1 /***********************************************************************
3 * This software is part of the ast package *
4 * Copyright (c) 1996-2010 AT&T Intellectual Property *
5 * and is licensed under the *
6 * Common Public License, Version 1.0 *
7 * by AT&T Intellectual Property *
9 * A copy of the License is available at *
10 * http://www.opensource.org/licenses/cpl1.0.txt *
11 * (with md5 checksum 059e8cd6165cb4c31e351f2b69388fd9) *
13 * Information and Software Systems Research *
17 * Glenn Fowler <gsf@research.att.com> *
19 ***********************************************************************/
25 * Aaron D. Gifford's SHA {256,384,512} code transcribed into a -lsum method
29 * Copyright (c) 2000-2001, Aaron D. Gifford
30 * All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. Neither the name of the copyright holder nor the names of contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
44 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * Some sanity checking code is included using assert(). On my FreeBSD
60 * system, this additional code can be removed by compiling with NDEBUG
61 * defined. Check your own systems manpage on assert() to see how to
62 * compile WITHOUT the sanity checking code on your system.
64 * UNROLLED TRANSFORM LOOP NOTE:
65 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
66 * loop version for the hash transform rounds (defined using macros
67 * later in this file). Either define on the command line, for example:
69 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
73 * #define SHA2_UNROLL_TRANSFORM
77 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
82 #define __undef__USE_BSD
86 #ifdef __undef__USE_BSD
87 #undef __undef__USE_BSD
91 typedef uint8_t sha2_byte
; /* Exactly 1 byte */
92 typedef uint32_t sha2_word32
; /* Exactly 4 bytes */
93 typedef uint64_t sha2_word64
; /* Exactly 8 bytes */
101 #else /* _PACKAGE_ast */
106 * Please make sure that your system defines BYTE_ORDER. If your
107 * architecture is little-endian, make sure it also defines
108 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
111 * If your system does not define the above, then you can do so by
114 * #define LITTLE_ENDIAN 1234
115 * #define BIG_ENDIAN 4321
117 * And for little-endian machines, add:
119 * #define BYTE_ORDER LITTLE_ENDIAN
121 * Or for big-endian machines:
123 * #define BYTE_ORDER BIG_ENDIAN
125 * The FreeBSD machine this was written on defines BYTE_ORDER
126 * appropriately by including <sys/types.h> (which in turn includes
127 * <machine/endian.h> where the appropriate definitions are actually
131 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
132 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
136 * Define the following sha2_* types to types of the correct length on
137 * the native archtecture. Most BSD systems and Linux define u_intXX_t
138 * types. Machines with very recent ANSI C headers, can use the
139 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
140 * during compile or in the sha.h header file.
142 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
143 * will need to define these three typedefs below (and the appropriate
144 * ones in sha.h too) by hand according to their system architecture.
146 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
147 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
150 #ifdef SHA2_USE_INTTYPES_H
152 typedef uint8_t sha2_byte
; /* Exactly 1 byte */
153 typedef uint32_t sha2_word32
; /* Exactly 4 bytes */
154 typedef uint64_t sha2_word64
; /* Exactly 8 bytes */
156 #else /* SHA2_USE_INTTYPES_H */
158 typedef u_int8_t sha2_byte
; /* Exactly 1 byte */
159 typedef u_int32_t sha2_word32
; /* Exactly 4 bytes */
160 typedef u_int64_t sha2_word64
; /* Exactly 8 bytes */
162 #endif /* SHA2_USE_INTTYPES_H */
164 #endif /* _PACKAGE_ast */
166 /*** SHA-256/384/512 Various Length Definitions ***********************/
168 #define SHA256_BLOCK_LENGTH 64
169 #define SHA256_DIGEST_LENGTH 32
170 #define SHA384_BLOCK_LENGTH 128
171 #define SHA384_DIGEST_LENGTH 48
172 #define SHA512_BLOCK_LENGTH 128
173 #define SHA512_DIGEST_LENGTH 64
175 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
176 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
177 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
179 /*** ENDIAN REVERSAL MACROS *******************************************/
180 #if BYTE_ORDER == LITTLE_ENDIAN
181 #define REVERSE32(w,x) { \
182 sha2_word32 tmp = (w); \
183 tmp = (tmp >> 16) | (tmp << 16); \
184 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
187 #define REVERSE64(w,x) { \
188 sha2_word64 tmp = (w); \
189 tmp = (tmp >> 32) | (tmp << 32); \
190 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
191 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
192 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
193 ((tmp & 0x0000ffff0000ffffULL) << 16); \
196 #define REVERSE64(w,x) { \
197 sha2_word64 tmp = (w); \
198 tmp = (tmp >> 32) | (tmp << 32); \
199 tmp = ((tmp & ((sha2_word64)0xff00ff00ff00ff00)) >> 8) | \
200 ((tmp & ((sha2_word64)0x00ff00ff00ff00ff)) << 8); \
201 (x) = ((tmp & ((sha2_word64)0xffff0000ffff0000)) >> 16) | \
202 ((tmp & ((sha2_word64)0x0000ffff0000ffff)) << 16); \
205 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
208 * Macro for incrementally adding the unsigned 64-bit integer n to the
209 * unsigned 128-bit integer (represented using a two-element array of
213 #define ADDINC128(w,n) { \
214 (w)[0] += (sha2_word64)(n); \
215 if ((w)[0] < (n)) { \
221 * Macros for copying blocks of memory and for zeroing out ranges
222 * of memory. Using these macros makes it easy to switch from
223 * using memset()/memcpy() and using bzero()/bcopy().
