8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / common / crypto / aes / amd64 / aesopt.h
blob169c91bf1921330af7a9b6142321cc1d12a7cf1b
1 /*
2 * ---------------------------------------------------------------------------
3 * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved.
5 * LICENSE TERMS
7 * The free distribution and use of this software is allowed (with or without
8 * changes) provided that:
10 * 1. source code distributions include the above copyright notice, this
11 * list of conditions and the following disclaimer;
13 * 2. binary distributions include the above copyright notice, this list
14 * of conditions and the following disclaimer in their documentation;
16 * 3. the name of the copyright holder is not used to endorse products
17 * built using this software without specific written permission.
19 * DISCLAIMER
21 * This software is provided 'as is' with no explicit or implied warranties
22 * in respect of its properties, including, but not limited to, correctness
23 * and/or fitness for purpose.
24 * ---------------------------------------------------------------------------
25 * Issue Date: 20/12/2007
27 * This file contains the compilation options for AES (Rijndael) and code
28 * that is common across encryption, key scheduling and table generation.
30 * OPERATION
32 * These source code files implement the AES algorithm Rijndael designed by
33 * Joan Daemen and Vincent Rijmen. This version is designed for the standard
34 * block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
35 * and 32 bytes).
37 * This version is designed for flexibility and speed using operations on
38 * 32-bit words rather than operations on bytes. It can be compiled with
39 * either big or little endian internal byte order but is faster when the
40 * native byte order for the processor is used.
42 * THE CIPHER INTERFACE
44 * The cipher interface is implemented as an array of bytes in which lower
45 * AES bit sequence indexes map to higher numeric significance within bytes.
49 * OpenSolaris changes
50 * 1. Added __cplusplus and _AESTAB_H header guards
51 * 2. Added header files sys/types.h and aes_impl.h
52 * 3. Added defines for AES_ENCRYPT, AES_DECRYPT, AES_REV_DKS, and ASM_AMD64_C
53 * 4. Moved defines for IS_BIG_ENDIAN, IS_LITTLE_ENDIAN, PLATFORM_BYTE_ORDER
54 * from brg_endian.h
55 * 5. Undefined VIA_ACE_POSSIBLE and ASSUME_VIA_ACE_PRESENT
56 * 6. Changed uint_8t and uint_32t to uint8_t and uint32_t
57 * 7. Defined aes_sw32 as htonl() for byte swapping
58 * 8. Cstyled and hdrchk code
62 #ifndef _AESOPT_H
63 #define _AESOPT_H
65 #ifdef __cplusplus
66 extern "C" {
67 #endif
69 #include <sys/types.h>
70 #include <sys/byteorder.h>
71 #include <aes_impl.h>
73 /* SUPPORT FEATURES */
74 #define AES_ENCRYPT /* if support for encryption is needed */
75 #define AES_DECRYPT /* if support for decryption is needed */
77 /* PLATFORM-SPECIFIC FEATURES */
78 #define IS_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
79 #define IS_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
80 #define PLATFORM_BYTE_ORDER IS_LITTLE_ENDIAN
81 #define AES_REV_DKS /* define to reverse decryption key schedule */
85 * CONFIGURATION - THE USE OF DEFINES
86 * Later in this section there are a number of defines that control the
87 * operation of the code. In each section, the purpose of each define is
88 * explained so that the relevant form can be included or excluded by
89 * setting either 1's or 0's respectively on the branches of the related
90 * #if clauses. The following local defines should not be changed.
93 #define ENCRYPTION_IN_C 1
94 #define DECRYPTION_IN_C 2
95 #define ENC_KEYING_IN_C 4
96 #define DEC_KEYING_IN_C 8
98 #define NO_TABLES 0
99 #define ONE_TABLE 1
100 #define FOUR_TABLES 4
101 #define NONE 0
102 #define PARTIAL 1
103 #define FULL 2
105 /* --- START OF USER CONFIGURED OPTIONS --- */
108 * 1. BYTE ORDER WITHIN 32 BIT WORDS
110 * The fundamental data processing units in Rijndael are 8-bit bytes. The
111 * input, output and key input are all enumerated arrays of bytes in which
112 * bytes are numbered starting at zero and increasing to one less than the
113 * number of bytes in the array in question. This enumeration is only used
114 * for naming bytes and does not imply any adjacency or order relationship
115 * from one byte to another. When these inputs and outputs are considered
116 * as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
117 * byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
118 * In this implementation bits are numbered from 0 to 7 starting at the
119 * numerically least significant end of each byte. Bit n represents 2^n.
