8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / lib / libumem / common / umem.c
blobdbc738a049c11bd20acaa3576cbddb14cb7f88a2
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
28 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
29 * Copyright (c) 2015 by Delphix. All rights reserved.
33 * based on usr/src/uts/common/os/kmem.c r1.64 from 2001/12/18
35 * The slab allocator, as described in the following two papers:
37 * Jeff Bonwick,
38 * The Slab Allocator: An Object-Caching Kernel Memory Allocator.
39 * Proceedings of the Summer 1994 Usenix Conference.
40 * Available as /shared/sac/PSARC/1994/028/materials/kmem.pdf.
42 * Jeff Bonwick and Jonathan Adams,
43 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
44 * Arbitrary Resources.
45 * Proceedings of the 2001 Usenix Conference.
46 * Available as /shared/sac/PSARC/2000/550/materials/vmem.pdf.
48 * 1. Overview
49 * -----------
50 * umem is very close to kmem in implementation. There are seven major
51 * areas of divergence:
53 * * Initialization
55 * * CPU handling
57 * * umem_update()
59 * * KM_SLEEP v.s. UMEM_NOFAIL
61 * * lock ordering
63 * * changing UMEM_MAXBUF
65 * * Per-thread caching for malloc/free
67 * 2. Initialization
68 * -----------------
69 * kmem is initialized early on in boot, and knows that no one will call
70 * into it before it is ready. umem does not have these luxuries. Instead,
71 * initialization is divided into two phases:
73 * * library initialization, and
75 * * first use
77 * umem's full initialization happens at the time of the first allocation
78 * request (via malloc() and friends, umem_alloc(), or umem_zalloc()),
79 * or the first call to umem_cache_create().
81 * umem_free(), and umem_cache_alloc() do not require special handling,
82 * since the only way to get valid arguments for them is to successfully
83 * call a function from the first group.
85 * 2.1. Library Initialization: umem_startup()
86 * -------------------------------------------
87 * umem_startup() is libumem.so's .init section. It calls pthread_atfork()
88 * to install the handlers necessary for umem's Fork1-Safety. Because of
89 * race condition issues, all other pre-umem_init() initialization is done
90 * statically (i.e. by the dynamic linker).
92 * For standalone use, umem_startup() returns everything to its initial
93 * state.
95 * 2.2. First use: umem_init()
96 * ------------------------------
97 * The first time any memory allocation function is used, we have to
98 * create the backing caches and vmem arenas which are needed for it.
99 * umem_init() is the central point for that task. When it completes,
100 * umem_ready is either UMEM_READY (all set) or UMEM_READY_INIT_FAILED (unable
101 * to initialize, probably due to lack of memory).
103 * There are four different paths from which umem_init() is called:
105 * * from umem_alloc() or umem_zalloc(), with 0 < size < UMEM_MAXBUF,
107 * * from umem_alloc() or umem_zalloc(), with size > UMEM_MAXBUF,
109 * * from umem_cache_create(), and
111 * * from memalign(), with align > UMEM_ALIGN.
113 * The last three just check if umem is initialized, and call umem_init()
114 * if it is not. For performance reasons, the first case is more complicated.
116 * 2.2.1. umem_alloc()/umem_zalloc(), with 0 < size < UMEM_MAXBUF
117 * -----------------------------------------------------------------
118 * In this case, umem_cache_alloc(&umem_null_cache, ...) is called.
119 * There is special case code in which causes any allocation on
120 * &umem_null_cache to fail by returning (NULL), regardless of the
121 * flags argument.
123 * So umem_cache_alloc() returns NULL, and umem_alloc()/umem_zalloc() call
124 * umem_alloc_retry(). umem_alloc_retry() sees that the allocation
125 * was agains &umem_null_cache, and calls umem_init().
127 * If initialization is successful, umem_alloc_retry() returns 1, which
128 * causes umem_alloc()/umem_zalloc() to start over, which causes it to load
129 * the (now valid) cache pointer from umem_alloc_table.
131 * 2.2.2. Dealing with race conditions
132 * -----------------------------------
133 * There are a couple race conditions resulting from the initialization
134 * code that we have to guard against:
136 * * In umem_cache_create(), there is a special UMC_INTERNAL cflag
137 * that is passed for caches created during initialization. It
138 * is illegal for a user to try to create a UMC_INTERNAL cache.
139 * This allows initialization to proceed, but any other
140 * umem_cache_create()s will block by calling umem_init().
142 * * Since umem_null_cache has a 1-element cache_cpu, it's cache_cpu_mask
143 * is always zero. umem_cache_alloc uses cp->cache_cpu_mask to
144 * mask the cpu number. This prevents a race between grabbing a
145 * cache pointer out of umem_alloc_table and growing the cpu array.
148 * 3. CPU handling
149 * ---------------
150 * kmem uses the CPU's sequence number to determine which "cpu cache" to
151 * use for an allocation. Currently, there is no way to get the sequence
152 * number in userspace.
154 * umem keeps track of cpu information in umem_cpus, an array of umem_max_ncpus
155 * umem_cpu_t structures. CURCPU() is a a "hint" function, which we then mask
156 * with either umem_cpu_mask or cp->cache_cpu_mask to find the actual "cpu" id.
157 * The mechanics of this is all in the CPU(mask) macro.
159 * Currently, umem uses _lwp_self() as its hint.
162 * 4. The update thread
163 * --------------------
164 * kmem uses a task queue, kmem_taskq, to do periodic maintenance on
165 * every kmem cache. vmem has a periodic timeout for hash table resizing.
166 * The kmem_taskq also provides a separate context for kmem_cache_reap()'s
167 * to be done in, avoiding issues of the context of kmem_reap() callers.
169 * Instead, umem has the concept of "updates", which are asynchronous requests
170 * for work attached to single caches. All caches with pending work are
171 * on a doubly linked list rooted at the umem_null_cache. All update state
172 * is protected by the umem_update_lock mutex, and the umem_update_cv is used
173 * for notification between threads.
175 * 4.1. Cache states with regards to updates
176 * -----------------------------------------
177 * A given cache is in one of three states:
179 * Inactive cache_uflags is zero, cache_u{next,prev} are NULL
181 * Work Requested cache_uflags is non-zero (but UMU_ACTIVE is not set),
182 * cache_u{next,prev} link the cache onto the global
183 * update list
185 * Active cache_uflags has UMU_ACTIVE set, cache_u{next,prev}
186 * are NULL, and either umem_update_thr or
187 * umem_st_update_thr are actively doing work on the
188 * cache.
190 * An update can be added to any cache in any state -- if the cache is
191 * Inactive, it transitions to being Work Requested. If the cache is
192 * Active, the worker will notice the new update and act on it before
193 * transitioning the cache to the Inactive state.
195 * If a cache is in the Active state, UMU_NOTIFY can be set, which asks
196 * the worker to broadcast the umem_update_cv when it has finished.
198 * 4.2. Update interface
199 * ---------------------
200 * umem_add_update() adds an update to a particular cache.
201 * umem_updateall() adds an update to all caches.
202 * umem_remove_updates() returns a cache to the Inactive state.
204 * umem_process_updates() process all caches in the Work Requested state.
206 * 4.3. Reaping
207 * ------------
208 * When umem_reap() is called (at the time of heap growth), it schedule
209 * UMU_REAP updates on every cache. It then checks to see if the update
210 * thread exists (umem_update_thr != 0). If it is, it broadcasts
211 * the umem_update_cv to wake the update thread up, and returns.
213 * If the update thread does not exist (umem_update_thr == 0), and the
214 * program currently has multiple threads, umem_reap() attempts to create
215 * a new update thread.
217 * If the process is not multithreaded, or the creation fails, umem_reap()
218 * calls umem_st_update() to do an inline update.
220 * 4.4. The update thread
221 * ----------------------
222 * The update thread spends most of its time in cond_timedwait() on the
223 * umem_update_cv. It wakes up under two conditions:
225 * * The timedwait times out, in which case it needs to run a global
226 * update, or
228 * * someone cond_broadcast(3THR)s the umem_update_cv, in which case
229 * it needs to check if there are any caches in the Work Requested
230 * state.
232 * When it is time for another global update, umem calls umem_cache_update()
233 * on every cache, then calls vmem_update(), which tunes the vmem structures.
234 * umem_cache_update() can request further work using umem_add_update().
236 * After any work from the global update completes, the update timer is
237 * reset to umem_reap_interval seconds in the future. This makes the
238 * updates self-throttling.
240 * Reaps are similarly self-throttling. After a UMU_REAP update has
241 * been scheduled on all caches, umem_reap() sets a flag and wakes up the
242 * update thread. The update thread notices the flag, and resets the
243 * reap state.
245 * 4.5. Inline updates
246 * -------------------
247 * If the update thread is not running, umem_st_update() is used instead. It
248 * immediately does a global update (as above), then calls
249 * umem_process_updates() to process both the reaps that umem_reap() added and
250 * any work generated by the global update. Afterwards, it resets the reap
251 * state.
253 * While the umem_st_update() is running, umem_st_update_thr holds the thread
254 * id of the thread performing the update.
256 * 4.6. Updates and fork1()
257 * ------------------------
258 * umem has fork1() pre- and post-handlers which lock up (and release) every
259 * mutex in every cache. They also lock up the umem_update_lock. Since
260 * fork1() only copies over a single lwp, other threads (including the update
261 * thread) could have been actively using a cache in the parent. This
262 * can lead to inconsistencies in the child process.
264 * Because we locked all of the mutexes, the only possible inconsistancies are:
266 * * a umem_cache_alloc() could leak its buffer.
268 * * a caller of umem_depot_alloc() could leak a magazine, and all the
269 * buffers contained in it.
271 * * a cache could be in the Active update state. In the child, there
272 * would be no thread actually working on it.
274 * * a umem_hash_rescale() could leak the new hash table.
276 * * a umem_magazine_resize() could be in progress.
278 * * a umem_reap() could be in progress.
280 * The memory leaks we can't do anything about. umem_release_child() resets
281 * the update state, moves any caches in the Active state to the Work Requested
282 * state. This might cause some updates to be re-run, but UMU_REAP and
283 * UMU_HASH_RESCALE are effectively idempotent, and the worst that can
284 * happen from umem_magazine_resize() is resizing the magazine twice in close
285 * succession.
287 * Much of the cleanup in umem_release_child() is skipped if
288 * umem_st_update_thr == thr_self(). This is so that applications which call
289 * fork1() from a cache callback does not break. Needless to say, any such
290 * application is tremendously broken.
293 * 5. KM_SLEEP v.s. UMEM_NOFAIL
294 * ----------------------------
295 * Allocations against kmem and vmem have two basic modes: SLEEP and
296 * NOSLEEP. A sleeping allocation is will go to sleep (waiting for
297 * more memory) instead of failing (returning NULL).
299 * SLEEP allocations presume an extremely multithreaded model, with
300 * a lot of allocation and deallocation activity. umem cannot presume
301 * that its clients have any particular type of behavior. Instead,
302 * it provides two types of allocations:
304 * * UMEM_DEFAULT, equivalent to KM_NOSLEEP (i.e. return NULL on
305 * failure)
307 * * UMEM_NOFAIL, which, on failure, calls an optional callback
308 * (registered with umem_nofail_callback()).
310 * The callback is invoked with no locks held, and can do an arbitrary
311 * amount of work. It then has a choice between:
313 * * Returning UMEM_CALLBACK_RETRY, which will cause the allocation
314 * to be restarted.
316 * * Returning UMEM_CALLBACK_EXIT(status), which will cause exit(2)
317 * to be invoked with status. If multiple threads attempt to do
318 * this simultaneously, only one will call exit(2).
320 * * Doing some kind of non-local exit (thr_exit(3thr), longjmp(3C),
321 * etc.)
323 * The default callback returns UMEM_CALLBACK_EXIT(255).
325 * To have these callbacks without risk of state corruption (in the case of
326 * a non-local exit), we have to ensure that the callbacks get invoked
327 * close to the original allocation, with no inconsistent state or held
328 * locks. The following steps are taken:
330 * * All invocations of vmem are VM_NOSLEEP.
332 * * All constructor callbacks (which can themselves to allocations)
333 * are passed UMEM_DEFAULT as their required allocation argument. This
334 * way, the constructor will fail, allowing the highest-level allocation
335 * invoke the nofail callback.
337 * If a constructor callback _does_ do a UMEM_NOFAIL allocation, and
338 * the nofail callback does a non-local exit, we will leak the
339 * partially-constructed buffer.
342 * 6. Lock Ordering
343 * ----------------
344 * umem has a few more locks than kmem does, mostly in the update path. The
345 * overall lock ordering (earlier locks must be acquired first) is:
347 * umem_init_lock
349 * vmem_list_lock
350 * vmem_nosleep_lock.vmpl_mutex
351 * vmem_t's:
352 * vm_lock
353 * sbrk_lock
355 * umem_cache_lock
356 * umem_update_lock
357 * umem_flags_lock
358 * umem_cache_t's:
359 * cache_cpu[*].cc_lock
360 * cache_depot_lock
361 * cache_lock
362 * umem_log_header_t's:
363 * lh_cpu[*].clh_lock
364 * lh_lock
366 * 7. Changing UMEM_MAXBUF
367 * -----------------------
369 * When changing UMEM_MAXBUF extra care has to be taken. It is not sufficient to
370 * simply increase this number. First, one must update the umem_alloc_table to
371 * have the appropriate number of entires based upon the new size. If this is
372 * not done, this will lead to libumem blowing an assertion.
374 * The second place to update, which is not required, is the umem_alloc_sizes.
375 * These determine the default cache sizes that we're going to support.
377 * 8. Per-thread caching for malloc/free
378 * -------------------------------------
380 * "Time is an illusion. Lunchtime doubly so." -- Douglas Adams
382 * Time may be an illusion, but CPU cycles aren't. While libumem is designed
383 * to be a highly scalable allocator, that scalability comes with a fixed cycle
384 * penalty even in the absence of contention: libumem must acquire (and release
385 * a per-CPU lock for each allocation. When contention is low and malloc(3C)
386 * frequency is high, this overhead can dominate execution time. To alleviate
387 * this, we allow for per-thread caching, a lock-free means of caching recent
388 * deallocations on a per-thread basis for use in satisfying subsequent calls
390 * In addition to improving performance, we also want to:
391 * * Minimize fragmentation
392 * * Not add additional memory overhead (no larger malloc tags)
394 * In the ulwp_t of each thread there is a private data structure called a
395 * umem_t that looks like:
397 * typedef struct {
398 * size_t tm_size;
399 * void *tm_roots[NTMEMBASE]; (Currently 16)
400 * } tmem_t;
402 * Each of the roots is treated as the head of a linked list. Each entry in the
403 * list can be thought of as a void ** which points to the next entry, until one
404 * of them points to NULL. If the head points to NULL, the list is empty.
406 * Each head corresponds to a umem_cache. Currently there is a linear mapping
407 * where the first root corresponds to the first cache, second root to the
408 * second cache, etc. This works because every allocation that malloc makes to
409 * umem_alloc that can be satisified by a umem_cache will actually return a
410 * number of bytes equal to the size of that cache. Because of this property and
411 * a one to one mapping between caches and roots we can guarantee that every
412 * entry in a given root's list will be able to satisfy the same requests as the
413 * corresponding cache.
415 * The choice of sixteen roots is based on where we believe we get the biggest
416 * bang for our buck. The per-thread caches will cache up to 256 byte and 448
417 * byte allocations on ILP32 and LP64 respectively. Generally applications plan
418 * more carefully how they do larger allocations than smaller ones. Therefore
419 * sixteen roots is a reasonable compromise between the amount of additional
420 * overhead per thread, and the likelihood of a program to benefit from it.
422 * The maximum amount of memory that can be cached in each thread is determined
423 * by the perthread_cache UMEM_OPTION. It corresponds to the umem_ptc_size
424 * value. The default value for this is currently 1 MB. Once umem_init() has
425 * finished this cannot be directly tuned without directly modifying the
426 * instruction text. If, upon calling free(3C), the amount cached would exceed
427 * this maximum, we instead actually return the buffer to the umem_cache instead
428 * of holding onto it in the thread.
