, -N, -T) were used, then run
5116 * through the section headers and see if we can't deduce show flags
5117 * from the match options given.
5119 * We don't do this if -w was specified, because (-I, -N, -T) used
5120 * with -w in lieu of some other option is supposed to be quiet.
5122 if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
5123 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
5124 for (ndx = 1; ndx < shnum; ndx++) {
5125 Cache *_cache = &cache[ndx];
5127 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
5128 ndx, _cache->c_shdr->sh_type))
5129 continue;
5131 switch (_cache->c_shdr->sh_type) {
5132 case SHT_PROGBITS:
5134 * Heuristic time: It is usually bad form
5135 * to assume the meaning/format of a PROGBITS
5136 * section based on its name. However, there
5137 * are ABI mandated exceptions. Check for
5138 * these special names.
5141 /* The ELF ABI specifies .interp and .got */
5142 if (strcmp(_cache->c_name,
5143 MSG_ORIG(MSG_ELF_INTERP)) == 0) {
5144 flags |= FLG_SHOW_INTERP;
5145 break;
5147 if (strcmp(_cache->c_name,
5148 MSG_ORIG(MSG_ELF_GOT)) == 0) {
5149 flags |= FLG_SHOW_GOT;
5150 break;
5153 * The GNU compilers, and amd64 ABI, define
5154 * .eh_frame and .eh_frame_hdr. The Sun
5155 * C++ ABI defines .exception_ranges.
5157 if ((strncmp(_cache->c_name,
5158 MSG_ORIG(MSG_SCN_FRM),
5159 MSG_SCN_FRM_SIZE) == 0) ||
5160 (strncmp(_cache->c_name,
5161 MSG_ORIG(MSG_SCN_EXRANGE),
5162 MSG_SCN_EXRANGE_SIZE) == 0)) {
5163 flags |= FLG_SHOW_UNWIND;
5164 break;
5166 break;
5168 case SHT_SYMTAB:
5169 case SHT_DYNSYM:
5170 case SHT_SUNW_LDYNSYM:
5171 case SHT_SUNW_versym:
5172 case SHT_SYMTAB_SHNDX:
5173 flags |= FLG_SHOW_SYMBOLS;
5174 break;
5176 case SHT_RELA:
5177 case SHT_REL:
5178 flags |= FLG_SHOW_RELOC;
5179 break;
5181 case SHT_HASH:
5182 flags |= FLG_SHOW_HASH;
5183 break;
5185 case SHT_DYNAMIC:
5186 flags |= FLG_SHOW_DYNAMIC;
5187 break;
5189 case SHT_NOTE:
5190 flags |= FLG_SHOW_NOTE;
5191 break;
5193 case SHT_GROUP:
5194 flags |= FLG_SHOW_GROUP;
5195 break;
5197 case SHT_SUNW_symsort:
5198 case SHT_SUNW_tlssort:
5199 flags |= FLG_SHOW_SORT;
5200 break;
5202 case SHT_SUNW_cap:
5203 flags |= FLG_SHOW_CAP;
5204 break;
5206 case SHT_SUNW_move:
5207 flags |= FLG_SHOW_MOVE;
5208 break;
5210 case SHT_SUNW_syminfo:
5211 flags |= FLG_SHOW_SYMINFO;
5212 break;
5214 case SHT_SUNW_verdef:
5215 case SHT_SUNW_verneed:
5216 flags |= FLG_SHOW_VERSIONS;
5217 break;
5219 case SHT_AMD64_UNWIND:
5220 flags |= FLG_SHOW_UNWIND;
5221 break;
5227 if (flags & FLG_SHOW_SHDR)
5228 sections(file, cache, shnum, ehdr, osabi);
5230 if (flags & FLG_SHOW_INTERP)
5231 interp(file, cache, shnum, phnum, elf);
5233 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5234 versions(cache, shnum, file, flags, &versym);
5236 if (flags & FLG_SHOW_SYMBOLS)
5237 symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5239 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5240 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5242 if (flags & FLG_SHOW_HASH)
5243 hash(cache, shnum, file, flags);
5245 if (flags & FLG_SHOW_GOT)
5246 got(cache, shnum, ehdr, file);
5248 if (flags & FLG_SHOW_GROUP)
5249 group(cache, shnum, file, flags);
5251 if (flags & FLG_SHOW_SYMINFO)
5252 syminfo(cache, shnum, ehdr, osabi, file);
5254 if (flags & FLG_SHOW_RELOC)
5255 reloc(cache, shnum, ehdr, file);
5257 if (flags & FLG_SHOW_DYNAMIC)
5258 dynamic(cache, shnum, ehdr, osabi, file);
5260 if (flags & FLG_SHOW_NOTE) {
5261 Word note_cnt;
5262 size_t note_shnum;
5263 Cache *note_cache;
5265 note_cnt = note(cache, shnum, ehdr, file);
5268 * Solaris core files have section headers, but these
5269 * headers do not include SHT_NOTE sections that reference
5270 * the core note sections. This means that note() won't
5271 * find the core notes. Fake section headers (-P option)
5272 * recover these sections, but it is inconvenient to require
5273 * users to specify -P in this situation. If the following
5274 * are all true:
5276 * - No note sections were found
5277 * - This is a core file
5278 * - We are not already using fake section headers
5280 * then we will automatically generate fake section headers
5281 * and then process them in a second call to note().
5283 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5284 !(flags & FLG_CTL_FAKESHDR) &&
5285 (fake_shdr_cache(file, fd, elf, ehdr,
5286 &note_cache, &note_shnum) != 0)) {
5287 (void) note(note_cache, note_shnum, ehdr, file);
5288 fake_shdr_cache_free(note_cache, note_shnum);
5292 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5293 move(cache, shnum, file, flags);
5295 if (flags & FLG_CALC_CHECKSUM)
5296 checksum(elf);
5298 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5299 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5301 if ((flags & FLG_SHOW_UNWIND) &&
5302 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5303 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5306 /* Release the memory used to cache section headers */
5307 done:
5308 if (flags & FLG_CTL_FAKESHDR)
5309 fake_shdr_cache_free(cache, shnum);
5310 else
5311 free(cache);
5313 return (ret);