8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / lib / libproc / common / Pcore.c
blobafc5f459e7b8739b6cb24973fd5c1db6b476977a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2013 by Delphix. All rights reserved.
29 * Copyright 2015 Gary Mills
32 #include <sys/types.h>
33 #include <sys/utsname.h>
34 #include <sys/sysmacros.h>
35 #include <sys/proc.h>
37 #include <alloca.h>
38 #include <rtld_db.h>
39 #include <libgen.h>
40 #include <limits.h>
41 #include <string.h>
42 #include <stdlib.h>
43 #include <unistd.h>
44 #include <errno.h>
45 #include <gelf.h>
46 #include <stddef.h>
47 #include <signal.h>
49 #include "libproc.h"
50 #include "Pcontrol.h"
51 #include "P32ton.h"
52 #include "Putil.h"
53 #ifdef __x86
54 #include "Pcore_linux.h"
55 #endif
58 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
59 * allocate an additional structure to hold information from the core
60 * file, and attach this to the standard ps_prochandle in place of the
61 * ability to examine /proc/<pid>/ files.
65 * Basic i/o function for reading and writing from the process address space
66 * stored in the core file and associated shared libraries. We compute the
67 * appropriate fd and offsets, and let the provided prw function do the rest.
69 static ssize_t
70 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
71 ssize_t (*prw)(int, void *, size_t, off64_t))
73 ssize_t resid = n;
75 while (resid != 0) {
76 map_info_t *mp = Paddr2mptr(P, addr);
78 uintptr_t mapoff;
79 ssize_t len;
80 off64_t off;
81 int fd;
83 if (mp == NULL)
84 break; /* No mapping for this address */
86 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
87 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
88 break; /* No file or file not open */
90 fd = mp->map_file->file_fd;
91 } else
92 fd = P->asfd;
94 mapoff = addr - mp->map_pmap.pr_vaddr;
95 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
96 off = mp->map_offset + mapoff;
98 if ((len = prw(fd, buf, len, off)) <= 0)
99 break;
101 resid -= len;
102 addr += len;
103 buf = (char *)buf + len;
107 * Important: Be consistent with the behavior of i/o on the as file:
108 * writing to an invalid address yields EIO; reading from an invalid
109 * address falls through to returning success and zero bytes.
111 if (resid == n && n != 0 && prw != pread64) {
112 errno = EIO;
113 return (-1);
116 return (n - resid);
119 /*ARGSUSED*/
120 static ssize_t
121 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
122 void *data)
124 return (core_rw(P, buf, n, addr, pread64));
127 /*ARGSUSED*/
128 static ssize_t
129 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr,
130 void *data)
132 return (core_rw(P, (void *)buf, n, addr,
133 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
136 /*ARGSUSED*/
137 static int
138 Pcred_core(struct ps_prochandle *P, prcred_t *pcrp, int ngroups, void *data)
140 core_info_t *core = data;
142 if (core->core_cred != NULL) {
144 * Avoid returning more supplementary group data than the
145 * caller has allocated in their buffer. We expect them to
146 * check pr_ngroups afterward and potentially call us again.
148 ngroups = MIN(ngroups, core->core_cred->pr_ngroups);
150 (void) memcpy(pcrp, core->core_cred,
151 sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t));
153 return (0);
156 errno = ENODATA;
157 return (-1);
160 /*ARGSUSED*/
161 static int
162 Psecflags_core(struct ps_prochandle *P, prsecflags_t **psf, void *data)
164 core_info_t *core = data;
166 if (core->core_secflags == NULL) {
167 errno = ENODATA;
168 return (-1);
171 if ((*psf = calloc(1, sizeof (prsecflags_t))) == NULL)
172 return (-1);
174 (void) memcpy(*psf, core->core_secflags, sizeof (prsecflags_t));
176 return (0);
179 /*ARGSUSED*/
180 static int
181 Ppriv_core(struct ps_prochandle *P, prpriv_t **pprv, void *data)
183 core_info_t *core = data;
185 if (core->core_priv == NULL) {
186 errno = ENODATA;
187 return (-1);
190 *pprv = malloc(core->core_priv_size);
191 if (*pprv == NULL) {
192 return (-1);
195 (void) memcpy(*pprv, core->core_priv, core->core_priv_size);
196 return (0);
199 /*ARGSUSED*/
200 static const psinfo_t *
201 Ppsinfo_core(struct ps_prochandle *P, psinfo_t *psinfo, void *data)
203 return (&P->psinfo);
206 /*ARGSUSED*/
207 static void
208 Pfini_core(struct ps_prochandle *P, void *data)
210 core_info_t *core = data;
212 if (core != NULL) {
213 extern void __priv_free_info(void *);
214 lwp_info_t *nlwp, *lwp = list_next(&core->core_lwp_head);
215 int i;
217 for (i = 0; i < core->core_nlwp; i++, lwp = nlwp) {
218 nlwp = list_next(lwp);
219 #ifdef __sparc
220 if (lwp->lwp_gwins != NULL)
221 free(lwp->lwp_gwins);
222 if (lwp->lwp_xregs != NULL)
223 free(lwp->lwp_xregs);
224 if (lwp->lwp_asrs != NULL)
225 free(lwp->lwp_asrs);
226 #endif
227 free(lwp);
230 if (core->core_platform != NULL)
231 free(core->core_platform);
232 if (core->core_uts != NULL)
233 free(core->core_uts);
234 if (core->core_cred != NULL)
235 free(core->core_cred);
236 if (core->core_priv != NULL)
237 free(core->core_priv);
238 if (core->core_privinfo != NULL)
239 __priv_free_info(core->core_privinfo);
240 if (core->core_ppii != NULL)
241 free(core->core_ppii);
242 if (core->core_zonename != NULL)
243 free(core->core_zonename);
244 if (core->core_secflags != NULL)
245 free(core->core_secflags);
246 #ifdef __x86
247 if (core->core_ldt != NULL)
248 free(core->core_ldt);
249 #endif
251 free(core);
255 /*ARGSUSED*/
256 static char *
257 Pplatform_core(struct ps_prochandle *P, char *s, size_t n, void *data)
259 core_info_t *core = data;
261 if (core->core_platform == NULL) {
262 errno = ENODATA;
263 return (NULL);
265 (void) strncpy(s, core->core_platform, n - 1);
266 s[n - 1] = '\0';
267 return (s);
270 /*ARGSUSED*/
271 static int
272 Puname_core(struct ps_prochandle *P, struct utsname *u, void *data)
274 core_info_t *core = data;
276 if (core->core_uts == NULL) {
277 errno = ENODATA;
278 return (-1);
280 (void) memcpy(u, core->core_uts, sizeof (struct utsname));
281 return (0);
284 /*ARGSUSED*/
285 static char *
286 Pzonename_core(struct ps_prochandle *P, char *s, size_t n, void *data)
288 core_info_t *core = data;
290 if (core->core_zonename == NULL) {
291 errno = ENODATA;
292 return (NULL);
294 (void) strlcpy(s, core->core_zonename, n);
295 return (s);
298 #ifdef __x86
299 /*ARGSUSED*/
300 static int
301 Pldt_core(struct ps_prochandle *P, struct ssd *pldt, int nldt, void *data)
303 core_info_t *core = data;
305 if (pldt == NULL || nldt == 0)
306 return (core->core_nldt);
308 if (core->core_ldt != NULL) {
309 nldt = MIN(nldt, core->core_nldt);
311 (void) memcpy(pldt, core->core_ldt,
312 nldt * sizeof (struct ssd));
314 return (nldt);
317 errno = ENODATA;
318 return (-1);
320 #endif
322 static const ps_ops_t P_core_ops = {
323 .pop_pread = Pread_core,
324 .pop_pwrite = Pwrite_core,
325 .pop_cred = Pcred_core,
326 .pop_priv = Ppriv_core,
327 .pop_psinfo = Ppsinfo_core,
328 .pop_fini = Pfini_core,
329 .pop_platform = Pplatform_core,
330 .pop_uname = Puname_core,
331 .pop_zonename = Pzonename_core,
332 .pop_secflags = Psecflags_core,
333 #ifdef __x86
334 .pop_ldt = Pldt_core
335 #endif
339 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
340 * encountered yet, allocate a new structure and return a pointer to it.
341 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
343 static lwp_info_t *
344 lwpid2info(struct ps_prochandle *P, lwpid_t id)
346 core_info_t *core = P->data;
347 lwp_info_t *lwp = list_next(&core->core_lwp_head);
348 lwp_info_t *next;
349 uint_t i;
351 for (i = 0; i < core->core_nlwp; i++, lwp = list_next(lwp)) {
352 if (lwp->lwp_id == id) {
353 core->core_lwp = lwp;
354 return (lwp);
356 if (lwp->lwp_id < id) {
357 break;
361 next = lwp;
362 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
363 return (NULL);
365 list_link(lwp, next);
366 lwp->lwp_id = id;
368 core->core_lwp = lwp;
369 core->core_nlwp++;
371 return (lwp);
375 * The core file itself contains a series of NOTE segments containing saved
376 * structures from /proc at the time the process died. For each note we
377 * comprehend, we define a function to read it in from the core file,
378 * convert it to our native data model if necessary, and store it inside
379 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
380 * seek pointer on P->asfd positioned appropriately. We populate a table
381 * of pointers to these note functions below.
384 static int
385 note_pstatus(struct ps_prochandle *P, size_t nbytes)
387 #ifdef _LP64
388 core_info_t *core = P->data;
390 if (core->core_dmodel == PR_MODEL_ILP32) {
391 pstatus32_t ps32;
393 if (nbytes < sizeof (pstatus32_t) ||
394 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
395 goto err;
397 pstatus_32_to_n(&ps32, &P->status);
399 } else
400 #endif
401 if (nbytes < sizeof (pstatus_t) ||
402 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
403 goto err;
405 P->orig_status = P->status;
406 P->pid = P->status.pr_pid;
408 return (0);
410 err:
411 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
412 return (-1);
415 static int
416 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
418 lwp_info_t *lwp;
419 lwpstatus_t lps;
421 #ifdef _LP64
422 core_info_t *core = P->data;
424 if (core->core_dmodel == PR_MODEL_ILP32) {
425 lwpstatus32_t l32;
427 if (nbytes < sizeof (lwpstatus32_t) ||
428 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
429 goto err;
431 lwpstatus_32_to_n(&l32, &lps);
432 } else
433 #endif
434 if (nbytes < sizeof (lwpstatus_t) ||
435 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
436 goto err;
438 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
439 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
440 return (-1);
444 * Erase a useless and confusing artifact of the kernel implementation:
445 * the lwps which did *not* create the core will show SIGKILL. We can
446 * be assured this is bogus because SIGKILL can't produce core files.