430 * When a thread calls malloc(3C) it first determines which umem_cache it
431 * would be serviced by. If the allocation is not covered by ptcumem it goes to
432 * the normal malloc instead. Next, it checks if the tmem_root's list is empty
433 * or not. If it is empty, we instead go and allocate the memory from
434 * umem_alloc. If it is not empty, we remove the head of the list, set the
435 * appropriate malloc tags, and return that buffer.
437 * When a thread calls free(3C) it first looks at the malloc tag and if it is
438 * invalid or the allocation exceeds the largest cache in ptcumem and sends it
439 * off to the original free() to handle and clean up appropriately. Next, it
440 * checks if the allocation size is covered by one of the per-thread roots and
441 * if it isn't, it passes it off to the original free() to be released. Finally,
442 * before it inserts this buffer as the head, it checks if adding this buffer
443 * would put the thread over its maximum cache size. If it would, it frees the
444 * buffer back to the umem_cache. Otherwise it increments the threads total
445 * cached amount and makes the buffer the new head of the appropriate tm_root.
447 * When a thread exits, all of the buffers that it has in its per-thread cache
448 * will be passed to umem_free() and returned to the appropriate umem_cache.
450 * 8.1 Handling addition and removal of umem_caches
451 * ------------------------------------------------
453 * The set of umem_caches that are used to back calls to umem_alloc() and
454 * ultimately malloc() are determined at program execution time. The default set
455 * of caches is defined below in umem_alloc_sizes[]. Various umem_options exist
456 * that modify the set of caches: size_add, size_clear, and size_remove. Because
457 * the set of caches can only be determined once umem_init() has been called and
458 * we have the additional goals of minimizing additional fragmentation and
459 * metadata space overhead in the malloc tags, this forces our hand to go down a
460 * slightly different path: the one tread by fasttrap and trapstat.
462 * During umem_init we're going to dynamically construct a new version of
463 * malloc(3C) and free(3C) that utilizes the known cache sizes and then ensure
464 * that ptcmalloc and ptcfree replace malloc and free as entries in the plt. If
465 * ptcmalloc and ptcfree cannot handle a request, they simply jump to the
466 * original libumem implementations.
468 * After creating all of the umem_caches, but before making them visible,
469 * umem_cache_init checks that umem_genasm_supported is non-zero. This value is
470 * set by each architecture in $ARCH/umem_genasm.c to indicate whether or not
471 * they support this. If the value is zero, then this process is skipped.
472 * Similarly, if the cache size has been tuned to zero by UMEM_OPTIONS, then
473 * this is also skipped.
475 * In umem_genasm.c, each architecture's implementation implements a single
476 * function called umem_genasm() that is responsible for generating the
477 * appropriate versions of ptcmalloc() and ptcfree(), placing them in the
478 * appropriate memory location, and finally doing the switch from malloc() and
479 * free() to ptcmalloc() and ptcfree(). Once the change has been made, there is
480 * no way to switch back, short of restarting the program or modifying program
481 * text with mdb.
483 * 8.2 Modifying the Procedure Linkage Table (PLT)
484 * -----------------------------------------------
486 * The last piece of this puzzle is how we actually jam ptcmalloc() into the
487 * PLT. To handle this, we have defined two functions, _malloc and _free and
488 * used a special mapfile directive to place them into the a readable,
489 * writeable, and executable segment. Next we use a standard #pragma weak for
490 * malloc and free and direct them to those symbols. By default, those symbols
491 * have text defined as nops for our generated functions and when they're
492 * invoked, they jump to the default malloc and free functions.
494 * When umem_genasm() is called, it goes through and generates new malloc() and
495 * free() functions in the text provided for by _malloc and _free just after the
496 * jump. Once both have been successfully generated, umem_genasm() nops over the
497 * original jump so that we now call into the genasm versions of these
498 * functions.
500 * 8.3 umem_genasm()
501 * -----------------
503 * umem_genasm() is currently implemented for i386 and amd64. This section
504 * describes the theory behind the construction. For specific byte code to
505 * assembly instructions and niceish C and asm versions of ptcmalloc and
506 * ptcfree, see the individual umem_genasm.c files. The layout consists of the
507 * following sections:
509 * o. function-specfic prologue
510 * o. function-generic cache-selecting elements
511 * o. function-specific epilogue
513 * There are three different generic cache elements that exist:
515 * o. the last or only cache
516 * o. the intermediary caches if more than two
517 * o. the first one if more than one cache
519 * The malloc and free prologues and epilogues mimic the necessary portions of
520 * libumem's malloc and free. This includes things like checking for size
521 * overflow, setting and verifying the malloc tags.
523 * It is an important constraint that these functions do not make use of the
524 * call instruction. The only jmp outside of the individual functions is to the
525 * original libumem malloc and free respectively. Because doing things like
526 * setting errno or raising an internal umem error on improper malloc tags would
527 * require using calls into the PLT, whenever we encounter one of those cases we
528 * just jump to the original malloc and free functions reusing the same stack
529 * frame.
531 * Each of the above sections, the three caches, and the malloc and free
532 * prologue and epilogue are implemented as blocks of machine code with the
533 * corresponding assembly in comments. There are known offsets into each block
534 * that corresponds to locations of data and addresses that we only know at run
535 * time. These blocks are copied as necessary and the blanks filled in
536 * appropriately.
538 * As mentioned in section 8.2, the trampoline library uses specifically named
539 * variables to communicate the buffers and size to use. These variables are:
541 * o. umem_genasm_mptr: The buffer for ptcmalloc
542 * o. umem_genasm_msize: The size in bytes of the above buffer
543 * o. umem_genasm_fptr: The buffer for ptcfree
544 * o. umem_genasm_fsize: The size in bytes of the above buffer
546 * Finally, to enable the generated assembly we need to remove the previous jump
547 * to the actual malloc that exists at the start of these buffers. On x86, this
548 * is a five byte region. We could zero out the jump offset to be a jmp +0, but
549 * using nops can be faster. We specifically use a single five byte nop on x86
550 * as it is faster. When porting ptcumem to other architectures, the various
551 * opcode changes and options should be analyzed.
553 * 8.4 Interface with libc.so
554 * --------------------------
556 * The tmem_t structure as described in the beginning of section 8, is part of a
557 * private interface with libc. There are three functions that exist to cover
558 * this. They are not documented in man pages or header files. They are in the
559 * SUNWprivate part of libc's mapfile.
561 * o. _tmem_get_base(void)
563 * Returns the offset from the ulwp_t (curthread) to the tmem_t structure.
564 * This is a constant for all threads and is effectively a way to to do
565 * ::offsetof ulwp_t ul_tmem without having to know the specifics of the
566 * structure outside of libc.
568 * o. _tmem_get_nentries(void)
570 * Returns the number of roots that exist in the tmem_t. This is one part
571 * of the cap on the number of umem_caches that we can back with tmem.
573 * o. _tmem_set_cleanup(void (*)(void *, int))
575 * This sets a clean up handler that gets called back when a thread exits.
576 * There is one call per buffer, the void * is a pointer to the buffer on
577 * the list, the int is the index into the roots array for this buffer.
579 * 8.5 Tuning and disabling per-thread caching
580 * -------------------------------------------
582 * There is only one tunable for per-thread caching: the amount of memory each
583 * thread should be able to cache. This is specified via the perthread_cache
584 * UMEM_OPTION option. No attempt is made to to sanity check the specified
585 * value; the limit is simply the maximum value of a size_t.
587 * If the perthread_cache UMEM_OPTION is set to zero, nomagazines was requested,
588 * or UMEM_DEBUG has been turned on then we will never call into umem_genasm;
589 * however, the trampoline audit library and jump will still be in place.
591 * 8.6 Observing efficacy of per-thread caching
592 * --------------------------------------------
594 * To understand the efficacy of per-thread caching, use the ::umastat dcmd
595 * to see the percentage of capacity consumed on a per-thread basis, the
596 * degree to which each umem cache contributes to per-thread cache consumption,
597 * and the number of buffers in per-thread caches on a per-umem cache basis.
598 * If more detail is required, the specific buffers in a per-thread cache can
599 * be iterated over with the umem_ptc_* walkers. (These walkers allow an
600 * optional ulwp_t to be specified to iterate only over a particular thread's
601 * cache.)
604 #include <umem_impl.h>
605 #include <sys/vmem_impl_user.h>
606 #include "umem_base.h"
607 #include "vmem_base.h"
609 #include <sys/processor.h>
610 #include <sys/sysmacros.h>
612 #include <alloca.h>
613 #include <errno.h>
614 #include <limits.h>
615 #include <stdio.h>
616 #include <stdlib.h>
617 #include <string.h>
618 #include <strings.h>
619 #include <signal.h>
620 #include <unistd.h>
621 #include <atomic.h>
623 #include "misc.h"
625 #define UMEM_VMFLAGS(umflag) (VM_NOSLEEP)
627 size_t pagesize;
630 * The default set of caches to back umem_alloc().
631 * These sizes should be reevaluated periodically.
633 * We want allocations that are multiples of the coherency granularity
634 * (64 bytes) to be satisfied from a cache which is a multiple of 64
635 * bytes, so that it will be 64-byte aligned. For all multiples of 64,
636 * the next kmem_cache_size greater than or equal to it must be a
637 * multiple of 64.
639 * This table must be in sorted order, from smallest to highest. The
640 * highest slot must be UMEM_MAXBUF, and every slot afterwards must be
641 * zero.
643 static int umem_alloc_sizes[] = {
644 #ifdef _LP64
645 1 * 8,
646 1 * 16,
647 2 * 16,
648 3 * 16,
649 #else
650 1 * 8,
651 2 * 8,
652 3 * 8,
653 4 * 8, 5 * 8, 6 * 8, 7 * 8,
654 #endif
655 4 * 16, 5 * 16, 6 * 16, 7 * 16,
656 4 * 32, 5 * 32, 6 * 32, 7 * 32,
657 4 * 64, 5 * 64, 6 * 64, 7 * 64,
658 4 * 128, 5 * 128, 6 * 128, 7 * 128,
659 P2ALIGN(8192 / 7, 64),
660 P2ALIGN(8192 / 6, 64),
661 P2ALIGN(8192 / 5, 64),
662 P2ALIGN(8192 / 4, 64), 2304,
663 P2ALIGN(8192 / 3, 64),
664 P2ALIGN(8192 / 2, 64), 4544,
665 P2ALIGN(8192 / 1, 64), 9216,
666 4096 * 3,
667 8192 * 2, /* = 8192 * 2 */
668 24576, 32768, 40960, 49152, 57344, 65536, 73728, 81920,
669 90112, 98304, 106496, 114688, 122880, UMEM_MAXBUF, /* 128k */
670 /* 24 slots for user expansion */
671 0, 0, 0, 0, 0, 0, 0, 0,
672 0, 0, 0, 0, 0, 0, 0, 0,
673 0, 0, 0, 0, 0, 0, 0, 0,
675 #define NUM_ALLOC_SIZES (sizeof (umem_alloc_sizes) / sizeof (*umem_alloc_sizes))
677 static umem_magtype_t umem_magtype[] = {
678 { 1, 8, 3200, 65536 },
679 { 3, 16, 256, 32768 },
680 { 7, 32, 64, 16384 },
681 { 15, 64, 0, 8192 },
682 { 31, 64, 0, 4096 },
683 { 47, 64, 0, 2048 },
684 { 63, 64, 0, 1024 },
685 { 95, 64, 0, 512 },
686 { 143, 64, 0, 0 },
690 * umem tunables
692 uint32_t umem_max_ncpus; /* # of CPU caches. */
694 uint32_t umem_stack_depth = 15; /* # stack frames in a bufctl_audit */
695 uint32_t umem_reap_interval = 10; /* max reaping rate (seconds) */
696 uint_t umem_depot_contention = 2; /* max failed trylocks per real interval */
697 uint_t umem_abort = 1; /* whether to abort on error */
698 uint_t umem_output = 0; /* whether to write to standard error */
699 uint_t umem_logging = 0; /* umem_log_enter() override */
700 uint32_t umem_mtbf = 0; /* mean time between failures [default: off] */
701 size_t umem_transaction_log_size; /* size of transaction log */
702 size_t umem_content_log_size; /* size of content log */
703 size_t umem_failure_log_size; /* failure log [4 pages per CPU] */
704 size_t umem_slab_log_size; /* slab create log [4 pages per CPU] */
705 size_t umem_content_maxsave = 256; /* UMF_CONTENTS max bytes to log */
706 size_t umem_lite_minsize = 0; /* minimum buffer size for UMF_LITE */
707 size_t umem_lite_maxalign = 1024; /* maximum buffer alignment for UMF_LITE */
708 size_t umem_maxverify; /* maximum bytes to inspect in debug routines */
709 size_t umem_minfirewall; /* hardware-enforced redzone threshold */
710 size_t umem_ptc_size = 1048576; /* size of per-thread cache (in bytes) */
712 uint_t umem_flags = 0;
713 uintptr_t umem_tmem_off;
715 mutex_t umem_init_lock; /* locks initialization */
716 cond_t umem_init_cv; /* initialization CV */
717 thread_t umem_init_thr; /* thread initializing */
718 int umem_init_env_ready; /* environ pre-initted */
719 int umem_ready = UMEM_READY_STARTUP;
721 int umem_ptc_enabled; /* per-thread caching enabled */
723 static umem_nofail_callback_t *nofail_callback;
724 static mutex_t umem_nofail_exit_lock;
725 static thread_t umem_nofail_exit_thr;
727 static umem_cache_t *umem_slab_cache;
728 static umem_cache_t *umem_bufctl_cache;
729 static umem_cache_t *umem_bufctl_audit_cache;
731 mutex_t umem_flags_lock;
733 static vmem_t *heap_arena;
734 static vmem_alloc_t *heap_alloc;
735 static vmem_free_t *heap_free;
737 static vmem_t *umem_internal_arena;
738 static vmem_t *umem_cache_arena;
739 static vmem_t *umem_hash_arena;
740 static vmem_t *umem_log_arena;
741 static vmem_t *umem_oversize_arena;
742 static vmem_t *umem_va_arena;
743 static vmem_t *umem_default_arena;
744 static vmem_t *umem_firewall_va_arena;
745 static vmem_t *umem_firewall_arena;
