2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
15 * The Original Code is the elliptic curve math library for binary polynomial field curves.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
23 * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 * Stephen Fung <fungstep@hotmail.com>, and
25 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
27 * Alternatively, the contents of this file may be used under the terms of
28 * either the GNU General Public License Version 2 or later (the "GPL"), or
29 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30 * in which case the provisions of the GPL or the LGPL are applicable instead
31 * of those above. If you wish to allow use of your version of this file only
32 * under the terms of either the GPL or the LGPL, and not to allow others to
33 * use your version of this file under the terms of the MPL, indicate your
34 * decision by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL or the LGPL. If you do not delete
36 * the provisions above, a recipient may use your version of this file under
37 * the terms of any one of the MPL, the GPL or the LGPL.
39 * ***** END LICENSE BLOCK ***** */
41 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
42 * Use is subject to license terms.
44 * Sun elects to use this software under the MPL license.
47 #pragma ident "%Z%%M% %I% %E% SMI"
51 #include "mp_gf2m-priv.h"
58 /* Fast reduction for polynomials over a 233-bit curve. Assumes reduction
59 * polynomial with terms {233, 74, 0}. */
61 ec_GF2m_233_mod(const mp_int
*a
, mp_int
*r
, const GFMethod
*meth
)
67 MP_CHECKOK(mp_copy(a
, r
));
69 #ifdef ECL_SIXTY_FOUR_BIT
71 MP_CHECKOK(s_mp_pad(r
, 8));
76 /* u[7] only has 18 significant bits */
78 u
[4] ^= (z
<< 33) ^ (z
>> 41);
82 u
[3] ^= (z
<< 33) ^ (z
>> 41);
86 u
[2] ^= (z
<< 33) ^ (z
>> 41);
90 u
[1] ^= (z
<< 33) ^ (z
>> 41);
92 z
= u
[3] >> 41; /* z only has 23 significant bits */
95 /* clear bits above 233 */
96 u
[7] = u
[6] = u
[5] = u
[4] = 0;
99 if (MP_USED(r
) < 15) {
100 MP_CHECKOK(s_mp_pad(r
, 15));
105 /* u[14] only has 18 significant bits */
140 z
= u
[7] >> 9; /* z only has 23 significant bits */
144 /* clear bits above 233 */
145 u
[14] = u
[13] = u
[12] = u
[11] = u
[10] = u
[9] = u
[8] = 0;
154 /* Fast squaring for polynomials over a 233-bit curve. Assumes reduction
155 * polynomial with terms {233, 74, 0}. */
157 ec_GF2m_233_sqr(const mp_int
*a
, mp_int
*r
, const GFMethod
*meth
)
159 mp_err res
= MP_OKAY
;
164 #ifdef ECL_SIXTY_FOUR_BIT
165 if (MP_USED(a
) < 4) {
166 return mp_bsqrmod(a
, meth
->irr_arr
, r
);
168 if (MP_USED(r
) < 8) {
169 MP_CHECKOK(s_mp_pad(r
, 8));