121 * However, Rijndael can be implemented more efficiently using 32-bit
122 * words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
123 * into word[n]. While in principle these bytes can be assembled into words
124 * in any positions, this implementation only supports the two formats in
125 * which bytes in adjacent positions within words also have adjacent byte
126 * numbers. This order is called big-endian if the lowest numbered bytes
127 * in words have the highest numeric significance and little-endian if the
128 * opposite applies.
130 * This code can work in either order irrespective of the order used by the
131 * machine on which it runs. Normally the internal byte order will be set
132 * to the order of the processor on which the code is to be run but this
133 * define can be used to reverse this in special situations
135 * WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
136 * This define will hence be redefined later (in section 4) if necessary
139 #if 1
140 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
141 #elif 0
142 #define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
143 #elif 0
144 #define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
145 #else
146 #error The algorithm byte order is not defined
147 #endif
149 /* 2. VIA ACE SUPPORT */
151 #if defined(__GNUC__) && defined(__i386__) || \
152 defined(_WIN32) && defined(_M_IX86) && \
153 !(defined(_WIN64) || defined(_WIN32_WCE) || \
154 defined(_MSC_VER) && (_MSC_VER <= 800))
155 #define VIA_ACE_POSSIBLE
156 #endif
159 * Define this option if support for the VIA ACE is required. This uses
160 * inline assembler instructions and is only implemented for the Microsoft,
161 * Intel and GCC compilers. If VIA ACE is known to be present, then defining
162 * ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
163 * code. If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
164 * it is detected (both present and enabled) but the normal AES code will
165 * also be present.
167 * When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
168 * aligned; other input/output buffers do not need to be 16 byte aligned
169 * but there are very large performance gains if this can be arranged.
170 * VIA ACE also requires the decryption key schedule to be in reverse
171 * order (which later checks below ensure).
174 /* VIA ACE is not used here for OpenSolaris: */
175 #undef VIA_ACE_POSSIBLE
176 #undef ASSUME_VIA_ACE_PRESENT
178 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(USE_VIA_ACE_IF_PRESENT)
179 #define USE_VIA_ACE_IF_PRESENT
180 #endif
182 #if 0 && defined(VIA_ACE_POSSIBLE) && !defined(ASSUME_VIA_ACE_PRESENT)
183 #define ASSUME_VIA_ACE_PRESENT
184 #endif
188 * 3. ASSEMBLER SUPPORT
190 * This define (which can be on the command line) enables the use of the
191 * assembler code routines for encryption, decryption and key scheduling
192 * as follows:
194 * ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
195 * encryption and decryption and but with key scheduling in C
196 * ASM_X86_V2 uses assembler (aes_x86_v2.asm) with compressed tables for
197 * encryption, decryption and key scheduling
198 * ASM_X86_V2C uses assembler (aes_x86_v2.asm) with compressed tables for
199 * encryption and decryption and but with key scheduling in C
200 * ASM_AMD64_C uses assembler (aes_amd64.asm) with compressed tables for
201 * encryption and decryption and but with key scheduling in C
203 * Change one 'if 0' below to 'if 1' to select the version or define
204 * as a compilation option.
207 #if 0 && !defined(ASM_X86_V1C)
208 #define ASM_X86_V1C
209 #elif 0 && !defined(ASM_X86_V2)
210 #define ASM_X86_V2
211 #elif 0 && !defined(ASM_X86_V2C)
212 #define ASM_X86_V2C
213 #elif 1 && !defined(ASM_AMD64_C)
214 #define ASM_AMD64_C
215 #endif
217 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2) || defined(ASM_X86_V2C)) && \
218 !defined(_M_IX86) || defined(ASM_AMD64_C) && !defined(_M_X64) && \
219 !defined(__amd64)
220 #error Assembler code is only available for x86 and AMD64 systems
221 #endif
224 * 4. FAST INPUT/OUTPUT OPERATIONS.