747 vmem_t *umem_memalign_arena;
749 umem_log_header_t *umem_transaction_log;
750 umem_log_header_t *umem_content_log;
751 umem_log_header_t *umem_failure_log;
752 umem_log_header_t *umem_slab_log;
754 #define CPUHINT() (thr_self())
755 #define CPUHINT_MAX() INT_MAX
757 #define CPU(mask) (umem_cpus + (CPUHINT() & (mask)))
758 static umem_cpu_t umem_startup_cpu = { /* initial, single, cpu */
759 UMEM_CACHE_SIZE(0),
763 static uint32_t umem_cpu_mask = 0; /* global cpu mask */
764 static umem_cpu_t *umem_cpus = &umem_startup_cpu; /* cpu list */
766 volatile uint32_t umem_reaping;
768 thread_t umem_update_thr;
769 struct timeval umem_update_next; /* timeofday of next update */
770 volatile thread_t umem_st_update_thr; /* only used when single-thd */
772 #define IN_UPDATE() (thr_self() == umem_update_thr || \
773 thr_self() == umem_st_update_thr)
774 #define IN_REAP() IN_UPDATE()
776 mutex_t umem_update_lock; /* cache_u{next,prev,flags} */
777 cond_t umem_update_cv;
779 volatile hrtime_t umem_reap_next; /* min hrtime of next reap */
781 mutex_t umem_cache_lock; /* inter-cache linkage only */
783 #ifdef UMEM_STANDALONE
784 umem_cache_t umem_null_cache;
785 static const umem_cache_t umem_null_cache_template = {
786 #else
787 umem_cache_t umem_null_cache = {
788 #endif
789 0, 0, 0, 0, 0,
790 0, 0,
791 0, 0,
792 0, 0,
793 "invalid_cache",
794 0, 0,
795 NULL, NULL, NULL, NULL,
796 NULL,
797 0, 0, 0, 0,
798 &umem_null_cache, &umem_null_cache,
799 &umem_null_cache, &umem_null_cache,
801 DEFAULTMUTEX, /* start of slab layer */
802 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
803 &umem_null_cache.cache_nullslab,
805 &umem_null_cache,
806 NULL,
807 &umem_null_cache.cache_nullslab,
808 &umem_null_cache.cache_nullslab,
809 NULL,
813 NULL,
814 NULL,
815 DEFAULTMUTEX, /* start of depot layer */
816 NULL, {
817 NULL, 0, 0, 0, 0
818 }, {
819 NULL, 0, 0, 0, 0
820 }, {
822 DEFAULTMUTEX, /* start of CPU cache */
823 0, 0, NULL, NULL, -1, -1, 0
828 #define ALLOC_TABLE_4 \
829 &umem_null_cache, &umem_null_cache, &umem_null_cache, &umem_null_cache
831 #define ALLOC_TABLE_64 \
832 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
833 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
834 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, \
835 ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4, ALLOC_TABLE_4
837 #define ALLOC_TABLE_1024 \
838 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
839 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
840 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, \
841 ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64, ALLOC_TABLE_64
843 static umem_cache_t *umem_alloc_table[UMEM_MAXBUF >> UMEM_ALIGN_SHIFT] = {
844 ALLOC_TABLE_1024,
845 ALLOC_TABLE_1024,
846 ALLOC_TABLE_1024,
847 ALLOC_TABLE_1024,
848 ALLOC_TABLE_1024,
849 ALLOC_TABLE_1024,
850 ALLOC_TABLE_1024,
851 ALLOC_TABLE_1024,
852 ALLOC_TABLE_1024,
853 ALLOC_TABLE_1024,
854 ALLOC_TABLE_1024,
855 ALLOC_TABLE_1024,
856 ALLOC_TABLE_1024,
857 ALLOC_TABLE_1024,
858 ALLOC_TABLE_1024,
859 ALLOC_TABLE_1024
863 /* Used to constrain audit-log stack traces */
864 caddr_t umem_min_stack;
865 caddr_t umem_max_stack;
868 #define UMERR_MODIFIED 0 /* buffer modified while on freelist */
869 #define UMERR_REDZONE 1 /* redzone violation (write past end of buf) */
870 #define UMERR_DUPFREE 2 /* freed a buffer twice */
871 #define UMERR_BADADDR 3 /* freed a bad (unallocated) address */
872 #define UMERR_BADBUFTAG 4 /* buftag corrupted */
873 #define UMERR_BADBUFCTL 5 /* bufctl corrupted */
874 #define UMERR_BADCACHE 6 /* freed a buffer to the wrong cache */
875 #define UMERR_BADSIZE 7 /* alloc size != free size */
876 #define UMERR_BADBASE 8 /* buffer base address wrong */
878 struct {
879 hrtime_t ump_timestamp; /* timestamp of error */
880 int ump_error; /* type of umem error (UMERR_*) */
881 void *ump_buffer; /* buffer that induced abort */
882 void *ump_realbuf; /* real start address for buffer */
883 umem_cache_t *ump_cache; /* buffer's cache according to client */
884 umem_cache_t *ump_realcache; /* actual cache containing buffer */
885 umem_slab_t *ump_slab; /* slab accoring to umem_findslab() */
886 umem_bufctl_t *ump_bufctl; /* bufctl */
887 } umem_abort_info;
889 static void
890 copy_pattern(uint64_t pattern, void *buf_arg, size_t size)
892 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
893 uint64_t *buf = buf_arg;
895 while (buf < bufend)
896 *buf++ = pattern;
899 static void *
900 verify_pattern(uint64_t pattern, void *buf_arg, size_t size)
902 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
903 uint64_t *buf;
905 for (buf = buf_arg; buf < bufend; buf++)
906 if (*buf != pattern)
907 return (buf);
908 return (NULL);
911 static void *
912 verify_and_copy_pattern(uint64_t old, uint64_t new, void *buf_arg, size_t size)
914 uint64_t *bufend = (uint64_t *)((char *)buf_arg + size);
915 uint64_t *buf;
917 for (buf = buf_arg; buf < bufend; buf++) {
918 if (*buf != old) {
919 copy_pattern(old, buf_arg,
920 (char *)buf - (char *)buf_arg);
921 return (buf);
923 *buf = new;
926 return (NULL);
929 void
930 umem_cache_applyall(void (*func)(umem_cache_t *))
932 umem_cache_t *cp;
934 (void) mutex_lock(&umem_cache_lock);
935 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
936 cp = cp->cache_next)
937 func(cp);
938 (void) mutex_unlock(&umem_cache_lock);
941 static void
942 umem_add_update_unlocked(umem_cache_t *cp, int flags)
944 umem_cache_t *cnext, *cprev;
946 flags &= ~UMU_ACTIVE;
948 if (!flags)
949 return;
951 if (cp->cache_uflags & UMU_ACTIVE) {
952 cp->cache_uflags |= flags;
953 } else {
954 if (cp->cache_unext != NULL) {
955 ASSERT(cp->cache_uflags != 0);
956 cp->cache_uflags |= flags;
957 } else {
958 ASSERT(cp->cache_uflags == 0);
959 cp->cache_uflags = flags;
960 cp->cache_unext = cnext = &umem_null_cache;
961 cp->cache_uprev = cprev = umem_null_cache.cache_uprev;
962 cnext->cache_uprev = cp;
963 cprev->cache_unext = cp;
968 static void
969 umem_add_update(umem_cache_t *cp, int flags)
971 (void) mutex_lock(&umem_update_lock);
973 umem_add_update_unlocked(cp, flags);
975 if (!IN_UPDATE())
976 (void) cond_broadcast(&umem_update_cv);
978 (void) mutex_unlock(&umem_update_lock);
982 * Remove a cache from the update list, waiting for any in-progress work to
983 * complete first.
985 static void
986 umem_remove_updates(umem_cache_t *cp)
988 (void) mutex_lock(&umem_update_lock);
991 * Get it out of the active state
993 while (cp->cache_uflags & UMU_ACTIVE) {
994 int cancel_state;
996 ASSERT(cp->cache_unext == NULL);
998 cp->cache_uflags |= UMU_NOTIFY;
1001 * Make sure the update state is sane, before we wait
1003 ASSERT(umem_update_thr != 0 || umem_st_update_thr != 0);
1004 ASSERT(umem_update_thr != thr_self() &&
1005 umem_st_update_thr != thr_self());
1007 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE,
1008 &cancel_state);
1009 (void) cond_wait(&umem_update_cv, &umem_update_lock);
1010 (void) pthread_setcancelstate(cancel_state, NULL);
1013 * Get it out of the Work Requested state
1015 if (cp->cache_unext != NULL) {
1016 cp->cache_uprev->cache_unext = cp->cache_unext;
1017 cp->cache_unext->cache_uprev = cp->cache_uprev;
1018 cp->cache_uprev = cp->cache_unext = NULL;
1019 cp->cache_uflags = 0;
1022 * Make sure it is in the Inactive state
1024 ASSERT(cp->cache_unext == NULL && cp->cache_uflags == 0);
1025 (void) mutex_unlock(&umem_update_lock);
1028 static void
1029 umem_updateall(int flags)
1031 umem_cache_t *cp;
1034 * NOTE: To prevent deadlock, umem_cache_lock is always acquired first.
1036 * (umem_add_update is called from things run via umem_cache_applyall)
1038 (void) mutex_lock(&umem_cache_lock);
1039 (void) mutex_lock(&umem_update_lock);
1041 for (cp = umem_null_cache.cache_next; cp != &umem_null_cache;
1042 cp = cp->cache_next)
1043 umem_add_update_unlocked(cp, flags);
1045 if (!IN_UPDATE())
1046 (void) cond_broadcast(&umem_update_cv);
1048 (void) mutex_unlock(&umem_update_lock);
1049 (void) mutex_unlock(&umem_cache_lock);
1053 * Debugging support. Given a buffer address, find its slab.
1055 static umem_slab_t *
1056 umem_findslab(umem_cache_t *cp, void *buf)
1058 umem_slab_t *sp;
1060 (void) mutex_lock(&cp->cache_lock);
1061 for (sp = cp->cache_nullslab.slab_next;
1062 sp != &cp->cache_nullslab; sp = sp->slab_next) {
1063 if (UMEM_SLAB_MEMBER(sp, buf)) {
1064 (void) mutex_unlock(&cp->cache_lock);
1065 return (sp);
1068 (void) mutex_unlock(&cp->cache_lock);
1070 return (NULL);
1073 static void
1074 umem_error(int error, umem_cache_t *cparg, void *bufarg)
1076 umem_buftag_t *btp = NULL;
1077 umem_bufctl_t *bcp = NULL;
1078 umem_cache_t *cp = cparg;
1079 umem_slab_t *sp;
1080 uint64_t *off;
1081 void *buf = bufarg;
1083 int old_logging = umem_logging;
1085 umem_logging = 0; /* stop logging when a bad thing happens */
1087 umem_abort_info.ump_timestamp = gethrtime();
1089 sp = umem_findslab(cp, buf);
1090 if (sp == NULL) {
1091 for (cp = umem_null_cache.cache_prev; cp != &umem_null_cache;
1092 cp = cp->cache_prev) {
1093 if ((sp = umem_findslab(cp, buf)) != NULL)
1094 break;
1098 if (sp == NULL) {
1099 cp = NULL;
1100 error = UMERR_BADADDR;
1101 } else {
1102 if (cp != cparg)
1103 error = UMERR_BADCACHE;
1104 else
1105 buf = (char *)bufarg - ((uintptr_t)bufarg -
1106 (uintptr_t)sp->slab_base) % cp->cache_chunksize;
1107 if (buf != bufarg)
1108 error = UMERR_BADBASE;
1109 if (cp->cache_flags & UMF_BUFTAG)
1110 btp = UMEM_BUFTAG(cp, buf);
1111 if (cp->cache_flags & UMF_HASH) {
1112 (void) mutex_lock(&cp->cache_lock);
1113 for (bcp = *UMEM_HASH(cp, buf); bcp; bcp = bcp->bc_next)
1114 if (bcp->bc_addr == buf)
1115 break;
1116 (void) mutex_unlock(&cp->cache_lock);
1117 if (bcp == NULL && btp != NULL)
1118 bcp = btp->bt_bufctl;
1119 if (umem_findslab(cp->cache_bufctl_cache, bcp) ==
1120 NULL || P2PHASE((uintptr_t)bcp, UMEM_ALIGN) ||
1121 bcp->bc_addr != buf) {
1122 error = UMERR_BADBUFCTL;
1123 bcp = NULL;
1128 umem_abort_info.ump_error = error;
1129 umem_abort_info.ump_buffer = bufarg;
1130 umem_abort_info.ump_realbuf = buf;
1131 umem_abort_info.ump_cache = cparg;
1132 umem_abort_info.ump_realcache = cp;
1133 umem_abort_info.ump_slab = sp;
1134 umem_abort_info.ump_bufctl = bcp;
1136 umem_printf("umem allocator: ");
1138 switch (error) {
1140 case UMERR_MODIFIED:
1141 umem_printf("buffer modified after being freed\n");
1142 off = verify_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1143 if (off == NULL) /* shouldn't happen */
1144 off = buf;
1145 umem_printf("modification occurred at offset 0x%lx "
1146 "(0x%llx replaced by 0x%llx)\n",
1147 (uintptr_t)off - (uintptr_t)buf,
1148 (longlong_t)UMEM_FREE_PATTERN, (longlong_t)*off);
1149 break;
1151 case UMERR_REDZONE:
1152 umem_printf("redzone violation: write past end of buffer\n");
1153 break;
1155 case UMERR_BADADDR:
1156 umem_printf("invalid free: buffer not in cache\n");
1157 break;
1159 case UMERR_DUPFREE:
1160 umem_printf("duplicate free: buffer freed twice\n");
1161 break;
1163 case UMERR_BADBUFTAG:
1164 umem_printf("boundary tag corrupted\n");
1165 umem_printf("bcp ^ bxstat = %lx, should be %lx\n",
1166 (intptr_t)btp->bt_bufctl ^ btp->bt_bxstat,
1167 UMEM_BUFTAG_FREE);
1168 break;
1170 case UMERR_BADBUFCTL:
1171 umem_printf("bufctl corrupted\n");
1172 break;
1174 case UMERR_BADCACHE:
1175 umem_printf("buffer freed to wrong cache\n");
1176 umem_printf("buffer was allocated from %s,\n", cp->cache_name);
1177 umem_printf("caller attempting free to %s.\n",
1178 cparg->cache_name);
1179 break;
1181 case UMERR_BADSIZE:
1182 umem_printf("bad free: free size (%u) != alloc size (%u)\n",
1183 UMEM_SIZE_DECODE(((uint32_t *)btp)[0]),
1184 UMEM_SIZE_DECODE(((uint32_t *)btp)[1]));
1185 break;
1187 case UMERR_BADBASE:
1188 umem_printf("bad free: free address (%p) != alloc address "
1189 "(%p)\n", bufarg, buf);
1190 break;
1193 umem_printf("buffer=%p bufctl=%p cache: %s\n",
1194 bufarg, (void *)bcp, cparg->cache_name);
1196 if (bcp != NULL && (cp->cache_flags & UMF_AUDIT) &&
1197 error != UMERR_BADBUFCTL) {
1198 int d;
1199 timespec_t ts;
1200 hrtime_t diff;
1201 umem_bufctl_audit_t *bcap = (umem_bufctl_audit_t *)bcp;
1203 diff = umem_abort_info.ump_timestamp - bcap->bc_timestamp;
1204 ts.tv_sec = diff / NANOSEC;
1205 ts.tv_nsec = diff % NANOSEC;
1207 umem_printf("previous transaction on buffer %p:\n", buf);
1208 umem_printf("thread=%p time=T-%ld.%09ld slab=%p cache: %s\n",
1209 (void *)(intptr_t)bcap->bc_thread, ts.tv_sec, ts.tv_nsec,
1210 (void *)sp, cp->cache_name);
1211 for (d = 0; d < MIN(bcap->bc_depth, umem_stack_depth); d++) {
1212 (void) print_sym((void *)bcap->bc_stack[d]);
1213 umem_printf("\n");
1217 umem_err_recoverable("umem: heap corruption detected");
1219 umem_logging = old_logging; /* resume logging */
1222 void
1223 umem_nofail_callback(umem_nofail_callback_t *cb)
1225 nofail_callback = cb;
1228 static int
1229 umem_alloc_retry(umem_cache_t *cp, int umflag)
1231 if (cp == &umem_null_cache) {
1232 if (umem_init())
1233 return (1); /* retry */
1235 * Initialization failed. Do normal failure processing.
1238 if (umem_flags & UMF_CHECKNULL) {
1239 umem_err_recoverable("umem: out of heap space");
1241 if (umflag & UMEM_NOFAIL) {
1242 int def_result = UMEM_CALLBACK_EXIT(255);
1243 int result = def_result;
1244 umem_nofail_callback_t *callback = nofail_callback;
1246 if (callback != NULL)
1247 result = callback();
1249 if (result == UMEM_CALLBACK_RETRY)
1250 return (1);
1252 if ((result & ~0xFF) != UMEM_CALLBACK_EXIT(0)) {
1253 log_message("nofail callback returned %x\n", result);
1254 result = def_result;
1258 * only one thread will call exit
1260 if (umem_nofail_exit_thr == thr_self())
1261 umem_panic("recursive UMEM_CALLBACK_EXIT()\n");
1263 (void) mutex_lock(&umem_nofail_exit_lock);
1264 umem_nofail_exit_thr = thr_self();
1265 exit(result & 0xFF);
1266 /*NOTREACHED*/
1268 return (0);
1271 static umem_log_header_t *
1272 umem_log_init(size_t logsize)
1274 umem_log_header_t *lhp;
1275 int nchunks = 4 * umem_max_ncpus;
1276 size_t lhsize = offsetof(umem_log_header_t, lh_cpu[umem_max_ncpus]);
1277 int i;
1279 if (logsize == 0)
1280 return (NULL);
1283 * Make sure that lhp->lh_cpu[] is nicely aligned
1284 * to prevent false sharing of cache lines.