173 if (MP_USED(a
) < 8) {
174 return mp_bsqrmod(a
, meth
->irr_arr
, r
);
176 if (MP_USED(r
) < 15) {
177 MP_CHECKOK(s_mp_pad(r
, 15));
183 #ifdef ECL_THIRTY_TWO_BIT
184 u
[14] = gf2m_SQR0(v
[7]);
185 u
[13] = gf2m_SQR1(v
[6]);
186 u
[12] = gf2m_SQR0(v
[6]);
187 u
[11] = gf2m_SQR1(v
[5]);
188 u
[10] = gf2m_SQR0(v
[5]);
189 u
[9] = gf2m_SQR1(v
[4]);
190 u
[8] = gf2m_SQR0(v
[4]);
192 u
[7] = gf2m_SQR1(v
[3]);
193 u
[6] = gf2m_SQR0(v
[3]);
194 u
[5] = gf2m_SQR1(v
[2]);
195 u
[4] = gf2m_SQR0(v
[2]);
196 u
[3] = gf2m_SQR1(v
[1]);
197 u
[2] = gf2m_SQR0(v
[1]);
198 u
[1] = gf2m_SQR1(v
[0]);
199 u
[0] = gf2m_SQR0(v
[0]);
200 return ec_GF2m_233_mod(r
, r
, meth
);
206 /* Fast multiplication for polynomials over a 233-bit curve. Assumes
207 * reduction polynomial with terms {233, 74, 0}. */
209 ec_GF2m_233_mul(const mp_int
*a
, const mp_int
*b
, mp_int
*r
,
210 const GFMethod
*meth
)
212 mp_err res
= MP_OKAY
;
213 mp_digit a3
= 0, a2
= 0, a1
= 0, a0
, b3
= 0, b2
= 0, b1
= 0, b0
;
215 #ifdef ECL_THIRTY_TWO_BIT
216 mp_digit a7
= 0, a6
= 0, a5
= 0, a4
= 0, b7
= 0, b6
= 0, b5
= 0, b4
=
222 return ec_GF2m_233_sqr(a
, r
, meth
);
224 switch (MP_USED(a
)) {
225 #ifdef ECL_THIRTY_TWO_BIT
244 switch (MP_USED(b
)) {
245 #ifdef ECL_THIRTY_TWO_BIT
264 #ifdef ECL_SIXTY_FOUR_BIT
265 MP_CHECKOK(s_mp_pad(r
, 8));
266 s_bmul_4x4(MP_DIGITS(r
), a3
, a2
, a1
, a0
, b3
, b2
, b1
, b0
);
270 MP_CHECKOK(s_mp_pad(r
, 16));
271 s_bmul_4x4(MP_DIGITS(r
) + 8, a7
, a6
, a5
, a4
, b7
, b6
, b5
, b4
);
272 s_bmul_4x4(MP_DIGITS(r
), a3
, a2
, a1
, a0
, b3
, b2
, b1
, b0
);
273 s_bmul_4x4(rm
, a7
^ a3
, a6
^ a2
, a5
^ a1
, a4
^ a0
, b7
^ b3
,
274 b6
^ b2
, b5
^ b1
, b4
^ b0
);
275 rm
[7] ^= MP_DIGIT(r
, 7) ^ MP_DIGIT(r
, 15);
276 rm
[6] ^= MP_DIGIT(r
, 6) ^ MP_DIGIT(r
, 14);
277 rm
[5] ^= MP_DIGIT(r
, 5) ^ MP_DIGIT(r
, 13);
278 rm
[4] ^= MP_DIGIT(r
, 4) ^ MP_DIGIT(r
, 12);
279 rm
[3] ^= MP_DIGIT(r
, 3) ^ MP_DIGIT(r
, 11);
280 rm
[2] ^= MP_DIGIT(r
, 2) ^ MP_DIGIT(r
, 10);
281 rm
[1] ^= MP_DIGIT(r
, 1) ^ MP_DIGIT(r
, 9);
282 rm
[0] ^= MP_DIGIT(r
, 0) ^ MP_DIGIT(r
, 8);
283 MP_DIGIT(r
, 11) ^= rm
[7];
284 MP_DIGIT(r
, 10) ^= rm
[6];
285 MP_DIGIT(r
, 9) ^= rm
[5];
286 MP_DIGIT(r
, 8) ^= rm
[4];
287 MP_DIGIT(r
, 7) ^= rm
[3];
288 MP_DIGIT(r
, 6) ^= rm
[2];
289 MP_DIGIT(r
, 5) ^= rm
[1];
290 MP_DIGIT(r
, 4) ^= rm
[0];
294 return ec_GF2m_233_mod(r
, r
, meth
);
301 /* Wire in fast field arithmetic for 233-bit curves. */
303 ec_group_set_gf2m233(ECGroup
*group
, ECCurveName name
)
305 group
->meth
->field_mod
= &ec_GF2m_233_mod
;
306 group
->meth
->field_mul
= &ec_GF2m_233_mul
;
307 group
->meth
->field_sqr
= &ec_GF2m_233_sqr
;