2 * ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
15 * The Original Code is the elliptic curve math library for prime field curves.
17 * The Initial Developer of the Original Code is
18 * Sun Microsystems, Inc.
19 * Portions created by the Initial Developer are Copyright (C) 2003
20 * the Initial Developer. All Rights Reserved.
23 * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24 * Stephen Fung <fungstep@hotmail.com>, and
25 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26 * Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
27 * Nils Larsch <nla@trustcenter.de>, and
28 * Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
30 * Alternatively, the contents of this file may be used under the terms of
31 * either the GNU General Public License Version 2 or later (the "GPL"), or
32 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
33 * in which case the provisions of the GPL or the LGPL are applicable instead
34 * of those above. If you wish to allow use of your version of this file only
35 * under the terms of either the GPL or the LGPL, and not to allow others to
36 * use your version of this file under the terms of the MPL, indicate your
37 * decision by deleting the provisions above and replace them with the notice
38 * and other provisions required by the GPL or the LGPL. If you do not delete
39 * the provisions above, a recipient may use your version of this file under
40 * the terms of any one of the MPL, the GPL or the LGPL.
42 * ***** END LICENSE BLOCK ***** */
44 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
45 * Use is subject to license terms.
47 * Sun elects to use this software under the MPL license.
50 #pragma ident "%Z%%M% %I% %E% SMI"
61 /* Converts a point P(px, py) from affine coordinates to Jacobian
62 * projective coordinates R(rx, ry, rz). Assumes input is already
63 * field-encoded using field_enc, and returns output that is still
66 ec_GFp_pt_aff2jac(const mp_int
*px
, const mp_int
*py
, mp_int
*rx
,
67 mp_int
*ry
, mp_int
*rz
, const ECGroup
*group
)
71 if (ec_GFp_pt_is_inf_aff(px
, py
) == MP_YES
) {
72 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx
, ry
, rz
));
74 MP_CHECKOK(mp_copy(px
, rx
));
75 MP_CHECKOK(mp_copy(py
, ry
));
76 MP_CHECKOK(mp_set_int(rz
, 1));
77 if (group
->meth
->field_enc
) {
78 MP_CHECKOK(group
->meth
->field_enc(rz
, rz
, group
->meth
));
85 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
86 * affine coordinates R(rx, ry). P and R can share x and y coordinates.
87 * Assumes input is already field-encoded using field_enc, and returns
88 * output that is still field-encoded. */
90 ec_GFp_pt_jac2aff(const mp_int
*px
, const mp_int
*py
, const mp_int
*pz
,
91 mp_int
*rx
, mp_int
*ry
, const ECGroup
*group
)
99 MP_CHECKOK(mp_init(&z1
, FLAG(px
)));
100 MP_CHECKOK(mp_init(&z2
, FLAG(px
)));
101 MP_CHECKOK(mp_init(&z3
, FLAG(px
)));
103 /* if point at infinity, then set point at infinity and exit */
104 if (ec_GFp_pt_is_inf_jac(px
, py
, pz
) == MP_YES
) {
105 MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx
, ry
));
109 /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
110 if (mp_cmp_d(pz
, 1) == 0) {
111 MP_CHECKOK(mp_copy(px
, rx
));
112 MP_CHECKOK(mp_copy(py
, ry
));
114 MP_CHECKOK(group
->meth
->field_div(NULL
, pz
, &z1
, group
->meth
));
115 MP_CHECKOK(group
->meth
