8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / lib / libc / i386 / fp / _D_cplx_div.c
blob6e08610f0dd61c414715b919373615ab7218930b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
20 * CDDL HEADER END
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
27 #pragma ident "%Z%%M% %I% %E% SMI"
30 * _D_cplx_div(z, w) returns z / w with infinities handled according
31 * to C99.
33 * If z and w are both finite and w is nonzero, _D_cplx_div(z, w)
34 * delivers the complex quotient q according to the usual formula:
35 * let a = Re(z), b = Im(z), c = Re(w), and d = Im(w); then q = x +
36 * I * y where x = (a * c + b * d) / r and y = (b * c - a * d) / r
37 * with r = c * c + d * d. This implementation computes intermediate
38 * results in extended precision to avoid premature underflow or over-
39 * flow.
41 * If z is neither NaN nor zero and w is zero, or if z is infinite
42 * and w is finite and nonzero, _D_cplx_div delivers an infinite
43 * result. If z is finite and w is infinite, _D_cplx_div delivers
44 * a zero result.
46 * If z and w are both zero or both infinite, or if either z or w is
47 * a complex NaN, _D_cplx_div delivers NaN + I * NaN. C99 doesn't
48 * specify these cases.
50 * This implementation can raise spurious invalid operation, inexact,
51 * and division-by-zero exceptions. C99 allows this.
53 * Warning: Do not attempt to "optimize" this code by removing multi-
54 * plications by zero.
57 #if !defined(i386) && !defined(__i386) && !defined(__amd64)
58 #error This code is for x86 only
59 #endif
61 static union {
62 int i;
63 float f;
64 } inf = {
65 0x7f800000
69 * Return +1 if x is +Inf, -1 if x is -Inf, and 0 otherwise
71 static int
72 testinf(double x)
74 union {
75 int i[2];
76 double d;
77 } xx;
79 xx.d = x;
80 return (((((xx.i[1] << 1) - 0xffe00000) | xx.i[0]) == 0)?
81 (1 | (xx.i[1] >> 31)) : 0);
84 double _Complex
85 _D_cplx_div(double _Complex z, double _Complex w)
87 double _Complex v;
88 union {
89 int i[2];
90 double d;
91 } cc, dd;
92 double a, b, c, d;
93 long double r, x, y;
94 int i, j, recalc;
97 * The following is equivalent to
99 * a = creal(z); b = cimag(z);
100 * c = creal(w); d = cimag(w);
102 /* LINTED alignment */
103 a = ((double *)&z)[0];
104 /* LINTED alignment */
105 b = ((double *)&z)[1];
106 /* LINTED alignment */
107 c = ((double *)&w)[0];
108 /* LINTED alignment */
109 d = ((double *)&w)[1];
111 r = (long double)c * c + (long double)d * d;
113 if (r == 0.0f) {
114 /* w is zero; multiply z by 1/Re(w) - I * Im(w) */
115 c = 1.0f / c;
116 i = testinf(a);
117 j = testinf(b);
118 if (i | j) { /* z is infinite */
119 a = i;
120 b = j;
122 /* LINTED alignment */
123 ((double *)&v)[0] = a * c + b * d;
124 /* LINTED alignment */
125 ((double *)&v)[1] = b * c - a * d;
126 return (v);
129 r = 1.0f / r;
130 x = ((long double)a * c + (long double)b * d) * r;
131 y = ((long double)b * c - (long double)a * d) * r;
133 if (x != x && y != y) {
135 * Both x and y are NaN, so z and w can't both be finite
136 * and nonzero. Since we handled the case w = 0 above,
137 * the only cases to check here are when one of z or w
138 * is infinite.
140 r = 1.0f;
141 recalc = 0;
142 i = testinf(a);
143 j = testinf(b);
144 if (i | j) { /* z is infinite */
145 /* "factor out" infinity */
146 a = i;
147 b = j;
148 r = inf.f;
149 recalc = 1;
151 i = testinf(c);
152 j = testinf(d);
153 if (i | j) { /* w is infinite */
155 * "factor out" infinity, being careful to preserve
156 * signs of finite values
158 cc.d = c;
159 dd.d = d;
160 c = i? i : ((cc.i[1] < 0)? -0.0f : 0.0f);
161 d = j? j : ((dd.i[1] < 0)? -0.0f : 0.0f);
162 r *= 0.0f;
163 recalc = 1;
165 if (recalc) {
166 x = ((long double)a * c + (long double)b * d) * r;
167 y = ((long double)b * c - (long double)a * d) * r;
172 * The following is equivalent to
174 * return x + I * y;
176 /* LINTED alignment */
177 ((double *)&v)[0] = (double)x;
178 /* LINTED alignment */
179 ((double *)&v)[1] = (double)y;
180 return (v);