1286 lhsize = P2ROUNDUP(lhsize, UMEM_ALIGN);
1287 lhp = vmem_xalloc(umem_log_arena, lhsize, 64, P2NPHASE(lhsize, 64), 0,
1288 NULL, NULL, VM_NOSLEEP);
1289 if (lhp == NULL)
1290 goto fail;
1292 bzero(lhp, lhsize);
1294 (void) mutex_init(&lhp->lh_lock, USYNC_THREAD, NULL);
1295 lhp->lh_nchunks = nchunks;
1296 lhp->lh_chunksize = P2ROUNDUP(logsize / nchunks, PAGESIZE);
1297 if (lhp->lh_chunksize == 0)
1298 lhp->lh_chunksize = PAGESIZE;
1300 lhp->lh_base = vmem_alloc(umem_log_arena,
1301 lhp->lh_chunksize * nchunks, VM_NOSLEEP);
1302 if (lhp->lh_base == NULL)
1303 goto fail;
1305 lhp->lh_free = vmem_alloc(umem_log_arena,
1306 nchunks * sizeof (int), VM_NOSLEEP);
1307 if (lhp->lh_free == NULL)
1308 goto fail;
1310 bzero(lhp->lh_base, lhp->lh_chunksize * nchunks);
1312 for (i = 0; i < umem_max_ncpus; i++) {
1313 umem_cpu_log_header_t *clhp = &lhp->lh_cpu[i];
1314 (void) mutex_init(&clhp->clh_lock, USYNC_THREAD, NULL);
1315 clhp->clh_chunk = i;
1318 for (i = umem_max_ncpus; i < nchunks; i++)
1319 lhp->lh_free[i] = i;
1321 lhp->lh_head = umem_max_ncpus;
1322 lhp->lh_tail = 0;
1324 return (lhp);
1326 fail:
1327 if (lhp != NULL) {
1328 if (lhp->lh_base != NULL)
1329 vmem_free(umem_log_arena, lhp->lh_base,
1330 lhp->lh_chunksize * nchunks);
1332 vmem_xfree(umem_log_arena, lhp, lhsize);
1334 return (NULL);
1337 static void *
1338 umem_log_enter(umem_log_header_t *lhp, void *data, size_t size)
1340 void *logspace;
1341 umem_cpu_log_header_t *clhp =
1342 &lhp->lh_cpu[CPU(umem_cpu_mask)->cpu_number];
1344 if (lhp == NULL || umem_logging == 0)
1345 return (NULL);
1347 (void) mutex_lock(&clhp->clh_lock);
1348 clhp->clh_hits++;
1349 if (size > clhp->clh_avail) {
1350 (void) mutex_lock(&lhp->lh_lock);
1351 lhp->lh_hits++;
1352 lhp->lh_free[lhp->lh_tail] = clhp->clh_chunk;
1353 lhp->lh_tail = (lhp->lh_tail + 1) % lhp->lh_nchunks;
1354 clhp->clh_chunk = lhp->lh_free[lhp->lh_head];
1355 lhp->lh_head = (lhp->lh_head + 1) % lhp->lh_nchunks;
1356 clhp->clh_current = lhp->lh_base +
1357 clhp->clh_chunk * lhp->lh_chunksize;
1358 clhp->clh_avail = lhp->lh_chunksize;
1359 if (size > lhp->lh_chunksize)
1360 size = lhp->lh_chunksize;
1361 (void) mutex_unlock(&lhp->lh_lock);
1363 logspace = clhp->clh_current;
1364 clhp->clh_current += size;
1365 clhp->clh_avail -= size;
1366 bcopy(data, logspace, size);
1367 (void) mutex_unlock(&clhp->clh_lock);
1368 return (logspace);
1371 #define UMEM_AUDIT(lp, cp, bcp) \
1373 umem_bufctl_audit_t *_bcp = (umem_bufctl_audit_t *)(bcp); \
1374 _bcp->bc_timestamp = gethrtime(); \
1375 _bcp->bc_thread = thr_self(); \
1376 _bcp->bc_depth = getpcstack(_bcp->bc_stack, umem_stack_depth, \
1377 (cp != NULL) && (cp->cache_flags & UMF_CHECKSIGNAL)); \
1378 _bcp->bc_lastlog = umem_log_enter((lp), _bcp, \
1379 UMEM_BUFCTL_AUDIT_SIZE); \
1382 static void
1383 umem_log_event(umem_log_header_t *lp, umem_cache_t *cp,
1384 umem_slab_t *sp, void *addr)
1386 umem_bufctl_audit_t *bcp;
1387 UMEM_LOCAL_BUFCTL_AUDIT(&bcp);
1389 bzero(bcp, UMEM_BUFCTL_AUDIT_SIZE);
1390 bcp->bc_addr = addr;
1391 bcp->bc_slab = sp;
1392 bcp->bc_cache = cp;
1393 UMEM_AUDIT(lp, cp, bcp);
1397 * Create a new slab for cache cp.
1399 static umem_slab_t *
1400 umem_slab_create(umem_cache_t *cp, int umflag)
1402 size_t slabsize = cp->cache_slabsize;
1403 size_t chunksize = cp->cache_chunksize;
1404 int cache_flags = cp->cache_flags;
1405 size_t color, chunks;
1406 char *buf, *slab;
1407 umem_slab_t *sp;
1408 umem_bufctl_t *bcp;
1409 vmem_t *vmp = cp->cache_arena;
1411 color = cp->cache_color + cp->cache_align;
1412 if (color > cp->cache_maxcolor)
1413 color = cp->cache_mincolor;
1414 cp->cache_color = color;
1416 slab = vmem_alloc(vmp, slabsize, UMEM_VMFLAGS(umflag));
1418 if (slab == NULL)
1419 goto vmem_alloc_failure;
1421 ASSERT(P2PHASE((uintptr_t)slab, vmp->vm_quantum) == 0);
1423 if (!(cp->cache_cflags & UMC_NOTOUCH) &&
1424 (cp->cache_flags & UMF_DEADBEEF))
1425 copy_pattern(UMEM_UNINITIALIZED_PATTERN, slab, slabsize);
1427 if (cache_flags & UMF_HASH) {
1428 if ((sp = _umem_cache_alloc(umem_slab_cache, umflag)) == NULL)
1429 goto slab_alloc_failure;
1430 chunks = (slabsize - color) / chunksize;
1431 } else {
1432 sp = UMEM_SLAB(cp, slab);
1433 chunks = (slabsize - sizeof (umem_slab_t) - color) / chunksize;
1436 sp->slab_cache = cp;
1437 sp->slab_head = NULL;
1438 sp->slab_refcnt = 0;
1439 sp->slab_base = buf = slab + color;
1440 sp->slab_chunks = chunks;
1442 ASSERT(chunks > 0);
1443 while (chunks-- != 0) {
1444 if (cache_flags & UMF_HASH) {
1445 bcp = _umem_cache_alloc(cp->cache_bufctl_cache, umflag);
1446 if (bcp == NULL)
1447 goto bufctl_alloc_failure;
1448 if (cache_flags & UMF_AUDIT) {
1449 umem_bufctl_audit_t *bcap =
1450 (umem_bufctl_audit_t *)bcp;
1451 bzero(bcap, UMEM_BUFCTL_AUDIT_SIZE);
1452 bcap->bc_cache = cp;
1454 bcp->bc_addr = buf;
1455 bcp->bc_slab = sp;
1456 } else {
1457 bcp = UMEM_BUFCTL(cp, buf);
1459 if (cache_flags & UMF_BUFTAG) {
1460 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1461 btp->bt_redzone = UMEM_REDZONE_PATTERN;
1462 btp->bt_bufctl = bcp;
1463 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1464 if (cache_flags & UMF_DEADBEEF) {
1465 copy_pattern(UMEM_FREE_PATTERN, buf,
1466 cp->cache_verify);
1469 bcp->bc_next = sp->slab_head;
1470 sp->slab_head = bcp;
1471 buf += chunksize;
1474 umem_log_event(umem_slab_log, cp, sp, slab);
1476 return (sp);
1478 bufctl_alloc_failure:
1480 while ((bcp = sp->slab_head) != NULL) {
1481 sp->slab_head = bcp->bc_next;
1482 _umem_cache_free(cp->cache_bufctl_cache, bcp);
1484 _umem_cache_free(umem_slab_cache, sp);
1486 slab_alloc_failure:
1488 vmem_free(vmp, slab, slabsize);
1490 vmem_alloc_failure:
1492 umem_log_event(umem_failure_log, cp, NULL, NULL);
1493 atomic_add_64(&cp->cache_alloc_fail, 1);
1495 return (NULL);
1499 * Destroy a slab.
1501 static void
1502 umem_slab_destroy(umem_cache_t *cp, umem_slab_t *sp)
1504 vmem_t *vmp = cp->cache_arena;
1505 void *slab = (void *)P2ALIGN((uintptr_t)sp->slab_base, vmp->vm_quantum);
1507 if (cp->cache_flags & UMF_HASH) {
1508 umem_bufctl_t *bcp;
1509 while ((bcp = sp->slab_head) != NULL) {
1510 sp->slab_head = bcp->bc_next;
1511 _umem_cache_free(cp->cache_bufctl_cache, bcp);
1513 _umem_cache_free(umem_slab_cache, sp);
1515 vmem_free(vmp, slab, cp->cache_slabsize);
1519 * Allocate a raw (unconstructed) buffer from cp's slab layer.
1521 static void *
1522 umem_slab_alloc(umem_cache_t *cp, int umflag)
1524 umem_bufctl_t *bcp, **hash_bucket;
1525 umem_slab_t *sp;
1526 void *buf;
1528 (void) mutex_lock(&cp->cache_lock);
1529 cp->cache_slab_alloc++;
1530 sp = cp->cache_freelist;
1531 ASSERT(sp->slab_cache == cp);
1532 if (sp->slab_head == NULL) {
1534 * The freelist is empty. Create a new slab.
1536 (void) mutex_unlock(&cp->cache_lock);
1537 if (cp == &umem_null_cache)
1538 return (NULL);
1539 if ((sp = umem_slab_create(cp, umflag)) == NULL)
1540 return (NULL);
1541 (void) mutex_lock(&cp->cache_lock);
1542 cp->cache_slab_create++;
1543 if ((cp->cache_buftotal += sp->slab_chunks) > cp->cache_bufmax)
1544 cp->cache_bufmax = cp->cache_buftotal;
1545 sp->slab_next = cp->cache_freelist;
1546 sp->slab_prev = cp->cache_freelist->slab_prev;
1547 sp->slab_next->slab_prev = sp;
1548 sp->slab_prev->slab_next = sp;
1549 cp->cache_freelist = sp;
1552 sp->slab_refcnt++;
1553 ASSERT(sp->slab_refcnt <= sp->slab_chunks);
1556 * If we're taking the last buffer in the slab,
1557 * remove the slab from the cache's freelist.
1559 bcp = sp->slab_head;
1560 if ((sp->slab_head = bcp->bc_next) == NULL) {
1561 cp->cache_freelist = sp->slab_next;
1562 ASSERT(sp->slab_refcnt == sp->slab_chunks);
1565 if (cp->cache_flags & UMF_HASH) {
1567 * Add buffer to allocated-address hash table.
1569 buf = bcp->bc_addr;
1570 hash_bucket = UMEM_HASH(cp, buf);
1571 bcp->bc_next = *hash_bucket;
1572 *hash_bucket = bcp;
1573 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1574 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1576 } else {
1577 buf = UMEM_BUF(cp, bcp);
1580 ASSERT(UMEM_SLAB_MEMBER(sp, buf));
1582 (void) mutex_unlock(&cp->cache_lock);
1584 return (buf);
1588 * Free a raw (unconstructed) buffer to cp's slab layer.
1590 static void
1591 umem_slab_free(umem_cache_t *cp, void *buf)
1593 umem_slab_t *sp;
1594 umem_bufctl_t *bcp, **prev_bcpp;
1596 ASSERT(buf != NULL);
1598 (void) mutex_lock(&cp->cache_lock);
1599 cp->cache_slab_free++;
1601 if (cp->cache_flags & UMF_HASH) {
1603 * Look up buffer in allocated-address hash table.
1605 prev_bcpp = UMEM_HASH(cp, buf);
1606 while ((bcp = *prev_bcpp) != NULL) {
1607 if (bcp->bc_addr == buf) {
1608 *prev_bcpp = bcp->bc_next;
1609 sp = bcp->bc_slab;
1610 break;
1612 cp->cache_lookup_depth++;
1613 prev_bcpp = &bcp->bc_next;
1615 } else {
1616 bcp = UMEM_BUFCTL(cp, buf);
1617 sp = UMEM_SLAB(cp, buf);
1620 if (bcp == NULL || sp->slab_cache != cp || !UMEM_SLAB_MEMBER(sp, buf)) {
1621 (void) mutex_unlock(&cp->cache_lock);
1622 umem_error(UMERR_BADADDR, cp, buf);
1623 return;
1626 if ((cp->cache_flags & (UMF_AUDIT | UMF_BUFTAG)) == UMF_AUDIT) {
1627 if (cp->cache_flags & UMF_CONTENTS)
1628 ((umem_bufctl_audit_t *)bcp)->bc_contents =
1629 umem_log_enter(umem_content_log, buf,
1630 cp->cache_contents);
1631 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1635 * If this slab isn't currently on the freelist, put it there.
1637 if (sp->slab_head == NULL) {
1638 ASSERT(sp->slab_refcnt == sp->slab_chunks);
1639 ASSERT(cp->cache_freelist != sp);
1640 sp->slab_next->slab_prev = sp->slab_prev;
1641 sp->slab_prev->slab_next = sp->slab_next;
1642 sp->slab_next = cp->cache_freelist;
1643 sp->slab_prev = cp->cache_freelist->slab_prev;
1644 sp->slab_next->slab_prev = sp;
1645 sp->slab_prev->slab_next = sp;
1646 cp->cache_freelist = sp;
1649 bcp->bc_next = sp->slab_head;
1650 sp->slab_head = bcp;
1652 ASSERT(sp->slab_refcnt >= 1);
1653 if (--sp->slab_refcnt == 0) {
1655 * There are no outstanding allocations from this slab,
1656 * so we can reclaim the memory.
1658 sp->slab_next->slab_prev = sp->slab_prev;
1659 sp->slab_prev->slab_next = sp->slab_next;
1660 if (sp == cp->cache_freelist)
1661 cp->cache_freelist = sp->slab_next;
1662 cp->cache_slab_destroy++;
1663 cp->cache_buftotal -= sp->slab_chunks;
1664 (void) mutex_unlock(&cp->cache_lock);
1665 umem_slab_destroy(cp, sp);
1666 return;
1668 (void) mutex_unlock(&cp->cache_lock);
1671 static int
1672 umem_cache_alloc_debug(umem_cache_t *cp, void *buf, int umflag)
1674 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1675 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1676 uint32_t mtbf;
1677 int flags_nfatal;
1679 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1680 umem_error(UMERR_BADBUFTAG, cp, buf);
1681 return (-1);
1684 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_ALLOC;
1686 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1687 umem_error(UMERR_BADBUFCTL, cp, buf);
1688 return (-1);
1691 btp->bt_redzone = UMEM_REDZONE_PATTERN;
1693 if (cp->cache_flags & UMF_DEADBEEF) {
1694 if (verify_and_copy_pattern(UMEM_FREE_PATTERN,
1695 UMEM_UNINITIALIZED_PATTERN, buf, cp->cache_verify)) {
1696 umem_error(UMERR_MODIFIED, cp, buf);
1697 return (-1);
1701 if ((mtbf = umem_mtbf | cp->cache_mtbf) != 0 &&
1702 gethrtime() % mtbf == 0 &&
1703 (umflag & (UMEM_FATAL_FLAGS)) == 0) {
1704 umem_log_event(umem_failure_log, cp, NULL, NULL);
1705 } else {
1706 mtbf = 0;
1710 * We do not pass fatal flags on to the constructor. This prevents
1711 * leaking buffers in the event of a subordinate constructor failing.