225 * Please define either SHA2_USE_MEMSET_MEMCPY or define
226 * SHA2_USE_BZERO_BCOPY depending on which function set you
230 #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY)
231 /* Default to memset()/memcpy() if no option is specified */
232 #define SHA2_USE_MEMSET_MEMCPY 1
234 #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY)
235 /* Abort with an error if BOTH options are defined */
236 #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both!
239 #ifdef SHA2_USE_MEMSET_MEMCPY
240 #define MEMSET_BZERO(p,l) memset((p), 0, (l))
241 #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l))
243 #ifdef SHA2_USE_BZERO_BCOPY
244 #define MEMSET_BZERO(p,l) bzero((p), (l))
245 #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l))
249 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
251 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
253 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
254 * S is a ROTATION) because the SHA-256/384/512 description document
255 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
256 * same "backwards" definition.
259 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
260 #define R(b,x) ((x) >> (b))
261 /* 32-bit Rotate-right (used in SHA-256): */
262 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
263 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
264 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
266 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
267 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
268 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
270 /* Four of six logical functions used in SHA-256: */
271 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
272 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
273 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
274 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
276 /* Four of six logical functions used in SHA-384 and SHA-512: */
277 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
278 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
279 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
280 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
282 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
283 /* Hash constant words K for SHA-256: */
284 static const sha2_word32 K256
[64] = {
285 0x428a2f98UL
, 0x71374491UL
, 0xb5c0fbcfUL
, 0xe9b5dba5UL
,
286 0x3956c25bUL
, 0x59f111f1UL
, 0x923f82a4UL
, 0xab1c5ed5UL
,
287 0xd807aa98UL
, 0x12835b01UL
, 0x243185beUL
, 0x550c7dc3UL
,
288 0x72be5d74UL
, 0x80deb1feUL
, 0x9bdc06a7UL
, 0xc19bf174UL
,
289 0xe49b69c1UL
, 0xefbe4786UL
, 0x0fc19dc6UL
, 0x240ca1ccUL
,
290 0x2de92c6fUL
, 0x4a7484aaUL
, 0x5cb0a9dcUL
, 0x76f988daUL
,
291 0x983e5152UL
, 0xa831c66dUL
, 0xb00327c8UL
, 0xbf597fc7UL
,
292 0xc6e00bf3UL
, 0xd5a79147UL
, 0x06ca6351UL
, 0x14292967UL
,
293 0x27b70a85UL
, 0x2e1b2138UL
, 0x4d2c6dfcUL
, 0x53380d13UL
,
294 0x650a7354UL
, 0x766a0abbUL
, 0x81c2c92eUL
, 0x92722c85UL
,
295 0xa2bfe8a1UL
, 0xa81a664bUL
, 0xc24b8b70UL
, 0xc76c51a3UL
,
296 0xd192e819UL
, 0xd6990624UL
, 0xf40e3585UL
, 0x106aa070UL
,
297 0x19a4c116UL
, 0x1e376c08UL
, 0x2748774cUL
, 0x34b0bcb5UL
,
298 0x391c0cb3UL
, 0x4ed8aa4aUL
, 0x5b9cca4fUL
, 0x682e6ff3UL
,
299 0x748f82eeUL
, 0x78a5636fUL
, 0x84c87814UL
, 0x8cc70208UL
,
300 0x90befffaUL
, 0xa4506cebUL
, 0xbef9a3f7UL
, 0xc67178f2UL
303 /* Initial hash value H for SHA-256: */
