8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / cmd / troff / troff.d / draw.c
blob631745cf24571598d3643a97107225e4fcb18fb4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
20 * CDDL HEADER END
23 * Copyright 1989 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
31 * University Copyright- Copyright (c) 1982, 1986, 1988
32 * The Regents of the University of California
33 * All Rights Reserved
35 * University Acknowledgment- Portions of this document are derived from
36 * software developed by the University of California, Berkeley, and its
37 * contributors.
40 #pragma ident "%Z%%M% %I% %E% SMI"
42 #include <stdio.h>
43 #include <math.h>
44 #define PI 3.141592654
45 #define hmot(n) hpos += n
46 #define hgoto(n) hpos = n
47 #define vmot(n) vgoto(vpos + n)
49 extern int hpos;
50 extern int vpos;
51 extern int size;
52 extern short *pstab;
53 extern int DX; /* step size in x */
54 extern int DY; /* step size in y */
55 extern int drawdot; /* character to use when drawing */
56 extern int drawsize; /* shrink point size by this facter */
58 int maxdots = 32000; /* maximum number of dots in an object */
60 #define sgn(n) ((n > 0) ? 1 : ((n < 0) ? -1 : 0))
61 #define abs(n) ((n) >= 0 ? (n) : -(n))
62 #define max(x,y) ((x) > (y) ? (x) : (y))
63 #define min(x,y) ((x) < (y) ? (x) : (y))
64 #define arcmove(x,y) { hgoto(x); vmot(-vpos-(y)); }
66 int
67 drawline(dx, dy, s) /* draw line from here to dx, dy using s */
68 int dx, dy;
69 char *s;
71 int xd, yd;
72 float val, slope;
73 int i, numdots;
74 int dirmot, perp;
75 int motincr, perpincr;
76 int ohpos, ovpos, osize, ofont;
77 float incrway;
79 int itemp; /*temp. storage for value returned byint function sgn*/
80 osize = size;
81 setsize(t_size(pstab[osize-1] / drawsize));
82 ohpos = hpos;
83 ovpos = vpos;
84 xd = dx / DX;
85 yd = dy / DX;
86 if (xd == 0) {
87 numdots = abs (yd);
88 numdots = min(numdots, maxdots);
89 motincr = DX * sgn (yd);
90 for (i = 0; i < numdots; i++) {
91 vmot(motincr);
92 put1(drawdot);
94 vgoto(ovpos + dy);
95 setsize(osize);
96 return (0);
98 if (yd == 0) {
99 numdots = abs (xd);
100 motincr = DX * sgn (xd);
101 for (i = 0; i < numdots; i++) {
102 hmot(motincr);
103 put1(drawdot);
105 hgoto(ohpos + dx);
106 setsize(osize);
107 return (0);
109 if (abs (xd) > abs (yd)) {
110 val = slope = (float) xd/yd;
111 numdots = abs (xd);
112 numdots = min(numdots, maxdots);
113 dirmot = 'h';
114 perp = 'v';
115 motincr = DX * sgn (xd);
116 perpincr = DX * sgn (yd);
118 else {
119 val = slope = (float) yd/xd;
120 numdots = abs (yd);
121 numdots = min(numdots, maxdots);
122 dirmot = 'v';
123 perp = 'h';
124 motincr = DX * sgn (yd);
125 perpincr = DX * sgn (xd);
127 incrway = itemp = sgn ((int) slope);
128 for (i = 0; i < numdots; i++) {
129 val -= incrway;
130 if (dirmot == 'h')
131 hmot(motincr);
132 else
133 vmot(motincr);
134 if (val * slope < 0) {
135 if (perp == 'h')
136 hmot(perpincr);
137 else
138 vmot(perpincr);
139 val += slope;
141 put1(drawdot);
143 hgoto(ohpos + dx);
144 vgoto(ovpos + dy);
145 setsize(osize);
147 return (0);
151 drawwig(s) /* draw wiggly line */
152 char *s;
154 int x[50], y[50], xp, yp, pxp, pyp;
155 float t1, t2, t3, w;
156 int i, j, numdots, N;