1713 flags_nfatal = UMEM_DEFAULT;
1714 if (mtbf || (cp->cache_constructor != NULL &&
1715 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0)) {
1716 atomic_add_64(&cp->cache_alloc_fail, 1);
1717 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1718 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1719 umem_slab_free(cp, buf);
1720 return (-1);
1723 if (cp->cache_flags & UMF_AUDIT) {
1724 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1727 return (0);
1730 static int
1731 umem_cache_free_debug(umem_cache_t *cp, void *buf)
1733 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
1734 umem_bufctl_audit_t *bcp = (umem_bufctl_audit_t *)btp->bt_bufctl;
1735 umem_slab_t *sp;
1737 if (btp->bt_bxstat != ((intptr_t)bcp ^ UMEM_BUFTAG_ALLOC)) {
1738 if (btp->bt_bxstat == ((intptr_t)bcp ^ UMEM_BUFTAG_FREE)) {
1739 umem_error(UMERR_DUPFREE, cp, buf);
1740 return (-1);
1742 sp = umem_findslab(cp, buf);
1743 if (sp == NULL || sp->slab_cache != cp)
1744 umem_error(UMERR_BADADDR, cp, buf);
1745 else
1746 umem_error(UMERR_REDZONE, cp, buf);
1747 return (-1);
1750 btp->bt_bxstat = (intptr_t)bcp ^ UMEM_BUFTAG_FREE;
1752 if ((cp->cache_flags & UMF_HASH) && bcp->bc_addr != buf) {
1753 umem_error(UMERR_BADBUFCTL, cp, buf);
1754 return (-1);
1757 if (btp->bt_redzone != UMEM_REDZONE_PATTERN) {
1758 umem_error(UMERR_REDZONE, cp, buf);
1759 return (-1);
1762 if (cp->cache_flags & UMF_AUDIT) {
1763 if (cp->cache_flags & UMF_CONTENTS)
1764 bcp->bc_contents = umem_log_enter(umem_content_log,
1765 buf, cp->cache_contents);
1766 UMEM_AUDIT(umem_transaction_log, cp, bcp);
1769 if (cp->cache_destructor != NULL)
1770 cp->cache_destructor(buf, cp->cache_private);
1772 if (cp->cache_flags & UMF_DEADBEEF)
1773 copy_pattern(UMEM_FREE_PATTERN, buf, cp->cache_verify);
1775 return (0);
1779 * Free each object in magazine mp to cp's slab layer, and free mp itself.
1781 static void
1782 umem_magazine_destroy(umem_cache_t *cp, umem_magazine_t *mp, int nrounds)
1784 int round;
1786 ASSERT(cp->cache_next == NULL || IN_UPDATE());
1788 for (round = 0; round < nrounds; round++) {
1789 void *buf = mp->mag_round[round];
1791 if ((cp->cache_flags & UMF_DEADBEEF) &&
1792 verify_pattern(UMEM_FREE_PATTERN, buf,
1793 cp->cache_verify) != NULL) {
1794 umem_error(UMERR_MODIFIED, cp, buf);
1795 continue;
1798 if (!(cp->cache_flags & UMF_BUFTAG) &&
1799 cp->cache_destructor != NULL)
1800 cp->cache_destructor(buf, cp->cache_private);
1802 umem_slab_free(cp, buf);
1804 ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1805 _umem_cache_free(cp->cache_magtype->mt_cache, mp);
1809 * Allocate a magazine from the depot.
1811 static umem_magazine_t *
1812 umem_depot_alloc(umem_cache_t *cp, umem_maglist_t *mlp)
1814 umem_magazine_t *mp;
1817 * If we can't get the depot lock without contention,
1818 * update our contention count. We use the depot
1819 * contention rate to determine whether we need to
1820 * increase the magazine size for better scalability.
1822 if (mutex_trylock(&cp->cache_depot_lock) != 0) {
1823 (void) mutex_lock(&cp->cache_depot_lock);
1824 cp->cache_depot_contention++;
1827 if ((mp = mlp->ml_list) != NULL) {
1828 ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1829 mlp->ml_list = mp->mag_next;
1830 if (--mlp->ml_total < mlp->ml_min)
1831 mlp->ml_min = mlp->ml_total;
1832 mlp->ml_alloc++;
1835 (void) mutex_unlock(&cp->cache_depot_lock);
1837 return (mp);
1841 * Free a magazine to the depot.
1843 static void
1844 umem_depot_free(umem_cache_t *cp, umem_maglist_t *mlp, umem_magazine_t *mp)
1846 (void) mutex_lock(&cp->cache_depot_lock);
1847 ASSERT(UMEM_MAGAZINE_VALID(cp, mp));
1848 mp->mag_next = mlp->ml_list;
1849 mlp->ml_list = mp;
1850 mlp->ml_total++;
1851 (void) mutex_unlock(&cp->cache_depot_lock);
1855 * Update the working set statistics for cp's depot.
1857 static void
1858 umem_depot_ws_update(umem_cache_t *cp)
1860 (void) mutex_lock(&cp->cache_depot_lock);
1861 cp->cache_full.ml_reaplimit = cp->cache_full.ml_min;
1862 cp->cache_full.ml_min = cp->cache_full.ml_total;
1863 cp->cache_empty.ml_reaplimit = cp->cache_empty.ml_min;
1864 cp->cache_empty.ml_min = cp->cache_empty.ml_total;
1865 (void) mutex_unlock(&cp->cache_depot_lock);
1869 * Reap all magazines that have fallen out of the depot's working set.
1871 static void
1872 umem_depot_ws_reap(umem_cache_t *cp)
1874 long reap;
1875 umem_magazine_t *mp;
1877 ASSERT(cp->cache_next == NULL || IN_REAP());
1879 reap = MIN(cp->cache_full.ml_reaplimit, cp->cache_full.ml_min);
1880 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_full)) != NULL)
1881 umem_magazine_destroy(cp, mp, cp->cache_magtype->mt_magsize);
1883 reap = MIN(cp->cache_empty.ml_reaplimit, cp->cache_empty.ml_min);
1884 while (reap-- && (mp = umem_depot_alloc(cp, &cp->cache_empty)) != NULL)
1885 umem_magazine_destroy(cp, mp, 0);
1888 static void
1889 umem_cpu_reload(umem_cpu_cache_t *ccp, umem_magazine_t *mp, int rounds)
1891 ASSERT((ccp->cc_loaded == NULL && ccp->cc_rounds == -1) ||
1892 (ccp->cc_loaded && ccp->cc_rounds + rounds == ccp->cc_magsize));
1893 ASSERT(ccp->cc_magsize > 0);
1895 ccp->cc_ploaded = ccp->cc_loaded;
1896 ccp->cc_prounds = ccp->cc_rounds;
1897 ccp->cc_loaded = mp;
1898 ccp->cc_rounds = rounds;
1902 * Allocate a constructed object from cache cp.
1904 #pragma weak umem_cache_alloc = _umem_cache_alloc
1905 void *
1906 _umem_cache_alloc(umem_cache_t *cp, int umflag)
1908 umem_cpu_cache_t *ccp;
1909 umem_magazine_t *fmp;
1910 void *buf;
1911 int flags_nfatal;
1913 retry:
1914 ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
1915 (void) mutex_lock(&ccp->cc_lock);
1916 for (;;) {
1918 * If there's an object available in the current CPU's
1919 * loaded magazine, just take it and return.
1921 if (ccp->cc_rounds > 0) {
1922 buf = ccp->cc_loaded->mag_round[--ccp->cc_rounds];
1923 ccp->cc_alloc++;
1924 (void) mutex_unlock(&ccp->cc_lock);
1925 if ((ccp->cc_flags & UMF_BUFTAG) &&
1926 umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1927 if (umem_alloc_retry(cp, umflag)) {
1928 goto retry;
1931 return (NULL);
1933 return (buf);
1937 * The loaded magazine is empty. If the previously loaded
1938 * magazine was full, exchange them and try again.
1940 if (ccp->cc_prounds > 0) {
1941 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
1942 continue;
1946 * If the magazine layer is disabled, break out now.
1948 if (ccp->cc_magsize == 0)
1949 break;
1952 * Try to get a full magazine from the depot.
1954 fmp = umem_depot_alloc(cp, &cp->cache_full);
1955 if (fmp != NULL) {
1956 if (ccp->cc_ploaded != NULL)
1957 umem_depot_free(cp, &cp->cache_empty,
1958 ccp->cc_ploaded);
1959 umem_cpu_reload(ccp, fmp, ccp->cc_magsize);
1960 continue;
1964 * There are no full magazines in the depot,
1965 * so fall through to the slab layer.
1967 break;
1969 (void) mutex_unlock(&ccp->cc_lock);
1972 * We couldn't allocate a constructed object from the magazine layer,
1973 * so get a raw buffer from the slab layer and apply its constructor.
1975 buf = umem_slab_alloc(cp, umflag);
1977 if (buf == NULL) {
1978 if (cp == &umem_null_cache)
1979 return (NULL);
1980 if (umem_alloc_retry(cp, umflag)) {
1981 goto retry;
1984 return (NULL);
1987 if (cp->cache_flags & UMF_BUFTAG) {
1989 * Let umem_cache_alloc_debug() apply the constructor for us.
1991 if (umem_cache_alloc_debug(cp, buf, umflag) == -1) {
1992 if (umem_alloc_retry(cp, umflag)) {
1993 goto retry;
1995 return (NULL);
1997 return (buf);
2001 * We do not pass fatal flags on to the constructor. This prevents
2002 * leaking buffers in the event of a subordinate constructor failing.
2004 flags_nfatal = UMEM_DEFAULT;
2005 if (cp->cache_constructor != NULL &&
2006 cp->cache_constructor(buf, cp->cache_private, flags_nfatal) != 0) {
2007 atomic_add_64(&cp->cache_alloc_fail, 1);
2008 umem_slab_free(cp, buf);
2010 if (umem_alloc_retry(cp, umflag)) {
2011 goto retry;
2013 return (NULL);
2016 return (buf);
2020 * Free a constructed object to cache cp.
2022 #pragma weak umem_cache_free = _umem_cache_free
2023 void
2024 _umem_cache_free(umem_cache_t *cp, void *buf)
2026 umem_cpu_cache_t *ccp = UMEM_CPU_CACHE(cp, CPU(cp->cache_cpu_mask));
2027 umem_magazine_t *emp;
2028 umem_magtype_t *mtp;
2030 if (ccp->cc_flags & UMF_BUFTAG)
2031 if (umem_cache_free_debug(cp, buf) == -1)
2032 return;
2034 (void) mutex_lock(&ccp->cc_lock);
2035 for (;;) {
2037 * If there's a slot available in the current CPU's
2038 * loaded magazine, just put the object there and return.
2040 if ((uint_t)ccp->cc_rounds < ccp->cc_magsize) {
2041 ccp->cc_loaded->mag_round[ccp->cc_rounds++] = buf;
2042 ccp->cc_free++;
2043 (void) mutex_unlock(&ccp->cc_lock);
2044 return;
2048 * The loaded magazine is full. If the previously loaded
2049 * magazine was empty, exchange them and try again.
2051 if (ccp->cc_prounds == 0) {
2052 umem_cpu_reload(ccp, ccp->cc_ploaded, ccp->cc_prounds);
2053 continue;
2057 * If the magazine layer is disabled, break out now.
2059 if (ccp->cc_magsize == 0)
2060 break;
2063 * Try to get an empty magazine from the depot.
2065 emp = umem_depot_alloc(cp, &cp->cache_empty);
2066 if (emp != NULL) {
2067 if (ccp->cc_ploaded != NULL)
2068 umem_depot_free(cp, &cp->cache_full,
2069 ccp->cc_ploaded);
2070 umem_cpu_reload(ccp, emp, 0);
2071 continue;
2075 * There are no empty magazines in the depot,
2076 * so try to allocate a new one. We must drop all locks
2077 * across umem_cache_alloc() because lower layers may
2078 * attempt to allocate from this cache.
2080 mtp = cp->cache_magtype;
2081 (void) mutex_unlock(&ccp->cc_lock);
2082 emp = _umem_cache_alloc(mtp->mt_cache, UMEM_DEFAULT);
2083 (void) mutex_lock(&ccp->cc_lock);
2085 if (emp != NULL) {
2087 * We successfully allocated an empty magazine.
2088 * However, we had to drop ccp->cc_lock to do it,
2089 * so the cache's magazine size may have changed.
2090 * If so, free the magazine and try again.
2092 if (ccp->cc_magsize != mtp->mt_magsize) {
2093 (void) mutex_unlock(&ccp->cc_lock);
2094 _umem_cache_free(mtp->mt_cache, emp);
2095 (void) mutex_lock(&ccp->cc_lock);
2096 continue;
2100 * We got a magazine of the right size. Add it to
2101 * the depot and try the whole dance again.
2103 umem_depot_free(cp, &cp->cache_empty, emp);
2104 continue;
2108 * We couldn't allocate an empty magazine,
2109 * so fall through to the slab layer.
2111 break;
2113 (void) mutex_unlock(&ccp->cc_lock);
2116 * We couldn't free our constructed object to the magazine layer,
2117 * so apply its destructor and free it to the slab layer.
2118 * Note that if UMF_BUFTAG is in effect, umem_cache_free_debug()
2119 * will have already applied the destructor.