304 static const sha2_word32 sha256_initial_hash_value
[8] = {
315 /* Hash constant words K for SHA-384 and SHA-512: */
316 static const sha2_word64 K512
[80] = {
318 0x428a2f98d728ae22ULL
, 0x7137449123ef65cdULL
,
319 0xb5c0fbcfec4d3b2fULL
, 0xe9b5dba58189dbbcULL
,
320 0x3956c25bf348b538ULL
, 0x59f111f1b605d019ULL
,
321 0x923f82a4af194f9bULL
, 0xab1c5ed5da6d8118ULL
,
322 0xd807aa98a3030242ULL
, 0x12835b0145706fbeULL
,
323 0x243185be4ee4b28cULL
, 0x550c7dc3d5ffb4e2ULL
,
324 0x72be5d74f27b896fULL
, 0x80deb1fe3b1696b1ULL
,
325 0x9bdc06a725c71235ULL
, 0xc19bf174cf692694ULL
,
326 0xe49b69c19ef14ad2ULL
, 0xefbe4786384f25e3ULL
,
327 0x0fc19dc68b8cd5b5ULL
, 0x240ca1cc77ac9c65ULL
,
328 0x2de92c6f592b0275ULL
, 0x4a7484aa6ea6e483ULL
,
329 0x5cb0a9dcbd41fbd4ULL
, 0x76f988da831153b5ULL
,
330 0x983e5152ee66dfabULL
, 0xa831c66d2db43210ULL
,
331 0xb00327c898fb213fULL
, 0xbf597fc7beef0ee4ULL
,
332 0xc6e00bf33da88fc2ULL
, 0xd5a79147930aa725ULL
,
333 0x06ca6351e003826fULL
, 0x142929670a0e6e70ULL
,
334 0x27b70a8546d22ffcULL
, 0x2e1b21385c26c926ULL
,
335 0x4d2c6dfc5ac42aedULL
, 0x53380d139d95b3dfULL
,
336 0x650a73548baf63deULL
, 0x766a0abb3c77b2a8ULL
,
337 0x81c2c92e47edaee6ULL
, 0x92722c851482353bULL
,
338 0xa2bfe8a14cf10364ULL
, 0xa81a664bbc423001ULL
,
339 0xc24b8b70d0f89791ULL
, 0xc76c51a30654be30ULL
,
340 0xd192e819d6ef5218ULL
, 0xd69906245565a910ULL
,
341 0xf40e35855771202aULL
, 0x106aa07032bbd1b8ULL
,
342 0x19a4c116b8d2d0c8ULL
, 0x1e376c085141ab53ULL
,
343 0x2748774cdf8eeb99ULL
, 0x34b0bcb5e19b48a8ULL
,
344 0x391c0cb3c5c95a63ULL
, 0x4ed8aa4ae3418acbULL
,
345 0x5b9cca4f7763e373ULL
, 0x682e6ff3d6b2b8a3ULL
,
346 0x748f82ee5defb2fcULL
, 0x78a5636f43172f60ULL
,
347 0x84c87814a1f0ab72ULL
, 0x8cc702081a6439ecULL
,
348 0x90befffa23631e28ULL
, 0xa4506cebde82bde9ULL
,
349 0xbef9a3f7b2c67915ULL
, 0xc67178f2e372532bULL
,
350 0xca273eceea26619cULL
, 0xd186b8c721c0c207ULL
,
351 0xeada7dd6cde0eb1eULL
, 0xf57d4f7fee6ed178ULL
,
352 0x06f067aa72176fbaULL
, 0x0a637dc5a2c898a6ULL
,
353 0x113f9804bef90daeULL
, 0x1b710b35131c471bULL
,
354 0x28db77f523047d84ULL
, 0x32caab7b40c72493ULL
,
355 0x3c9ebe0a15c9bebcULL
, 0x431d67c49c100d4cULL
,
356 0x4cc5d4becb3e42b6ULL
, 0x597f299cfc657e2aULL
,
357 0x5fcb6fab3ad6faecULL
, 0x6c44198c4a475817ULL
359 ((sha2_word64
)0x428a2f98d728ae22), ((sha2_word64
)0x7137449123ef65cd),
360 ((sha2_word64
)0xb5c0fbcfec4d3b2f), ((sha2_word64
)0xe9b5dba58189dbbc),
361 ((sha2_word64
)0x3956c25bf348b538), ((sha2_word64
)0x59f111f1b605d019),
362 ((sha2_word64
)0x923f82a4af194f9b), ((sha2_word64
)0xab1c5ed5da6d8118),
363 ((sha2_word64
)0xd807aa98a3030242), ((sha2_word64
)0x12835b0145706fbe),
364 ((sha2_word64
)0x243185be4ee4b28c), ((sha2_word64
)0x550c7dc3d5ffb4e2),
365 ((sha2_word64
)0x72be5d74f27b896f), ((sha2_word64
)0x80deb1fe3b1696b1),
366 ((sha2_word64
)0x9bdc06a725c71235), ((sha2_word64
)0xc19bf174cf692694),
367 ((sha2_word64
)0xe49b69c19ef14ad2), ((sha2_word64
)0xefbe4786384f25e3),
368 ((sha2_word64
)0x0fc19dc68b8cd5b5), ((sha2_word64
)0x240ca1cc77ac9c65),
369 ((sha2_word64
)0x2de92c6f592b0275), ((sha2_word64
)0x4a7484aa6ea6e483),
370 ((sha2_word64
)0x5cb0a9dcbd41fbd4), ((sha2_word64
)0x76f988da831153b5),
371 ((sha2_word64
)0x983e5152ee66dfab), ((sha2_word64
)0xa831c66d2db43210),
372 ((sha2_word64
)0xb00327c898fb213f), ((sha2_word64
)0xbf597fc7beef0ee4),
373 ((sha2_word64
)0xc6e00bf33da88fc2), ((sha2_word64
