8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / cmd / zpool / zpool_vdev.c
blob369b150390d8f68b38f4c051eb38a2a0e4f8332c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
25 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
29 * Functions to convert between a list of vdevs and an nvlist representing the
30 * configuration. Each entry in the list can be one of:
32 * Device vdevs
33 * disk=(path=..., devid=...)
34 * file=(path=...)
36 * Group vdevs
37 * raidz[1|2]=(...)
38 * mirror=(...)
40 * Hot spares
42 * While the underlying implementation supports it, group vdevs cannot contain
43 * other group vdevs. All userland verification of devices is contained within
44 * this file. If successful, the nvlist returned can be passed directly to the
45 * kernel; we've done as much verification as possible in userland.
47 * Hot spares are a special case, and passed down as an array of disk vdevs, at
48 * the same level as the root of the vdev tree.
50 * The only function exported by this file is 'make_root_vdev'. The
51 * function performs several passes:
53 * 1. Construct the vdev specification. Performs syntax validation and
54 * makes sure each device is valid.
55 * 2. Check for devices in use. Using libdiskmgt, makes sure that no
56 * devices are also in use. Some can be overridden using the 'force'
57 * flag, others cannot.
58 * 3. Check for replication errors if the 'force' flag is not specified.
59 * validates that the replication level is consistent across the
60 * entire pool.
61 * 4. Call libzfs to label any whole disks with an EFI label.
64 #include <assert.h>
65 #include <devid.h>
66 #include <errno.h>
67 #include <fcntl.h>
68 #include <libdiskmgt.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <limits.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
80 #include "zpool_util.h"
82 #define BACKUP_SLICE "s2"
85 * For any given vdev specification, we can have multiple errors. The
86 * vdev_error() function keeps track of whether we have seen an error yet, and
87 * prints out a header if its the first error we've seen.
89 boolean_t error_seen;
90 boolean_t is_force;
92 /*PRINTFLIKE1*/
93 static void
94 vdev_error(const char *fmt, ...)
96 va_list ap;
98 if (!error_seen) {
99 (void) fprintf(stderr, gettext("invalid vdev specification\n"));
100 if (!is_force)
101 (void) fprintf(stderr, gettext("use '-f' to override "
102 "the following errors:\n"));
103 else
104 (void) fprintf(stderr, gettext("the following errors "
105 "must be manually repaired:\n"));
106 error_seen = B_TRUE;
109 va_start(ap, fmt);
110 (void) vfprintf(stderr, fmt, ap);
111 va_end(ap);
114 static void
115 libdiskmgt_error(int error)
118 * ENXIO/ENODEV is a valid error message if the device doesn't live in
119 * /dev/dsk. Don't bother printing an error message in this case.
121 if (error == ENXIO || error == ENODEV)
122 return;
124 (void) fprintf(stderr, gettext("warning: device in use checking "
125 "failed: %s\n"), strerror(error));
129 * Validate a device, passing the bulk of the work off to libdiskmgt.
131 static int
132 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
134 char *msg;
135 int error = 0;
136 dm_who_type_t who;
138 if (force)
139 who = DM_WHO_ZPOOL_FORCE;
140 else if (isspare)
141 who = DM_WHO_ZPOOL_SPARE;
142 else
143 who = DM_WHO_ZPOOL;
145 if (dm_inuse((char *)path, &msg, who, &error) || error) {
146 if (error != 0) {
147 libdiskmgt_error(error);
148 return (0);
149 } else {
150 vdev_error("%s", msg);
151 free(msg);
152 return (-1);
157 * If we're given a whole disk, ignore overlapping slices since we're
158 * about to label it anyway.
160 error = 0;
161 if (!wholedisk && !force &&
162 (dm_isoverlapping((char *)path, &msg, &error) || error)) {
163 if (error == 0) {
164 /* dm_isoverlapping returned -1 */
165 vdev_error(gettext("%s overlaps with %s\n"), path, msg);
166 free(msg);
167 return (-1);
168 } else if (error != ENODEV) {
169 /* libdiskmgt's devcache only handles physical drives */
170 libdiskmgt_error(error);
171 return (0);
175 return (0);
180 * Validate a whole disk. Iterate over all slices on the disk and make sure
181 * that none is in use by calling check_slice().
183 static int
184 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
186 dm_descriptor_t *drive, *media, *slice;
187 int err = 0;
188 int i;
189 int ret;
192 * Get the drive associated with this disk. This should never fail,
193 * because we already have an alias handle open for the device.
195 if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
196 &err)) == NULL || *drive == NULL) {
197 if (err)
198 libdiskmgt_error(err);
199 return (0);
202 if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
203 &err)) == NULL) {
204 dm_free_descriptors(drive);
205 if (err)
206 libdiskmgt_error(err);
207 return (0);
210 dm_free_descriptors(drive);
213 * It is possible that the user has specified a removable media drive,
214 * and the media is not present.
216 if (*media == NULL) {
217 dm_free_descriptors(media);
218 vdev_error(gettext("'%s' has no media in drive\n"), name);
219 return (-1);
222 if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
223 &err)) == NULL) {
224 dm_free_descriptors(media);
225 if (err)
226 libdiskmgt_error(err);
227 return (0);
230 dm_free_descriptors(media);
232 ret = 0;
235 * Iterate over all slices and report any errors. We don't care about
236 * overlapping slices because we are using the whole disk.