2121 if (!(cp->cache_flags & UMF_BUFTAG) && cp->cache_destructor != NULL)
2122 cp->cache_destructor(buf, cp->cache_private);
2124 umem_slab_free(cp, buf);
2127 #pragma weak umem_zalloc = _umem_zalloc
2128 void *
2129 _umem_zalloc(size_t size, int umflag)
2131 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
2132 void *buf;
2134 retry:
2135 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
2136 umem_cache_t *cp = umem_alloc_table[index];
2137 buf = _umem_cache_alloc(cp, umflag);
2138 if (buf != NULL) {
2139 if (cp->cache_flags & UMF_BUFTAG) {
2140 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
2141 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
2142 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
2144 bzero(buf, size);
2145 } else if (umem_alloc_retry(cp, umflag))
2146 goto retry;
2147 } else {
2148 buf = _umem_alloc(size, umflag); /* handles failure */
2149 if (buf != NULL)
2150 bzero(buf, size);
2152 return (buf);
2155 #pragma weak umem_alloc = _umem_alloc
2156 void *
2157 _umem_alloc(size_t size, int umflag)
2159 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
2160 void *buf;
2161 umem_alloc_retry:
2162 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
2163 umem_cache_t *cp = umem_alloc_table[index];
2164 buf = _umem_cache_alloc(cp, umflag);
2165 if ((cp->cache_flags & UMF_BUFTAG) && buf != NULL) {
2166 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
2167 ((uint8_t *)buf)[size] = UMEM_REDZONE_BYTE;
2168 ((uint32_t *)btp)[1] = UMEM_SIZE_ENCODE(size);
2170 if (buf == NULL && umem_alloc_retry(cp, umflag))
2171 goto umem_alloc_retry;
2172 return (buf);
2174 if (size == 0)
2175 return (NULL);
2176 if (umem_oversize_arena == NULL) {
2177 if (umem_init())
2178 ASSERT(umem_oversize_arena != NULL);
2179 else
2180 return (NULL);
2182 buf = vmem_alloc(umem_oversize_arena, size, UMEM_VMFLAGS(umflag));
2183 if (buf == NULL) {
2184 umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
2185 if (umem_alloc_retry(NULL, umflag))
2186 goto umem_alloc_retry;
2188 return (buf);
2191 #pragma weak umem_alloc_align = _umem_alloc_align
2192 void *
2193 _umem_alloc_align(size_t size, size_t align, int umflag)
2195 void *buf;
2197 if (size == 0)
2198 return (NULL);
2199 if ((align & (align - 1)) != 0)
2200 return (NULL);
2201 if (align < UMEM_ALIGN)
2202 align = UMEM_ALIGN;
2204 umem_alloc_align_retry:
2205 if (umem_memalign_arena == NULL) {
2206 if (umem_init())
2207 ASSERT(umem_oversize_arena != NULL);
2208 else
2209 return (NULL);
2211 buf = vmem_xalloc(umem_memalign_arena, size, align, 0, 0, NULL, NULL,
2212 UMEM_VMFLAGS(umflag));
2213 if (buf == NULL) {
2214 umem_log_event(umem_failure_log, NULL, NULL, (void *)size);
2215 if (umem_alloc_retry(NULL, umflag))
2216 goto umem_alloc_align_retry;
2218 return (buf);
2221 #pragma weak umem_free = _umem_free
2222 void
2223 _umem_free(void *buf, size_t size)
2225 size_t index = (size - 1) >> UMEM_ALIGN_SHIFT;
2227 if (index < UMEM_MAXBUF >> UMEM_ALIGN_SHIFT) {
2228 umem_cache_t *cp = umem_alloc_table[index];
2229 if (cp->cache_flags & UMF_BUFTAG) {
2230 umem_buftag_t *btp = UMEM_BUFTAG(cp, buf);
2231 uint32_t *ip = (uint32_t *)btp;
2232 if (ip[1] != UMEM_SIZE_ENCODE(size)) {
2233 if (*(uint64_t *)buf == UMEM_FREE_PATTERN) {
2234 umem_error(UMERR_DUPFREE, cp, buf);
2235 return;
2237 if (UMEM_SIZE_VALID(ip[1])) {
2238 ip[0] = UMEM_SIZE_ENCODE(size);
2239 umem_error(UMERR_BADSIZE, cp, buf);
2240 } else {
2241 umem_error(UMERR_REDZONE, cp, buf);
2243 return;
2245 if (((uint8_t *)buf)[size] != UMEM_REDZONE_BYTE) {
2246 umem_error(UMERR_REDZONE, cp, buf);
2247 return;
2249 btp->bt_redzone = UMEM_REDZONE_PATTERN;
2251 _umem_cache_free(cp, buf);
2252 } else {
2253 if (buf == NULL && size == 0)
2254 return;
2255 vmem_free(umem_oversize_arena, buf, size);
2259 #pragma weak umem_free_align = _umem_free_align
2260 void
2261 _umem_free_align(void *buf, size_t size)
2263 if (buf == NULL && size == 0)
2264 return;
2265 vmem_xfree(umem_memalign_arena, buf, size);
2268 static void *
2269 umem_firewall_va_alloc(vmem_t *vmp, size_t size, int vmflag)
2271 size_t realsize = size + vmp->vm_quantum;
2274 * Annoying edge case: if 'size' is just shy of ULONG_MAX, adding
2275 * vm_quantum will cause integer wraparound. Check for this, and
2276 * blow off the firewall page in this case. Note that such a
2277 * giant allocation (the entire address space) can never be
2278 * satisfied, so it will either fail immediately (VM_NOSLEEP)
2279 * or sleep forever (VM_SLEEP). Thus, there is no need for a
2280 * corresponding check in umem_firewall_va_free().
2282 if (realsize < size)
2283 realsize = size;
2285 return (vmem_alloc(vmp, realsize, vmflag | VM_NEXTFIT));
2288 static void
2289 umem_firewall_va_free(vmem_t *vmp, void *addr, size_t size)
2291 vmem_free(vmp, addr, size + vmp->vm_quantum);
2295 * Reclaim all unused memory from a cache.
2297 static void
2298 umem_cache_reap(umem_cache_t *cp)
2301 * Ask the cache's owner to free some memory if possible.
2302 * The idea is to handle things like the inode cache, which
2303 * typically sits on a bunch of memory that it doesn't truly
2304 * *need*. Reclaim policy is entirely up to the owner; this
2305 * callback is just an advisory plea for help.
2307 if (cp->cache_reclaim != NULL)
2308 cp->cache_reclaim(cp->cache_private);
2310 umem_depot_ws_reap(cp);
2314 * Purge all magazines from a cache and set its magazine limit to zero.
2315 * All calls are serialized by being done by the update thread, except for
2316 * the final call from umem_cache_destroy().
2318 static void
2319 umem_cache_magazine_purge(umem_cache_t *cp)
2321 umem_cpu_cache_t *ccp;
2322 umem_magazine_t *mp, *pmp;
2323 int rounds, prounds, cpu_seqid;
2325 ASSERT(cp->cache_next == NULL || IN_UPDATE());
2327 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2328 ccp = &cp->cache_cpu[cpu_seqid];
2330 (void) mutex_lock(&ccp->cc_lock);
2331 mp = ccp->cc_loaded;
2332 pmp = ccp->cc_ploaded;
2333 rounds = ccp->cc_rounds;
2334 prounds = ccp->cc_prounds;
2335 ccp->cc_loaded = NULL;
2336 ccp->cc_ploaded = NULL;
2337 ccp->cc_rounds = -1;
2338 ccp->cc_prounds = -1;
2339 ccp->cc_magsize = 0;
2340 (void) mutex_unlock(&ccp->cc_lock);
2342 if (mp)
2343 umem_magazine_destroy(cp, mp, rounds);
2344 if (pmp)
2345 umem_magazine_destroy(cp, pmp, prounds);
2349 * Updating the working set statistics twice in a row has the
2350 * effect of setting the working set size to zero, so everything
2351 * is eligible for reaping.
2353 umem_depot_ws_update(cp);
2354 umem_depot_ws_update(cp);
2356 umem_depot_ws_reap(cp);
2360 * Enable per-cpu magazines on a cache.
2362 static void
2363 umem_cache_magazine_enable(umem_cache_t *cp)
2365 int cpu_seqid;
2367 if (cp->cache_flags & UMF_NOMAGAZINE)
2368 return;
2370 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2371 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2372 (void) mutex_lock(&ccp->cc_lock);
2373 ccp->cc_magsize = cp->cache_magtype->mt_magsize;
2374 (void) mutex_unlock(&ccp->cc_lock);
2380 * Recompute a cache's magazine size. The trade-off is that larger magazines
2381 * provide a higher transfer rate with the depot, while smaller magazines
2382 * reduce memory consumption. Magazine resizing is an expensive operation;
2383 * it should not be done frequently.
2385 * Changes to the magazine size are serialized by only having one thread
2386 * doing updates. (the update thread)
2388 * Note: at present this only grows the magazine size. It might be useful
2389 * to allow shrinkage too.
2391 static void
2392 umem_cache_magazine_resize(umem_cache_t *cp)
2394 umem_magtype_t *mtp = cp->cache_magtype;
2396 ASSERT(IN_UPDATE());
2398 if (cp->cache_chunksize < mtp->mt_maxbuf) {
2399 umem_cache_magazine_purge(cp);
2400 (void) mutex_lock(&cp->cache_depot_lock);
2401 cp->cache_magtype = ++mtp;
2402 cp->cache_depot_contention_prev =
2403 cp->cache_depot_contention + INT_MAX;
2404 (void) mutex_unlock(&cp->cache_depot_lock);
2405 umem_cache_magazine_enable(cp);
2410 * Rescale a cache's hash table, so that the table size is roughly the
2411 * cache size. We want the average lookup time to be extremely small.
2413 static void
2414 umem_hash_rescale(umem_cache_t *cp)
2416 umem_bufctl_t **old_table, **new_table, *bcp;
2417 size_t old_size, new_size, h;
2419 ASSERT(IN_UPDATE());
2421 new_size = MAX(UMEM_HASH_INITIAL,
2422 1 << (highbit(3 * cp->cache_buftotal + 4) - 2));
2423 old_size = cp->cache_hash_mask + 1;
2425 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
2426 return;
2428 new_table = vmem_alloc(umem_hash_arena, new_size * sizeof (void *),
2429 VM_NOSLEEP);
2430 if (new_table == NULL)
2431 return;
2432 bzero(new_table, new_size * sizeof (void *));
2434 (void) mutex_lock(&cp->cache_lock);
2436 old_size = cp->cache_hash_mask + 1;
2437 old_table = cp->cache_hash_table;
2439 cp->cache_hash_mask = new_size - 1;
2440 cp->cache_hash_table = new_table;
2441 cp->cache_rescale++;
2443 for (h = 0; h < old_size; h++) {
2444 bcp = old_table[h];
2445 while (bcp != NULL) {
2446 void *addr = bcp->bc_addr;
2447 umem_bufctl_t *next_bcp = bcp->bc_next;
2448 umem_bufctl_t **hash_bucket = UMEM_HASH(cp, addr);
2449 bcp->bc_next = *hash_bucket;
2450 *hash_bucket = bcp;
2451 bcp = next_bcp;
2455 (void) mutex_unlock(&cp->cache_lock);
2457 vmem_free(umem_hash_arena, old_table, old_size * sizeof (void *));
2461 * Perform periodic maintenance on a cache: hash rescaling,
2462 * depot working-set update, and magazine resizing.
2464 void
2465 umem_cache_update(umem_cache_t *cp)
2467 int update_flags = 0;
2469 ASSERT(MUTEX_HELD(&umem_cache_lock));
2472 * If the cache has become much larger or smaller than its hash table,
2473 * fire off a request to rescale the hash table.
2475 (void) mutex_lock(&cp->cache_lock);
2477 if ((cp->cache_flags & UMF_HASH) &&
2478 (cp->cache_buftotal > (cp->cache_hash_mask << 1) ||
2479 (cp->cache_buftotal < (cp->cache_hash_mask >> 1) &&
2480 cp->cache_hash_mask > UMEM_HASH_INITIAL)))
2481 update_flags |= UMU_HASH_RESCALE;
2483 (void) mutex_unlock(&cp->cache_lock);
2486 * Update the depot working set statistics.
2488 umem_depot_ws_update(cp);
2491 * If there's a lot of contention in the depot,
2492 * increase the magazine size.
2494 (void) mutex_lock(&cp->cache_depot_lock);
2496 if (cp->cache_chunksize < cp->cache_magtype->mt_maxbuf &&
2497 (int)(cp->cache_depot_contention -
2498 cp->cache_depot_contention_prev) > umem_depot_contention)
2499 update_flags |= UMU_MAGAZINE_RESIZE;
2501 cp->cache_depot_contention_prev = cp->cache_depot_contention;
2503 (void) mutex_unlock(&cp->cache_depot_lock);
2505 if (update_flags)
2506 umem_add_update(cp, update_flags);
2510 * Runs all pending updates.
2512 * The update lock must be held on entrance, and will be held on exit.
2514 void
2515 umem_process_updates(void)
2517 ASSERT(MUTEX_HELD(&umem_update_lock));
2519 while (umem_null_cache.cache_unext != &umem_null_cache) {
2520 int notify = 0;
2521 umem_cache_t *cp = umem_null_cache.cache_unext;
2523 cp->cache_uprev->cache_unext = cp->cache_unext;
2524 cp->cache_unext->cache_uprev = cp->cache_uprev;
2525 cp->cache_uprev = cp->cache_unext = NULL;
2527 ASSERT(!(cp->cache_uflags & UMU_ACTIVE));
2529 while (cp->cache_uflags) {
2530 int uflags = (cp->cache_uflags |= UMU_ACTIVE);
2531 (void) mutex_unlock(&umem_update_lock);
2534 * The order here is important. Each step can speed up
2535 * later steps.
2538 if (uflags & UMU_HASH_RESCALE)
2539 umem_hash_rescale(cp);
2541 if (uflags & UMU_MAGAZINE_RESIZE)
2542 umem_cache_magazine_resize(cp);
2544 if (uflags & UMU_REAP)
2545 umem_cache_reap(cp);
2547 (void) mutex_lock(&umem_update_lock);
2550 * check if anyone has requested notification
2552 if (cp->cache_uflags & UMU_NOTIFY) {
2553 uflags |= UMU_NOTIFY;
2554 notify = 1;
2556 cp->cache_uflags &= ~uflags;
2558 if (notify)
2559 (void) cond_broadcast(&umem_update_cv);
2563 #ifndef UMEM_STANDALONE
2564 static void
2565 umem_st_update(void)
2567 ASSERT(MUTEX_HELD(&umem_update_lock));
2568 ASSERT(umem_update_thr == 0 && umem_st_update_thr == 0);
2570 umem_st_update_thr = thr_self();
2572 (void) mutex_unlock(&umem_update_lock);
2574 vmem_update(NULL);
2575 umem_cache_applyall(umem_cache_update);
2577 (void) mutex_lock(&umem_update_lock);
2579 umem_process_updates(); /* does all of the requested work */
2581 umem_reap_next = gethrtime() +
2582 (hrtime_t)umem_reap_interval * NANOSEC;
2584 umem_reaping = UMEM_REAP_DONE;
2586 umem_st_update_thr = 0;
2588 #endif
2591 * Reclaim all unused memory from all caches. Called from vmem when memory
2592 * gets tight. Must be called with no locks held.
2594 * This just requests a reap on all caches, and notifies the update thread.
2596 void
2597 umem_reap(void)
2599 #ifndef UMEM_STANDALONE
2600 extern int __nthreads(void);
2601 #endif
2603 if (umem_ready != UMEM_READY || umem_reaping != UMEM_REAP_DONE ||
2604 gethrtime() < umem_reap_next)
2605 return;
2607 (void) mutex_lock(&umem_update_lock);
2609 if (umem_reaping != UMEM_REAP_DONE || gethrtime() < umem_reap_next) {
2610 (void) mutex_unlock(&umem_update_lock);
2611 return;
2613 umem_reaping = UMEM_REAP_ADDING; /* lock out other reaps */
2615 (void) mutex_unlock(&umem_update_lock);
2617 umem_updateall(UMU_REAP);
2619 (void) mutex_lock(&umem_update_lock);
2621 umem_reaping = UMEM_REAP_ACTIVE;
2623 /* Standalone is single-threaded */
2624 #ifndef UMEM_STANDALONE
2625 if (umem_update_thr == 0) {
2627 * The update thread does not exist. If the process is
2628 * multi-threaded, create it. If not, or the creation fails,
2629 * do the update processing inline.
2631 ASSERT(umem_st_update_thr == 0);
2633 if (__nthreads() <= 1 || umem_create_update_thread() == 0)
2634 umem_st_update();
2637 (void) cond_broadcast(&umem_update_cv); /* wake up the update thread */
2638 #endif
2640 (void) mutex_unlock(&umem_update_lock);
2643 umem_cache_t *
2644 umem_cache_create(
2645 char *name, /* descriptive name for this cache */
2646 size_t bufsize, /* size of the objects it manages */
2647 size_t align, /* required object alignment */
2648 umem_constructor_t *constructor, /* object constructor */
2649 umem_destructor_t *destructor, /* object destructor */
2650 umem_reclaim_t *reclaim, /* memory reclaim callback */
2651 void *private, /* pass-thru arg for constr/destr/reclaim */
2652 vmem_t *vmp, /* vmem source for slab allocation */
2653 int cflags) /* cache creation flags */
2655 int cpu_seqid;
2656 size_t chunksize;
2657 umem_cache_t *cp, *cnext, *cprev;
2658 umem_magtype_t *mtp;
2659 size_t csize;
2660 size_t phase;
2663 * The init thread is allowed to create internal and quantum caches.
2665 * Other threads must wait until until initialization is complete.