226 * On some machines it is possible to improve speed by transferring the
227 * bytes in the input and output arrays to and from the internal 32-bit
228 * variables by addressing these arrays as if they are arrays of 32-bit
229 * words. On some machines this will always be possible but there may
230 * be a large performance penalty if the byte arrays are not aligned on
231 * the normal word boundaries. On other machines this technique will
232 * lead to memory access errors when such 32-bit word accesses are not
233 * properly aligned. The option SAFE_IO avoids such problems but will
234 * often be slower on those machines that support misaligned access
235 * (especially so if care is taken to align the input and output byte
236 * arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
237 * assumed that access to byte arrays as if they are arrays of 32-bit
238 * words will not cause problems when such accesses are misaligned.
240 #if 1 && !defined(_MSC_VER)
241 #define SAFE_IO
242 #endif
245 * 5. LOOP UNROLLING
247 * The code for encryption and decryption cycles through a number of rounds
248 * that can be implemented either in a loop or by expanding the code into a
249 * long sequence of instructions, the latter producing a larger program but
250 * one that will often be much faster. The latter is called loop unrolling.
251 * There are also potential speed advantages in expanding two iterations in
252 * a loop with half the number of iterations, which is called partial loop
253 * unrolling. The following options allow partial or full loop unrolling
254 * to be set independently for encryption and decryption
256 #if 1
257 #define ENC_UNROLL FULL
258 #elif 0
259 #define ENC_UNROLL PARTIAL
260 #else
261 #define ENC_UNROLL NONE
262 #endif
264 #if 1
265 #define DEC_UNROLL FULL
266 #elif 0
267 #define DEC_UNROLL PARTIAL
268 #else
269 #define DEC_UNROLL NONE
270 #endif
272 #if 1
273 #define ENC_KS_UNROLL
274 #endif
276 #if 1
277 #define DEC_KS_UNROLL
278 #endif
281 * 6. FAST FINITE FIELD OPERATIONS
283 * If this section is included, tables are used to provide faster finite
284 * field arithmetic. This has no effect if FIXED_TABLES is defined.
286 #if 1
287 #define FF_TABLES
288 #endif
291 * 7. INTERNAL STATE VARIABLE FORMAT
293 * The internal state of Rijndael is stored in a number of local 32-bit
294 * word variables which can be defined either as an array or as individual
295 * names variables. Include this section if you want to store these local
296 * variables in arrays. Otherwise individual local variables will be used.
298 #if 1
299 #define ARRAYS
300 #endif
303 * 8. FIXED OR DYNAMIC TABLES
305 * When this section is included the tables used by the code are compiled
306 * statically into the binary file. Otherwise the subroutine aes_init()
307 * must be called to compute them before the code is first used.
309 #if 1 && !(defined(_MSC_VER) && (_MSC_VER <= 800))
310 #define FIXED_TABLES
311 #endif
314 * 9. MASKING OR CASTING FROM LONGER VALUES TO BYTES
316 * In some systems it is better to mask longer values to extract bytes
317 * rather than using a cast. This option allows this choice.
319 #if 0
320 #define to_byte(x) ((uint8_t)(x))
321 #else
322 #define to_byte(x) ((x) & 0xff)
323 #endif
326 * 10. TABLE ALIGNMENT
328 * On some systems speed will be improved by aligning the AES large lookup
329 * tables on particular boundaries. This define should be set to a power of
330 * two giving the desired alignment. It can be left undefined if alignment
331 * is not needed. This option is specific to the Micrsoft VC++ compiler -
332 * it seems to sometimes cause trouble for the VC++ version 6 compiler.