238 for (i = 0; slice[i] != NULL; i++) {
239 char *name = dm_get_name(slice[i], &err);
241 if (check_slice(name, force, B_TRUE, isspare) != 0)
242 ret = -1;
244 dm_free_name(name);
247 dm_free_descriptors(slice);
248 return (ret);
252 * Validate a device.
254 static int
255 check_device(const char *path, boolean_t force, boolean_t isspare)
257 dm_descriptor_t desc;
258 int err;
259 char *dev;
262 * For whole disks, libdiskmgt does not include the leading dev path.
264 dev = strrchr(path, '/');
265 assert(dev != NULL);
266 dev++;
267 if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
268 err = check_disk(path, desc, force, isspare);
269 dm_free_descriptor(desc);
270 return (err);
273 return (check_slice(path, force, B_FALSE, isspare));
277 * Check that a file is valid. All we can do in this case is check that it's
278 * not in use by another pool, and not in use by swap.
280 static int
281 check_file(const char *file, boolean_t force, boolean_t isspare)
283 char *name;
284 int fd;
285 int ret = 0;
286 int err;
287 pool_state_t state;
288 boolean_t inuse;
290 if (dm_inuse_swap(file, &err)) {
291 if (err)
292 libdiskmgt_error(err);
293 else
294 vdev_error(gettext("%s is currently used by swap. "
295 "Please see swap(1M).\n"), file);
296 return (-1);
299 if ((fd = open(file, O_RDONLY)) < 0)
300 return (0);
302 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
303 const char *desc;
305 switch (state) {
306 case POOL_STATE_ACTIVE:
307 desc = gettext("active");
308 break;
310 case POOL_STATE_EXPORTED:
311 desc = gettext("exported");
312 break;
314 case POOL_STATE_POTENTIALLY_ACTIVE:
315 desc = gettext("potentially active");
316 break;
318 default:
319 desc = gettext("unknown");
320 break;
324 * Allow hot spares to be shared between pools.
326 if (state == POOL_STATE_SPARE && isspare)
327 return (0);
329 if (state == POOL_STATE_ACTIVE ||
330 state == POOL_STATE_SPARE || !force) {
331 switch (state) {
332 case POOL_STATE_SPARE:
333 vdev_error(gettext("%s is reserved as a hot "
334 "spare for pool %s\n"), file, name);
335 break;
336 default:
337 vdev_error(gettext("%s is part of %s pool "
338 "'%s'\n"), file, desc, name);
339 break;
341 ret = -1;
344 free(name);
347 (void) close(fd);
348 return (ret);
353 * By "whole disk" we mean an entire physical disk (something we can
354 * label, toggle the write cache on, etc.) as opposed to the full
355 * capacity of a pseudo-device such as lofi or did. We act as if we
356 * are labeling the disk, which should be a pretty good test of whether
357 * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if
358 * it isn't.
360 static boolean_t
361 is_whole_disk(const char *arg)
363 struct dk_gpt *label;
364 int fd;
365 char path[MAXPATHLEN];
367 (void) snprintf(path, sizeof (path), "%s%s%s",
368 ZFS_RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE);
369 if ((fd = open(path, O_RDWR | O_NDELAY)) < 0)
370 return (B_FALSE);
371 if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) {
372 (void) close(fd);
373 return (B_FALSE);
375 efi_free(label);
376 (void) close(fd);
377 return (B_TRUE);
381 * Create a leaf vdev. Determine if this is a file or a device. If it's a
382 * device, fill in the device id to make a complete nvlist. Valid forms for a
383 * leaf vdev are:
385 * /dev/dsk/xxx Complete disk path
386 * /xxx Full path to file
387 * xxx Shorthand for /dev/dsk/xxx
389 static nvlist_t *
390 make_leaf_vdev(const char *arg, uint64_t is_log)
392 char path[MAXPATHLEN];
393 struct stat64 statbuf;
394 nvlist_t *vdev = NULL;
395 char *type = NULL;
396 boolean_t wholedisk = B_FALSE;
399 * Determine what type of vdev this is, and put the full path into
400 * 'path'. We detect whether this is a device of file afterwards by
401 * checking the st_mode of the file.
403 if (arg[0] == '/') {
405 * Complete device or file path. Exact type is determined by
406 * examining the file descriptor afterwards.
408 wholedisk = is_whole_disk(arg);
409 if (!wholedisk && (stat64(arg, &statbuf) != 0)) {
410 (void) fprintf(stderr,
411 gettext("cannot open '%s': %s\n"),
412 arg, strerror(errno));
413 return (NULL);
416 (void) strlcpy(path, arg, sizeof (path));
417 } else {
419 * This may be a short path for a device, or it could be total
420 * gibberish. Check to see if it's a known device in
421 * /dev/dsk/. As part of this check, see if we've been given a
422 * an entire disk (minus the slice number).