2667 if (umem_init_thr == thr_self())
2668 ASSERT((cflags & (UMC_INTERNAL | UMC_QCACHE)) != 0);
2669 else {
2670 ASSERT(!(cflags & UMC_INTERNAL));
2671 if (umem_ready != UMEM_READY && umem_init() == 0) {
2672 errno = EAGAIN;
2673 return (NULL);
2677 csize = UMEM_CACHE_SIZE(umem_max_ncpus);
2678 phase = P2NPHASE(csize, UMEM_CPU_CACHE_SIZE);
2680 if (vmp == NULL)
2681 vmp = umem_default_arena;
2683 ASSERT(P2PHASE(phase, UMEM_ALIGN) == 0);
2686 * Check that the arguments are reasonable
2688 if ((align & (align - 1)) != 0 || align > vmp->vm_quantum ||
2689 ((cflags & UMC_NOHASH) && (cflags & UMC_NOTOUCH)) ||
2690 name == NULL || bufsize == 0) {
2691 errno = EINVAL;
2692 return (NULL);
2696 * If align == 0, we set it to the minimum required alignment.
2698 * If align < UMEM_ALIGN, we round it up to UMEM_ALIGN, unless
2699 * UMC_NOTOUCH was passed.
2701 if (align == 0) {
2702 if (P2ROUNDUP(bufsize, UMEM_ALIGN) >= UMEM_SECOND_ALIGN)
2703 align = UMEM_SECOND_ALIGN;
2704 else
2705 align = UMEM_ALIGN;
2706 } else if (align < UMEM_ALIGN && (cflags & UMC_NOTOUCH) == 0)
2707 align = UMEM_ALIGN;
2711 * Get a umem_cache structure. We arrange that cp->cache_cpu[]
2712 * is aligned on a UMEM_CPU_CACHE_SIZE boundary to prevent
2713 * false sharing of per-CPU data.
2715 cp = vmem_xalloc(umem_cache_arena, csize, UMEM_CPU_CACHE_SIZE, phase,
2716 0, NULL, NULL, VM_NOSLEEP);
2718 if (cp == NULL) {
2719 errno = EAGAIN;
2720 return (NULL);
2723 bzero(cp, csize);
2725 (void) mutex_lock(&umem_flags_lock);
2726 if (umem_flags & UMF_RANDOMIZE)
2727 umem_flags = (((umem_flags | ~UMF_RANDOM) + 1) & UMF_RANDOM) |
2728 UMF_RANDOMIZE;
2729 cp->cache_flags = umem_flags | (cflags & UMF_DEBUG);
2730 (void) mutex_unlock(&umem_flags_lock);
2733 * Make sure all the various flags are reasonable.
2735 if (cp->cache_flags & UMF_LITE) {
2736 if (bufsize >= umem_lite_minsize &&
2737 align <= umem_lite_maxalign &&
2738 P2PHASE(bufsize, umem_lite_maxalign) != 0) {
2739 cp->cache_flags |= UMF_BUFTAG;
2740 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2741 } else {
2742 cp->cache_flags &= ~UMF_DEBUG;
2746 if ((cflags & UMC_QCACHE) && (cp->cache_flags & UMF_AUDIT))
2747 cp->cache_flags |= UMF_NOMAGAZINE;
2749 if (cflags & UMC_NODEBUG)
2750 cp->cache_flags &= ~UMF_DEBUG;
2752 if (cflags & UMC_NOTOUCH)
2753 cp->cache_flags &= ~UMF_TOUCH;
2755 if (cflags & UMC_NOHASH)
2756 cp->cache_flags &= ~(UMF_AUDIT | UMF_FIREWALL);
2758 if (cflags & UMC_NOMAGAZINE)
2759 cp->cache_flags |= UMF_NOMAGAZINE;
2761 if ((cp->cache_flags & UMF_AUDIT) && !(cflags & UMC_NOTOUCH))
2762 cp->cache_flags |= UMF_REDZONE;
2764 if ((cp->cache_flags & UMF_BUFTAG) && bufsize >= umem_minfirewall &&
2765 !(cp->cache_flags & UMF_LITE) && !(cflags & UMC_NOHASH))
2766 cp->cache_flags |= UMF_FIREWALL;
2768 if (vmp != umem_default_arena || umem_firewall_arena == NULL)
2769 cp->cache_flags &= ~UMF_FIREWALL;
2771 if (cp->cache_flags & UMF_FIREWALL) {
2772 cp->cache_flags &= ~UMF_BUFTAG;
2773 cp->cache_flags |= UMF_NOMAGAZINE;
2774 ASSERT(vmp == umem_default_arena);
2775 vmp = umem_firewall_arena;
2779 * Set cache properties.
2781 (void) strncpy(cp->cache_name, name, sizeof (cp->cache_name) - 1);
2782 cp->cache_bufsize = bufsize;
2783 cp->cache_align = align;
2784 cp->cache_constructor = constructor;
2785 cp->cache_destructor = destructor;
2786 cp->cache_reclaim = reclaim;
2787 cp->cache_private = private;
2788 cp->cache_arena = vmp;
2789 cp->cache_cflags = cflags;
2790 cp->cache_cpu_mask = umem_cpu_mask;
2793 * Determine the chunk size.
2795 chunksize = bufsize;
2797 if (align >= UMEM_ALIGN) {
2798 chunksize = P2ROUNDUP(chunksize, UMEM_ALIGN);
2799 cp->cache_bufctl = chunksize - UMEM_ALIGN;
2802 if (cp->cache_flags & UMF_BUFTAG) {
2803 cp->cache_bufctl = chunksize;
2804 cp->cache_buftag = chunksize;
2805 chunksize += sizeof (umem_buftag_t);
2808 if (cp->cache_flags & UMF_DEADBEEF) {
2809 cp->cache_verify = MIN(cp->cache_buftag, umem_maxverify);
2810 if (cp->cache_flags & UMF_LITE)
2811 cp->cache_verify = MIN(cp->cache_verify, UMEM_ALIGN);
2814 cp->cache_contents = MIN(cp->cache_bufctl, umem_content_maxsave);
2816 cp->cache_chunksize = chunksize = P2ROUNDUP(chunksize, align);
2818 if (chunksize < bufsize) {
2819 errno = ENOMEM;
2820 goto fail;
2824 * Now that we know the chunk size, determine the optimal slab size.
2826 if (vmp == umem_firewall_arena) {
2827 cp->cache_slabsize = P2ROUNDUP(chunksize, vmp->vm_quantum);
2828 cp->cache_mincolor = cp->cache_slabsize - chunksize;
2829 cp->cache_maxcolor = cp->cache_mincolor;
2830 cp->cache_flags |= UMF_HASH;
2831 ASSERT(!(cp->cache_flags & UMF_BUFTAG));
2832 } else if ((cflags & UMC_NOHASH) || (!(cflags & UMC_NOTOUCH) &&
2833 !(cp->cache_flags & UMF_AUDIT) &&
2834 chunksize < vmp->vm_quantum / UMEM_VOID_FRACTION)) {
2835 cp->cache_slabsize = vmp->vm_quantum;
2836 cp->cache_mincolor = 0;
2837 cp->cache_maxcolor =
2838 (cp->cache_slabsize - sizeof (umem_slab_t)) % chunksize;
2840 if (chunksize + sizeof (umem_slab_t) > cp->cache_slabsize) {
2841 errno = EINVAL;
2842 goto fail;
2844 ASSERT(!(cp->cache_flags & UMF_AUDIT));
2845 } else {
2846 size_t chunks, bestfit, waste, slabsize;
2847 size_t minwaste = LONG_MAX;
2849 for (chunks = 1; chunks <= UMEM_VOID_FRACTION; chunks++) {
2850 slabsize = P2ROUNDUP(chunksize * chunks,
2851 vmp->vm_quantum);
2853 * check for overflow
2855 if ((slabsize / chunks) < chunksize) {
2856 errno = ENOMEM;
2857 goto fail;
2859 chunks = slabsize / chunksize;
2860 waste = (slabsize % chunksize) / chunks;
2861 if (waste < minwaste) {
2862 minwaste = waste;
2863 bestfit = slabsize;
2866 if (cflags & UMC_QCACHE)
2867 bestfit = MAX(1 << highbit(3 * vmp->vm_qcache_max), 64);
2868 cp->cache_slabsize = bestfit;
2869 cp->cache_mincolor = 0;
2870 cp->cache_maxcolor = bestfit % chunksize;
2871 cp->cache_flags |= UMF_HASH;
2874 if (cp->cache_flags & UMF_HASH) {
2875 ASSERT(!(cflags & UMC_NOHASH));
2876 cp->cache_bufctl_cache = (cp->cache_flags & UMF_AUDIT) ?
2877 umem_bufctl_audit_cache : umem_bufctl_cache;
2880 if (cp->cache_maxcolor >= vmp->vm_quantum)
2881 cp->cache_maxcolor = vmp->vm_quantum - 1;
2883 cp->cache_color = cp->cache_mincolor;
2886 * Initialize the rest of the slab layer.
2888 (void) mutex_init(&cp->cache_lock, USYNC_THREAD, NULL);
2890 cp->cache_freelist = &cp->cache_nullslab;
2891 cp->cache_nullslab.slab_cache = cp;
2892 cp->cache_nullslab.slab_refcnt = -1;
2893 cp->cache_nullslab.slab_next = &cp->cache_nullslab;
2894 cp->cache_nullslab.slab_prev = &cp->cache_nullslab;
2896 if (cp->cache_flags & UMF_HASH) {
2897 cp->cache_hash_table = vmem_alloc(umem_hash_arena,
2898 UMEM_HASH_INITIAL * sizeof (void *), VM_NOSLEEP);
2899 if (cp->cache_hash_table == NULL) {
2900 errno = EAGAIN;
2901 goto fail_lock;
2903 bzero(cp->cache_hash_table,
2904 UMEM_HASH_INITIAL * sizeof (void *));
2905 cp->cache_hash_mask = UMEM_HASH_INITIAL - 1;
2906 cp->cache_hash_shift = highbit((ulong_t)chunksize) - 1;
2910 * Initialize the depot.
2912 (void) mutex_init(&cp->cache_depot_lock, USYNC_THREAD, NULL);
2914 for (mtp = umem_magtype; chunksize <= mtp->mt_minbuf; mtp++)
2915 continue;
2917 cp->cache_magtype = mtp;
2920 * Initialize the CPU layer.
2922 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++) {
2923 umem_cpu_cache_t *ccp = &cp->cache_cpu[cpu_seqid];
2924 (void) mutex_init(&ccp->cc_lock, USYNC_THREAD, NULL);
2925 ccp->cc_flags = cp->cache_flags;
2926 ccp->cc_rounds = -1;
2927 ccp->cc_prounds = -1;
2931 * Add the cache to the global list. This makes it visible
2932 * to umem_update(), so the cache must be ready for business.
2934 (void) mutex_lock(&umem_cache_lock);
2935 cp->cache_next = cnext = &umem_null_cache;
2936 cp->cache_prev = cprev = umem_null_cache.cache_prev;
2937 cnext->cache_prev = cp;
2938 cprev->cache_next = cp;
2939 (void) mutex_unlock(&umem_cache_lock);
2941 if (umem_ready == UMEM_READY)
2942 umem_cache_magazine_enable(cp);
2944 return (cp);
2946 fail_lock:
2947 (void) mutex_destroy(&cp->cache_lock);
2948 fail:
2949 vmem_xfree(umem_cache_arena, cp, csize);
2950 return (NULL);
2953 void
2954 umem_cache_destroy(umem_cache_t *cp)
2956 int cpu_seqid;
2959 * Remove the cache from the global cache list so that no new updates
2960 * will be scheduled on its behalf, wait for any pending tasks to
2961 * complete, purge the cache, and then destroy it.
2963 (void) mutex_lock(&umem_cache_lock);
2964 cp->cache_prev->cache_next = cp->cache_next;
2965 cp->cache_next->cache_prev = cp->cache_prev;
2966 cp->cache_prev = cp->cache_next = NULL;
2967 (void) mutex_unlock(&umem_cache_lock);
2969 umem_remove_updates(cp);
2971 umem_cache_magazine_purge(cp);
2973 (void) mutex_lock(&cp->cache_lock);
2974 if (cp->cache_buftotal != 0)
2975 log_message("umem_cache_destroy: '%s' (%p) not empty\n",
2976 cp->cache_name, (void *)cp);
2977 cp->cache_reclaim = NULL;
2979 * The cache is now dead. There should be no further activity.
2980 * We enforce this by setting land mines in the constructor and
2981 * destructor routines that induce a segmentation fault if invoked.
2983 cp->cache_constructor = (umem_constructor_t *)1;
2984 cp->cache_destructor = (umem_destructor_t *)2;
2985 (void) mutex_unlock(&cp->cache_lock);
2987 if (cp->cache_hash_table != NULL)
2988 vmem_free(umem_hash_arena, cp->cache_hash_table,
2989 (cp->cache_hash_mask + 1) * sizeof (void *));
2991 for (cpu_seqid = 0; cpu_seqid < umem_max_ncpus; cpu_seqid++)
2992 (void) mutex_destroy(&cp->cache_cpu[cpu_seqid].cc_lock);
2994 (void) mutex_destroy(&cp->cache_depot_lock);
2995 (void) mutex_destroy(&cp->cache_lock);
2997 vmem_free(umem_cache_arena, cp, UMEM_CACHE_SIZE(umem_max_ncpus));
3000 void
3001 umem_alloc_sizes_clear(void)
3003 int i;
3005 umem_alloc_sizes[0] = UMEM_MAXBUF;
3006 for (i = 1; i < NUM_ALLOC_SIZES; i++)
3007 umem_alloc_sizes[i] = 0;
3010 void
3011 umem_alloc_sizes_add(size_t size_arg)
3013 int i, j;
3014 size_t size = size_arg;
3016 if (size == 0) {
3017 log_message("size_add: cannot add zero-sized cache\n",
3018 size, UMEM_MAXBUF);
3019 return;
3022 if (size > UMEM_MAXBUF) {
3023 log_message("size_add: %ld > %d, cannot add\n", size,
3024 UMEM_MAXBUF);
3025 return;
3028 if (umem_alloc_sizes[NUM_ALLOC_SIZES - 1] != 0) {
3029 log_message("size_add: no space in alloc_table for %d\n",
3030 size);
3031 return;
3034 if (P2PHASE(size, UMEM_ALIGN) != 0) {
3035 size = P2ROUNDUP(size, UMEM_ALIGN);
3036 log_message("size_add: rounding %d up to %d\n", size_arg,
3037 size);
3040 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3041 int cur = umem_alloc_sizes[i];
3042 if (cur == size) {
3043 log_message("size_add: %ld already in table\n",
3044 size);
3045 return;
3047 if (cur > size)
3048 break;
3051 for (j = NUM_ALLOC_SIZES - 1; j > i; j--)
3052 umem_alloc_sizes[j] = umem_alloc_sizes[j-1];
3053 umem_alloc_sizes[i] = size;
3056 void
3057 umem_alloc_sizes_remove(size_t size)
3059 int i;
3061 if (size == UMEM_MAXBUF) {
3062 log_message("size_remove: cannot remove %ld\n", size);
3063 return;
3066 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3067 int cur = umem_alloc_sizes[i];
3068 if (cur == size)
3069 break;
3070 else if (cur > size || cur == 0) {
3071 log_message("size_remove: %ld not found in table\n",
3072 size);
3073 return;
3077 for (; i + 1 < NUM_ALLOC_SIZES; i++)
3078 umem_alloc_sizes[i] = umem_alloc_sizes[i+1];
3079 umem_alloc_sizes[i] = 0;
3083 * We've been called back from libc to indicate that thread is terminating and
3084 * that it needs to release the per-thread memory that it has. We get to know
3085 * which entry in the thread's tmem array the allocation came from. Currently
3086 * this refers to first n umem_caches which makes this a pretty simple indexing
3087 * job.