335 #if 1 && defined(_MSC_VER) && (_MSC_VER >= 1300)
336 #define TABLE_ALIGN 32
337 #endif
340 * 11. REDUCE CODE AND TABLE SIZE
342 * This replaces some expanded macros with function calls if AES_ASM_V2 or
343 * AES_ASM_V2C are defined
346 #if 1 && (defined(ASM_X86_V2) || defined(ASM_X86_V2C))
347 #define REDUCE_CODE_SIZE
348 #endif
351 * 12. TABLE OPTIONS
353 * This cipher proceeds by repeating in a number of cycles known as rounds
354 * which are implemented by a round function which is optionally be speeded
355 * up using tables. The basic tables are 256 32-bit words, with either
356 * one or four tables being required for each round function depending on
357 * how much speed is required. Encryption and decryption round functions
358 * are different and the last encryption and decryption round functions are
359 * different again making four different round functions in all.
361 * This means that:
362 * 1. Normal encryption and decryption rounds can each use either 0, 1
363 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
364 * 2. The last encryption and decryption rounds can also use either 0, 1
365 * or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
367 * Include or exclude the appropriate definitions below to set the number
368 * of tables used by this implementation.
371 #if 1 /* set tables for the normal encryption round */
372 #define ENC_ROUND FOUR_TABLES
373 #elif 0
374 #define ENC_ROUND ONE_TABLE
375 #else
376 #define ENC_ROUND NO_TABLES
377 #endif
379 #if 1 /* set tables for the last encryption round */
380 #define LAST_ENC_ROUND FOUR_TABLES
381 #elif 0
382 #define LAST_ENC_ROUND ONE_TABLE
383 #else
384 #define LAST_ENC_ROUND NO_TABLES
385 #endif
387 #if 1 /* set tables for the normal decryption round */
388 #define DEC_ROUND FOUR_TABLES
389 #elif 0
390 #define DEC_ROUND ONE_TABLE
391 #else
392 #define DEC_ROUND NO_TABLES
393 #endif
395 #if 1 /* set tables for the last decryption round */
396 #define LAST_DEC_ROUND FOUR_TABLES
397 #elif 0
398 #define LAST_DEC_ROUND ONE_TABLE
399 #else
400 #define LAST_DEC_ROUND NO_TABLES
401 #endif
404 * The decryption key schedule can be speeded up with tables in the same
405 * way that the round functions can. Include or exclude the following
406 * defines to set this requirement.
408 #if 1
409 #define KEY_SCHED FOUR_TABLES
410 #elif 0
411 #define KEY_SCHED ONE_TABLE
412 #else
413 #define KEY_SCHED NO_TABLES
414 #endif
416 /* ---- END OF USER CONFIGURED OPTIONS ---- */
418 /* VIA ACE support is only available for VC++ and GCC */
420 #if !defined(_MSC_VER) && !defined(__GNUC__)
421 #if defined(ASSUME_VIA_ACE_PRESENT)
422 #undef ASSUME_VIA_ACE_PRESENT
423 #endif
424 #if defined(USE_VIA_ACE_IF_PRESENT)
425 #undef USE_VIA_ACE_IF_PRESENT
426 #endif
427 #endif
429 #if defined(ASSUME_VIA_ACE_PRESENT) && !defined(USE_VIA_ACE_IF_PRESENT)
430 #define USE_VIA_ACE_IF_PRESENT
431 #endif
433 #if defined(USE_VIA_ACE_IF_PRESENT) && !defined(AES_REV_DKS)
434 #define AES_REV_DKS
435 #endif
437 /* Assembler support requires the use of platform byte order */
439 #if (defined(ASM_X86_V1C) || defined(ASM_X86_V2C) || defined(ASM_AMD64_C)) && \
440 (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
441 #undef ALGORITHM_BYTE_ORDER
442 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
443 #endif
446 * In this implementation the columns of the state array are each held in
447 * 32-bit words. The state array can be held in various ways: in an array
448 * of words, in a number of individual word variables or in a number of
449 * processor registers. The following define maps a variable name x and
450 * a column number c to the way the state array variable is to be held.
451 * The first define below maps the state into an array x[c] whereas the
452 * second form maps the state into a number of individual variables x0,
453 * x1, etc. Another form could map individual state columns to machine
454 * register names.