424 (void) snprintf(path, sizeof (path), "%s/%s", ZFS_DISK_ROOT,
425 arg);
426 wholedisk = is_whole_disk(path);
427 if (!wholedisk && (stat64(path, &statbuf) != 0)) {
429 * If we got ENOENT, then the user gave us
430 * gibberish, so try to direct them with a
431 * reasonable error message. Otherwise,
432 * regurgitate strerror() since it's the best we
433 * can do.
435 if (errno == ENOENT) {
436 (void) fprintf(stderr,
437 gettext("cannot open '%s': no such "
438 "device in %s\n"), arg, ZFS_DISK_ROOT);
439 (void) fprintf(stderr,
440 gettext("must be a full path or "
441 "shorthand device name\n"));
442 return (NULL);
443 } else {
444 (void) fprintf(stderr,
445 gettext("cannot open '%s': %s\n"),
446 path, strerror(errno));
447 return (NULL);
453 * Determine whether this is a device or a file.
455 if (wholedisk || S_ISBLK(statbuf.st_mode)) {
456 type = VDEV_TYPE_DISK;
457 } else if (S_ISREG(statbuf.st_mode)) {
458 type = VDEV_TYPE_FILE;
459 } else {
460 (void) fprintf(stderr, gettext("cannot use '%s': must be a "
461 "block device or regular file\n"), path);
462 return (NULL);
466 * Finally, we have the complete device or file, and we know that it is
467 * acceptable to use. Construct the nvlist to describe this vdev. All
468 * vdevs have a 'path' element, and devices also have a 'devid' element.
470 verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
471 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
472 verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
473 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0);
474 if (strcmp(type, VDEV_TYPE_DISK) == 0)
475 verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
476 (uint64_t)wholedisk) == 0);
479 * For a whole disk, defer getting its devid until after labeling it.
481 if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
483 * Get the devid for the device.
485 int fd;
486 ddi_devid_t devid;
487 char *minor = NULL, *devid_str = NULL;
489 if ((fd = open(path, O_RDONLY)) < 0) {
490 (void) fprintf(stderr, gettext("cannot open '%s': "
491 "%s\n"), path, strerror(errno));
492 nvlist_free(vdev);
493 return (NULL);
496 if (devid_get(fd, &devid) == 0) {
497 if (devid_get_minor_name(fd, &minor) == 0 &&
498 (devid_str = devid_str_encode(devid, minor)) !=
499 NULL) {
500 verify(nvlist_add_string(vdev,
501 ZPOOL_CONFIG_DEVID, devid_str) == 0);
503 if (devid_str != NULL)
504 devid_str_free(devid_str);
505 if (minor != NULL)
506 devid_str_free(minor);
507 devid_free(devid);
510 (void) close(fd);
513 return (vdev);
517 * Go through and verify the replication level of the pool is consistent.
518 * Performs the following checks:
520 * For the new spec, verifies that devices in mirrors and raidz are the
521 * same size.
523 * If the current configuration already has inconsistent replication
524 * levels, ignore any other potential problems in the new spec.
526 * Otherwise, make sure that the current spec (if there is one) and the new
527 * spec have consistent replication levels.
529 typedef struct replication_level {
530 char *zprl_type;
531 uint64_t zprl_children;
532 uint64_t zprl_parity;
533 } replication_level_t;
535 #define ZPOOL_FUZZ (16 * 1024 * 1024)
538 * Given a list of toplevel vdevs, return the current replication level. If
539 * the config is inconsistent, then NULL is returned. If 'fatal' is set, then
540 * an error message will be displayed for each self-inconsistent vdev.
542 static replication_level_t *
543 get_replication(nvlist_t *nvroot, boolean_t fatal)
545 nvlist_t **top;
546 uint_t t, toplevels;
547 nvlist_t **child;
548 uint_t c, children;
549 nvlist_t *nv;
550 char *type;
551 replication_level_t lastrep = {0};
552 replication_level_t rep;
553 replication_level_t *ret;
554 boolean_t dontreport;
556 ret = safe_malloc(sizeof (replication_level_t));
558 verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
559 &top, &toplevels) == 0);
561 for (t = 0; t < toplevels; t++) {
562 uint64_t is_log = B_FALSE;
564 nv = top[t];
567 * For separate logs we ignore the top level vdev replication
568 * constraints.
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log);
571 if (is_log)
572 continue;
574 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE,
575 &type) == 0);
576 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
577 &child, &children) != 0) {
579 * This is a 'file' or 'disk' vdev.
581 rep.zprl_type = type;
582 rep.zprl_children = 1;
583 rep.zprl_parity = 0;
584 } else {
585 uint64_t vdev_size;
588 * This is a mirror or RAID-Z vdev. Go through and make
589 * sure the contents are all the same (files vs. disks),
590 * keeping track of the number of elements in the
591 * process.
593 * We also check that the size of each vdev (if it can
594 * be determined) is the same.
596 rep.zprl_type = type;
597 rep.zprl_children = 0;
599 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
600 verify(nvlist_lookup_uint64(nv,
601 ZPOOL_CONFIG_NPARITY,
602 &rep.zprl_parity) == 0);
603 assert(rep.zprl_parity != 0);
604 } else {
605 rep.zprl_parity = 0;
609 * The 'dontreport' variable indicates that we've
610 * already reported an error for this spec, so don't
611 * bother doing it again.