448 if (lps.pr_cursig == SIGKILL)
449 lps.pr_cursig = 0;
451 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
452 return (0);
454 err:
455 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
456 return (-1);
459 #ifdef __x86
461 static void
462 lx_prpsinfo32_to_psinfo(lx_prpsinfo32_t *p32, psinfo_t *psinfo)
464 psinfo->pr_flag = p32->pr_flag;
465 psinfo->pr_pid = p32->pr_pid;
466 psinfo->pr_ppid = p32->pr_ppid;
467 psinfo->pr_uid = p32->pr_uid;
468 psinfo->pr_gid = p32->pr_gid;
469 psinfo->pr_sid = p32->pr_sid;
470 psinfo->pr_pgid = p32->pr_pgrp;
472 (void) memcpy(psinfo->pr_fname, p32->pr_fname,
473 sizeof (psinfo->pr_fname));
474 (void) memcpy(psinfo->pr_psargs, p32->pr_psargs,
475 sizeof (psinfo->pr_psargs));
478 static void
479 lx_prpsinfo64_to_psinfo(lx_prpsinfo64_t *p64, psinfo_t *psinfo)
481 psinfo->pr_flag = p64->pr_flag;
482 psinfo->pr_pid = p64->pr_pid;
483 psinfo->pr_ppid = p64->pr_ppid;
484 psinfo->pr_uid = p64->pr_uid;
485 psinfo->pr_gid = p64->pr_gid;
486 psinfo->pr_sid = p64->pr_sid;
487 psinfo->pr_pgid = p64->pr_pgrp;
488 psinfo->pr_pgid = p64->pr_pgrp;
490 (void) memcpy(psinfo->pr_fname, p64->pr_fname,
491 sizeof (psinfo->pr_fname));
492 (void) memcpy(psinfo->pr_psargs, p64->pr_psargs,
493 sizeof (psinfo->pr_psargs));
496 static int
497 note_linux_psinfo(struct ps_prochandle *P, size_t nbytes)
499 core_info_t *core = P->data;
500 lx_prpsinfo32_t p32;
501 lx_prpsinfo64_t p64;
503 if (core->core_dmodel == PR_MODEL_ILP32) {
504 if (nbytes < sizeof (p32) ||
505 read(P->asfd, &p32, sizeof (p32)) != sizeof (p32))
506 goto err;
508 lx_prpsinfo32_to_psinfo(&p32, &P->psinfo);
509 } else {
510 if (nbytes < sizeof (p64) ||
511 read(P->asfd, &p64, sizeof (p64)) != sizeof (p64))
512 goto err;
514 lx_prpsinfo64_to_psinfo(&p64, &P->psinfo);
518 P->status.pr_pid = P->psinfo.pr_pid;
519 P->status.pr_ppid = P->psinfo.pr_ppid;
520 P->status.pr_pgid = P->psinfo.pr_pgid;
521 P->status.pr_sid = P->psinfo.pr_sid;
523 P->psinfo.pr_nlwp = 0;
524 P->status.pr_nlwp = 0;
526 return (0);
527 err:
528 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
529 return (-1);
532 static void
533 lx_prstatus64_to_lwp(lx_prstatus64_t *prs64, lwp_info_t *lwp)
535 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs64->pr_utime);
536 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs64->pr_stime);
538 lwp->lwp_status.pr_reg[REG_R15] = prs64->pr_reg.lxr_r15;
539 lwp->lwp_status.pr_reg[REG_R14] = prs64->pr_reg.lxr_r14;
540 lwp->lwp_status.pr_reg[REG_R13] = prs64->pr_reg.lxr_r13;
541 lwp->lwp_status.pr_reg[REG_R12] = prs64->pr_reg.lxr_r12;
542 lwp->lwp_status.pr_reg[REG_R11] = prs64->pr_reg.lxr_r11;
543 lwp->lwp_status.pr_reg[REG_R10] = prs64->pr_reg.lxr_r10;
544 lwp->lwp_status.pr_reg[REG_R9] = prs64->pr_reg.lxr_r9;
545 lwp->lwp_status.pr_reg[REG_R8] = prs64->pr_reg.lxr_r8;
547 lwp->lwp_status.pr_reg[REG_RDI] = prs64->pr_reg.lxr_rdi;
548 lwp->lwp_status.pr_reg[REG_RSI] = prs64->pr_reg.lxr_rsi;
549 lwp->lwp_status.pr_reg[REG_RBP] = prs64->pr_reg.lxr_rbp;
550 lwp->lwp_status.pr_reg[REG_RBX] = prs64->pr_reg.lxr_rbx;
551 lwp->lwp_status.pr_reg[REG_RDX] = prs64->pr_reg.lxr_rdx;
552 lwp->lwp_status.pr_reg[REG_RCX] = prs64->pr_reg.lxr_rcx;
553 lwp->lwp_status.pr_reg[REG_RAX] = prs64->pr_reg.lxr_rax;
555 lwp->lwp_status.pr_reg[REG_RIP] = prs64->pr_reg.lxr_rip;
556 lwp->lwp_status.pr_reg[REG_CS] = prs64->pr_reg.lxr_cs;
557 lwp->lwp_status.pr_reg[REG_RSP] = prs64->pr_reg.lxr_rsp;
558 lwp->lwp_status.pr_reg[REG_FS] = prs64->pr_reg.lxr_fs;
559 lwp->lwp_status.pr_reg[REG_SS] = prs64->pr_reg.lxr_ss;
560 lwp->lwp_status.pr_reg[REG_GS] = prs64->pr_reg.lxr_gs;
561 lwp->lwp_status.pr_reg[REG_ES] = prs64->pr_reg.lxr_es;
562 lwp->lwp_status.pr_reg[REG_DS] = prs64->pr_reg.lxr_ds;
564 lwp->lwp_status.pr_reg[REG_GSBASE] = prs64->pr_reg.lxr_gs_base;
565 lwp->lwp_status.pr_reg[REG_FSBASE] = prs64->pr_reg.lxr_fs_base;
568 static void
569 lx_prstatus32_to_lwp(lx_prstatus32_t *prs32, lwp_info_t *lwp)
571 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_utime, prs32->pr_utime);
572 LTIME_TO_TIMESPEC(lwp->lwp_status.pr_stime, prs32->pr_stime);
574 #ifdef __amd64
575 lwp->lwp_status.pr_reg[REG_GS] = prs32->pr_reg.lxr_gs;
576 lwp->lwp_status.pr_reg[REG_FS] = prs32->pr_reg.lxr_fs;
577 lwp->lwp_status.pr_reg[REG_DS] = prs32->pr_reg.lxr_ds;
578 lwp->lwp_status.pr_reg[REG_ES] = prs32->pr_reg.lxr_es;
579 lwp->lwp_status.pr_reg[REG_RDI] = prs32->pr_reg.lxr_di;
580 lwp->lwp_status.pr_reg[REG_RSI] = prs32->pr_reg.lxr_si;
581 lwp->lwp_status.pr_reg[REG_RBP] = prs32->pr_reg.lxr_bp;
582 lwp->lwp_status.pr_reg[REG_RBX] = prs32->pr_reg.lxr_bx;
583 lwp->lwp_status.pr_reg[REG_RDX] = prs32->pr_reg.lxr_dx;
584 lwp->lwp_status.pr_reg[REG_RCX] = prs32->pr_reg.lxr_cx;
585 lwp->lwp_status.pr_reg[REG_RAX] = prs32->pr_reg.lxr_ax;
586 lwp->lwp_status.pr_reg[REG_RIP] = prs32->pr_reg.lxr_ip;
587 lwp->lwp_status.pr_reg[REG_CS] = prs32->pr_reg.lxr_cs;
588 lwp->lwp_status.pr_reg[REG_RFL] = prs32->pr_reg.lxr_flags;
589 lwp->lwp_status.pr_reg[REG_RSP] = prs32->pr_reg.lxr_sp;
590 lwp->lwp_status.pr_reg[REG_SS] = prs32->pr_reg.lxr_ss;
591 #else /* __amd64 */
592 lwp->lwp_status.pr_reg[EBX] = prs32->pr_reg.lxr_bx;
593 lwp->lwp_status.pr_reg[ECX] = prs32->pr_reg.lxr_cx;
594 lwp->lwp_status.pr_reg[EDX] = prs32->pr_reg.lxr_dx;
595 lwp->lwp_status.pr_reg[ESI] = prs32->pr_reg.lxr_si;
596 lwp->lwp_status.pr_reg[EDI] = prs32->pr_reg.lxr_di;
597 lwp->lwp_status.pr_reg[EBP] = prs32->pr_reg.lxr_bp;
598 lwp->lwp_status.pr_reg[EAX] = prs32->pr_reg.lxr_ax;
599 lwp->lwp_status.pr_reg[EIP] = prs32->pr_reg.lxr_ip;
600 lwp->lwp_status.pr_reg[UESP] = prs32->pr_reg.lxr_sp;
602 lwp->lwp_status.pr_reg[DS] = prs32->pr_reg.lxr_ds;
603 lwp->lwp_status.pr_reg[ES] = prs32->pr_reg.lxr_es;
604 lwp->lwp_status.pr_reg[FS] = prs32->pr_reg.lxr_fs;
605 lwp->lwp_status.pr_reg[GS] = prs32->pr_reg.lxr_gs;
606 lwp->lwp_status.pr_reg[CS] = prs32->pr_reg.lxr_cs;
607 lwp->lwp_status.pr_reg[SS] = prs32->pr_reg.lxr_ss;
609 lwp->lwp_status.pr_reg[EFL] = prs32->pr_reg.lxr_flags;
610 #endif /* !__amd64 */
613 static int
614 note_linux_prstatus(struct ps_prochandle *P, size_t nbytes)
616 core_info_t *core = P->data;
618 lx_prstatus64_t prs64;
619 lx_prstatus32_t prs32;
620 lwp_info_t *lwp;
621 lwpid_t tid;
623 dprintf("looking for model %d, %ld/%ld\n", core->core_dmodel,
624 (ulong_t)nbytes, (ulong_t)sizeof (prs32));
625 if (core->core_dmodel == PR_MODEL_ILP32) {
626 if (nbytes < sizeof (prs32) ||
627 read(P->asfd, &prs32, sizeof (prs32)) != nbytes)
628 goto err;
629 tid = prs32.pr_pid;
630 } else {
631 if (nbytes < sizeof (prs64) ||
632 read(P->asfd, &prs64, sizeof (prs64)) != nbytes)
633 goto err;
634 tid = prs64.pr_pid;
637 if ((lwp = lwpid2info(P, tid)) == NULL) {
638 dprintf("Pgrab_core: failed to add lwpid2info "
639 "linux_prstatus\n");
640 return (-1);
643 P->psinfo.pr_nlwp++;
644 P->status.pr_nlwp++;
646 lwp->lwp_status.pr_lwpid = tid;
648 if (core->core_dmodel == PR_MODEL_ILP32)
649 lx_prstatus32_to_lwp(&prs32, lwp);
650 else
651 lx_prstatus64_to_lwp(&prs64, lwp);
653 return (0);
654 err:
655 dprintf("Pgrab_core: failed to read NT_PRSTATUS\n");
656 return (-1);
659 #endif /* __x86 */
661 static int
662 note_psinfo(struct ps_prochandle *P, size_t nbytes)
664 #ifdef _LP64
665 core_info_t *core = P->data;
667 if (core->core_dmodel == PR_MODEL_ILP32) {
668 psinfo32_t ps32;
670 if (nbytes < sizeof (psinfo32_t) ||
671 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
672 goto err;
674 psinfo_32_to_n(&ps32, &P->psinfo);
675 } else
676 #endif
677 if (nbytes < sizeof (psinfo_t) ||
678 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
679 goto err;
681 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
682 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
683 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
685 return (0);
687 err:
688 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
689 return (-1);
692 static int
693 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
695 lwp_info_t *lwp;
696 lwpsinfo_t lps;
698 #ifdef _LP64
699 core_info_t *core = P->data;
