4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #pragma ident "%Z%%M% %I% %E% SMI"
29 * All routines necessary to deal the "netmasks" database. The sources
30 * contain mappings between 32 bit Internet addresses and corresponding
31 * 32 bit Internet address masks. The addresses are in dotted internet
39 #include <sys/types.h>
40 #include <sys/socket.h>
42 #include <netinet/in.h>
43 #include <arpa/inet.h>
44 #include <nss_dbdefs.h>
46 int str2addr(const char *, int, void *, char *, int);
48 static DEFINE_NSS_DB_ROOT(db_root
);
51 _nss_initf_netmasks(nss_db_params_t
*p
)
53 p
->name
= NSS_DBNAM_NETMASKS
;
54 p
->default_config
= NSS_DEFCONF_NETMASKS
;
58 * Print a network number such as 129.144 as well as an IP address.
59 * Assumes network byte order for both IP addresses and network numbers
60 * (Network numbers are normally passed around in host byte order).
61 * to be MT safe, use a passed in buffer like otherget*_r APIs.
64 inet_nettoa(struct in_addr in
, char *result
, int len
)
66 uint32_t addr
= in
.s_addr
;
67 uchar_t
*up
= (uchar_t
*)&addr
;
72 /* Omit leading zeros */
74 (void) snprintf(result
, len
, "%d.%d.%d.%d",
75 up
[0], up
[1], up
[2], up
[3]);
77 (void) snprintf(result
, len
, "%d.%d.%d", up
[1], up
[2], up
[3]);
79 (void) snprintf(result
, len
, "%d.%d", up
[2], up
[3]);
81 (void) snprintf(result
, len
, "%d", up
[3]);
87 * Given a 32 bit key look it up in the netmasks database
88 * based on the "netmasks" policy in /etc/nsswitch.conf.
89 * If the key is a network number with the trailing zero's removed
90 * (e.g. "192.9.200") this routine can't use inet_ntoa to convert
91 * the address to the string key.
92 * Returns zero if successful, non-zero otherwise.
95 getnetmaskbykey(const struct in_addr addr
, struct in_addr
*mask
)
99 char tmp
[NSS_LINELEN_NETMASKS
];
102 * let the backend do the allocation to store stuff for parsing.
103 * To simplify things, we put the dotted internet address form of
104 * the network address in the 'name' field as a filter to speed
107 if (inet_nettoa(addr
, tmp
, NSS_LINELEN_NETMASKS
) == NULL
)
108 return (NSS_NOTFOUND
);
110 NSS_XbyY_INIT(&arg
, mask
, NULL
, 0, str2addr
);
112 res
= nss_search(&db_root
, _nss_initf_netmasks
,
113 NSS_DBOP_NETMASKS_BYNET
, &arg
);
114 (void) NSS_XbyY_FINI(&arg
);
115 return (arg
.status
= res
);
119 * Given a 32 bit internet network number, it finds the corresponding netmask
120 * address based on the "netmasks" policy in /etc/nsswitch.conf.
121 * Returns zero if successful, non-zero otherwise.
122 * Check both for the (masked) network number and the shifted network
123 * number (e.g., both "10.0.0.0" and "10").
124 * Assumes that the caller passes in an unshifted number (or an IP address).
127 getnetmaskbynet(const struct in_addr net
, struct in_addr
*mask
)
129 struct in_addr net1
, net2
;
132 i
= ntohl(net
.s_addr
);
135 * Try looking for the network number both with and without
136 * the trailing zeros.