)0xd5a79147930aa725),
374 ((sha2_word64
)0x06ca6351e003826f), ((sha2_word64
)0x142929670a0e6e70),
375 ((sha2_word64
)0x27b70a8546d22ffc), ((sha2_word64
)0x2e1b21385c26c926),
376 ((sha2_word64
)0x4d2c6dfc5ac42aed), ((sha2_word64
)0x53380d139d95b3df),
377 ((sha2_word64
)0x650a73548baf63de), ((sha2_word64
)0x766a0abb3c77b2a8),
378 ((sha2_word64
)0x81c2c92e47edaee6), ((sha2_word64
)0x92722c851482353b),
379 ((sha2_word64
)0xa2bfe8a14cf10364), ((sha2_word64
)0xa81a664bbc423001),
380 ((sha2_word64
)0xc24b8b70d0f89791), ((sha2_word64
)0xc76c51a30654be30),
381 ((sha2_word64
)0xd192e819d6ef5218), ((sha2_word64
)0xd69906245565a910),
382 ((sha2_word64
)0xf40e35855771202a), ((sha2_word64
)0x106aa07032bbd1b8),
383 ((sha2_word64
)0x19a4c116b8d2d0c8), ((sha2_word64
)0x1e376c085141ab53),
384 ((sha2_word64
)0x2748774cdf8eeb99), ((sha2_word64
)0x34b0bcb5e19b48a8),
385 ((sha2_word64
)0x391c0cb3c5c95a63), ((sha2_word64
)0x4ed8aa4ae3418acb),
386 ((sha2_word64
)0x5b9cca4f7763e373), ((sha2_word64
)0x682e6ff3d6b2b8a3),
387 ((sha2_word64
)0x748f82ee5defb2fc), ((sha2_word64
)0x78a5636f43172f60),
388 ((sha2_word64
)0x84c87814a1f0ab72), ((sha2_word64
)0x8cc702081a6439ec),
389 ((sha2_word64
)0x90befffa23631e28), ((sha2_word64
)0xa4506cebde82bde9),
390 ((sha2_word64
)0xbef9a3f7b2c67915), ((sha2_word64
)0xc67178f2e372532b),
391 ((sha2_word64
)0xca273eceea26619c), ((sha2_word64
)0xd186b8c721c0c207),
392 ((sha2_word64
)0xeada7dd6cde0eb1e), ((sha2_word64
)0xf57d4f7fee6ed178),
393 ((sha2_word64
)0x06f067aa72176fba), ((sha2_word64
)0x0a637dc5a2c898a6),
394 ((sha2_word64
)0x113f9804bef90dae), ((sha2_word64
)0x1b710b35131c471b),
395 ((sha2_word64
)0x28db77f523047d84), ((sha2_word64
)0x32caab7b40c72493),
396 ((sha2_word64
)0x3c9ebe0a15c9bebc), ((sha2_word64
)0x431d67c49c100d4c),
397 ((sha2_word64
)0x4cc5d4becb3e42b6), ((sha2_word64
)0x597f299cfc657e2a),
398 ((sha2_word64
)0x5fcb6fab3ad6faec), ((sha2_word64
)0x6c44198c4a475817)
402 /* Initial hash value H for SHA-384 */
403 static const sha2_word64 sha384_initial_hash_value
[8] = {
405 0xcbbb9d5dc1059ed8ULL
,
406 0x629a292a367cd507ULL
,
407 0x9159015a3070dd17ULL
,
408 0x152fecd8f70e5939ULL
,
409 0x67332667ffc00b31ULL
,
410 0x8eb44a8768581511ULL
,
411 0xdb0c2e0d64f98fa7ULL
,
412 0x47b5481dbefa4fa4ULL
414 ((sha2_word64
)0xcbbb9d5dc1059ed8),
415 ((sha2_word64
)0x629a292a367cd507),
416 ((sha2_word64
)0x9159015a3070dd17),
417 ((sha2_word64
)0x152fecd8f70e5939),
418 ((sha2_word64
)0x67332667ffc00b31),
419 ((sha2_word64
)0x8eb44a8768581511),
420 ((sha2_word64
)0xdb0c2e0d64f98fa7),
421 ((sha2_word64
)0x47b5481dbefa4fa4)
425 /* Initial hash value H for SHA-512 */
426 static const sha2_word64 sha512_initial_hash_value
[8] = {
428 0x6a09e667f3bcc908ULL
,
429 0xbb67ae8584caa73bULL
,
430 0x3c6ef372fe94f82bULL
,
431 0xa54ff53a5f1d36f1ULL
,
432 0x510e527fade682d1ULL
,
433 0x9b05688c2b3e6c1fULL
,
434 0x1f83d9abfb41bd6bULL
,
435 0x5be0cd19137e2179ULL
437 ((sha2_word64
)0x6a09e667f3bcc908),
438 ((sha2_word64
)0xbb67ae8584caa73b),
439 ((sha2_word64
)0x3c6ef372fe94f82b),
440 ((sha2_word64
)0xa54ff53a5f1d36f1),
441 ((sha2_word64
)0x510e527fade682d1),
442 ((sha2_word64
)0x9b05688c2b3e6c1f),
443 ((sha2_word64
)0x1f83d9abfb41bd6b),
444 ((sha2_word64
)0x5be0cd19137e2179)
448 /*** SHA-256: *********************************************************/
450 #define sha256_description "FIPS SHA-256 secure hash algorithm."