701 if (core->core_dmodel == PR_MODEL_ILP32) {
702 lwpsinfo32_t l32;
704 if (nbytes < sizeof (lwpsinfo32_t) ||
705 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
706 goto err;
708 lwpsinfo_32_to_n(&l32, &lps);
709 } else
710 #endif
711 if (nbytes < sizeof (lwpsinfo_t) ||
712 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
713 goto err;
715 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
716 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
717 return (-1);
720 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
721 return (0);
723 err:
724 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
725 return (-1);
728 static int
729 note_fdinfo(struct ps_prochandle *P, size_t nbytes)
731 prfdinfo_t prfd;
732 fd_info_t *fip;
734 if ((nbytes < sizeof (prfd)) ||
735 (read(P->asfd, &prfd, sizeof (prfd)) != sizeof (prfd))) {
736 dprintf("Pgrab_core: failed to read NT_FDINFO\n");
737 return (-1);
740 if ((fip = Pfd2info(P, prfd.pr_fd)) == NULL) {
741 dprintf("Pgrab_core: failed to add NT_FDINFO\n");
742 return (-1);
744 (void) memcpy(&fip->fd_info, &prfd, sizeof (prfd));
745 return (0);
748 static int
749 note_platform(struct ps_prochandle *P, size_t nbytes)
751 core_info_t *core = P->data;
752 char *plat;
754 if (core->core_platform != NULL)
755 return (0); /* Already seen */
757 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
758 if (read(P->asfd, plat, nbytes) != nbytes) {
759 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
760 free(plat);
761 return (-1);
763 plat[nbytes - 1] = '\0';
764 core->core_platform = plat;
767 return (0);
770 static int
771 note_secflags(struct ps_prochandle *P, size_t nbytes)
773 core_info_t *core = P->data;
774 prsecflags_t *psf;
776 if (core->core_secflags != NULL)
777 return (0); /* Already seen */
779 if (sizeof (*psf) != nbytes) {
780 dprintf("Pgrab_core: NT_SECFLAGS changed size."
781 " Need to handle a version change?\n");
782 return (-1);
785 if (nbytes != 0 && ((psf = malloc(nbytes)) != NULL)) {
786 if (read(P->asfd, psf, nbytes) != nbytes) {
787 dprintf("Pgrab_core: failed to read NT_SECFLAGS\n");
788 free(psf);
789 return (-1);
792 core->core_secflags = psf;
795 return (0);
798 static int
799 note_utsname(struct ps_prochandle *P, size_t nbytes)
801 core_info_t *core = P->data;
802 size_t ubytes = sizeof (struct utsname);
803 struct utsname *utsp;
805 if (core->core_uts != NULL || nbytes < ubytes)
806 return (0); /* Already seen or bad size */
808 if ((utsp = malloc(ubytes)) == NULL)
809 return (-1);
811 if (read(P->asfd, utsp, ubytes) != ubytes) {
812 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
813 free(utsp);
814 return (-1);
817 if (_libproc_debug) {
818 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
819 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
820 dprintf("uts.release = \"%s\"\n", utsp->release);
821 dprintf("uts.version = \"%s\"\n", utsp->version);
822 dprintf("uts.machine = \"%s\"\n", utsp->machine);
825 core->core_uts = utsp;
826 return (0);
829 static int
830 note_content(struct ps_prochandle *P, size_t nbytes)
832 core_info_t *core = P->data;
833 core_content_t content;
835 if (sizeof (core->core_content) != nbytes)
836 return (-1);
838 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
839 return (-1);
841 core->core_content = content;
843 dprintf("core content = %llx\n", content);
845 return (0);
848 static int
849 note_cred(struct ps_prochandle *P, size_t nbytes)
851 core_info_t *core = P->data;
852 prcred_t *pcrp;
853 int ngroups;
854 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
857 * We allow for prcred_t notes that are actually smaller than a
858 * prcred_t since the last member isn't essential if there are
859 * no group memberships. This allows for more flexibility when it
860 * comes to slightly malformed -- but still valid -- notes.
862 if (core->core_cred != NULL || nbytes < min_size)
863 return (0); /* Already seen or bad size */
865 ngroups = (nbytes - min_size) / sizeof (gid_t);
866 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
868 if ((pcrp = malloc(nbytes)) == NULL)
869 return (-1);
871 if (read(P->asfd, pcrp, nbytes) != nbytes) {
872 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
873 free(pcrp);
874 return (-1);
877 if (pcrp->pr_ngroups > ngroups) {
878 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
879 pcrp->pr_ngroups, ngroups);
880 pcrp->pr_ngroups = ngroups;
883 core->core_cred = pcrp;
884 return (0);
887 #ifdef __x86
888 static int
889 note_ldt(struct ps_prochandle *P, size_t nbytes)
891 core_info_t *core = P->data;
892 struct ssd *pldt;
893 uint_t nldt;
895 if (core->core_ldt != NULL || nbytes < sizeof (struct ssd))
896 return (0); /* Already seen or bad size */
898 nldt = nbytes / sizeof (struct ssd);
899 nbytes = nldt * sizeof (struct ssd);
901 if ((pldt = malloc(nbytes)) == NULL)
902 return (-1);
904 if (read(P->asfd, pldt, nbytes) != nbytes) {
905 dprintf("Pgrab_core: failed to read NT_LDT\n");
906 free(pldt);
907 return (-1);
910 core->core_ldt = pldt;
911 core->core_nldt = nldt;
912 return (0);
914 #endif /* __i386 */
916 static int
917 note_priv(struct ps_prochandle *P, size_t nbytes)
919 core_info_t *core = P->data;
920 prpriv_t *pprvp;
922 if (core->core_priv != NULL || nbytes < sizeof (prpriv_t))
923 return (0); /* Already seen or bad size */
925 if ((pprvp = malloc(nbytes)) == NULL)
926 return (-1);
928 if (read(P->asfd, pprvp, nbytes) != nbytes) {
929 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
930 free(pprvp);
931 return (-1);
934 core->core_priv = pprvp;
935 core->core_priv_size = nbytes;
936 return (0);
939 static int
940 note_priv_info(struct ps_prochandle *P, size_t nbytes)
942 core_info_t *core = P->data;
943 extern void *__priv_parse_info();
944 priv_impl_info_t *ppii;
946 if (core->core_privinfo != NULL ||
947 nbytes < sizeof (priv_impl_info_t))
948 return (0); /* Already seen or bad size */
950 if ((ppii = malloc(nbytes)) == NULL)
951 return (-1);
953 if (read(P->asfd, ppii, nbytes) != nbytes ||
954 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
955 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
956 free(ppii);
957 return (-1);
960 core->core_privinfo = __priv_parse_info(ppii);
961 core->core_ppii = ppii;
962 return (0);
965 static int
966 note_zonename(struct ps_prochandle *P, size_t nbytes)
968 core_info_t *core = P->data;
969 char *zonename;
971 if (core->core_zonename != NULL)
972 return (0); /* Already seen */
974 if (nbytes != 0) {
975 if ((zonename = malloc(nbytes)) == NULL)
976 return (-1);
977 if (read(P->asfd, zonename, nbytes) != nbytes) {
978 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
979 free(zonename);
980 return (-1);
982 zonename[nbytes - 1] = '\0';
983 core->core_zonename = zonename;
986 return (0);
989 static int
990 note_auxv(struct ps_prochandle *P, size_t nbytes)
992 size_t n, i;
994 #ifdef _LP64
995 core_info_t *core = P->data;
997 if (core->core_dmodel == PR_MODEL_ILP32) {
998 auxv32_t *a32;
1000 n = nbytes / sizeof (auxv32_t);
1001 nbytes = n * sizeof (auxv32_t);
1002 a32 = alloca(nbytes);
1004 if (read(P->asfd, a32, nbytes) != nbytes) {
1005 dprintf("Pgrab_core: failed to read NT_AUXV\n");
1006 return (-1);
1009 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
1010 return (-1);
1012 for (i = 0; i < n; i++)
1013 auxv_32_to_n(&a32[i], &P->auxv[i]);
1015 } else {
1016 #endif
1017 n = nbytes / sizeof (auxv_t);
1018 nbytes = n * sizeof (auxv_t);
1020 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
1021 return (-1);
1023 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
1024 free(P->auxv);
1025 P->auxv = NULL;
1026 return (-1);
1028 #ifdef _LP64
1030 #endif
1032 if (_libproc_debug) {
1033 for (i = 0; i < n; i++) {
1034 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
1035 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
1040 * Defensive coding for loops which depend upon the auxv array being
1041 * terminated by an AT_NULL element; in each case, we've allocated
1042 * P->auxv to have an additional element which we force to be AT_NULL.