->field_sqr(&z1
, &z2
, group
->meth
));
116 MP_CHECKOK(group
->meth
->field_mul(&z1
, &z2
, &z3
, group
->meth
));
117 MP_CHECKOK(group
->meth
->field_mul(px
, &z2
, rx
, group
->meth
));
118 MP_CHECKOK(group
->meth
->field_mul(py
, &z3
, ry
, group
->meth
));
128 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
131 ec_GFp_pt_is_inf_jac(const mp_int
*px
, const mp_int
*py
, const mp_int
*pz
)
136 /* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
139 ec_GFp_pt_set_inf_jac(mp_int
*px
, mp_int
*py
, mp_int
*pz
)
145 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
146 * (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
147 * Uses mixed Jacobian-affine coordinates. Assumes input is already
148 * field-encoded using field_enc, and returns output that is still
149 * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
150 * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
153 ec_GFp_pt_add_jac_aff(const mp_int
*px
, const mp_int
*py
, const mp_int
*pz
,
154 const mp_int
*qx
, const mp_int
*qy
, mp_int
*rx
,
155 mp_int
*ry
, mp_int
*rz
, const ECGroup
*group
)
157 mp_err res
= MP_OKAY
;
158 mp_int A
, B
, C
, D
, C2
, C3
;
166 MP_CHECKOK(mp_init(&A
, FLAG(px
)));
167 MP_CHECKOK(mp_init(&B
, FLAG(px
)));
168 MP_CHECKOK(mp_init(&C
, FLAG(px
)));
169 MP_CHECKOK(mp_init(&D
, FLAG(px
)));
170 MP_CHECKOK(mp_init(&C2
, FLAG(px
)));
171 MP_CHECKOK(mp_init(&C3
, FLAG(px
)));
173 /* If either P or Q is the point at infinity, then return the other
175 if (ec_GFp_pt_is_inf_jac(px
, py
, pz
) == MP_YES
) {
176 MP_CHECKOK(ec_GFp_pt_aff2jac(qx
, qy
, rx
, ry
, rz
, group
));
179 if (ec_GFp_pt_is_inf_aff(qx
, qy
) == MP_YES
) {
180 MP_CHECKOK(mp_copy(px
, rx
));
181 MP_CHECKOK(mp_copy(py
, ry
));
182 MP_CHECKOK(mp_copy(pz
, rz
));
186 /* A = qx * pz^2, B = qy * pz^3 */
187 MP_CHECKOK(group
->meth
->field_sqr(pz
, &A
, group
->meth
));
188 MP_CHECKOK(group
->meth
->field_mul(&A
, pz
, &B
, group
->meth
));
189 MP_CHECKOK(group
->meth
->field_mul(&A
, qx
, &A
, group
->meth
));
190 MP_CHECKOK(group
->meth
->field_mul(&B
, qy
, &B
, group
->meth
));
192 /* C = A - px, D = B - py */
193 MP_CHECKOK(group
->meth
->field_sub(&A
, px
, &C
, group
->meth
));
194 MP_CHECKOK(group
->meth
->field_sub(&B
, py
, &D
, group
->meth
));
196 /* C2 = C^2, C3 = C^3 */
197 MP_CHECKOK(group
->meth
->field_sqr(&C
, &C2
, group
->meth
));
198 MP_CHECKOK(group
->meth
->field_mul(&C
, &C2
, &C3
, group
->meth
));
201 MP_CHECKOK(group
->meth
->field_mul(pz
, &C
, rz
, group
->meth
));
204 MP_CHECKOK(group
->meth
->field_mul(px
, &C2
, &C
, group
->meth
));
206 MP_CHECKOK(group
->meth
->field_sqr(&D
, &A
, group
->meth
));
208 /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
209 MP_CHECKOK(group
->meth
->field_add(&C
, &C
, rx
, group
->meth
));
210 MP_CHECKOK(group
->meth
->field_add(&C3
, rx
, rx
, group
->meth
));
211 MP_CHECKOK(group
->meth
->field_sub(&A
, rx
, rx
, group
->meth
));
214 MP_CHECKOK(group
->meth
->field_mul(py
, &C3
, &C3
, group
->meth
));
216 /* ry = D * (px * C^2 - rx) - py * C^3 */
217 MP_CHECKOK(group
->meth
->field_sub(&C
, rx
, ry
, group
->meth
));
218 MP_CHECKOK(group
->meth
->field_mul(&D
, ry
, ry
, group
->meth
));
219 MP_CHECKOK(group
->meth
->field_sub(ry
, &C3
, ry
, group
->meth
));
231 /* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
232 * Jacobian coordinates.