613 type = NULL;
614 dontreport = 0;
615 vdev_size = -1ULL;
616 for (c = 0; c < children; c++) {
617 nvlist_t *cnv = child[c];
618 char *path;
619 struct stat64 statbuf;
620 uint64_t size = -1ULL;
621 char *childtype;
622 int fd, err;
624 rep.zprl_children++;
626 verify(nvlist_lookup_string(cnv,
627 ZPOOL_CONFIG_TYPE, &childtype) == 0);
630 * If this is a replacing or spare vdev, then
631 * get the real first child of the vdev.
633 if (strcmp(childtype,
634 VDEV_TYPE_REPLACING) == 0 ||
635 strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
636 nvlist_t **rchild;
637 uint_t rchildren;
639 verify(nvlist_lookup_nvlist_array(cnv,
640 ZPOOL_CONFIG_CHILDREN, &rchild,
641 &rchildren) == 0);
642 assert(rchildren == 2);
643 cnv = rchild[0];
645 verify(nvlist_lookup_string(cnv,
646 ZPOOL_CONFIG_TYPE,
647 &childtype) == 0);
650 verify(nvlist_lookup_string(cnv,
651 ZPOOL_CONFIG_PATH, &path) == 0);
654 * If we have a raidz/mirror that combines disks
655 * with files, report it as an error.
657 if (!dontreport && type != NULL &&
658 strcmp(type, childtype) != 0) {
659 if (ret != NULL)
660 free(ret);
661 ret = NULL;
662 if (fatal)
663 vdev_error(gettext(
664 "mismatched replication "
665 "level: %s contains both "
666 "files and devices\n"),
667 rep.zprl_type);
668 else
669 return (NULL);
670 dontreport = B_TRUE;
674 * According to stat(2), the value of 'st_size'
675 * is undefined for block devices and character
676 * devices. But there is no effective way to
677 * determine the real size in userland.
679 * Instead, we'll take advantage of an
680 * implementation detail of spec_size(). If the
681 * device is currently open, then we (should)
682 * return a valid size.
684 * If we still don't get a valid size (indicated
685 * by a size of 0 or MAXOFFSET_T), then ignore
686 * this device altogether.
688 if ((fd = open(path, O_RDONLY)) >= 0) {
689 err = fstat64(fd, &statbuf);
690 (void) close(fd);
691 } else {
692 err = stat64(path, &statbuf);
695 if (err != 0 ||
696 statbuf.st_size == 0 ||
697 statbuf.st_size == MAXOFFSET_T)
698 continue;
700 size = statbuf.st_size;
703 * Also make sure that devices and
704 * slices have a consistent size. If
705 * they differ by a significant amount
706 * (~16MB) then report an error.
708 if (!dontreport &&
709 (vdev_size != -1ULL &&
710 (labs(size - vdev_size) >
711 ZPOOL_FUZZ))) {
712 if (ret != NULL)
713 free(ret);
714 ret = NULL;
715 if (fatal)
716 vdev_error(gettext(
717 "%s contains devices of "
718 "different sizes\n"),
719 rep.zprl_type);
720 else
721 return (NULL);
722 dontreport = B_TRUE;
725 type = childtype;
726 vdev_size = size;
731 * At this point, we have the replication of the last toplevel
732 * vdev in 'rep'. Compare it to 'lastrep' to see if its
733 * different.
735 if (lastrep.zprl_type != NULL) {
736 if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
737 if (ret != NULL)
738 free(ret);
739 ret = NULL;
740 if (fatal)
741 vdev_error(gettext(
742 "mismatched replication level: "
743 "both %s and %s vdevs are "
744 "present\n"),
745 lastrep.zprl_type, rep.zprl_type);
746 else
747 return (NULL);
748 } else if (lastrep.zprl_parity != rep.zprl_parity) {
749 if (ret)
750 free(ret);
751 ret = NULL;
752 if (fatal)
753 vdev_error(gettext(
754 "mismatched replication level: "
755 "both %llu and %llu device parity "
756 "%s vdevs are present\n"),
757 lastrep.zprl_parity,
758 rep.zprl_parity,
759 rep.zprl_type);
760 else
761 return (NULL);
762 } else if (lastrep.zprl_children != rep.zprl_children) {
763 if (ret)
764 free(ret);
765 ret = NULL;
766 if (fatal)
767 vdev_error(gettext(
768 "mismatched replication level: "
769 "both %llu-way and %llu-way %s "
770 "vdevs are present\n"),
771 lastrep.zprl_children,
772 rep.zprl_children,
773 rep.zprl_type);
774 else
775 return (NULL);
778 lastrep = rep;
781 if (ret != NULL)
782 *ret = rep;
784 return (ret);
788 * Check the replication level of the vdev spec against the current pool. Calls
789 * get_replication() to make sure the new spec is self-consistent. If the pool
790 * has a consistent replication level, then we ignore any errors. Otherwise,
791 * report any difference between the two.
793 static int
794 check_replication(nvlist_t *config, nvlist_t *newroot)
796 nvlist_t **child;
797 uint_t children;
798 replication_level_t *current = NULL, *new;
799 int ret;
802 * If we have a current pool configuration, check to see if it's
803 * self-consistent. If not, simply return success.