157 int osize, ofont;
158 char temp[50], *p, *getstr();
160 osize = size;
161 setsize(t_size(pstab[osize-1] / drawsize));
162 p = s;
163 for (N = 2; (p=getstr(p,temp)) != NULL && N < sizeof(x)/sizeof(x[0]); N++) {
164 x[N] = atoi(temp);
165 p = getstr(p, temp);
166 y[N] = atoi(temp);
168 x[0] = x[1] = hpos;
169 y[0] = y[1] = vpos;
170 for (i = 1; i < N; i++) {
171 x[i+1] += x[i];
172 y[i+1] += y[i];
174 x[N] = x[N-1];
175 y[N] = y[N-1];
176 pxp = pyp = -9999;
177 for (i = 0; i < N-1; i++) { /* interval */
178 numdots = (dist(x[i],y[i], x[i+1],y[i+1]) + dist(x[i+1],y[i+1], x[i+2],y[i+2])) / 2;
179 numdots /= DX;
180 numdots = min(numdots, maxdots);
181 for (j = 0; j < numdots; j++) { /* points within */
182 w = (float) j / numdots;
183 t1 = 0.5 * w * w;
184 w = w - 0.5;
185 t2 = 0.75 - w * w;
186 w = w - 0.5;
187 t3 = 0.5 * w * w;
188 xp = t1 * x[i+2] + t2 * x[i+1] + t3 * x[i] + 0.5;
189 yp = t1 * y[i+2] + t2 * y[i+1] + t3 * y[i] + 0.5;
190 if (xp != pxp || yp != pyp) {
191 hgoto(xp);
192 vgoto(yp);
193 put1(drawdot);
194 pxp = xp;
195 pyp = yp;
199 setsize(osize);
201 return (0);
204 char *getstr(p, temp) /* copy next non-blank string from p to temp, update p */
205 char *p, *temp;
207 while (*p == ' ' || *p == '\t' || *p == '\n')
208 p++;
209 if (*p == '\0') {
210 temp[0] = 0;
211 return(NULL);
213 while (*p != ' ' && *p != '\t' && *p != '\n' && *p != '\0')
214 *temp++ = *p++;
215 *temp = '\0';
216 return(p);
220 drawcirc(d)
222 int xc, yc;
224 xc = hpos;
225 yc = vpos;
226 conicarc(hpos + d/2, -vpos, hpos, -vpos, hpos, -vpos, d/2, d/2);
227 hgoto(xc + d); /* circle goes to right side */
228 vgoto(yc);
230 return (0);
234 dist(x1, y1, x2, y2) /* integer distance from x1,y1 to x2,y2 */
236 float dx, dy;
238 dx = x2 - x1;
239 dy = y2 - y1;
240 return sqrt(dx*dx + dy*dy) + 0.5;
244 drawarc(dx1, dy1, dx2, dy2)
246 int x0, y0, x2, y2, r;
248 x0 = hpos + dx1; /* center */
249 y0 = vpos + dy1;
250 x2 = x0 + dx2; /* "to" */
251 y2 = y0 + dy2;
252 r = sqrt((float) dx1 * dx1 + (float) dy1 * dy1) + 0.5;
253 conicarc(x0, -y0, hpos, -vpos, x2, -y2, r, r);
255 return (0);
259 drawellip(a, b)
261 int xc, yc;
263 xc = hpos;
264 yc = vpos;
265 conicarc(hpos + a/2, -vpos, hpos, -vpos, hpos, -vpos, a/2, b/2);
266 hgoto(xc + a);
267 vgoto(yc);
269 return (0);
272 #define sqr(x) (long int)(x)*(x)
275 conicarc(x, y, x0, y0, x1, y1, a, b)
277 /* based on Bresenham, CACM, Feb 77, pp 102-3 */
278 /* by Chris Van Wyk */
279 /* capitalized vars are an internal reference frame */
280 long dotcount = 0;
281 int osize, ofont;
282 int xs, ys, xt, yt, Xs, Ys, qs, Xt, Yt, qt,
283 M1x, M1y, M2x, M2y, M3x, M3y,
284 Q, move, Xc, Yc;
285 int ox1, oy1;
286 long delta;
287 float xc, yc;
288 float radius, slope;
289 float xstep, ystep;
291 osize = size;
292 setsize(t_size(pstab[osize-1] / drawsize));
293 ox1 = x1;
294 oy1 = y1;
295 if (a != b) /* an arc of an ellipse; internally, will still think of circle */
296 if (a > b) {
297 xstep = (float)a / b;
298 ystep = 1;
299 radius = b;
300 } else {
301 xstep = 1;
302 ystep = (float)b / a;
303 radius = a;
305 else { /* a circular arc; radius is computed from center and first point */
306 xstep = ystep = 1;