451 #define sha256_options "\
452 [+(version)?sha-256 (FIPS) 2000-01-01]\
453 [+(author)?Aaron D. Gifford]\
455 #define sha256_match "sha256|sha-256|SHA256|SHA-256"
456 #define sha256_scale 0
458 #define sha256_padding md5_pad
460 #define SHA256_CTX Sha256_t
462 typedef struct Sha256_s
466 sha2_byte digest
[SHA256_DIGEST_LENGTH
];
467 sha2_byte digest_sum
[SHA256_DIGEST_LENGTH
];
468 sha2_word32 state
[8];
469 sha2_word64 bitcount
;
470 sha2_byte buffer
[SHA256_BLOCK_LENGTH
];
473 #ifdef SHA2_UNROLL_TRANSFORM
475 /* Unrolled SHA-256 round macros: */
477 #if BYTE_ORDER == LITTLE_ENDIAN
479 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
480 REVERSE32(*data++, W256[j]); \
481 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
484 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
488 #else /* BYTE_ORDER == LITTLE_ENDIAN */
490 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
491 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
492 K256[j] + (W256[j] = *data++); \
494 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
497 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
499 #define ROUND256(a,b,c,d,e,f,g,h) \
500 s0 = W256[(j+1)&0x0f]; \
501 s0 = sigma0_256(s0); \
502 s1 = W256[(j+14)&0x0f]; \
503 s1 = sigma1_256(s1); \
504 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
505 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
507 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
510 static void SHA256_Transform(SHA256_CTX
* sha
, const sha2_word32
* data
) {
511 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
512 sha2_word32 T1
, *W256
;
515 W256
= (sha2_word32
*)sha
->buffer
;
517 /* Initialize registers with the prev. intermediate value */
529 /* Rounds 0 to 15 (unrolled): */
530 ROUND256_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
531 ROUND256_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
532 ROUND256_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
533 ROUND256_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
534 ROUND256_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
535 ROUND256_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
536 ROUND256_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
537 ROUND256_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
540 /* Now for the remaining rounds to 64: */
542 ROUND256(a
,b
,c
,d
,e
,f
,g
,h
);
543 ROUND256(h
,a
,b
,c
,d
,e
,f
,g
);
544 ROUND256(g
,h
,a
,b
,c
,d
,e
,f
);
545 ROUND256(f
,g
,h
,a
,b
,c
,d
,e
);
546 ROUND256(e
,f
,g
,h
,a
,b
,c
,d
);
547 ROUND256(d
,e
,f
,g
,h
,a
,b
,c
);
548 ROUND256(c
,d
,e
,f
,g
,h
,a
,b
);
549 ROUND256(b
,c
,d
,e
,f
,g
,h
,a
);
552 /* Compute the current intermediate hash value */
563 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
566 #else /* SHA2_UNROLL_TRANSFORM */
568 static void SHA256_Transform(SHA256_CTX
* sha
, const sha2_word32
* data
) {
569 sha2_word32 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
570 sha2_word32 T1
, T2
, *W256
;
573 W256
= (sha2_word32
*)sha
->buffer
;
575 /* Initialize registers with the prev. intermediate value */
587 #if BYTE_ORDER == LITTLE_ENDIAN
588 /* Copy data while converting to host byte order */
589 REVERSE32(*data
++,W256
[j
]);
590 /* Apply the SHA-256 compression function to update a..h */
591 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + W256
[j
];
592 #else /* BYTE_ORDER == LITTLE_ENDIAN */
593 /* Apply the SHA-256 compression function to update a..h with copy */
594 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] + (W256
[j
] = *data
++);
595 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
596 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
610 /* Part of the message block expansion: */
611 s0
= W256
[(j
+1)&0x0f];
613 s1
= W256
[(j
+14)&0x0f];
616 /* Apply the SHA-256 compression function to update a..h */
617 T1
= h
+ Sigma1_256(e
) + Ch(e
, f
, g
) + K256
[j
] +
618 (W256
[j
&0x0f] += s1
+ W256
[(j
+9)&0x0f] + s0
);
619 T2
= Sigma0_256(a
) + Maj(a
, b
, c
);
632 /* Compute the current intermediate hash value */
643 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
646 #endif /* SHA2_UNROLL_TRANSFORM */
649 sha256_block(register Sum_t
* p
, const void* s
, size_t len
)
651 Sha256_t
* sha
= (Sha256_t
*)p
;
652 sha2_byte
* data
= (sha2_byte
*)s
;
653 unsigned int freespace
, usedspace
;
657 usedspace
= (sha
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
659 /* Calculate how much free space is available in the buffer */