138 if ((i
& IN_CLASSA_NET
) == 0) {
139 /* Assume already a right-shifted network number */
140 net2
.s_addr
= htonl(i
);
141 if ((i
& IN_CLASSB_NET
) != 0) {
142 net1
.s_addr
= htonl(i
<< IN_CLASSC_NSHIFT
);
143 } else if ((i
& IN_CLASSC_NET
) != 0) {
144 net1
.s_addr
= htonl(i
<< IN_CLASSB_NSHIFT
);
146 net1
.s_addr
= htonl(i
<< IN_CLASSA_NSHIFT
);
148 } else if (IN_CLASSA(i
)) {
149 net1
.s_addr
= htonl(i
& IN_CLASSA_NET
);
150 net2
.s_addr
= htonl(i
>> IN_CLASSA_NSHIFT
);
151 } else if (IN_CLASSB(i
)) {
152 net1
.s_addr
= htonl(i
& IN_CLASSB_NET
);
153 net2
.s_addr
= htonl(i
>> IN_CLASSB_NSHIFT
);
155 net1
.s_addr
= htonl(i
& IN_CLASSC_NET
);
156 net2
.s_addr
= htonl(i
>> IN_CLASSC_NSHIFT
);
159 if (getnetmaskbykey(net1
, mask
) == 0) {
162 if (getnetmaskbykey(net2
, mask
) == 0) {
169 * Find the netmask used for an IP address.
170 * Returns zero if successful, non-zero otherwise.
172 * Support Variable Length Subnetmasks by looking for the longest
173 * matching subnetmask in the database.
174 * Start by looking for a match for the full IP address and
175 * mask off one rightmost bit after another until we find a match.
176 * Note that for a match the found netmask must match what was used
177 * for the lookup masking.
178 * As a fallback for compatibility finally lookup the network
179 * number with and without the trailing zeros.
180 * In order to suppress redundant lookups in the name service
181 * we keep the previous lookup key and compare against it before
185 getnetmaskbyaddr(const struct in_addr addr
, struct in_addr
*mask
)
187 struct in_addr prevnet
, net
;
190 i
= ntohl(addr
.s_addr
);
194 for (maskoff
= 0xFFFFFFFF; maskoff
!= 0; maskoff
= maskoff
<< 1) {
195 net
.s_addr
= htonl(i
& maskoff
);
197 if (net
.s_addr
!= prevnet
.s_addr
) {
198 if (getnetmaskbykey(net
, mask
) != 0) {
202 if (htonl(maskoff
) == mask
->s_addr
)
205 prevnet
.s_addr
= net
.s_addr
;
210 * Try looking for the network number with and without the trailing
213 return (getnetmaskbynet(addr
, mask
));
217 * Parse netmasks entry into its components. The network address is placed
218 * in buffer for use by check_addr for 'files' backend, to match the network
219 * address. The network address is placed in the buffer as a network order
220 * internet address, if buffer is non null. The network order form of the mask
221 * itself is placed in 'ent'.
224 str2addr(const char *instr
, int lenstr
, void *ent
, char *buffer
, int buflen
)
227 struct in_addr
*mask
= (struct in_addr
*)ent
;
228 const char *p
, *limit
, *start
;
231 char tmp
[NSS_LINELEN_NETMASKS
];
235 retval
= NSS_STR_PARSE_PARSE
;
237 while (p
< limit
&& isspace(*p
)) /* skip leading whitespace */
240 if (buffer
) { /* for 'files' backend verification */
241 for (start
= p
, i
= 0; p
< limit
&& !isspace(*p
); p
++)
243 if (p
< limit
&& i
< buflen
) {
244 (void) memcpy(tmp
, start
, i
);
246 addr
.s_addr
= inet_addr(tmp
);
247 /* Addr will always be an ipv4 address (32bits) */
248 if (addr
.s_addr
== 0xffffffffUL
)
249 return (NSS_STR_PARSE_PARSE
);
251 (void) memcpy(buffer
, (char *)&addr
,
252 sizeof (struct in_addr
));
255 return (NSS_STR_PARSE_ERANGE
);
258 while (p
< limit
&& isspace(*p
)) /* skip intermediate */
262 for (start
= p
, i
= 0; p
< limit
&& !isspace(*p
); p
++)
265 if ((i
+ 1) > NSS_LINELEN_NETMASKS
)
266 return (NSS_STR_PARSE_ERANGE
);
267 (void) memcpy(tmp
, start
, i
);
269 addr
.s_addr
= inet_addr(tmp
);
270 /* Addr will always be an ipv4 address (32bits) */
271 if (addr
.s_addr
== 0xffffffffUL
)
272 retval
= NSS_STR_PARSE_PARSE
;
274 mask
->s_addr
= addr
.s_addr
;
275 retval
= NSS_STR_PARSE_SUCCESS
;