805 if (config != NULL) {
806 nvlist_t *nvroot;
808 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
809 &nvroot) == 0);
810 if ((current = get_replication(nvroot, B_FALSE)) == NULL)
811 return (0);
814 * for spares there may be no children, and therefore no
815 * replication level to check
817 if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN,
818 &child, &children) != 0) || (children == 0)) {
819 free(current);
820 return (0);
824 * If all we have is logs then there's no replication level to check.
826 if (num_logs(newroot) == children) {
827 free(current);
828 return (0);
832 * Get the replication level of the new vdev spec, reporting any
833 * inconsistencies found.
835 if ((new = get_replication(newroot, B_TRUE)) == NULL) {
836 free(current);
837 return (-1);
841 * Check to see if the new vdev spec matches the replication level of
842 * the current pool.
844 ret = 0;
845 if (current != NULL) {
846 if (strcmp(current->zprl_type, new->zprl_type) != 0) {
847 vdev_error(gettext(
848 "mismatched replication level: pool uses %s "
849 "and new vdev is %s\n"),
850 current->zprl_type, new->zprl_type);
851 ret = -1;
852 } else if (current->zprl_parity != new->zprl_parity) {
853 vdev_error(gettext(
854 "mismatched replication level: pool uses %llu "
855 "device parity and new vdev uses %llu\n"),
856 current->zprl_parity, new->zprl_parity);
857 ret = -1;
858 } else if (current->zprl_children != new->zprl_children) {
859 vdev_error(gettext(
860 "mismatched replication level: pool uses %llu-way "
861 "%s and new vdev uses %llu-way %s\n"),
862 current->zprl_children, current->zprl_type,
863 new->zprl_children, new->zprl_type);
864 ret = -1;
868 free(new);
869 if (current != NULL)
870 free(current);
872 return (ret);
876 * Go through and find any whole disks in the vdev specification, labelling them
877 * as appropriate. When constructing the vdev spec, we were unable to open this
878 * device in order to provide a devid. Now that we have labelled the disk and
879 * know the pool slice is valid, we can construct the devid now.
881 * If the disk was already labeled with an EFI label, we will have gotten the
882 * devid already (because we were able to open the whole disk). Otherwise, we
883 * need to get the devid after we label the disk.
885 static int
886 make_disks(zpool_handle_t *zhp, nvlist_t *nv, zpool_boot_label_t boot_type,
887 uint64_t boot_size)
889 nvlist_t **child;
890 uint_t c, children;
891 char *type, *path, *diskname;
892 char buf[MAXPATHLEN];
893 uint64_t wholedisk;
894 int fd;
895 int ret;
896 int slice;
897 ddi_devid_t devid;
898 char *minor = NULL, *devid_str = NULL;
900 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
902 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
903 &child, &children) != 0) {
905 if (strcmp(type, VDEV_TYPE_DISK) != 0)
906 return (0);
909 * We have a disk device. Get the path to the device
910 * and see if it's a whole disk by appending the backup
911 * slice and stat()ing the device.
913 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
915 diskname = strrchr(path, '/');
916 assert(diskname != NULL);
917 diskname++;
919 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
920 &wholedisk) != 0 || !wholedisk) {
922 * This is not whole disk, return error if
923 * boot partition creation was requested
925 if (boot_type == ZPOOL_CREATE_BOOT_LABEL) {
926 (void) fprintf(stderr,
927 gettext("creating boot partition is only "
928 "supported on whole disk vdevs: %s\n"),
929 diskname);
930 return (-1);
932 return (0);
935 ret = zpool_label_disk(g_zfs, zhp, diskname, boot_type,
936 boot_size, &slice);
937 if (ret == -1)
938 return (ret);
941 * Fill in the devid, now that we've labeled the disk.
943 (void) snprintf(buf, sizeof (buf), "%ss%d", path, slice);
944 if ((fd = open(buf, O_RDONLY)) < 0) {
945 (void) fprintf(stderr,
946 gettext("cannot open '%s': %s\n"),
947 buf, strerror(errno));
948 return (-1);
951 if (devid_get(fd, &devid) == 0) {
952 if (devid_get_minor_name(fd, &minor) == 0 &&
953 (devid_str = devid_str_encode(devid, minor)) !=
954 NULL) {
955 verify(nvlist_add_string(nv,
956 ZPOOL_CONFIG_DEVID, devid_str) == 0);
958 if (devid_str != NULL)
959 devid_str_free(devid_str);
960 if (minor != NULL)
961 devid_str_free(minor);
962 devid_free(devid);
966 * Update the path to refer to the pool slice. The presence of
967 * the 'whole_disk' field indicates to the CLI that we should
968 * chop off the slice number when displaying the device in
969 * future output.