457 #if defined(ARRAYS)
458 #define s(x, c) x[c]
459 #else
460 #define s(x, c) x##c
461 #endif
464 * This implementation provides subroutines for encryption, decryption
465 * and for setting the three key lengths (separately) for encryption
466 * and decryption. Since not all functions are needed, masks are set
467 * up here to determine which will be implemented in C
470 #if !defined(AES_ENCRYPT)
471 #define EFUNCS_IN_C 0
472 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
473 defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
474 #define EFUNCS_IN_C ENC_KEYING_IN_C
475 #elif !defined(ASM_X86_V2)
476 #define EFUNCS_IN_C (ENCRYPTION_IN_C | ENC_KEYING_IN_C)
477 #else
478 #define EFUNCS_IN_C 0
479 #endif
481 #if !defined(AES_DECRYPT)
482 #define DFUNCS_IN_C 0
483 #elif defined(ASSUME_VIA_ACE_PRESENT) || defined(ASM_X86_V1C) || \
484 defined(ASM_X86_V2C) || defined(ASM_AMD64_C)
485 #define DFUNCS_IN_C DEC_KEYING_IN_C
486 #elif !defined(ASM_X86_V2)
487 #define DFUNCS_IN_C (DECRYPTION_IN_C | DEC_KEYING_IN_C)
488 #else
489 #define DFUNCS_IN_C 0
490 #endif
492 #define FUNCS_IN_C (EFUNCS_IN_C | DFUNCS_IN_C)
494 /* END OF CONFIGURATION OPTIONS */
496 /* Disable or report errors on some combinations of options */
498 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
499 #undef LAST_ENC_ROUND
500 #define LAST_ENC_ROUND NO_TABLES
501 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
502 #undef LAST_ENC_ROUND
503 #define LAST_ENC_ROUND ONE_TABLE
504 #endif
506 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
507 #undef ENC_UNROLL
508 #define ENC_UNROLL NONE
509 #endif
511 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
512 #undef LAST_DEC_ROUND
513 #define LAST_DEC_ROUND NO_TABLES
514 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
515 #undef LAST_DEC_ROUND
516 #define LAST_DEC_ROUND ONE_TABLE
517 #endif
519 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
520 #undef DEC_UNROLL
521 #define DEC_UNROLL NONE
522 #endif
524 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
525 #define aes_sw32 htonl
526 #elif defined(bswap32)
527 #define aes_sw32 bswap32
528 #elif defined(bswap_32)
529 #define aes_sw32 bswap_32
530 #else
531 #define brot(x, n) (((uint32_t)(x) << (n)) | ((uint32_t)(x) >> (32 - (n))))
532 #define aes_sw32(x) ((brot((x), 8) & 0x00ff00ff) | (brot((x), 24) & 0xff00ff00))
533 #endif
537 * upr(x, n): rotates bytes within words by n positions, moving bytes to
538 * higher index positions with wrap around into low positions
539 * ups(x, n): moves bytes by n positions to higher index positions in
540 * words but without wrap around
541 * bval(x, n): extracts a byte from a word
543 * WARNING: The definitions given here are intended only for use with
544 * unsigned variables and with shift counts that are compile
545 * time constants
548 #if (ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN)
549 #define upr(x, n) (((uint32_t)(x) << (8 * (n))) | \
550 ((uint32_t)(x) >> (32 - 8 * (n))))
551 #define ups(x, n) ((uint32_t)(x) << (8 * (n)))
552 #define bval(x, n) to_byte((x) >> (8 * (n)))
553 #define bytes2word(b0, b1, b2, b3) \
554 (((uint32_t)(b3) << 24) | ((uint32_t)(b2) << 16) | \
555 ((uint32_t)(b1) << 8) | (b0))
556 #endif