3089 static void
3090 umem_cache_tmem_cleanup(void *buf, int entry)
3092 size_t size;
3093 umem_cache_t *cp;
3095 size = umem_alloc_sizes[entry];
3096 cp = umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT];
3097 _umem_cache_free(cp, buf);
3100 static int
3101 umem_cache_init(void)
3103 int i;
3104 size_t size, max_size;
3105 umem_cache_t *cp;
3106 umem_magtype_t *mtp;
3107 char name[UMEM_CACHE_NAMELEN + 1];
3108 umem_cache_t *umem_alloc_caches[NUM_ALLOC_SIZES];
3110 for (i = 0; i < sizeof (umem_magtype) / sizeof (*mtp); i++) {
3111 mtp = &umem_magtype[i];
3112 (void) snprintf(name, sizeof (name), "umem_magazine_%d",
3113 mtp->mt_magsize);
3114 mtp->mt_cache = umem_cache_create(name,
3115 (mtp->mt_magsize + 1) * sizeof (void *),
3116 mtp->mt_align, NULL, NULL, NULL, NULL,
3117 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
3118 if (mtp->mt_cache == NULL)
3119 return (0);
3122 umem_slab_cache = umem_cache_create("umem_slab_cache",
3123 sizeof (umem_slab_t), 0, NULL, NULL, NULL, NULL,
3124 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
3126 if (umem_slab_cache == NULL)
3127 return (0);
3129 umem_bufctl_cache = umem_cache_create("umem_bufctl_cache",
3130 sizeof (umem_bufctl_t), 0, NULL, NULL, NULL, NULL,
3131 umem_internal_arena, UMC_NOHASH | UMC_INTERNAL);
3133 if (umem_bufctl_cache == NULL)
3134 return (0);
3137 * The size of the umem_bufctl_audit structure depends upon
3138 * umem_stack_depth. See umem_impl.h for details on the size
3139 * restrictions.
3142 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
3143 max_size = UMEM_BUFCTL_AUDIT_MAX_SIZE;
3145 if (size > max_size) { /* too large -- truncate */
3146 int max_frames = UMEM_MAX_STACK_DEPTH;
3148 ASSERT(UMEM_BUFCTL_AUDIT_SIZE_DEPTH(max_frames) <= max_size);
3150 umem_stack_depth = max_frames;
3151 size = UMEM_BUFCTL_AUDIT_SIZE_DEPTH(umem_stack_depth);
3154 umem_bufctl_audit_cache = umem_cache_create("umem_bufctl_audit_cache",
3155 size, 0, NULL, NULL, NULL, NULL, umem_internal_arena,
3156 UMC_NOHASH | UMC_INTERNAL);
3158 if (umem_bufctl_audit_cache == NULL)
3159 return (0);
3161 if (vmem_backend & VMEM_BACKEND_MMAP)
3162 umem_va_arena = vmem_create("umem_va",
3163 NULL, 0, pagesize,
3164 vmem_alloc, vmem_free, heap_arena,
3165 8 * pagesize, VM_NOSLEEP);
3166 else
3167 umem_va_arena = heap_arena;
3169 if (umem_va_arena == NULL)
3170 return (0);
3172 umem_default_arena = vmem_create("umem_default",
3173 NULL, 0, pagesize,
3174 heap_alloc, heap_free, umem_va_arena,
3175 0, VM_NOSLEEP);
3177 if (umem_default_arena == NULL)
3178 return (0);
3181 * make sure the umem_alloc table initializer is correct
3183 i = sizeof (umem_alloc_table) / sizeof (*umem_alloc_table);
3184 ASSERT(umem_alloc_table[i - 1] == &umem_null_cache);
3187 * Create the default caches to back umem_alloc()
3189 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3190 size_t cache_size = umem_alloc_sizes[i];
3191 size_t align = 0;
3193 if (cache_size == 0)
3194 break; /* 0 terminates the list */
3197 * If they allocate a multiple of the coherency granularity,
3198 * they get a coherency-granularity-aligned address.
3200 if (IS_P2ALIGNED(cache_size, 64))
3201 align = 64;
3202 if (IS_P2ALIGNED(cache_size, pagesize))
3203 align = pagesize;
3204 (void) snprintf(name, sizeof (name), "umem_alloc_%lu",
3205 (long)cache_size);
3207 cp = umem_cache_create(name, cache_size, align,
3208 NULL, NULL, NULL, NULL, NULL, UMC_INTERNAL);
3209 if (cp == NULL)
3210 return (0);
3212 umem_alloc_caches[i] = cp;
3215 umem_tmem_off = _tmem_get_base();
3216 _tmem_set_cleanup(umem_cache_tmem_cleanup);
3218 if (umem_genasm_supported && !(umem_flags & UMF_DEBUG) &&
3219 !(umem_flags & UMF_NOMAGAZINE) &&
3220 umem_ptc_size > 0) {
3221 umem_ptc_enabled = umem_genasm(umem_alloc_sizes,
3222 umem_alloc_caches, i) == 0 ? 1 : 0;
3226 * Initialization cannot fail at this point. Make the caches
3227 * visible to umem_alloc() and friends.
3229 size = UMEM_ALIGN;
3230 for (i = 0; i < NUM_ALLOC_SIZES; i++) {
3231 size_t cache_size = umem_alloc_sizes[i];
3233 if (cache_size == 0)
3234 break; /* 0 terminates the list */
3236 cp = umem_alloc_caches[i];
3238 while (size <= cache_size) {
3239 umem_alloc_table[(size - 1) >> UMEM_ALIGN_SHIFT] = cp;
3240 size += UMEM_ALIGN;
3243 ASSERT(size - UMEM_ALIGN == UMEM_MAXBUF);
3244 return (1);
3248 * umem_startup() is called early on, and must be called explicitly if we're
3249 * the standalone version.
3251 #ifdef UMEM_STANDALONE
3252 void
3253 #else
3254 #pragma init(umem_startup)
3255 static void
3256 #endif
3257 umem_startup(caddr_t start, size_t len, size_t pagesize, caddr_t minstack,
3258 caddr_t maxstack)
3260 #ifdef UMEM_STANDALONE
3261 int idx;
3262 /* Standalone doesn't fork */
3263 #else
3264 umem_forkhandler_init(); /* register the fork handler */
3265 #endif
3267 #ifdef __lint
3268 /* make lint happy */
3269 minstack = maxstack;
3270 #endif
3272 #ifdef UMEM_STANDALONE
3273 umem_ready = UMEM_READY_STARTUP;
3274 umem_init_env_ready = 0;
3276 umem_min_stack = minstack;
3277 umem_max_stack = maxstack;
3279 nofail_callback = NULL;
3280 umem_slab_cache = NULL;
3281 umem_bufctl_cache = NULL;
3282 umem_bufctl_audit_cache = NULL;
3283 heap_arena = NULL;
3284 heap_alloc = NULL;
3285 heap_free = NULL;
3286 umem_internal_arena = NULL;
3287 umem_cache_arena = NULL;
3288 umem_hash_arena = NULL;
3289 umem_log_arena = NULL;
3290 umem_oversize_arena = NULL;
3291 umem_va_arena = NULL;
3292 umem_default_arena = NULL;
3293 umem_firewall_va_arena = NULL;
3294 umem_firewall_arena = NULL;
3295 umem_memalign_arena = NULL;
3296 umem_transaction_log = NULL;
3297 umem_content_log = NULL;
3298 umem_failure_log = NULL;
3299 umem_slab_log = NULL;
3300 umem_cpu_mask = 0;
3302 umem_cpus = &umem_startup_cpu;
3303 umem_startup_cpu.cpu_cache_offset = UMEM_CACHE_SIZE(0);
3304 umem_startup_cpu.cpu_number = 0;
3306 bcopy(&umem_null_cache_template, &umem_null_cache,
3307 sizeof (umem_cache_t));
3309 for (idx = 0; idx < (UMEM_MAXBUF >> UMEM_ALIGN_SHIFT); idx++)
3310 umem_alloc_table[idx] = &umem_null_cache;
3311 #endif
3314 * Perform initialization specific to the way we've been compiled
3315 * (library or standalone)
3317 umem_type_init(start, len, pagesize);
3319 vmem_startup();
3323 umem_init(void)
3325 size_t maxverify, minfirewall;
3326 size_t size;
3327 int idx;
3328 umem_cpu_t *new_cpus;
3330 vmem_t *memalign_arena, *oversize_arena;
3332 if (thr_self() != umem_init_thr) {
3334 * The usual case -- non-recursive invocation of umem_init().
3336 (void) mutex_lock(&umem_init_lock);
3337 if (umem_ready != UMEM_READY_STARTUP) {
3339 * someone else beat us to initializing umem. Wait
3340 * for them to complete, then return.
3342 while (umem_ready == UMEM_READY_INITING) {
3343 int cancel_state;
3345 (void) pthread_setcancelstate(
3346 PTHREAD_CANCEL_DISABLE, &cancel_state);
3347 (void) cond_wait(&umem_init_cv,
3348 &umem_init_lock);
3349 (void) pthread_setcancelstate(
3350 cancel_state, NULL);
3352 ASSERT(umem_ready == UMEM_READY ||
3353 umem_ready == UMEM_READY_INIT_FAILED);
3354 (void) mutex_unlock(&umem_init_lock);
3355 return (umem_ready == UMEM_READY);
3358 ASSERT(umem_ready == UMEM_READY_STARTUP);
3359 ASSERT(umem_init_env_ready == 0);
3361 umem_ready = UMEM_READY_INITING;
3362 umem_init_thr = thr_self();
3364 (void) mutex_unlock(&umem_init_lock);
3365 umem_setup_envvars(0); /* can recurse -- see below */
3366 if (umem_init_env_ready) {
3368 * initialization was completed already
3370 ASSERT(umem_ready == UMEM_READY ||
3371 umem_ready == UMEM_READY_INIT_FAILED);
3372 ASSERT(umem_init_thr == 0);
3373 return (umem_ready == UMEM_READY);
3375 } else if (!umem_init_env_ready) {
3377 * The umem_setup_envvars() call (above) makes calls into
3378 * the dynamic linker and directly into user-supplied code.
3379 * Since we cannot know what that code will do, we could be
3380 * recursively invoked (by, say, a malloc() call in the code
3381 * itself, or in a (C++) _init section it causes to be fired).
3383 * This code is where we end up if such recursion occurs. We
3384 * first clean up any partial results in the envvar code, then
3385 * proceed to finish initialization processing in the recursive
3386 * call. The original call will notice this, and return
3387 * immediately.
3389 umem_setup_envvars(1); /* clean up any partial state */
3390 } else {
3391 umem_panic(
3392 "recursive allocation while initializing umem\n");
3394 umem_init_env_ready = 1;
3397 * From this point until we finish, recursion into umem_init() will
3398 * cause a umem_panic().
3400 maxverify = minfirewall = ULONG_MAX;
3402 /* LINTED constant condition */
3403 if (sizeof (umem_cpu_cache_t) != UMEM_CPU_CACHE_SIZE) {
3404 umem_panic("sizeof (umem_cpu_cache_t) = %d, should be %d\n",
3405 sizeof (umem_cpu_cache_t), UMEM_CPU_CACHE_SIZE);
3408 umem_max_ncpus = umem_get_max_ncpus();
3411 * load tunables from environment
3413 umem_process_envvars();
3415 if (issetugid())
3416 umem_mtbf = 0;
3419 * set up vmem
3421 if (!(umem_flags & UMF_AUDIT))
3422 vmem_no_debug();
3424 heap_arena = vmem_heap_arena(&heap_alloc, &heap_free);
3426 pagesize = heap_arena->vm_quantum;
3428 umem_internal_arena = vmem_create("umem_internal", NULL, 0, pagesize,
3429 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3431 umem_default_arena = umem_internal_arena;
3433 if (umem_internal_arena == NULL)
3434 goto fail;
3436 umem_cache_arena = vmem_create("umem_cache", NULL, 0, UMEM_ALIGN,
3437 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3439 umem_hash_arena = vmem_create("umem_hash", NULL, 0, UMEM_ALIGN,
3440 vmem_alloc, vmem_free, umem_internal_arena, 0, VM_NOSLEEP);
3442 umem_log_arena = vmem_create("umem_log", NULL, 0, UMEM_ALIGN,
3443 heap_alloc, heap_free, heap_arena, 0, VM_NOSLEEP);
3445 umem_firewall_va_arena = vmem_create("umem_firewall_va",
3446 NULL, 0, pagesize,
3447 umem_firewall_va_alloc, umem_firewall_va_free, heap_arena,
3448 0, VM_NOSLEEP);
3450 if (umem_cache_arena == NULL || umem_hash_arena == NULL ||
3451 umem_log_arena == NULL || umem_firewall_va_arena == NULL)
3452 goto fail;
3454 umem_firewall_arena = vmem_create("umem_firewall", NULL, 0, pagesize,
3455 heap_alloc, heap_free, umem_firewall_va_arena, 0,
3456 VM_NOSLEEP);
3458 if (umem_firewall_arena == NULL)
3459 goto fail;
3461 oversize_arena = vmem_create("umem_oversize", NULL, 0, pagesize,
3462 heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3463 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3465 memalign_arena = vmem_create("umem_memalign", NULL, 0, UMEM_ALIGN,
3466 heap_alloc, heap_free, minfirewall < ULONG_MAX ?
3467 umem_firewall_va_arena : heap_arena, 0, VM_NOSLEEP);
3469 if (oversize_arena == NULL || memalign_arena == NULL)
3470 goto fail;
3472 if (umem_max_ncpus > CPUHINT_MAX())
3473 umem_max_ncpus = CPUHINT_MAX();
3475 while ((umem_max_ncpus & (umem_max_ncpus - 1)) != 0)
3476 umem_max_ncpus++;
3478 if (umem_max_ncpus == 0)
3479 umem_max_ncpus = 1;
3481 size = umem_max_ncpus * sizeof (umem_cpu_t);
3482 new_cpus = vmem_alloc(umem_internal_arena, size, VM_NOSLEEP);
3483 if (new_cpus == NULL)
3484 goto fail;
3486 bzero(new_cpus, size);
3487 for (idx = 0; idx < umem_max_ncpus; idx++) {
3488 new_cpus[idx].cpu_number = idx;
3489 new_cpus[idx].cpu_cache_offset = UMEM_CACHE_SIZE(idx);
3491 umem_cpus = new_cpus;
3492 umem_cpu_mask = (umem_max_ncpus - 1);
3494 if (umem_maxverify == 0)
3495 umem_maxverify = maxverify;
3497 if (umem_minfirewall == 0)
3498 umem_minfirewall = minfirewall;
3501 * Set up updating and reaping
3503 umem_reap_next = gethrtime() + NANOSEC;
3505 #ifndef UMEM_STANDALONE
3506 (void) gettimeofday(&umem_update_next, NULL);
3507 #endif
3510 * Set up logging -- failure here is okay, since it will just disable
3511 * the logs
3513 if (umem_logging) {
3514 umem_transaction_log = umem_log_init(umem_transaction_log_size);
3515 umem_content_log = umem_log_init(umem_content_log_size);
3516 umem_failure_log = umem_log_init(umem_failure_log_size);
3517 umem_slab_log = umem_log_init(umem_slab_log_size);
3521 * Set up caches -- if successful, initialization cannot fail, since
3522 * allocations from other threads can now succeed.
3524 if (umem_cache_init() == 0) {
3525 log_message("unable to create initial caches\n");
3526 goto fail;
3528 umem_oversize_arena = oversize_arena;
3529 umem_memalign_arena = memalign_arena;
3531 umem_cache_applyall(umem_cache_magazine_enable);
3534 * initialization done, ready to go
3536 (void) mutex_lock(&umem_init_lock);
3537 umem_ready = UMEM_READY;
3538 umem_init_thr = 0;
3539 (void) cond_broadcast(&umem_init_cv);
3540 (void) mutex_unlock(&umem_init_lock);
3541 return (1);
3543 fail:
3544 log_message("umem initialization failed\n");
3546 (void) mutex_lock(&umem_init_lock);
3547 umem_ready = UMEM_READY_INIT_FAILED;
3548 umem_init_thr = 0;
3549 (void) cond_broadcast(&umem_init_cv);
3550 (void) mutex_unlock(&umem_init_lock);
3551 return (0);