971 verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
973 (void) close(fd);
975 return (0);
978 /* illumos kernel does not support booting from multi-vdev pools. */
979 if ((boot_type == ZPOOL_CREATE_BOOT_LABEL)) {
980 if ((strcmp(type, VDEV_TYPE_ROOT) == 0) && children > 1) {
981 (void) fprintf(stderr, gettext("boot pool "
982 "can not have more than one vdev\n"));
983 return (-1);
987 for (c = 0; c < children; c++) {
988 ret = make_disks(zhp, child[c], boot_type, boot_size);
989 if (ret != 0)
990 return (ret);
993 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
994 &child, &children) == 0)
995 for (c = 0; c < children; c++) {
996 ret = make_disks(zhp, child[c], boot_type, boot_size);
997 if (ret != 0)
998 return (ret);
1001 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1002 &child, &children) == 0)
1003 for (c = 0; c < children; c++) {
1004 ret = make_disks(zhp, child[c], boot_type, boot_size);
1005 if (ret != 0)
1006 return (ret);
1009 return (0);
1013 * Determine if the given path is a hot spare within the given configuration.
1015 static boolean_t
1016 is_spare(nvlist_t *config, const char *path)
1018 int fd;
1019 pool_state_t state;
1020 char *name = NULL;
1021 nvlist_t *label;
1022 uint64_t guid, spareguid;
1023 nvlist_t *nvroot;
1024 nvlist_t **spares;
1025 uint_t i, nspares;
1026 boolean_t inuse;
1028 if ((fd = open(path, O_RDONLY)) < 0)
1029 return (B_FALSE);
1031 if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1032 !inuse ||
1033 state != POOL_STATE_SPARE ||
1034 zpool_read_label(fd, &label) != 0) {
1035 free(name);
1036 (void) close(fd);
1037 return (B_FALSE);
1039 free(name);
1040 (void) close(fd);
1042 verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1043 nvlist_free(label);
1045 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1046 &nvroot) == 0);
1047 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1048 &spares, &nspares) == 0) {
1049 for (i = 0; i < nspares; i++) {
1050 verify(nvlist_lookup_uint64(spares[i],
1051 ZPOOL_CONFIG_GUID, &spareguid) == 0);
1052 if (spareguid == guid)
1053 return (B_TRUE);
1057 return (B_FALSE);
1061 * Go through and find any devices that are in use. We rely on libdiskmgt for
1062 * the majority of this task.
1064 static boolean_t
1065 is_device_in_use(nvlist_t *config, nvlist_t *nv, boolean_t force,
1066 boolean_t replacing, boolean_t isspare)
1068 nvlist_t **child;
1069 uint_t c, children;
1070 char *type, *path;
1071 int ret = 0;
1072 char buf[MAXPATHLEN];
1073 uint64_t wholedisk;
1074 boolean_t anyinuse = B_FALSE;
1076 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1078 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1079 &child, &children) != 0) {
1081 verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1084 * As a generic check, we look to see if this is a replace of a
1085 * hot spare within the same pool. If so, we allow it
1086 * regardless of what libdiskmgt or zpool_in_use() says.
1088 if (replacing) {
1089 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1090 &wholedisk) == 0 && wholedisk)
1091 (void) snprintf(buf, sizeof (buf), "%ss0",
1092 path);
1093 else
1094 (void) strlcpy(buf, path, sizeof (buf));
1096 if (is_spare(config, buf))
1097 return (B_FALSE);
1100 if (strcmp(type, VDEV_TYPE_DISK) == 0)
1101 ret = check_device(path, force, isspare);
1102 else if (strcmp(type, VDEV_TYPE_FILE) == 0)
1103 ret = check_file(path, force, isspare);
1105 return (ret != 0);
1108 for (c = 0; c < children; c++)
1109 if (is_device_in_use(config, child[c], force, replacing,
1110 B_FALSE))
1111 anyinuse = B_TRUE;
1113 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1114 &child, &children) == 0)
1115 for (c = 0; c < children; c++)
1116 if (is_device_in_use(config, child[c], force, replacing,
1117 B_TRUE))
1118 anyinuse = B_TRUE;
1120 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE,
1121 &child, &children) == 0)
1122 for (c = 0; c < children; c++)
1123 if (is_device_in_use(config, child[c], force, replacing,
1124 B_FALSE))
1125 anyinuse = B_TRUE;
1127 return (anyinuse);
1130 static const char *
1131 is_grouping(const char *type, int *mindev, int *maxdev)
1133 if (strncmp(type, "raidz", 5) == 0) {
1134 const char *p = type + 5;
1135 char *end;
1136 long nparity;
1138 if (*p == '\0') {
1139 nparity = 1;
1140 } else if (*p == '0') {
1141 return (NULL); /* no zero prefixes allowed */
1142 } else {
1143 errno = 0;
1144 nparity = strtol(p, &end, 10);
1145 if (errno != 0 || nparity < 1 || nparity >= 255 ||
1146 *end != '\0')
1147 return (NULL);
1150 if (mindev != NULL)
1151 *mindev = nparity + 1;
1152 if (maxdev != NULL)
1153 *maxdev = 255;
1154 return (VDEV_TYPE_RAIDZ);
1157 if (maxdev != NULL)
1158 *maxdev = INT_MAX;
1160 if (strcmp(type, "mirror") == 0) {
1161 if (mindev != NULL)
1162 *mindev = 2;
1163 return (VDEV_TYPE_MIRROR);
1166 if (strcmp(type, "spare") == 0) {
1167 if (mindev != NULL)
1168 *mindev = 1;
1169 return (VDEV_TYPE_SPARE);
1172 if (strcmp(type, "log") == 0) {
1173 if (mindev != NULL)
1174 *mindev = 1;
1175 return (VDEV_TYPE_LOG);
1178 if (strcmp(type, "cache") == 0) {
1179 if (mindev != NULL)
1180 *mindev = 1;
1181 return (VDEV_TYPE_L2CACHE);
1184 return (NULL);
1188 * Construct a syntactically valid vdev specification,
1189 * and ensure that all devices and files exist and can be opened.