558 #if (ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN)
559 #define upr(x, n) (((uint32_t)(x) >> (8 * (n))) | \
560 ((uint32_t)(x) << (32 - 8 * (n))))
561 #define ups(x, n) ((uint32_t)(x) >> (8 * (n)))
562 #define bval(x, n) to_byte((x) >> (24 - 8 * (n)))
563 #define bytes2word(b0, b1, b2, b3) \
564 (((uint32_t)(b0) << 24) | ((uint32_t)(b1) << 16) | \
565 ((uint32_t)(b2) << 8) | (b3))
566 #endif
568 #if defined(SAFE_IO)
569 #define word_in(x, c) bytes2word(((const uint8_t *)(x) + 4 * c)[0], \
570 ((const uint8_t *)(x) + 4 * c)[1], \
571 ((const uint8_t *)(x) + 4 * c)[2], \
572 ((const uint8_t *)(x) + 4 * c)[3])
573 #define word_out(x, c, v) { ((uint8_t *)(x) + 4 * c)[0] = bval(v, 0); \
574 ((uint8_t *)(x) + 4 * c)[1] = bval(v, 1); \
575 ((uint8_t *)(x) + 4 * c)[2] = bval(v, 2); \
576 ((uint8_t *)(x) + 4 * c)[3] = bval(v, 3); }
577 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
578 #define word_in(x, c) (*((uint32_t *)(x) + (c)))
579 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = (v))
580 #else
581 #define word_in(x, c) aes_sw32(*((uint32_t *)(x) + (c)))
582 #define word_out(x, c, v) (*((uint32_t *)(x) + (c)) = aes_sw32(v))
583 #endif
585 /* the finite field modular polynomial and elements */
587 #define WPOLY 0x011b
588 #define BPOLY 0x1b
590 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
592 #define m1 0x80808080
593 #define m2 0x7f7f7f7f
594 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
597 * The following defines provide alternative definitions of gf_mulx that might
598 * give improved performance if a fast 32-bit multiply is not available. Note
599 * that a temporary variable u needs to be defined where gf_mulx is used.
601 * #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ \
602 * ((u >> 3) | (u >> 6))
603 * #define m4 (0x01010101 * BPOLY)
604 * #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) \
605 * & m4)
608 /* Work out which tables are needed for the different options */
610 #if defined(ASM_X86_V1C)
611 #if defined(ENC_ROUND)
612 #undef ENC_ROUND
613 #endif
614 #define ENC_ROUND FOUR_TABLES
615 #if defined(LAST_ENC_ROUND)
616 #undef LAST_ENC_ROUND
617 #endif
618 #define LAST_ENC_ROUND FOUR_TABLES
619 #if defined(DEC_ROUND)
620 #undef DEC_ROUND
621 #endif
622 #define DEC_ROUND FOUR_TABLES
623 #if defined(LAST_DEC_ROUND)
624 #undef LAST_DEC_ROUND
625 #endif
626 #define LAST_DEC_ROUND FOUR_TABLES
627 #if defined(KEY_SCHED)
628 #undef KEY_SCHED
629 #define KEY_SCHED FOUR_TABLES
630 #endif
631 #endif
633 #if (FUNCS_IN_C & ENCRYPTION_IN_C) || defined(ASM_X86_V1C)
634 #if ENC_ROUND == ONE_TABLE
635 #define FT1_SET
636 #elif ENC_ROUND == FOUR_TABLES
637 #define FT4_SET
638 #else
639 #define SBX_SET
640 #endif
641 #if LAST_ENC_ROUND == ONE_TABLE
642 #define FL1_SET
643 #elif LAST_ENC_ROUND == FOUR_TABLES
644 #define FL4_SET
645 #elif !defined(SBX_SET)
646 #define SBX_SET
647 #endif
648 #endif
650 #if (FUNCS_IN_C & DECRYPTION_IN_C) || defined(ASM_X86_V1C)
651 #if DEC_ROUND == ONE_TABLE
652 #define IT1_SET
653 #elif DEC_ROUND == FOUR_TABLES
654 #define IT4_SET
655 #else
656 #define ISB_SET
657 #endif
658 #if LAST_DEC_ROUND == ONE_TABLE
659 #define IL1_SET
660 #elif LAST_DEC_ROUND == FOUR_TABLES
661 #define IL4_SET
662 #elif !defined(ISB_SET)