234 * Assumes input is already field-encoded using field_enc, and returns
235 * output that is still field-encoded.
237 * This routine implements Point Doubling in the Jacobian Projective
238 * space as described in the paper "Efficient elliptic curve exponentiation
239 * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
242 ec_GFp_pt_dbl_jac(const mp_int
*px
, const mp_int
*py
, const mp_int
*pz
,
243 mp_int
*rx
, mp_int
*ry
, mp_int
*rz
, const ECGroup
*group
)
245 mp_err res
= MP_OKAY
;
252 MP_CHECKOK(mp_init(&t0
, FLAG(px
)));
253 MP_CHECKOK(mp_init(&t1
, FLAG(px
)));
254 MP_CHECKOK(mp_init(&M
, FLAG(px
)));
255 MP_CHECKOK(mp_init(&S
, FLAG(px
)));
257 if (ec_GFp_pt_is_inf_jac(px
, py
, pz
) == MP_YES
) {
258 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx
, ry
, rz
));
262 if (mp_cmp_d(pz
, 1) == 0) {
263 /* M = 3 * px^2 + a */
264 MP_CHECKOK(group
->meth
->field_sqr(px
, &t0
, group
->meth
));
265 MP_CHECKOK(group
->meth
->field_add(&t0
, &t0
, &M
, group
->meth
));
266 MP_CHECKOK(group
->meth
->field_add(&t0
, &M
, &t0
, group
->meth
));
267 MP_CHECKOK(group
->meth
->
268 field_add(&t0
, &group
->curvea
, &M
, group
->meth
));
269 } else if (mp_cmp_int(&group
->curvea
, -3, FLAG(px
)) == 0) {
270 /* M = 3 * (px + pz^2) * (px - pz^2) */
271 MP_CHECKOK(group
->meth
->field_sqr(pz
, &M
, group
->meth
));
272 MP_CHECKOK(group
->meth
->field_add(px
, &M
, &t0
, group
->meth
));
273 MP_CHECKOK(group
->meth
->field_sub(px
, &M
, &t1
, group
->meth
));
274 MP_CHECKOK(group
->meth
->field_mul(&t0
, &t1
, &M
, group
->meth
));
275 MP_CHECKOK(group
->meth
->field_add(&M
, &M
, &t0
, group
->meth
));
276 MP_CHECKOK(group
->meth
->field_add(&t0
, &M
, &M
, group
->meth
));
278 /* M = 3 * (px^2) + a * (pz^4) */
279 MP_CHECKOK(group
->meth
->field_sqr(px
, &t0
, group
->meth
));
280 MP_CHECKOK(group
->meth
->field_add(&t0
, &t0
, &M
, group
->meth
));
281 MP_CHECKOK(group
->meth
->field_add(&t0
, &M
, &t0
, group
->meth
));
282 MP_CHECKOK(group
->meth
->field_sqr(pz
, &M
, group
->meth
));
283 MP_CHECKOK(group
->meth
->field_sqr(&M
, &M
, group
->meth
));
284 MP_CHECKOK(group
->meth
->
285 field_mul(&M
, &group
->curvea
, &M
, group
->meth
));
286 MP_CHECKOK(group
->meth
->field_add(&M
, &t0
, &M
, group
->meth
));
289 /* rz = 2 * py * pz */
291 if (mp_cmp_d(pz
, 1) == 0) {
292 MP_CHECKOK(group
->meth
->field_add(py
, py
, rz
, group
->meth
));
293 MP_CHECKOK(group
->meth
->field_sqr(rz
, &t0
, group
->meth
));
295 MP_CHECKOK(group
->meth
->field_add(py
, py
, &t0
, group
->meth
));
296 MP_CHECKOK(group
->meth
->field_mul(&t0
, pz
, rz
, group
->meth
));
297 MP_CHECKOK(group
->meth
->field_sqr(&t0
, &t0
, group
->meth
));
300 /* S = 4 * px * py^2 = px * (2 * py)^2 */