1190 * Note: we don't bother freeing anything in the error paths
1191 * because the program is just going to exit anyway.
1193 nvlist_t *
1194 construct_spec(int argc, char **argv)
1196 nvlist_t *nvroot, *nv, **top, **spares, **l2cache;
1197 int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache;
1198 const char *type;
1199 uint64_t is_log;
1200 boolean_t seen_logs;
1202 top = NULL;
1203 toplevels = 0;
1204 spares = NULL;
1205 l2cache = NULL;
1206 nspares = 0;
1207 nlogs = 0;
1208 nl2cache = 0;
1209 is_log = B_FALSE;
1210 seen_logs = B_FALSE;
1212 while (argc > 0) {
1213 nv = NULL;
1216 * If it's a mirror or raidz, the subsequent arguments are
1217 * its leaves -- until we encounter the next mirror or raidz.
1219 if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) {
1220 nvlist_t **child = NULL;
1221 int c, children = 0;
1223 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1224 if (spares != NULL) {
1225 (void) fprintf(stderr,
1226 gettext("invalid vdev "
1227 "specification: 'spare' can be "
1228 "specified only once\n"));
1229 return (NULL);
1231 is_log = B_FALSE;
1234 if (strcmp(type, VDEV_TYPE_LOG) == 0) {
1235 if (seen_logs) {
1236 (void) fprintf(stderr,
1237 gettext("invalid vdev "
1238 "specification: 'log' can be "
1239 "specified only once\n"));
1240 return (NULL);
1242 seen_logs = B_TRUE;
1243 is_log = B_TRUE;
1244 argc--;
1245 argv++;
1247 * A log is not a real grouping device.
1248 * We just set is_log and continue.
1250 continue;
1253 if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1254 if (l2cache != NULL) {
1255 (void) fprintf(stderr,
1256 gettext("invalid vdev "
1257 "specification: 'cache' can be "
1258 "specified only once\n"));
1259 return (NULL);
1261 is_log = B_FALSE;
1264 if (is_log) {
1265 if (strcmp(type, VDEV_TYPE_MIRROR) != 0) {
1266 (void) fprintf(stderr,
1267 gettext("invalid vdev "
1268 "specification: unsupported 'log' "
1269 "device: %s\n"), type);
1270 return (NULL);
1272 nlogs++;
1275 for (c = 1; c < argc; c++) {
1276 if (is_grouping(argv[c], NULL, NULL) != NULL)
1277 break;
1278 children++;
1279 child = realloc(child,
1280 children * sizeof (nvlist_t *));
1281 if (child == NULL)
1282 zpool_no_memory();
1283 if ((nv = make_leaf_vdev(argv[c], B_FALSE))
1284 == NULL)
1285 return (NULL);
1286 child[children - 1] = nv;
1289 if (children < mindev) {
1290 (void) fprintf(stderr, gettext("invalid vdev "
1291 "specification: %s requires at least %d "
1292 "devices\n"), argv[0], mindev);
1293 return (NULL);
1296 if (children > maxdev) {
1297 (void) fprintf(stderr, gettext("invalid vdev "
1298 "specification: %s supports no more than "
1299 "%d devices\n"), argv[0], maxdev);
1300 return (NULL);
1303 argc -= c;
1304 argv += c;
1306 if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1307 spares = child;
1308 nspares = children;
1309 continue;
1310 } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) {
1311 l2cache = child;
1312 nl2cache = children;
1313 continue;
1314 } else {
1315 verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1316 0) == 0);
1317 verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1318 type) == 0);
1319 verify(nvlist_add_uint64(nv,
1320 ZPOOL_CONFIG_IS_LOG, is_log) == 0);
1321 if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1322 verify(nvlist_add_uint64(nv,
1323 ZPOOL_CONFIG_NPARITY,
1324 mindev - 1) == 0);
1326 verify(nvlist_add_nvlist_array(nv,
1327 ZPOOL_CONFIG_CHILDREN, child,
1328 children) == 0);
1330 for (c = 0; c < children; c++)
1331 nvlist_free(child[c]);
1332 free(child);
1334 } else {
1336 * We have a device. Pass off to make_leaf_vdev() to
1337 * construct the appropriate nvlist describing the vdev.