1044 P->auxv[n].a_type = AT_NULL;
1045 P->auxv[n].a_un.a_val = 0L;
1046 P->nauxv = (int)n;
1048 return (0);
1051 #ifdef __sparc
1052 static int
1053 note_xreg(struct ps_prochandle *P, size_t nbytes)
1055 core_info_t *core = P->data;
1056 lwp_info_t *lwp = core->core_lwp;
1057 size_t xbytes = sizeof (prxregset_t);
1058 prxregset_t *xregs;
1060 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
1061 return (0); /* No lwp yet, already seen, or bad size */
1063 if ((xregs = malloc(xbytes)) == NULL)
1064 return (-1);
1066 if (read(P->asfd, xregs, xbytes) != xbytes) {
1067 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
1068 free(xregs);
1069 return (-1);
1072 lwp->lwp_xregs = xregs;
1073 return (0);
1076 static int
1077 note_gwindows(struct ps_prochandle *P, size_t nbytes)
1079 core_info_t *core = P->data;
1080 lwp_info_t *lwp = core->core_lwp;
1082 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
1083 return (0); /* No lwp yet or already seen or no data */
1085 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
1086 return (-1);
1089 * Since the amount of gwindows data varies with how many windows were
1090 * actually saved, we just read up to the minimum of the note size
1091 * and the size of the gwindows_t type. It doesn't matter if the read
1092 * fails since we have to zero out gwindows first anyway.
1094 #ifdef _LP64
1095 if (core->core_dmodel == PR_MODEL_ILP32) {
1096 gwindows32_t g32;
1098 (void) memset(&g32, 0, sizeof (g32));
1099 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
1100 gwindows_32_to_n(&g32, lwp->lwp_gwins);
1102 } else {
1103 #endif
1104 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
1105 (void) read(P->asfd, lwp->lwp_gwins,
1106 MIN(nbytes, sizeof (gwindows_t)));
1107 #ifdef _LP64
1109 #endif
1110 return (0);
1113 #ifdef __sparcv9
1114 static int
1115 note_asrs(struct ps_prochandle *P, size_t nbytes)
1117 core_info_t *core = P->data;
1118 lwp_info_t *lwp = core->core_lwp;
1119 int64_t *asrs;
1121 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
1122 return (0); /* No lwp yet, already seen, or bad size */
1124 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
1125 return (-1);
1127 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
1128 dprintf("Pgrab_core: failed to read NT_ASRS\n");
1129 free(asrs);
1130 return (-1);
1133 lwp->lwp_asrs = asrs;
1134 return (0);
1136 #endif /* __sparcv9 */
1137 #endif /* __sparc */
1139 static int
1140 note_spymaster(struct ps_prochandle *P, size_t nbytes)
1142 #ifdef _LP64
1143 core_info_t *core = P->data;
1145 if (core->core_dmodel == PR_MODEL_ILP32) {
1146 psinfo32_t ps32;
1148 if (nbytes < sizeof (psinfo32_t) ||
1149 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
1150 goto err;
1152 psinfo_32_to_n(&ps32, &P->spymaster);
1153 } else
1154 #endif
1155 if (nbytes < sizeof (psinfo_t) || read(P->asfd,
1156 &P->spymaster, sizeof (psinfo_t)) != sizeof (psinfo_t))
1157 goto err;
1159 dprintf("spymaster pr_fname = <%s>\n", P->psinfo.pr_fname);
1160 dprintf("spymaster pr_psargs = <%s>\n", P->psinfo.pr_psargs);
1161 dprintf("spymaster pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
1163 return (0);
1165 err:
1166 dprintf("Pgrab_core: failed to read NT_SPYMASTER\n");
1167 return (-1);
1170 /*ARGSUSED*/
1171 static int
1172 note_notsup(struct ps_prochandle *P, size_t nbytes)
1174 dprintf("skipping unsupported note type of size %ld bytes\n",
1175 (ulong_t)nbytes);
1176 return (0);
1180 * Populate a table of function pointers indexed by Note type with our
1181 * functions to process each type of core file note:
1183 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
1184 note_notsup, /* 0 unassigned */
1185 #ifdef __x86
1186 note_linux_prstatus, /* 1 NT_PRSTATUS (old) */
1187 #else
1188 note_notsup, /* 1 NT_PRSTATUS (old) */
1189 #endif
1190 note_notsup, /* 2 NT_PRFPREG (old) */
1191 #ifdef __x86
1192 note_linux_psinfo, /* 3 NT_PRPSINFO (old) */
1193 #else
1194 note_notsup, /* 3 NT_PRPSINFO (old) */
1195 #endif
1196 #ifdef __sparc
1197 note_xreg, /* 4 NT_PRXREG */
1198 #else
1199 note_notsup, /* 4 NT_PRXREG */
1200 #endif
1201 note_platform, /* 5 NT_PLATFORM */
1202 note_auxv, /* 6 NT_AUXV */
1203 #ifdef __sparc
1204 note_gwindows, /* 7 NT_GWINDOWS */
1205 #ifdef __sparcv9
1206 note_asrs, /* 8 NT_ASRS */
1207 #else
1208 note_notsup, /* 8 NT_ASRS */
1209 #endif
1210 #else
1211 note_notsup, /* 7 NT_GWINDOWS */
1212 note_notsup, /* 8 NT_ASRS */
1213 #endif
1214 #ifdef __x86
1215 note_ldt, /* 9 NT_LDT */
1216 #else
1217 note_notsup, /* 9 NT_LDT */
1218 #endif
1219 note_pstatus, /* 10 NT_PSTATUS */
1220 note_notsup, /* 11 unassigned */
1221 note_notsup, /* 12 unassigned */
1222 note_psinfo, /* 13 NT_PSINFO */
1223 note_cred, /* 14 NT_PRCRED */
1224 note_utsname, /* 15 NT_UTSNAME */
1225 note_lwpstatus, /* 16 NT_LWPSTATUS */
1226 note_lwpsinfo, /* 17 NT_LWPSINFO */
1227 note_priv, /* 18 NT_PRPRIV */
1228 note_priv_info, /* 19 NT_PRPRIVINFO */
1229 note_content, /* 20 NT_CONTENT */
1230 note_zonename, /* 21 NT_ZONENAME */
1231 note_fdinfo, /* 22 NT_FDINFO */
1232 note_spymaster, /* 23 NT_SPYMASTER */
1233 note_secflags, /* 24 NT_SECFLAGS */
1236 static void
1237 core_report_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1239 prkillinfo_t killinfo;
1240 siginfo_t *si = &killinfo.prk_info;
1241 char signame[SIG2STR_MAX], sig[64], info[64];
1242 void *addr = (void *)(uintptr_t)php->p_vaddr;
1244 const char *errfmt = "core file data for mapping at %p not saved: %s\n";
1245 const char *incfmt = "core file incomplete due to %s%s\n";
1246 const char *msgfmt = "mappings at and above %p are missing\n";
1248 if (!(php->p_flags & PF_SUNW_KILLED)) {
1249 int err = 0;
1251 (void) pread64(P->asfd, &err,
1252 sizeof (err), (off64_t)php->p_offset);
1254 Perror_printf(P, errfmt, addr, strerror(err));
1255 dprintf(errfmt, addr, strerror(err));
1256 return;
1259 if (!(php->p_flags & PF_SUNW_SIGINFO))
1260 return;
1262 (void) memset(&killinfo, 0, sizeof (killinfo));
1264 (void) pread64(P->asfd, &killinfo,
1265 sizeof (killinfo), (off64_t)php->p_offset);
1268 * While there is (or at least should be) only one segment that has
1269 * PF_SUNW_SIGINFO set, the signal information there is globally
1270 * useful (even if only to those debugging libproc consumers); we hang
1271 * the signal information gleaned here off of the ps_prochandle.
1273 P->map_missing = php->p_vaddr;
1274 P->killinfo = killinfo.prk_info;
1276 if (sig2str(si->si_signo, signame) == -1) {
1277 (void) snprintf(sig, sizeof (sig),
1278 "<Unknown signal: 0x%x>, ", si->si_signo);
1279 } else {
1280 (void) snprintf(sig, sizeof (sig), "SIG%s, ", signame);
1283 if (si->si_code == SI_USER || si->si_code == SI_QUEUE) {
1284 (void) snprintf(info, sizeof (info),
1285 "pid=%d uid=%d zone=%d ctid=%d",
1286 si->si_pid, si->si_uid, si->si_zoneid, si->si_ctid);
1287 } else {
1288 (void) snprintf(info, sizeof (info),
1289 "code=%d", si->si_code);
1292 Perror_printf(P, incfmt, sig, info);
1293 Perror_printf(P, msgfmt, addr);
1295 dprintf(incfmt, sig, info);
1296 dprintf(msgfmt, addr);
1300 * Add information on the address space mapping described by the given
1301 * PT_LOAD program header. We fill in more information on the mapping later.
1303 static int
1304 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
1306 core_info_t *core = P->data;
1307 prmap_t pmap;
1309 dprintf("mapping base %llx filesz %llx memsz %llx offset %llx\n",
1310 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
1311 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
1313 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
1314 pmap.pr_size = php->p_memsz;
1317 * If Pgcore() or elfcore() fail to write a mapping, they will set
1318 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
1320 if (php->p_flags & PF_SUNW_FAILURE) {
1321 core_report_mapping(P, php);
1322 } else if (php->p_filesz != 0 && php->p_offset >= core->core_size) {
1323 Perror_printf(P, "core file may be corrupt -- data for mapping "
1324 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1325 dprintf("core file may be corrupt -- data for mapping "
1326 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
1330 * The mapping name and offset will hopefully be filled in
1331 * by the librtld_db agent. Unfortunately, if it isn't a
1332 * shared library mapping, this information is gone forever.
1334 pmap.pr_mapname[0] = '\0';
1335 pmap.pr_offset = 0;
1337 pmap.pr_mflags = 0;
1338 if (php->p_flags & PF_R)
1339 pmap.pr_mflags |= MA_READ;
1340 if (php->p_flags & PF_W)
1341 pmap.pr_mflags |= MA_WRITE;
1342 if (php->p_flags & PF_X)
1343 pmap.pr_mflags |= MA_EXEC;
1345 if (php->p_filesz == 0)
1346 pmap.pr_mflags |= MA_RESERVED1;
1349 * At the time of adding this mapping, we just zero the pagesize.