660 freespace
= SHA256_BLOCK_LENGTH
- usedspace
;
662 if (len
>= freespace
) {
663 /* Fill the buffer completely and process it */
664 MEMCPY_BCOPY(&sha
->buffer
[usedspace
], data
, freespace
);
665 sha
->bitcount
+= freespace
<< 3;
668 SHA256_Transform(sha
, (sha2_word32
*)sha
->buffer
);
670 /* The buffer is not yet full */
671 MEMCPY_BCOPY(&sha
->buffer
[usedspace
], data
, len
);
672 sha
->bitcount
+= len
<< 3;
674 usedspace
= freespace
= 0;
678 while (len
>= SHA256_BLOCK_LENGTH
) {
679 /* Process as many complete blocks as we can */
680 SHA256_Transform(sha
, (sha2_word32
*)data
);
681 sha
->bitcount
+= SHA256_BLOCK_LENGTH
<< 3;
682 len
-= SHA256_BLOCK_LENGTH
;
683 data
+= SHA256_BLOCK_LENGTH
;
686 /* There's left-overs, so save 'em */
687 MEMCPY_BCOPY(sha
->buffer
, data
, len
);
688 sha
->bitcount
+= len
<< 3;
691 usedspace
= freespace
= 0;
697 sha256_init(Sum_t
* p
)
699 register Sha256_t
* sha
= (Sha256_t
*)p
;
701 MEMCPY_BCOPY(sha
->state
, sha256_initial_hash_value
, SHA256_DIGEST_LENGTH
);
702 MEMSET_BZERO(sha
->buffer
, SHA256_BLOCK_LENGTH
);
709 sha256_open(const Method_t
* method
, const char* name
)
713 if (sha
= newof(0, Sha256_t
, 1, 0))
715 sha
->method
= (Method_t
*)method
;
717 sha256_init((Sum_t
*)sha
);
723 sha256_done(Sum_t
* p
)
725 Sha256_t
* sha
= (Sha256_t
*)p
;
726 unsigned int usedspace
;
730 assert(sha
!= (SHA256_CTX
*)0);
732 usedspace
= (sha
->bitcount
>> 3) % SHA256_BLOCK_LENGTH
;
733 #if BYTE_ORDER == LITTLE_ENDIAN
734 /* Convert FROM host byte order */
735 REVERSE64(sha
->bitcount
,sha
->bitcount
);
738 /* Begin padding with a 1 bit: */
739 sha
->buffer
[usedspace
++] = 0x80;
741 if (usedspace
<= SHA256_SHORT_BLOCK_LENGTH
) {
742 /* Set-up for the last transform: */
743 MEMSET_BZERO(&sha
->buffer
[usedspace
], SHA256_SHORT_BLOCK_LENGTH
- usedspace
);
745 if (usedspace
< SHA256_BLOCK_LENGTH
) {
746 MEMSET_BZERO(&sha
->buffer
[usedspace
], SHA256_BLOCK_LENGTH
- usedspace
);
748 /* Do second-to-last transform: */
749 SHA256_Transform(sha
, (sha2_word32
*)sha
->buffer
);
751 /* And set-up for the last transform: */
752 MEMSET_BZERO(sha
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
755 /* Set-up for the last transform: */
756 MEMSET_BZERO(sha
->buffer
, SHA256_SHORT_BLOCK_LENGTH
);
758 /* Begin padding with a 1 bit: */
761 /* Set the bit count: */
762 *(sha2_word64
*)&sha
->buffer
[SHA256_SHORT_BLOCK_LENGTH
] = sha
->bitcount
;
764 /* Final transform: */
765 SHA256_Transform(sha
, (sha2_word32
*)sha
->buffer
);
767 #if BYTE_ORDER == LITTLE_ENDIAN
769 /* Convert TO host byte order */
771 sha2_word32
* d
= (sha2_word32
*)sha
->digest
;
772 for (j
= 0; j
< 8; j
++) {
773 REVERSE32(sha
->state
[j
],sha
->state
[j
]);
774 *d
++ = sha
->state
[j
];
778 MEMCPY_BCOPY(sha
->digest
, sha
->state
, SHA256_DIGEST_LENGTH
);
781 /* accumulate the digests */
782 for (i
= 0; i
< SHA256_DIGEST_LENGTH
; i
++)
783 sha
->digest_sum
[i
] ^= sha
->digest
[i
];
785 /* Clean up state data: */
786 MEMSET_BZERO(&sha
->state
, sizeof(*sha
) - offsetof(Sha256_t
, state
));
793 sha256_print(Sum_t
* p
, Sfio_t
* sp
, register int flags
, size_t scale
)
795 register Sha256_t
* sha
= (Sha256_t
*)p
;
796 register sha2_byte
* d
;
797 register sha2_byte
* e
;
799 d
= (flags
& SUM_TOTAL
) ? sha
->digest_sum
: sha
->digest
;
800 e
= d
+ SHA256_DIGEST_LENGTH
;
802 sfprintf(sp
, "%02x", *d
++);
807 sha256_data(Sum_t
* p
, Sumdata_t
* data
)
809 register Sha256_t
* sha
= (Sha256_t
*)p
;
811 data
->size
= SHA256_DIGEST_LENGTH
;
813 data
->buf
= sha
->digest
;
817 /*** SHA-512: *********************************************************/
819 #define sha512_description "FIPS SHA-512 secure hash algorithm."
820 #define sha512_options "\
821 [+(version)?sha-512 (FIPS) 2000-01-01]\
822 [+(author)?Aaron D. Gifford]\
824 #define sha512_match "sha512|sha-512|SHA512|SHA-512"
825 #define sha512_scale 0
827 #define sha512_padding md5_pad
829 #define SHA512_CTX Sha512_t
831 typedef struct Sha512_s
835 sha2_byte digest
[SHA512_DIGEST_LENGTH
];
836 sha2_byte digest_sum
[SHA512_DIGEST_LENGTH
];
837 sha2_word64 state
[8];
838 sha2_word64 bitcount
[2];
839 sha2_byte buffer
[SHA512_BLOCK_LENGTH
];
842 #ifdef SHA2_UNROLL_TRANSFORM
844 /* Unrolled SHA-512 round macros: */
845 #if BYTE_ORDER == LITTLE_ENDIAN
847 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
848 REVERSE64(*data++, W512[j]); \
849 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