1339 if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL)
1340 return (NULL);
1341 if (is_log)
1342 nlogs++;
1343 argc--;
1344 argv++;
1347 toplevels++;
1348 top = realloc(top, toplevels * sizeof (nvlist_t *));
1349 if (top == NULL)
1350 zpool_no_memory();
1351 top[toplevels - 1] = nv;
1354 if (toplevels == 0 && nspares == 0 && nl2cache == 0) {
1355 (void) fprintf(stderr, gettext("invalid vdev "
1356 "specification: at least one toplevel vdev must be "
1357 "specified\n"));
1358 return (NULL);
1361 if (seen_logs && nlogs == 0) {
1362 (void) fprintf(stderr, gettext("invalid vdev specification: "
1363 "log requires at least 1 device\n"));
1364 return (NULL);
1368 * Finally, create nvroot and add all top-level vdevs to it.
1370 verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1371 verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1372 VDEV_TYPE_ROOT) == 0);
1373 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1374 top, toplevels) == 0);
1375 if (nspares != 0)
1376 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1377 spares, nspares) == 0);
1378 if (nl2cache != 0)
1379 verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1380 l2cache, nl2cache) == 0);
1382 for (t = 0; t < toplevels; t++)
1383 nvlist_free(top[t]);
1384 for (t = 0; t < nspares; t++)
1385 nvlist_free(spares[t]);
1386 for (t = 0; t < nl2cache; t++)
1387 nvlist_free(l2cache[t]);
1388 if (spares)
1389 free(spares);
1390 if (l2cache)
1391 free(l2cache);
1392 free(top);
1394 return (nvroot);
1397 nvlist_t *
1398 split_mirror_vdev(zpool_handle_t *zhp, char *newname, nvlist_t *props,
1399 splitflags_t flags, int argc, char **argv)
1401 nvlist_t *newroot = NULL, **child;
1402 uint_t c, children;
1403 zpool_boot_label_t boot_type;
1405 if (argc > 0) {
1406 if ((newroot = construct_spec(argc, argv)) == NULL) {
1407 (void) fprintf(stderr, gettext("Unable to build a "
1408 "pool from the specified devices\n"));
1409 return (NULL);
1412 if (zpool_is_bootable(zhp))
1413 boot_type = ZPOOL_COPY_BOOT_LABEL;
1414 else
1415 boot_type = ZPOOL_NO_BOOT_LABEL;
1417 if (!flags.dryrun &&
1418 make_disks(zhp, newroot, boot_type, 0) != 0) {
1419 nvlist_free(newroot);
1420 return (NULL);
1423 /* avoid any tricks in the spec */
1424 verify(nvlist_lookup_nvlist_array(newroot,
1425 ZPOOL_CONFIG_CHILDREN, &child, &children) == 0);
1426 for (c = 0; c < children; c++) {
1427 char *path;
1428 const char *type;
1429 int min, max;
1431 verify(nvlist_lookup_string(child[c],
1432 ZPOOL_CONFIG_PATH, &path) == 0);
1433 if ((type = is_grouping(path, &min, &max)) != NULL) {
1434 (void) fprintf(stderr, gettext("Cannot use "
1435 "'%s' as a device for splitting\n"), type);
1436 nvlist_free(newroot);
1437 return (NULL);
1442 if (zpool_vdev_split(zhp, newname, &newroot, props, flags) != 0) {
1443 nvlist_free(newroot);
1444 return (NULL);
1447 return (newroot);
1451 * Get and validate the contents of the given vdev specification. This ensures
1452 * that the nvlist returned is well-formed, that all the devices exist, and that
1453 * they are not currently in use by any other known consumer. The 'poolconfig'
1454 * parameter is the current configuration of the pool when adding devices
1455 * existing pool, and is used to perform additional checks, such as changing the
1456 * replication level of the pool. It can be 'NULL' to indicate that this is a
1457 * new pool. The 'force' flag controls whether devices should be forcefully
1458 * added, even if they appear in use.
1460 nvlist_t *
1461 make_root_vdev(zpool_handle_t *zhp, int force, int check_rep,
1462 boolean_t replacing, boolean_t dryrun, zpool_boot_label_t boot_type,
1463 uint64_t boot_size, int argc, char **argv)
1465 nvlist_t *newroot;
1466 nvlist_t *poolconfig = NULL;
1467 is_force = force;
1470 * Construct the vdev specification. If this is successful, we know
1471 * that we have a valid specification, and that all devices can be
1472 * opened.
1474 if ((newroot = construct_spec(argc, argv)) == NULL)
1475 return (NULL);
1477 if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL))
1478 return (NULL);
1481 * Validate each device to make sure that its not shared with another
1482 * subsystem. We do this even if 'force' is set, because there are some
1483 * uses (such as a dedicated dump device) that even '-f' cannot
1484 * override.
1486 if (is_device_in_use(poolconfig, newroot, force, replacing, B_FALSE)) {
1487 nvlist_free(newroot);
1488 return (NULL);
1492 * Check the replication level of the given vdevs and report any errors
1493 * found. We include the existing pool spec, if any, as we need to
1494 * catch changes against the existing replication level.
1496 if (check_rep && check_replication(poolconfig, newroot) != 0) {
1497 nvlist_free(newroot);
1498 return (NULL);
1502 * Run through the vdev specification and label any whole disks found.
1504 if (!dryrun && make_disks(zhp, newroot, boot_type, boot_size) != 0) {
1505 nvlist_free(newroot);
1506 return (NULL);
1509 return (newroot);