1350 * Once we've processed more of the core file, we'll have the
1351 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
1353 pmap.pr_pagesize = 0;
1356 * Unfortunately whether or not the mapping was a System V
1357 * shared memory segment is lost. We use -1 to mark it as not shm.
1359 pmap.pr_shmid = -1;
1361 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
1365 * Given a virtual address, name the mapping at that address using the
1366 * specified name, and return the map_info_t pointer.
1368 static map_info_t *
1369 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
1371 map_info_t *mp = Paddr2mptr(P, addr);
1373 if (mp != NULL) {
1374 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
1375 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1378 return (mp);
1382 * libproc uses libelf for all of its symbol table manipulation. This function
1383 * takes a symbol table and string table from a core file and places them
1384 * in a memory backed elf file.
1386 static void
1387 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
1388 GElf_Shdr *symtab, GElf_Shdr *strtab)
1390 size_t size;
1391 off64_t off, base;
1392 map_info_t *mp;
1393 file_info_t *fp;
1394 Elf_Scn *scn;
1395 Elf_Data *data;
1397 if (symtab->sh_addr == 0 ||
1398 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
1399 (fp = mp->map_file) == NULL) {
1400 dprintf("fake_up_symtab: invalid section\n");
1401 return;
1404 if (fp->file_symtab.sym_data_pri != NULL) {
1405 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
1406 (long)symtab->sh_addr);
1407 return;
1410 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1411 struct {
1412 Elf32_Ehdr ehdr;
1413 Elf32_Shdr shdr[3];
1414 char data[1];
1415 } *b;
1417 base = sizeof (b->ehdr) + sizeof (b->shdr);
1418 size = base + symtab->sh_size + strtab->sh_size;
1420 if ((b = calloc(1, size)) == NULL)
1421 return;
1423 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1424 sizeof (ehdr->e_ident));
1425 b->ehdr.e_type = ehdr->e_type;
1426 b->ehdr.e_machine = ehdr->e_machine;
1427 b->ehdr.e_version = ehdr->e_version;
1428 b->ehdr.e_flags = ehdr->e_flags;
1429 b->ehdr.e_ehsize = sizeof (b->ehdr);
1430 b->ehdr.e_shoff = sizeof (b->ehdr);
1431 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1432 b->ehdr.e_shnum = 3;
1433 off = 0;
1435 b->shdr[1].sh_size = symtab->sh_size;
1436 b->shdr[1].sh_type = SHT_SYMTAB;
1437 b->shdr[1].sh_offset = off + base;
1438 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
1439 b->shdr[1].sh_link = 2;
1440 b->shdr[1].sh_info = symtab->sh_info;
1441 b->shdr[1].sh_addralign = symtab->sh_addralign;
1443 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1444 symtab->sh_offset) != b->shdr[1].sh_size) {
1445 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
1446 free(b);
1447 return;
1450 off += b->shdr[1].sh_size;
1452 b->shdr[2].sh_flags = SHF_STRINGS;
1453 b->shdr[2].sh_size = strtab->sh_size;
1454 b->shdr[2].sh_type = SHT_STRTAB;
1455 b->shdr[2].sh_offset = off + base;
1456 b->shdr[2].sh_info = strtab->sh_info;
1457 b->shdr[2].sh_addralign = 1;
1459 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1460 strtab->sh_offset) != b->shdr[2].sh_size) {
1461 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
1462 free(b);
1463 return;
1466 off += b->shdr[2].sh_size;
1468 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1469 if (fp->file_symtab.sym_elf == NULL) {
1470 free(b);
1471 return;
1474 fp->file_symtab.sym_elfmem = b;
1475 #ifdef _LP64
1476 } else {
1477 struct {
1478 Elf64_Ehdr ehdr;
1479 Elf64_Shdr shdr[3];
1480 char data[1];
1481 } *b;
1483 base = sizeof (b->ehdr) + sizeof (b->shdr);
1484 size = base + symtab->sh_size + strtab->sh_size;
1486 if ((b = calloc(1, size)) == NULL)
1487 return;
1489 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
1490 sizeof (ehdr->e_ident));
1491 b->ehdr.e_type = ehdr->e_type;
1492 b->ehdr.e_machine = ehdr->e_machine;
1493 b->ehdr.e_version = ehdr->e_version;
1494 b->ehdr.e_flags = ehdr->e_flags;
1495 b->ehdr.e_ehsize = sizeof (b->ehdr);
1496 b->ehdr.e_shoff = sizeof (b->ehdr);
1497 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
1498 b->ehdr.e_shnum = 3;
1499 off = 0;
1501 b->shdr[1].sh_size = symtab->sh_size;
1502 b->shdr[1].sh_type = SHT_SYMTAB;
1503 b->shdr[1].sh_offset = off + base;
1504 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
1505 b->shdr[1].sh_link = 2;
1506 b->shdr[1].sh_info = symtab->sh_info;
1507 b->shdr[1].sh_addralign = symtab->sh_addralign;
1509 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
1510 symtab->sh_offset) != b->shdr[1].sh_size) {
1511 free(b);
1512 return;
1515 off += b->shdr[1].sh_size;
1517 b->shdr[2].sh_flags = SHF_STRINGS;
1518 b->shdr[2].sh_size = strtab->sh_size;
1519 b->shdr[2].sh_type = SHT_STRTAB;
1520 b->shdr[2].sh_offset = off + base;
1521 b->shdr[2].sh_info = strtab->sh_info;
1522 b->shdr[2].sh_addralign = 1;
1524 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
1525 strtab->sh_offset) != b->shdr[2].sh_size) {
1526 free(b);
1527 return;
1530 off += b->shdr[2].sh_size;
1532 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
1533 if (fp->file_symtab.sym_elf == NULL) {
1534 free(b);
1535 return;
1538 fp->file_symtab.sym_elfmem = b;
1539 #endif
1542 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
1543 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
1544 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
1545 (data = elf_getdata(scn, NULL)) == NULL) {
1546 dprintf("fake_up_symtab: failed to get section data at %p\n",
1547 (void *)scn);
1548 goto err;
1551 fp->file_symtab.sym_strs = data->d_buf;
1552 fp->file_symtab.sym_strsz = data->d_size;
1553 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
1554 fp->file_symtab.sym_hdr_pri = *symtab;
1555 fp->file_symtab.sym_strhdr = *strtab;
1557 optimize_symtab(&fp->file_symtab);
1559 return;
1560 err:
1561 (void) elf_end(fp->file_symtab.sym_elf);
1562 free(fp->file_symtab.sym_elfmem);
1563 fp->file_symtab.sym_elf = NULL;
1564 fp->file_symtab.sym_elfmem = NULL;
1567 static void
1568 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
1570 dst->p_type = src->p_type;
1571 dst->p_flags = src->p_flags;
1572 dst->p_offset = (Elf64_Off)src->p_offset;
1573 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
1574 dst->p_paddr = (Elf64_Addr)src->p_paddr;
1575 dst->p_filesz = (Elf64_Xword)src->p_filesz;
1576 dst->p_memsz = (Elf64_Xword)src->p_memsz;
1577 dst->p_align = (Elf64_Xword)src->p_align;
1580 static void
1581 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
1583 dst->sh_name = src->sh_name;
1584 dst->sh_type = src->sh_type;
1585 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1586 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1587 dst->sh_offset = (Elf64_Off)src->sh_offset;
1588 dst->sh_size = (Elf64_Xword)src->sh_size;
1589 dst->sh_link = src->sh_link;
1590 dst->sh_info = src->sh_info;
1591 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1592 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1596 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1598 static int
1599 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1601 #ifdef _BIG_ENDIAN
1602 uchar_t order = ELFDATA2MSB;
1603 #else
1604 uchar_t order = ELFDATA2LSB;
1605 #endif
1606 Elf32_Ehdr e32;
1607 int is_noelf = -1;
1608 int isa_err = 0;
1611 * Because 32-bit libelf cannot deal with large files, we need to read,
1612 * check, and convert the file header manually in case type == ET_CORE.
1614 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1615 if (perr != NULL)
1616 *perr = G_FORMAT;
1617 goto err;
1619 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1620 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1621 e32.e_version != EV_CURRENT) {
1622 if (perr != NULL) {
1623 if (is_noelf == 0 && isa_err) {
1624 *perr = G_ISAINVAL;
1625 } else {
1626 *perr = G_FORMAT;
1629 goto err;
1633 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1634 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1635 * and convert it to a elf_file_header_t. Otherwise, the file is
1636 * 32-bit, so convert e32 to a elf_file_header_t.
1638 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1639 #ifdef _LP64
1640 Elf64_Ehdr e64;
1642 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1643 if (perr != NULL)
1644 *perr = G_FORMAT;
1645 goto err;
1648 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1649 efp->e_hdr.e_type = e64.e_type;
1650 efp->e_hdr.e_machine = e64.e_machine;
1651 efp->e_hdr.e_version = e64.e_version;
1652 efp->e_hdr.e_entry = e64.e_entry;
1653 efp->e_hdr.e_phoff = e64.e_phoff;
1654 efp->e_hdr.e_shoff = e64.e_shoff;
1655 efp->e_hdr.e_flags = e64.e_flags;
1656 efp->e_hdr.e_ehsize = e64.e_ehsize;
1657 efp->e_hdr.e_phentsize = e64.e_phentsize;
1658 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1659 efp->e_hdr.e_shentsize = e64.e_shentsize;
1660 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1661 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1662 #else /* _LP64 */
1663 if (perr != NULL)
1664 *perr = G_LP64;
1665 goto err;
1666 #endif /* _LP64 */
1667 } else {
1668 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1669 efp->e_hdr.e_type = e32.e_type;
1670 efp->e_hdr.e_machine = e32.e_machine;
1671 efp->e_hdr.e_version = e32.e_version;
1672 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1673 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1674 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1675 efp->e_hdr.e_flags = e32.e_flags;
1676 efp->e_hdr.e_ehsize = e32.e_ehsize;
1677 efp->e_hdr.e_phentsize = e32.e_phentsize;
1678 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1679 efp->e_hdr.e_shentsize = e32.e_shentsize;
1680 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1681 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1685 * If the number of section headers or program headers or the section
1686 * header string table index would overflow their respective fields
1687 * in the ELF header, they're stored in the section header at index
1688 * zero. To simplify use elsewhere, we look for those sentinel values
1689 * here.