301 MP_CHECKOK(group
->meth
->field_mul(px
, &t0
, &S
, group
->meth
));
303 /* rx = M^2 - 2 * S */
304 MP_CHECKOK(group
->meth
->field_add(&S
, &S
, &t1
, group
->meth
));
305 MP_CHECKOK(group
->meth
->field_sqr(&M
, rx
, group
->meth
));
306 MP_CHECKOK(group
->meth
->field_sub(rx
, &t1
, rx
, group
->meth
));
308 /* ry = M * (S - rx) - 8 * py^4 */
309 MP_CHECKOK(group
->meth
->field_sqr(&t0
, &t1
, group
->meth
));
311 MP_CHECKOK(mp_add(&t1
, &group
->meth
->irr
, &t1
));
313 MP_CHECKOK(mp_div_2(&t1
, &t1
));
314 MP_CHECKOK(group
->meth
->field_sub(&S
, rx
, &S
, group
->meth
));
315 MP_CHECKOK(group
->meth
->field_mul(&M
, &S
, &M
, group
->meth
));
316 MP_CHECKOK(group
->meth
->field_sub(&M
, &t1
, ry
, group
->meth
));
326 /* by default, this routine is unused and thus doesn't need to be compiled */
327 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
328 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
329 * a, b and p are the elliptic curve coefficients and the prime that
330 * determines the field GFp. Elliptic curve points P and R can be
331 * identical. Uses mixed Jacobian-affine coordinates. Assumes input is
332 * already field-encoded using field_enc, and returns output that is still
333 * field-encoded. Uses 4-bit window method. */
335 ec_GFp_pt_mul_jac(const mp_int
*n
, const mp_int
*px
, const mp_int
*py
,
336 mp_int
*rx
, mp_int
*ry
, const ECGroup
*group
)
338 mp_err res
= MP_OKAY
;
339 mp_int precomp
[16][2], rz
;
343 for (i
= 0; i
< 16; i
++) {
344 MP_DIGITS(&precomp
[i
][0]) = 0;
345 MP_DIGITS(&precomp
[i
][1]) = 0;
348 ARGCHK(group
!= NULL
, MP_BADARG
);
349 ARGCHK((n
!= NULL
) && (px
!= NULL
) && (py
!= NULL
), MP_BADARG
);
351 /* initialize precomputation table */
352 for (i
= 0; i
< 16; i
++) {
353 MP_CHECKOK(mp_init(&precomp
[i
][0]));
354 MP_CHECKOK(mp_init(&precomp
[i
][1]));
357 /* fill precomputation table */
358 mp_zero(&precomp
[0][0]);
359 mp_zero(&precomp
[0][1]);
360 MP_CHECKOK(mp_copy(px
, &precomp
[1][0]));
361 MP_CHECKOK(mp_copy(py
, &precomp
[1][1]));
362 for (i
= 2; i
< 16; i
++) {
364 point_add(&precomp
[1][0], &precomp
[1][1],
365 &precomp
[i
- 1][0], &precomp
[i
- 1][1],
366 &precomp
[i
][0], &precomp
[i
][1], group
));
369 d
= (mpl_significant_bits(n
) + 3) / 4;
372 MP_CHECKOK(mp_init(&rz
));
373 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx
, ry
, &rz
));
375 for (i
= d
- 1; i
>= 0; i
--) {
376 /* compute window ni */
377 ni
= MP_GET_BIT(n
, 4 * i
+ 3);
379 ni
|= MP_GET_BIT(n
, 4 * i
+ 2);
381 ni
|= MP_GET_BIT(n
, 4 * i
+ 1);
383 ni
|= MP_GET_BIT(n
, 4 * i
);
385 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx
, ry
, &rz
, rx
, ry
, &rz
, group
));