307 radius = sqrt((float)(sqr(x0 - x) + sqr(y0 - y)));
311 xc = x0;
312 yc = y0;
313 /* now, use start and end point locations to figure out
314 the angle at which start and end happen; use these
315 angles with known radius to figure out where start
316 and end should be
318 slope = atan2((double)(y0 - y), (double)(x0 - x) );
319 if (slope == 0.0 && x0 < x)
320 slope = 3.14159265;
321 x0 = x + radius * cos(slope) + 0.5;
322 y0 = y + radius * sin(slope) + 0.5;
323 slope = atan2((double)(y1 - y), (double)(x1 - x));
324 if (slope == 0.0 && x1 < x)
325 slope = 3.14159265;
326 x1 = x + radius * cos(slope) + 0.5;
327 y1 = y + radius * sin(slope) + 0.5;
328 /* step 2: translate to zero-centered circle */
329 xs = x0 - x;
330 ys = y0 - y;
331 xt = x1 - x;
332 yt = y1 - y;
333 /* step 3: normalize to first quadrant */
334 if (xs < 0)
335 if (ys < 0) {
336 Xs = abs(ys);
337 Ys = abs(xs);
338 qs = 3;
339 M1x = 0;
340 M1y = -1;
341 M2x = 1;
342 M2y = -1;
343 M3x = 1;
344 M3y = 0;
345 } else {
346 Xs = abs(xs);
347 Ys = abs(ys);
348 qs = 2;
349 M1x = -1;
350 M1y = 0;
351 M2x = -1;
352 M2y = -1;
353 M3x = 0;
354 M3y = -1;
356 else if (ys < 0) {
357 Xs = abs(xs);
358 Ys = abs(ys);
359 qs = 0;
360 M1x = 1;
361 M1y = 0;
362 M2x = 1;
363 M2y = 1;
364 M3x = 0;
365 M3y = 1;
366 } else {
367 Xs = abs(ys);
368 Ys = abs(xs);
369 qs = 1;
370 M1x = 0;
371 M1y = 1;
372 M2x = -1;
373 M2y = 1;
374 M3x = -1;
375 M3y = 0;
379 Xc = Xs;
380 Yc = Ys;
381 if (xt < 0)
382 if (yt < 0) {
383 Xt = abs(yt);
384 Yt = abs(xt);
385 qt = 3;
386 } else {
387 Xt = abs(xt);
388 Yt = abs(yt);
389 qt = 2;
391 else if (yt < 0) {
392 Xt = abs(xt);
393 Yt = abs(yt);
394 qt = 0;
395 } else {
396 Xt = abs(yt);
397 Yt = abs(xt);
398 qt = 1;
402 /* step 4: calculate number of quadrant crossings */
403 if (((4 + qt - qs)
404 % 4 == 0)
405 && (Xt <= Xs)
406 && (Yt >= Ys)
408 Q = 3;
409 else
410 Q = (4 + qt - qs) % 4 - 1;
411 /* step 5: calculate initial decision difference */
412 delta = sqr(Xs + 1)
413 + sqr(Ys - 1)
414 -sqr(xs)
415 -sqr(ys);
416 /* here begins the work of drawing
417 we hope it ends here too */
418 while ((Q >= 0)
419 || ((Q > -2)
420 && ((Xt > Xc)
421 && (Yt < Yc)
425 if (dotcount++ % DX == 0)
426 putdot((int)xc, (int)yc);
427 if (Yc < 0.5) {
428 /* reinitialize */
429 Xs = Xc = 0;
430 Ys = Yc = sqrt((float)(sqr(xs) + sqr(ys)));
431 delta = sqr(Xs + 1) + sqr(Ys - 1) - sqr(xs) - sqr(ys);
432 Q--;
433 M1x = M3x;
434 M1y = M3y;
436 int T;
437 T = M2y;
438 M2y = M2x;
439 M2x = -T;
440 T = M3y;
441 M3y = M3x;
442 M3x = -T;
444 } else {
445 if (delta <= 0)
446 if (2 * delta + 2 * Yc - 1 <= 0)
447 move = 1;
448 else
449 move = 2;
450 else if (2 * delta - 2 * Xc - 1 <= 0)
451 move = 2;
452 else
453 move = 3;
454 switch (move) {
455 case 1:
456 Xc++;
457 delta += 2 * Xc + 1;
458 xc += M1x * xstep;
459 yc += M1y * ystep;
460 break;
461 case 2:
462 Xc++;
463 Yc--;
464 delta += 2 * Xc - 2 * Yc + 2;
465 xc += M2x * xstep;
466 yc += M2y * ystep;
467 break;
468 case 3:
469 Yc--;
470 delta -= 2 * Yc + 1;
471 xc += M3x * xstep;
472 yc += M3y * ystep;
473 break;
479 setsize(osize);
480 drawline((int)xc-ox1,(int)yc-oy1,".");
482 return (0);
486 putdot(x, y)
488 arcmove(x, y);
489 put1(drawdot);
491 return (0);