1691 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1692 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1693 efp->e_hdr.e_phnum == PN_XNUM) {
1694 GElf_Shdr shdr;
1696 dprintf("extended ELF header\n");
1698 if (efp->e_hdr.e_shoff == 0) {
1699 if (perr != NULL)
1700 *perr = G_FORMAT;
1701 goto err;
1704 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1705 Elf32_Shdr shdr32;
1707 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1708 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1709 if (perr != NULL)
1710 *perr = G_FORMAT;
1711 goto err;
1714 core_shdr_to_gelf(&shdr32, &shdr);
1715 } else {
1716 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1717 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1718 if (perr != NULL)
1719 *perr = G_FORMAT;
1720 goto err;
1724 if (efp->e_hdr.e_shnum == 0) {
1725 efp->e_hdr.e_shnum = shdr.sh_size;
1726 dprintf("section header count %lu\n",
1727 (ulong_t)shdr.sh_size);
1730 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1731 efp->e_hdr.e_shstrndx = shdr.sh_link;
1732 dprintf("section string index %u\n", shdr.sh_link);
1735 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1736 efp->e_hdr.e_phnum = shdr.sh_info;
1737 dprintf("program header count %u\n", shdr.sh_info);
1740 } else if (efp->e_hdr.e_phoff != 0) {
1741 GElf_Phdr phdr;
1742 uint64_t phnum;
1745 * It's possible this core file came from a system that
1746 * accidentally truncated the e_phnum field without correctly
1747 * using the extended format in the section header at index
1748 * zero. We try to detect and correct that specific type of
1749 * corruption by using the knowledge that the core dump
1750 * routines usually place the data referenced by the first
1751 * program header immediately after the last header element.
1753 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1754 Elf32_Phdr phdr32;
1756 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1757 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1758 if (perr != NULL)
1759 *perr = G_FORMAT;
1760 goto err;
1763 core_phdr_to_gelf(&phdr32, &phdr);
1764 } else {
1765 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1766 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1767 if (perr != NULL)
1768 *perr = G_FORMAT;
1769 goto err;
1773 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1774 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1775 phnum /= efp->e_hdr.e_phentsize;
1777 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1778 dprintf("suspicious program header count %u %u\n",
1779 (uint_t)phnum, efp->e_hdr.e_phnum);
1782 * If the new program header count we computed doesn't
1783 * jive with count in the ELF header, we'll use the
1784 * data that's there and hope for the best.
1786 * If it does, it's also possible that the section
1787 * header offset is incorrect; we'll check that and
1788 * possibly try to fix it.
1790 if (phnum <= INT_MAX &&
1791 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1793 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1794 efp->e_hdr.e_phentsize *
1795 (uint_t)efp->e_hdr.e_phnum) {
1796 efp->e_hdr.e_shoff =
1797 efp->e_hdr.e_phoff +
1798 efp->e_hdr.e_phentsize * phnum;
1801 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1802 dprintf("using new program header count\n");
1803 } else {
1804 dprintf("inconsistent program header count\n");
1810 * The libelf implementation was never ported to be large-file aware.
1811 * This is typically not a problem for your average executable or
1812 * shared library, but a large 32-bit core file can exceed 2GB in size.
1813 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1814 * in Pfgrab_core() below will do its own i/o and struct conversion.
1817 if (type == ET_CORE) {
1818 efp->e_elf = NULL;
1819 return (0);
1822 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1823 if (perr != NULL)
1824 *perr = G_ELF;
1825 goto err;
1828 return (0);
1830 err:
1831 efp->e_elf = NULL;
1832 return (-1);
1836 * Open the specified file and then do a core_elf_fdopen on it.
1838 static int
1839 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1841 (void) memset(efp, 0, sizeof (elf_file_t));
1843 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1844 if (core_elf_fdopen(efp, type, perr) == 0)
1845 return (0);
1847 (void) close(efp->e_fd);
1848 efp->e_fd = -1;
1851 return (-1);
1855 * Close the ELF handle and file descriptor.
1857 static void
1858 core_elf_close(elf_file_t *efp)
1860 if (efp->e_elf != NULL) {
1861 (void) elf_end(efp->e_elf);
1862 efp->e_elf = NULL;
1865 if (efp->e_fd != -1) {
1866 (void) close(efp->e_fd);
1867 efp->e_fd = -1;
1872 * Given an ELF file for a statically linked executable, locate the likely
1873 * primary text section and fill in rl_base with its virtual address.
1875 static map_info_t *
1876 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1878 GElf_Phdr phdr;
1879 uint_t i;
1880 size_t nphdrs;
1882 if (elf_getphdrnum(elf, &nphdrs) == -1)
1883 return (NULL);
1885 for (i = 0; i < nphdrs; i++) {
1886 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1887 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1888 rlp->rl_base = phdr.p_vaddr;
1889 return (Paddr2mptr(P, rlp->rl_base));
1893 return (NULL);
1897 * Given an ELF file and the librtld_db structure corresponding to its primary
1898 * text mapping, deduce where its data segment was loaded and fill in
1899 * rl_data_base and prmap_t.pr_offset accordingly.
1901 static map_info_t *
1902 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1904 GElf_Ehdr ehdr;
1905 GElf_Phdr phdr;
1906 map_info_t *mp;
1907 uint_t i, pagemask;
1908 size_t nphdrs;
1910 rlp->rl_data_base = NULL;
1913 * Find the first loadable, writeable Phdr and compute rl_data_base
1914 * as the virtual address at which is was loaded.
1916 if (gelf_getehdr(elf, &ehdr) == NULL ||
1917 elf_getphdrnum(elf, &nphdrs) == -1)
1918 return (NULL);
1920 for (i = 0; i < nphdrs; i++) {
1921 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1922 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1923 rlp->rl_data_base = phdr.p_vaddr;
1924 if (ehdr.e_type == ET_DYN)
1925 rlp->rl_data_base += rlp->rl_base;
1926 break;
1931 * If we didn't find an appropriate phdr or if the address we
1932 * computed has no mapping, return NULL.
1934 if (rlp->rl_data_base == NULL ||
1935 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1936 return (NULL);
1939 * It wouldn't be procfs-related code if we didn't make use of
1940 * unclean knowledge of segvn, even in userland ... the prmap_t's
1941 * pr_offset field will be the segvn offset from mmap(2)ing the
1942 * data section, which will be the file offset & PAGEMASK.
1944 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1945 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1947 return (mp);
1951 * Librtld_db agent callback for iterating over load object mappings.
1952 * For each load object, we allocate a new file_info_t, perform naming,
1953 * and attempt to construct a symbol table for the load object.
1955 static int
1956 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1958 core_info_t *core = P->data;
1959 char lname[PATH_MAX], buf[PATH_MAX];
1960 file_info_t *fp;
1961 map_info_t *mp;
1963 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1964 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1965 return (1); /* Keep going; forget this if we can't get a name */
1968 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1969 lname, (void *)rlp->rl_base);
1971 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1972 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1973 return (1); /* No mapping; advance to next mapping */
1977 * Create a new file_info_t for this mapping, and therefore for
1978 * this load object.
1980 * If there's an ELF header at the beginning of this mapping,
1981 * file_info_new() will try to use its section headers to
1982 * identify any other mappings that belong to this load object.
1984 if ((fp = mp->map_file) == NULL &&
1985 (fp = file_info_new(P, mp)) == NULL) {
1986 core->core_errno = errno;
1987 dprintf("failed to malloc mapping data\n");
1988 return (0); /* Abort */
1990 fp->file_map = mp;
1992 /* Create a local copy of the load object representation */
1993 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1994 core->core_errno = errno;
1995 dprintf("failed to malloc mapping data\n");
1996 return (0); /* Abort */
1998 *fp->file_lo = *rlp;
2000 if (lname[0] != '\0') {
2002 * Naming dance part 1: if we got a name from librtld_db, then
2003 * copy this name to the prmap_t if it is unnamed. If the
2004 * file_info_t is unnamed, name it after the lname.
2006 if (mp->map_pmap.pr_mapname[0] == '\0') {
2007 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
2008 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2011 if (fp->file_lname == NULL)
2012 fp->file_lname = strdup(lname);
2014 } else if (fp->file_lname == NULL &&
2015 mp->map_pmap.pr_mapname[0] != '\0') {
2017 * Naming dance part 2: if the mapping is named and the
2018 * file_info_t is not, name the file after the mapping.
2020 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
2023 if ((fp->file_rname == NULL) &&
2024 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
2025 fp->file_rname = strdup(buf);
2027 if (fp->file_lname != NULL)
2028 fp->file_lbase = basename(fp->file_lname);
2029 if (fp->file_rname != NULL)
2030 fp->file_rbase = basename(fp->file_rname);
2032 /* Associate the file and the mapping. */
2033 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
2034 fp->file_pname[PRMAPSZ - 1] = '\0';
2037 * If no section headers were available then we'll have to
2038 * identify this load object's other mappings with what we've
2039 * got: the start and end of the object's corresponding
2040 * address space.
2042 if (fp->file_saddrs == NULL) {
2043 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
2044 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
2046 if (mp->map_file == NULL) {
2047 dprintf("core_iter_mapping %s: associating "
2048 "segment at %p\n",
2049 fp->file_pname,
2050 (void *)mp->map_pmap.pr_vaddr);
2051 mp->map_file = fp;
2052 fp->file_ref++;
2053 } else {
2054 dprintf("core_iter_mapping %s: segment at "
2055 "%p already associated with %s\n",
2056 fp->file_pname,
2057 (void *)mp->map_pmap.pr_vaddr,
2058 (mp == fp->file_map ? "this file" :
2059 mp->map_file->file_pname));
2064 /* Ensure that all this file's mappings are named. */
2065 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
2066 mp->map_file == fp; mp++) {
2067 if (mp->map_pmap.pr_mapname[0] == '\0' &&
2068 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
2069 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
2070 PRMAPSZ);
2071 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2075 /* Attempt to build a symbol table for this file. */
2076 Pbuild_file_symtab(P, fp);
2077 if (fp->file_elf == NULL)
2078 dprintf("core_iter_mapping: no symtab for %s\n",
2079 fp->file_pname);
2081 /* Locate the start of a data segment associated with this file. */
2082 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
2083 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
2084 fp->file_pname, (void *)fp->file_lo->rl_data_base,
2085 mp->map_pmap.pr_offset);
2086 } else {
2087 dprintf("core_iter_mapping: no data found for %s\n",
2088 fp->file_pname);
2091 return (1); /* Advance to next mapping */
2095 * Callback function for Pfindexec(). In order to confirm a given pathname,
2096 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
2098 static int
2099 core_exec_open(const char *path, void *efp)
2101 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
2102 return (1);
2103 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
2104 return (1);
2105 return (0);
2109 * Attempt to load any section headers found in the core file. If present,
2110 * this will refer to non-loadable data added to the core file by the kernel
2111 * based on coreadm(1M) settings, including CTF data and the symbol table.