386 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx
, ry
, &rz
, rx
, ry
, &rz
, group
));
387 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx
, ry
, &rz
, rx
, ry
, &rz
, group
));
388 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx
, ry
, &rz
, rx
, ry
, &rz
, group
));
389 /* R = R + (ni * P) */
390 MP_CHECKOK(ec_GFp_pt_add_jac_aff
391 (rx
, ry
, &rz
, &precomp
[ni
][0], &precomp
[ni
][1], rx
, ry
,
395 /* convert result S to affine coordinates */
396 MP_CHECKOK(ec_GFp_pt_jac2aff(rx
, ry
, &rz
, rx
, ry
, group
));
400 for (i
= 0; i
< 16; i
++) {
401 mp_clear(&precomp
[i
][0]);
402 mp_clear(&precomp
[i
][1]);
408 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
409 * k2 * P(x, y), where G is the generator (base point) of the group of
410 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
411 * Uses mixed Jacobian-affine coordinates. Input and output values are
412 * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
413 * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
414 * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
416 ec_GFp_pts_mul_jac(const mp_int
*k1
, const mp_int
*k2
, const mp_int
*px
,
417 const mp_int
*py
, mp_int
*rx
, mp_int
*ry
,
418 const ECGroup
*group
)
420 mp_err res
= MP_OKAY
;
421 mp_int precomp
[4][4][2];
427 for (i
= 0; i
< 4; i
++) {
428 for (j
= 0; j
< 4; j
++) {
429 MP_DIGITS(&precomp
[i
][j
][0]) = 0;
430 MP_DIGITS(&precomp
[i
][j
][1]) = 0;
435 ARGCHK(group
!= NULL
, MP_BADARG
);
436 ARGCHK(!((k1
== NULL
)
437 && ((k2
== NULL
) || (px
== NULL
)
438 || (py
== NULL
))), MP_BADARG
);
440 /* if some arguments are not defined used ECPoint_mul */
442 return ECPoint_mul(group
, k2
, px
, py
, rx
, ry
);
443 } else if ((k2
== NULL
) || (px
== NULL
) || (py
== NULL
)) {
444 return ECPoint_mul(group
, k1
, NULL
, NULL
, rx
, ry
);
447 /* initialize precomputation table */
448 for (i
= 0; i
< 4; i
++) {
449 for (j
= 0; j
< 4; j
++) {
450 MP_CHECKOK(mp_init(&precomp
[i
][j
][0], FLAG(k1
)));
451 MP_CHECKOK(mp_init(&precomp
[i
][j
][1], FLAG(k1
)));
455 /* fill precomputation table */
456 /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
457 if (mpl_significant_bits(k1
) < mpl_significant_bits(k2
)) {
460 if (group
->meth
->field_enc
) {
461 MP_CHECKOK(group
->meth
->
462 field_enc(px
, &precomp
[1][0][0], group
->meth
));
463 MP_CHECKOK(group
->meth
->
464 field_enc(py
, &precomp
[1][0][1], group
->meth
));
466 MP_CHECKOK(mp_copy(px
, &precomp
[1][0][0]));
467 MP_CHECKOK(mp_copy(py
, &precomp
[1][0][1]));
469 MP_CHECKOK(mp_copy(&group
->genx
, &precomp
[0][1][0]));
470 MP_CHECKOK(mp_copy(&group
->geny
, &precomp
[0][1][1]));
474 MP_CHECKOK(mp_copy(&group
->genx
, &precomp
[1][0][0]));
475 MP_CHECKOK(mp_copy(&group