852 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
856 #else /* BYTE_ORDER == LITTLE_ENDIAN */
858 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
859 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
860 K512[j] + (W512[j] = *data++); \
862 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
865 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
867 #define ROUND512(a,b,c,d,e,f,g,h) \
868 s0 = W512[(j+1)&0x0f]; \
869 s0 = sigma0_512(s0); \
870 s1 = W512[(j+14)&0x0f]; \
871 s1 = sigma1_512(s1); \
872 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
873 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
875 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
878 static void SHA512_Transform(SHA512_CTX
* sha
, const sha2_word64
* data
) {
879 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
880 sha2_word64 T1
, *W512
= (sha2_word64
*)sha
->buffer
;
883 /* Initialize registers with the prev. intermediate value */
895 ROUND512_0_TO_15(a
,b
,c
,d
,e
,f
,g
,h
);
896 ROUND512_0_TO_15(h
,a
,b
,c
,d
,e
,f
,g
);
897 ROUND512_0_TO_15(g
,h
,a
,b
,c
,d
,e
,f
);
898 ROUND512_0_TO_15(f
,g
,h
,a
,b
,c
,d
,e
);
899 ROUND512_0_TO_15(e
,f
,g
,h
,a
,b
,c
,d
);
900 ROUND512_0_TO_15(d
,e
,f
,g
,h
,a
,b
,c
);
901 ROUND512_0_TO_15(c
,d
,e
,f
,g
,h
,a
,b
);
902 ROUND512_0_TO_15(b
,c
,d
,e
,f
,g
,h
,a
);
905 /* Now for the remaining rounds up to 79: */
907 ROUND512(a
,b
,c
,d
,e
,f
,g
,h
);
908 ROUND512(h
,a
,b
,c
,d
,e
,f
,g
);
909 ROUND512(g
,h
,a
,b
,c
,d
,e
,f
);
910 ROUND512(f
,g
,h
,a
,b
,c
,d
,e
);
911 ROUND512(e
,f
,g
,h
,a
,b
,c
,d
);
912 ROUND512(d
,e
,f
,g
,h
,a
,b
,c
);
913 ROUND512(c
,d
,e
,f
,g
,h
,a
,b
);
914 ROUND512(b
,c
,d
,e
,f
,g
,h
,a
);
917 /* Compute the current intermediate hash value */
928 a
= b
= c
= d
= e
= f
= g
= h
= T1
= 0;
931 #else /* SHA2_UNROLL_TRANSFORM */
933 static void SHA512_Transform(SHA512_CTX
* sha
, const sha2_word64
* data
) {
934 sha2_word64 a
, b
, c
, d
, e
, f
, g
, h
, s0
, s1
;
935 sha2_word64 T1
, T2
, *W512
= (sha2_word64
*)sha
->buffer
;
938 /* Initialize registers with the prev. intermediate value */
950 #if BYTE_ORDER == LITTLE_ENDIAN
951 /* Convert TO host byte order */
952 REVERSE64(*data
++, W512
[j
]);
953 /* Apply the SHA-512 compression function to update a..h */
954 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + W512
[j
];
955 #else /* BYTE_ORDER == LITTLE_ENDIAN */
956 /* Apply the SHA-512 compression function to update a..h with copy */
957 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] + (W512
[j
] = *data
++);
958 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
959 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
973 /* Part of the message block expansion: */
974 s0
= W512
[(j
+1)&0x0f];
976 s1
= W512
[(j
+14)&0x0f];
979 /* Apply the SHA-512 compression function to update a..h */
980 T1
= h
+ Sigma1_512(e
) + Ch(e
, f
, g
) + K512
[j
] +
981 (W512
[j
&0x0f] += s1
+ W512
[(j
+9)&0x0f] + s0
);
982 T2
= Sigma0_512(a
) + Maj(a
, b
, c
);
995 /* Compute the current intermediate hash value */
1006 a
= b
= c
= d
= e
= f
= g
= h
= T1
= T2
= 0;
1009 #endif /* SHA2_UNROLL_TRANSFORM */
1012 sha512_block(register Sum_t
* p
, const void* s
, size_t len
)
1014 Sha512_t
* sha
= (Sha512_t
*)p
;
1015 sha2_byte
* data
= (sha2_byte
*)s
;
1016 unsigned int freespace
, usedspace
;
1020 usedspace
= (sha
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
1021 if (usedspace
> 0) {
1022 /* Calculate how much free space is available in the buffer */
1023 freespace
= SHA512_BLOCK_LENGTH
- usedspace
;
1025 if (len
>= freespace
) {
1026 /* Fill the buffer completely and process it */
1027 MEMCPY_BCOPY(&sha
->buffer
[usedspace
], data
, freespace
);
1028 ADDINC128(sha
->bitcount
, freespace
<< 3);
1031 SHA512_Transform(sha
, (sha2_word64
*)sha
->buffer
);
1033 /* The buffer is not yet full */
1034 MEMCPY_BCOPY(&sha
->buffer
[usedspace
], data
, len
);
1035 ADDINC128(sha
->bitcount
, len
<< 3);
1037 usedspace
= freespace
= 0;
1041 while (len
>= SHA512_BLOCK_LENGTH
) {
1042 /* Process as many complete blocks as we can */
1043 SHA512_Transform(sha
, (sha2_word64
*)data
);
1044 ADDINC128(sha
->bitcount
, SHA512_BLOCK_LENGTH
<< 3);
1045 len
-= SHA512_BLOCK_LENGTH
;
1046 data
+= SHA512_BLOCK_LENGTH
;
1049 /* There's left-overs, so save 'em */
1050 MEMCPY_BCOPY(sha
->buffer
, data
, len
);
1051 ADDINC128(sha
->bitcount
, len
<< 3);
1054 usedspace
= freespace
= 0;
1060 sha512_init(Sum_t
* p