2113 static void
2114 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
2116 GElf_Shdr *shp, *shdrs = NULL;
2117 char *shstrtab = NULL;
2118 ulong_t shstrtabsz;
2119 const char *name;
2120 map_info_t *mp;
2122 size_t nbytes;
2123 void *buf;
2124 int i;
2126 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
2127 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
2128 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
2129 return;
2133 * Read the section header table from the core file and then iterate
2134 * over the section headers, converting each to a GElf_Shdr.
2136 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
2137 dprintf("failed to malloc %u section headers: %s\n",
2138 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
2139 return;
2142 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
2143 if ((buf = malloc(nbytes)) == NULL) {
2144 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
2145 strerror(errno));
2146 free(shdrs);
2147 goto out;
2150 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
2151 dprintf("failed to read section headers at off %lld: %s\n",
2152 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
2153 free(buf);
2154 goto out;
2157 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2158 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
2160 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
2161 core_shdr_to_gelf(p, &shdrs[i]);
2162 else
2163 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
2166 free(buf);
2167 buf = NULL;
2170 * Read the .shstrtab section from the core file, terminating it with
2171 * an extra \0 so that a corrupt section will not cause us to die.
2173 shp = &shdrs[efp->e_hdr.e_shstrndx];
2174 shstrtabsz = shp->sh_size;
2176 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
2177 dprintf("failed to allocate %lu bytes for shstrtab\n",
2178 (ulong_t)shstrtabsz);
2179 goto out;
2182 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
2183 shp->sh_offset) != shstrtabsz) {
2184 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
2185 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
2186 goto out;
2189 shstrtab[shstrtabsz] = '\0';
2192 * Now iterate over each section in the section header table, locating
2193 * sections of interest and initializing more of the ps_prochandle.
2195 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
2196 shp = &shdrs[i];
2197 name = shstrtab + shp->sh_name;
2199 if (shp->sh_name >= shstrtabsz) {
2200 dprintf("skipping section [%d]: corrupt sh_name\n", i);
2201 continue;
2204 if (shp->sh_link >= efp->e_hdr.e_shnum) {
2205 dprintf("skipping section [%d]: corrupt sh_link\n", i);
2206 continue;
2209 dprintf("found section header %s (sh_addr 0x%llx)\n",
2210 name, (u_longlong_t)shp->sh_addr);
2212 if (strcmp(name, ".SUNW_ctf") == 0) {
2213 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
2214 dprintf("no map at addr 0x%llx for %s [%d]\n",
2215 (u_longlong_t)shp->sh_addr, name, i);
2216 continue;
2219 if (mp->map_file == NULL ||
2220 mp->map_file->file_ctf_buf != NULL) {
2221 dprintf("no mapping file or duplicate buffer "
2222 "for %s [%d]\n", name, i);
2223 continue;
2226 if ((buf = malloc(shp->sh_size)) == NULL ||
2227 pread64(efp->e_fd, buf, shp->sh_size,
2228 shp->sh_offset) != shp->sh_size) {
2229 dprintf("skipping section %s [%d]: %s\n",
2230 name, i, strerror(errno));
2231 free(buf);
2232 continue;
2235 mp->map_file->file_ctf_size = shp->sh_size;
2236 mp->map_file->file_ctf_buf = buf;
2238 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
2239 mp->map_file->file_ctf_dyn = 1;
2241 } else if (strcmp(name, ".symtab") == 0) {
2242 fake_up_symtab(P, &efp->e_hdr,
2243 shp, &shdrs[shp->sh_link]);
2246 out:
2247 free(shstrtab);
2248 free(shdrs);
2252 * Main engine for core file initialization: given an fd for the core file
2253 * and an optional pathname, construct the ps_prochandle. The aout_path can
2254 * either be a suggested executable pathname, or a suggested directory to
2255 * use as a possible current working directory.
2257 struct ps_prochandle *
2258 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
2260 struct ps_prochandle *P;
2261 core_info_t *core_info;
2262 map_info_t *stk_mp, *brk_mp;
2263 const char *execname;
2264 char *interp;
2265 int i, notes, pagesize;
2266 uintptr_t addr, base_addr;
2267 struct stat64 stbuf;
2268 void *phbuf, *php;
2269 size_t nbytes;
2270 #ifdef __x86
2271 boolean_t from_linux = B_FALSE;
2272 #endif
2274 elf_file_t aout;
2275 elf_file_t core;
2277 Elf_Scn *scn, *intp_scn = NULL;
2278 Elf_Data *dp;
2280 GElf_Phdr phdr, note_phdr;
2281 GElf_Shdr shdr;
2282 GElf_Xword nleft;
2284 if (elf_version(EV_CURRENT) == EV_NONE) {
2285 dprintf("libproc ELF version is more recent than libelf\n");
2286 *perr = G_ELF;
2287 return (NULL);
2290 aout.e_elf = NULL;
2291 aout.e_fd = -1;
2293 core.e_elf = NULL;
2294 core.e_fd = core_fd;
2297 * Allocate and initialize a ps_prochandle structure for the core.
2298 * There are several key pieces of initialization here:
2300 * 1. The PS_DEAD state flag marks this prochandle as a core file.
2301 * PS_DEAD also thus prevents all operations which require state
2302 * to be PS_STOP from operating on this handle.
2304 * 2. We keep the core file fd in P->asfd since the core file contains
2305 * the remnants of the process address space.
2307 * 3. We set the P->info_valid bit because all information about the
2308 * core is determined by the end of this function; there is no need
2309 * for proc_update_maps() to reload mappings at any later point.
2311 * 4. The read/write ops vector uses our core_rw() function defined
2312 * above to handle i/o requests.
2314 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
2315 *perr = G_STRANGE;
2316 return (NULL);
2319 (void) memset(P, 0, sizeof (struct ps_prochandle));
2320 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
2321 P->state = PS_DEAD;
2322 P->pid = (pid_t)-1;
2323 P->asfd = core.e_fd;
2324 P->ctlfd = -1;
2325 P->statfd = -1;
2326 P->agentctlfd = -1;
2327 P->agentstatfd = -1;
2328 P->zoneroot = NULL;
2329 P->info_valid = 1;
2330 Pinit_ops(&P->ops, &P_core_ops);
2332 Pinitsym(P);
2335 * Fstat and open the core file and make sure it is a valid ELF core.
2337 if (fstat64(P->asfd, &stbuf) == -1) {
2338 *perr = G_STRANGE;
2339 goto err;
2342 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
2343 goto err;
2346 * Allocate and initialize a core_info_t to hang off the ps_prochandle
2347 * structure. We keep all core-specific information in this structure.
2349 if ((core_info = calloc(1, sizeof (core_info_t))) == NULL) {
2350 *perr = G_STRANGE;
2351 goto err;
2354 P->data = core_info;
2355 list_link(&core_info->core_lwp_head, NULL);
2356 core_info->core_size = stbuf.st_size;
2358 * In the days before adjustable core file content, this was the
2359 * default core file content. For new core files, this value will
2360 * be overwritten by the NT_CONTENT note section.
2362 core_info->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
2363 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
2364 CC_CONTENT_SHANON;
2366 switch (core.e_hdr.e_ident[EI_CLASS]) {
2367 case ELFCLASS32:
2368 core_info->core_dmodel = PR_MODEL_ILP32;
2369 break;
2370 case ELFCLASS64:
2371 core_info->core_dmodel = PR_MODEL_LP64;
2372 break;
2373 default:
2374 *perr = G_FORMAT;
2375 goto err;
2377 core_info->core_osabi = core.e_hdr.e_ident[EI_OSABI];
2380 * Because the core file may be a large file, we can't use libelf to
2381 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
2383 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
2385 if ((phbuf = malloc(nbytes)) == NULL) {
2386 *perr = G_STRANGE;
2387 goto err;
2390 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
2391 *perr = G_STRANGE;
2392 free(phbuf);
2393 goto err;
2397 * Iterate through the program headers in the core file.
2398 * We're interested in two types of Phdrs: PT_NOTE (which
2399 * contains a set of saved /proc structures), and PT_LOAD (which
2400 * represents a memory mapping from the process's address space).
2401 * In the case of PT_NOTE, we're interested in the last PT_NOTE
2402 * in the core file; currently the first PT_NOTE (if present)
2403 * contains /proc structs in the pre-2.6 unstructured /proc format.
2405 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
2406 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
2407 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
2408 else
2409 core_phdr_to_gelf(php, &phdr);
2411 switch (phdr.p_type) {
2412 case PT_NOTE:
2413 note_phdr = phdr;
2414 notes++;
2415 break;
2417 case PT_LOAD:
2418 if (core_add_mapping(P, &phdr) == -1) {
2419 *perr = G_STRANGE;
2420 free(phbuf);
2421 goto err;
2423 break;
2424 default:
2425 dprintf("Pgrab_core: unknown phdr %d\n", phdr.p_type);
2426 break;
2429 php = (char *)php + core.e_hdr.e_phentsize;
2432 free(phbuf);
2434 Psort_mappings(P);
2437 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
2438 * was present, abort. The core file is either corrupt or too old.
2440 if (notes == 0 || (notes == 1 && core_info->core_osabi ==
2441 ELFOSABI_SOLARIS)) {
2442 *perr = G_NOTE;
2443 goto err;
2447 * Advance the seek pointer to the start of the PT_NOTE data
2449 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
2450 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
2451 *perr = G_STRANGE;
2452 goto err;
2456 * Now process the PT_NOTE structures. Each one is preceded by
2457 * an Elf{32/64}_Nhdr structure describing its type and size.
2459 * +--------+
2460 * | header |
2461 * +--------+
2462 * | name |
2463 * | ... |
2464 * +--------+
2465 * | desc |
2466 * | ... |
2467 * +--------+
2469 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
2470 Elf64_Nhdr nhdr;
2471 off64_t off, namesz, descsz;
2474 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
2475 * as different types, they are both of the same content and
2476 * size, so we don't need to worry about 32/64 conversion here.