->geny
, &precomp
[1][0][1]));
476 if (group
->meth
->field_enc
) {
477 MP_CHECKOK(group
->meth
->
478 field_enc(px
, &precomp
[0][1][0], group
->meth
));
479 MP_CHECKOK(group
->meth
->
480 field_enc(py
, &precomp
[0][1][1], group
->meth
));
482 MP_CHECKOK(mp_copy(px
, &precomp
[0][1][0]));
483 MP_CHECKOK(mp_copy(py
, &precomp
[0][1][1]));
486 /* precompute [*][0][*] */
487 mp_zero(&precomp
[0][0][0]);
488 mp_zero(&precomp
[0][0][1]);
490 point_dbl(&precomp
[1][0][0], &precomp
[1][0][1],
491 &precomp
[2][0][0], &precomp
[2][0][1], group
));
493 point_add(&precomp
[1][0][0], &precomp
[1][0][1],
494 &precomp
[2][0][0], &precomp
[2][0][1],
495 &precomp
[3][0][0], &precomp
[3][0][1], group
));
496 /* precompute [*][1][*] */
497 for (i
= 1; i
< 4; i
++) {
499 point_add(&precomp
[0][1][0], &precomp
[0][1][1],
500 &precomp
[i
][0][0], &precomp
[i
][0][1],
501 &precomp
[i
][1][0], &precomp
[i
][1][1], group
));
503 /* precompute [*][2][*] */
505 point_dbl(&precomp
[0][1][0], &precomp
[0][1][1],
506 &precomp
[0][2][0], &precomp
[0][2][1], group
));
507 for (i
= 1; i
< 4; i
++) {
509 point_add(&precomp
[0][2][0], &precomp
[0][2][1],
510 &precomp
[i
][0][0], &precomp
[i
][0][1],
511 &precomp
[i
][2][0], &precomp
[i
][2][1], group
));
513 /* precompute [*][3][*] */
515 point_add(&precomp
[0][1][0], &precomp
[0][1][1],
516 &precomp
[0][2][0], &precomp
[0][2][1],
517 &precomp
[0][3][0], &precomp
[0][3][1], group
));
518 for (i
= 1; i
< 4; i
++) {
520 point_add(&precomp
[0][3][0], &precomp
[0][3][1],
521 &precomp
[i
][0][0], &precomp
[i
][0][1],
522 &precomp
[i
][3][0], &precomp
[i
][3][1], group
));
525 d
= (mpl_significant_bits(a
) + 1) / 2;
528 MP_CHECKOK(mp_init(&rz
, FLAG(k1
)));
529 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx
, ry
, &rz
));
531 for (i
= d
- 1; i
>= 0; i
--) {
532 ai
= MP_GET_BIT(a
, 2 * i
+ 1);
534 ai
|= MP_GET_BIT(a
, 2 * i
);
535 bi
= MP_GET_BIT(b
, 2 * i
+ 1);
537 bi
|= MP_GET_BIT(b
, 2 * i
);
539 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx
, ry
, &rz
, rx
, ry
, &rz
, group
));
540 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx
, ry
, &rz
, rx
, ry
, &rz
, group
));
541 /* R = R + (ai * A + bi * B) */
542 MP_CHECKOK(ec_GFp_pt_add_jac_aff
543 (rx
, ry
, &rz
, &precomp
[ai
][bi
][0], &precomp
[ai
][bi
][1],
544 rx
, ry
, &rz
, group
));
547 MP_CHECKOK(ec_GFp_pt_jac2aff(rx
, ry
, &rz
, rx
, ry
, group
));
549 if (group
->meth
->field_dec
) {
550 MP_CHECKOK(group
->meth
->field_dec(rx
, rx
, group
->meth
));
551 MP_CHECKOK(group
->meth
->field_dec(ry
, ry
, group
->meth
));
556 for (i
= 0; i
< 4; i
++) {
557 for (j
= 0; j
< 4; j
++) {
558 mp_clear(&precomp
[i
][j
][0]);
559 mp_clear(&precomp
[i
][j
][1]);