663 #define ISB_SET
664 #endif
665 #endif
668 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
669 defined(ASM_X86_V2C)))
670 #if ((FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C))
671 #if KEY_SCHED == ONE_TABLE
672 #if !defined(FL1_SET) && !defined(FL4_SET)
673 #define LS1_SET
674 #endif
675 #elif KEY_SCHED == FOUR_TABLES
676 #if !defined(FL4_SET)
677 #define LS4_SET
678 #endif
679 #elif !defined(SBX_SET)
680 #define SBX_SET
681 #endif
682 #endif
683 #if (FUNCS_IN_C & DEC_KEYING_IN_C)
684 #if KEY_SCHED == ONE_TABLE
685 #define IM1_SET
686 #elif KEY_SCHED == FOUR_TABLES
687 #define IM4_SET
688 #elif !defined(SBX_SET)
689 #define SBX_SET
690 #endif
691 #endif
692 #endif
694 /* generic definitions of Rijndael macros that use tables */
696 #define no_table(x, box, vf, rf, c) bytes2word(\
697 box[bval(vf(x, 0, c), rf(0, c))], \
698 box[bval(vf(x, 1, c), rf(1, c))], \
699 box[bval(vf(x, 2, c), rf(2, c))], \
700 box[bval(vf(x, 3, c), rf(3, c))])
702 #define one_table(x, op, tab, vf, rf, c) \
703 (tab[bval(vf(x, 0, c), rf(0, c))] \
704 ^ op(tab[bval(vf(x, 1, c), rf(1, c))], 1) \
705 ^ op(tab[bval(vf(x, 2, c), rf(2, c))], 2) \
706 ^ op(tab[bval(vf(x, 3, c), rf(3, c))], 3))
708 #define four_tables(x, tab, vf, rf, c) \
709 (tab[0][bval(vf(x, 0, c), rf(0, c))] \
710 ^ tab[1][bval(vf(x, 1, c), rf(1, c))] \
711 ^ tab[2][bval(vf(x, 2, c), rf(2, c))] \
712 ^ tab[3][bval(vf(x, 3, c), rf(3, c))])
714 #define vf1(x, r, c) (x)
715 #define rf1(r, c) (r)
716 #define rf2(r, c) ((8+r-c)&3)
719 * Perform forward and inverse column mix operation on four bytes in long word
720 * x in parallel. NOTE: x must be a simple variable, NOT an expression in
721 * these macros.
724 #if !(defined(REDUCE_CODE_SIZE) && (defined(ASM_X86_V2) || \
725 defined(ASM_X86_V2C)))
727 #if defined(FM4_SET) /* not currently used */
728 #define fwd_mcol(x) four_tables(x, t_use(f, m), vf1, rf1, 0)
729 #elif defined(FM1_SET) /* not currently used */
730 #define fwd_mcol(x) one_table(x, upr, t_use(f, m), vf1, rf1, 0)
731 #else
732 #define dec_fmvars uint32_t g2
733 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ \
734 upr((x), 2) ^ upr((x), 1))
735 #endif
737 #if defined(IM4_SET)
738 #define inv_mcol(x) four_tables(x, t_use(i, m), vf1, rf1, 0)
739 #elif defined(IM1_SET)
740 #define inv_mcol(x) one_table(x, upr, t_use(i, m), vf1, rf1, 0)
741 #else
742 #define dec_imvars uint32_t g2, g4, g9
743 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = \
744 (x) ^ gf_mulx(g4), g4 ^= g9, \
745 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ \
746 upr(g4, 2) ^ upr(g9, 1))
747 #endif
749 #if defined(FL4_SET)
750 #define ls_box(x, c) four_tables(x, t_use(f, l), vf1, rf2, c)
751 #elif defined(LS4_SET)
752 #define ls_box(x, c) four_tables(x, t_use(l, s), vf1, rf2, c)
753 #elif defined(FL1_SET)
754 #define ls_box(x, c) one_table(x, upr, t_use(f, l), vf1, rf2, c)
755 #elif defined(LS1_SET)
756 #define ls_box(x, c) one_table(x, upr, t_use(l, s), vf1, rf2, c)
757 #else
758 #define ls_box(x, c) no_table(x, t_use(s, box), vf1, rf2, c)
759 #endif
761 #endif
763 #if defined(ASM_X86_V1C) && defined(AES_DECRYPT) && !defined(ISB_SET)
764 #define ISB_SET
765 #endif
767 #ifdef __cplusplus
769 #endif
771 #endif /* _AESOPT_H */