)
1062 register Sha512_t
* sha
= (Sha512_t
*)p
;
1064 MEMCPY_BCOPY(sha
->state
, sha512_initial_hash_value
, SHA512_DIGEST_LENGTH
);
1065 MEMSET_BZERO(sha
->buffer
, SHA512_BLOCK_LENGTH
);
1066 sha
->bitcount
[0] = sha
->bitcount
[1] = 0;
1072 sha512_open(const Method_t
* method
, const char* name
)
1076 if (sha
= newof(0, Sha512_t
, 1, 0))
1078 sha
->method
= (Method_t
*)method
;
1080 sha512_init((Sum_t
*)sha
);
1086 sha512_done(Sum_t
* p
)
1088 Sha512_t
* sha
= (Sha512_t
*)p
;
1089 unsigned int usedspace
;
1092 usedspace
= (sha
->bitcount
[0] >> 3) % SHA512_BLOCK_LENGTH
;
1093 #if BYTE_ORDER == LITTLE_ENDIAN
1094 /* Convert FROM host byte order */
1095 REVERSE64(sha
->bitcount
[0],sha
->bitcount
[0]);
1096 REVERSE64(sha
->bitcount
[1],sha
->bitcount
[1]);
1098 if (usedspace
> 0) {
1099 /* Begin padding with a 1 bit: */
1100 sha
->buffer
[usedspace
++] = 0x80;
1102 if (usedspace
<= SHA512_SHORT_BLOCK_LENGTH
) {
1103 /* Set-up for the last transform: */
1104 MEMSET_BZERO(&sha
->buffer
[usedspace
], SHA512_SHORT_BLOCK_LENGTH
- usedspace
);
1106 if (usedspace
< SHA512_BLOCK_LENGTH
) {
1107 MEMSET_BZERO(&sha
->buffer
[usedspace
], SHA512_BLOCK_LENGTH
- usedspace
);
1109 /* Do second-to-last transform: */
1110 SHA512_Transform(sha
, (sha2_word64
*)sha
->buffer
);
1112 /* And set-up for the last transform: */
1113 MEMSET_BZERO(sha
->buffer
, SHA512_BLOCK_LENGTH
- 2);
1116 /* Prepare for final transform: */
1117 MEMSET_BZERO(sha
->buffer
, SHA512_SHORT_BLOCK_LENGTH
);
1119 /* Begin padding with a 1 bit: */
1120 *sha
->buffer
= 0x80;
1122 /* Store the length of input data (in bits): */
1123 *(sha2_word64
*)&sha
->buffer
[SHA512_SHORT_BLOCK_LENGTH
] = sha
->bitcount
[1];
1124 *(sha2_word64
*)&sha
->buffer
[SHA512_SHORT_BLOCK_LENGTH
+8] = sha
->bitcount
[0];
1126 /* Final transform: */
1127 SHA512_Transform(sha
, (sha2_word64
*)sha
->buffer
);
1129 #if BYTE_ORDER == LITTLE_ENDIAN
1131 /* Convert TO host byte order */
1132 sha2_word64
* d
= (sha2_word64
*)sha
->digest
;
1134 for (j
= 0; j
< 8; j
++) {
1135 REVERSE64(sha
->state
[j
],sha
->state
[j
]);
1136 *d
++ = sha
->state
[j
];
1140 MEMCPY_BCOPY(sha
->digest
, sha
->state
, SHA512_DIGEST_LENGTH
);
1143 /* accumulate the digests */
1144 for (i
= 0; i
< SHA512_DIGEST_LENGTH
; i
++)
1145 sha
->digest_sum
[i
] ^= sha
->digest
[i
];
1147 /* Clean up state data: */
1148 MEMSET_BZERO(&sha
->state
, sizeof(*sha
) - offsetof(Sha512_t
, state
));
1155 sha512_print(Sum_t
* p
, Sfio_t
* sp
, register int flags
, size_t scale
)
1157 register Sha512_t
* sha
= (Sha512_t
*)p
;
1158 register sha2_byte
* d
;
1159 register sha2_byte
* e
;
1161 d
= (flags
& SUM_TOTAL
) ? sha
->digest_sum
: sha
->digest
;
1162 e
= d
+ SHA512_DIGEST_LENGTH
;
1164 sfprintf(sp
, "%02x", *d
++);
1169 sha512_data(Sum_t
* p
, Sumdata_t
* data
)
1171 register Sha512_t
* sha
= (Sha512_t
*)p
;
1173 data
->size
= SHA512_DIGEST_LENGTH
;
1175 data
->buf
= sha
->digest
;
1179 /*** SHA-384: *********************************************************/
1181 #define sha384_description "FIPS SHA-384 secure hash algorithm."
1182 #define sha384_options "\
1183 [+(version)?sha-384 (FIPS) 2000-01-01]\
1184 [+(author)?Aaron D. Gifford]\
1186 #define sha384_match "sha384|sha-384|SHA384|SHA-384"
1187 #define sha384_scale 0
1188 #define sha384_block sha512_block
1189 #define sha384_done sha512_done
1191 #define sha384_padding md5_pad
1193 #define Sha384_t Sha512_t
1194 #define SHA384_CTX Sha384_t
1195 #define SHA384_DIGEST_LENGTH 48
1198 sha384_init(Sum_t
* p
)
1200 register Sha384_t
* sha
= (Sha384_t
*)p
;
1202 MEMCPY_BCOPY(sha
->state
, sha384_initial_hash_value
, SHA512_DIGEST_LENGTH
);
1203 MEMSET_BZERO(sha
->buffer
, SHA384_BLOCK_LENGTH
);
1204 sha
->bitcount
[0] = sha
->bitcount
[1] = 0;
1210 sha384_open(const Method_t
* method
, const char* name
)
1214 if (sha
= newof(0, Sha384_t
, 1, 0))
1216 sha
->method
= (Method_t
*)method
;
1218 sha384_init((Sum_t
*)sha
);
1224 sha384_print(Sum_t
* p
, Sfio_t
* sp
, register int flags
, size_t scale
)
1226 register Sha384_t
* sha
= (Sha384_t
*)p
;
1227 register sha2_byte
* d
;
1228 register sha2_byte
* e
;
1230 d
= (flags
& SUM_TOTAL
) ? sha
->digest_sum
: sha
->digest
;
1231 e
= d
+ SHA384_DIGEST_LENGTH
;
1233 sfprintf(sp
, "%02x", *d
++);
1238 sha384_data(Sum_t
* p
, Sumdata_t
* data
)
1240 register Sha384_t
* sha
= (Sha384_t
*)p
;
1242 data
->size
= SHA384_DIGEST_LENGTH
;
1244 data
->buf
= sha
->digest
;
1248 #endif /* _typ_int64_t */