2478 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
2479 dprintf("Pgrab_core: failed to read ELF note header\n");
2480 *perr = G_NOTE;
2481 goto err;
2485 * According to the System V ABI, the amount of padding
2486 * following the name field should align the description
2487 * field on a 4 byte boundary for 32-bit binaries or on an 8
2488 * byte boundary for 64-bit binaries. However, this change
2489 * was not made correctly during the 64-bit port so all
2490 * descriptions can assume only 4-byte alignment. We ignore
2491 * the name field and the padding to 4-byte alignment.
2493 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
2495 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
2496 dprintf("failed to seek past name and padding\n");
2497 *perr = G_STRANGE;
2498 goto err;
2501 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
2502 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
2504 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
2507 * Invoke the note handler function from our table
2509 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
2510 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
2511 dprintf("handler for type %d returned < 0",
2512 nhdr.n_type);
2513 *perr = G_NOTE;
2514 goto err;
2517 * The presence of either of these notes indicates that
2518 * the dump was generated on Linux.
2520 #ifdef __x86
2521 if (nhdr.n_type == NT_PRSTATUS ||
2522 nhdr.n_type == NT_PRPSINFO)
2523 from_linux = B_TRUE;
2524 #endif
2525 } else {
2526 (void) note_notsup(P, nhdr.n_descsz);
2530 * Seek past the current note data to the next Elf_Nhdr
2532 descsz = P2ROUNDUP((off64_t)nhdr.n_descsz, (off64_t)4);
2533 if (lseek64(P->asfd, off + descsz, SEEK_SET) == (off64_t)-1) {
2534 dprintf("Pgrab_core: failed to seek to next nhdr\n");
2535 *perr = G_STRANGE;
2536 goto err;
2540 * Subtract the size of the header and its data from what
2541 * we have left to process.
2543 nleft -= sizeof (nhdr) + namesz + descsz;
2546 #ifdef __x86
2547 if (from_linux) {
2548 size_t tcount, pid;
2549 lwp_info_t *lwp;
2551 P->status.pr_dmodel = core_info->core_dmodel;
2553 lwp = list_next(&core_info->core_lwp_head);
2555 pid = P->status.pr_pid;
2557 for (tcount = 0; tcount < core_info->core_nlwp;
2558 tcount++, lwp = list_next(lwp)) {
2559 dprintf("Linux thread with id %d\n", lwp->lwp_id);
2562 * In the case we don't have a valid psinfo (i.e. pid is
2563 * 0, probably because of gdb creating the core) assume
2564 * lowest pid count is the first thread (what if the
2565 * next thread wraps the pid around?)
2567 if (P->status.pr_pid == 0 &&
2568 ((pid == 0 && lwp->lwp_id > 0) ||
2569 (lwp->lwp_id < pid))) {
2570 pid = lwp->lwp_id;
2574 if (P->status.pr_pid != pid) {
2575 dprintf("No valid pid, setting to %ld\n", (ulong_t)pid);
2576 P->status.pr_pid = pid;
2577 P->psinfo.pr_pid = pid;
2581 * Consumers like mdb expect the first thread to actually have
2582 * an id of 1, on linux that is actually the pid. Find the the
2583 * thread with our process id, and set the id to 1
2585 if ((lwp = lwpid2info(P, pid)) == NULL) {
2586 dprintf("Couldn't find first thread\n");
2587 *perr = G_STRANGE;
2588 goto err;
2591 dprintf("setting representative thread: %d\n", lwp->lwp_id);
2593 lwp->lwp_id = 1;
2594 lwp->lwp_status.pr_lwpid = 1;
2596 /* set representative thread */
2597 (void) memcpy(&P->status.pr_lwp, &lwp->lwp_status,
2598 sizeof (P->status.pr_lwp));
2600 #endif /* __x86 */
2602 if (nleft != 0) {
2603 dprintf("Pgrab_core: note section malformed\n");
2604 *perr = G_STRANGE;
2605 goto err;
2608 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
2609 pagesize = getpagesize();
2610 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
2614 * Locate and label the mappings corresponding to the end of the
2615 * heap (MA_BREAK) and the base of the stack (MA_STACK).
2617 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
2618 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
2619 P->status.pr_brksize - 1)) != NULL)
2620 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
2621 else
2622 brk_mp = NULL;
2624 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
2625 stk_mp->map_pmap.pr_mflags |= MA_STACK;
2628 * At this point, we have enough information to look for the
2629 * executable and open it: we have access to the auxv, a psinfo_t,
2630 * and the ability to read from mappings provided by the core file.
2632 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
2633 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
2634 execname = P->execname ? P->execname : "a.out";
2637 * Iterate through the sections, looking for the .dynamic and .interp
2638 * sections. If we encounter them, remember their section pointers.
2640 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
2641 char *sname;
2643 if ((gelf_getshdr(scn, &shdr) == NULL) ||
2644 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
2645 (size_t)shdr.sh_name)) == NULL)
2646 continue;
2648 if (strcmp(sname, ".interp") == 0)
2649 intp_scn = scn;
2653 * Get the AT_BASE auxv element. If this is missing (-1), then
2654 * we assume this is a statically-linked executable.
2656 base_addr = Pgetauxval(P, AT_BASE);
2659 * In order to get librtld_db initialized, we'll need to identify
2660 * and name the mapping corresponding to the run-time linker. The
2661 * AT_BASE auxv element tells us the address where it was mapped,
2662 * and the .interp section of the executable tells us its path.
2663 * If for some reason that doesn't pan out, just use ld.so.1.
2665 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2666 dp->d_size != 0) {
2667 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2668 interp = dp->d_buf;
2670 } else if (base_addr != (uintptr_t)-1L) {
2671 if (core_info->core_dmodel == PR_MODEL_LP64)
2672 interp = "/usr/lib/64/ld.so.1";
2673 else
2674 interp = "/usr/lib/ld.so.1";
2676 dprintf(".interp section is missing or could not be read; "
2677 "defaulting to %s\n", interp);
2678 } else
2679 dprintf("detected statically linked executable\n");
2682 * If we have an AT_BASE element, name the mapping at that address
2683 * using the interpreter pathname. Name the corresponding data
2684 * mapping after the interpreter as well.
2686 if (base_addr != (uintptr_t)-1L) {
2687 elf_file_t intf;
2689 P->map_ldso = core_name_mapping(P, base_addr, interp);
2691 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2692 rd_loadobj_t rl;
2693 map_info_t *dmp;
2695 rl.rl_base = base_addr;
2696 dmp = core_find_data(P, intf.e_elf, &rl);
2698 if (dmp != NULL) {
2699 dprintf("renamed data at %p to %s\n",
2700 (void *)rl.rl_data_base, interp);
2701 (void) strncpy(dmp->map_pmap.pr_mapname,
2702 interp, PRMAPSZ);
2703 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2707 core_elf_close(&intf);
2711 * If we have an AT_ENTRY element, name the mapping at that address
2712 * using the special name "a.out" just like /proc does.
2714 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2715 P->map_exec = core_name_mapping(P, addr, "a.out");
2718 * If we're a statically linked executable (or we're on x86 and looking
2719 * at a Linux core dump), then just locate the executable's text and
2720 * data and name them after the executable.
2722 #ifndef __x86
2723 if (base_addr == (uintptr_t)-1L) {
2724 #else
2725 if (base_addr == (uintptr_t)-1L || from_linux) {
2726 #endif
2727 dprintf("looking for text and data: %s\n", execname);
2728 map_info_t *tmp, *dmp;
2729 file_info_t *fp;
2730 rd_loadobj_t rl;
2732 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2733 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2734 (void) strncpy(tmp->map_pmap.pr_mapname,
2735 execname, PRMAPSZ);
2736 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2737 (void) strncpy(dmp->map_pmap.pr_mapname,
2738 execname, PRMAPSZ);
2739 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2742 if ((P->map_exec = tmp) != NULL &&
2743 (fp = malloc(sizeof (file_info_t))) != NULL) {
2745 (void) memset(fp, 0, sizeof (file_info_t));
2747 list_link(fp, &P->file_head);
2748 tmp->map_file = fp;
2749 P->num_files++;
2751 fp->file_ref = 1;
2752 fp->file_fd = -1;
2754 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2755 fp->file_lname = strdup(execname);
2757 if (fp->file_lo)
2758 *fp->file_lo = rl;
2759 if (fp->file_lname)
2760 fp->file_lbase = basename(fp->file_lname);
2761 if (fp->file_rname)
2762 fp->file_rbase = basename(fp->file_rname);
2764 (void) strcpy(fp->file_pname,
2765 P->mappings[0].map_pmap.pr_mapname);
2766 fp->file_map = tmp;
2768 Pbuild_file_symtab(P, fp);
2770 if (dmp != NULL) {
2771 dmp->map_file = fp;
2772 fp->file_ref++;
2777 core_elf_close(&aout);
2780 * We now have enough information to initialize librtld_db.
2781 * After it warms up, we can iterate through the load object chain
2782 * in the core, which will allow us to construct the file info
2783 * we need to provide symbol information for the other shared
2784 * libraries, and also to fill in the missing mapping names.
2786 rd_log(_libproc_debug);
2788 if ((P->rap = rd_new(P)) != NULL) {
2789 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2790 core_iter_mapping, P);
2792 if (core_info->core_errno != 0) {
2793 errno = core_info->core_errno;
2794 *perr = G_STRANGE;
2795 goto err;
2797 } else
2798 dprintf("failed to initialize rtld_db agent\n");
2801 * If there are sections, load them and process the data from any
2802 * sections that we can use to annotate the file_info_t's.
2804 core_load_shdrs(P, &core);
2807 * If we previously located a stack or break mapping, and they are
2808 * still anonymous, we now assume that they were MAP_ANON mappings.
2809 * If brk_mp turns out to now have a name, then the heap is still
2810 * sitting at the end of the executable's data+bss mapping: remove
2811 * the previous MA_BREAK setting to be consistent with /proc.
2813 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2814 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2815 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2816 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2817 else if (brk_mp != NULL)
2818 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2820 *perr = 0;
2821 return (P);
2823 err:
2824 Pfree(P);
2825 core_elf_close(&aout);
2826 return (NULL);
2830 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2832 struct ps_prochandle *
2833 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2835 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2837 if ((fd = open64(core, oflag)) >= 0)
2838 return (Pfgrab_core(fd, aout, perr));
2840 if (errno != ENOENT)
2841 *perr = G_STRANGE;
2842 else
2843 *perr = G_NOCORE;
2845 return (NULL);