4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 #pragma ident "%Z%%M% %I% %E% SMI"
29 * This file contains routines that merge one tdata_t tree, called the child,
30 * into another, called the parent. Note that these names are used mainly for
31 * convenience and to represent the direction of the merge. They are not meant
32 * to imply any relationship between the tdata_t graphs prior to the merge.
34 * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35 * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes. Simply
36 * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37 * clean up loose ends.
39 * The algorithm is as follows:
41 * 1. Mapping iidesc_t nodes
43 * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44 * against the tdesc_t graph in the parent. For each node in the child subgraph
45 * that exists in the parent, a mapping between the two (between their type IDs)
46 * is established. For the child nodes that cannot be mapped onto existing
47 * parent nodes, a mapping is established between the child node ID and a
48 * newly-allocated ID that the node will use when it is re-created in the
49 * parent. These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50 * Added) hash, which tracks nodes that need to be created in the parent.
52 * If all of the nodes in the subgraph for an iidesc_t in the child can be
53 * mapped to existing nodes in the parent, then we can try to map the child
54 * iidesc_t onto an iidesc_t in the parent. If we cannot find an equivalent
55 * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56 * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list. This
57 * list tracks iidesc_t nodes that are to be created in the parent.
59 * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60 * FORWARD tdesc_t) in the parent that is resolved in the child. That is, there
61 * may be a structure or union definition in the child with the same name as the
62 * forward declaration in the parent. If we find such a node, we record an
63 * association in the md_fdida (Forward => Definition ID Association) list
64 * between the parent ID of the forward declaration and the ID that the
65 * definition will use when re-created in the parent.
67 * 2. Creating new tdesc_t nodes (the md_tdtba hash)
69 * We have now attempted to map all tdesc_t nodes from the child into the
70 * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71 * created (or, as we so wittily call it, conjured) in the parent. We iterate
72 * through this hash, creating the indicated tdesc_t nodes. For a given tdesc_t
73 * node, conjuring requires two steps - the copying of the common tdesc_t data
74 * (name, type, etc) from the child node, and the creation of links from the
75 * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76 * to by node being conjured. Note that in some cases, the targets of these
77 * links will be on the md_tdtba hash themselves, and may not have been created
78 * yet. As such, we can't establish the links from these new nodes into the
79 * parent graph. We therefore conjure them with links to nodes in the *child*
80 * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81 * To Be Remapped) hash. For example, a POINTER tdesc_t that could not be
82 * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
84 * 3. Creating new iidesc_t nodes (the md_iitba list)
86 * When we have completed step 2, all tdesc_t nodes have been created (or
87 * already existed) in the parent. Some of them may have incorrect links (the
88 * members of the md_tdtbr list), but they've all been created. As such, we can
89 * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90 * pointers correctly. We create each node, and attach the pointers to the
91 * appropriate parts of the parent tdesc_t graph.
93 * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
95 * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96 * created. Each entry in the md_tdtbr list is a pointer to where a link into
97 * the parent will be established. As saved in the md_tdtbr list, these
98 * pointers point into the child tdesc_t subgraph. We can thus get the target
99 * type ID from the child, look at the ID mapping to determine the desired link
100 * target, and redirect the link accordingly.
102 * 5. Parent => child forward declaration resolution
104 * If entries were made in the md_fdida list in step 1, we have forward
105 * declarations in the parent that need to be resolved to their definitions
106 * re-created in step 2 from the child. Using the md_fdida list, we can locate
107 * the definition for the forward declaration, and we can redirect all inbound
108 * edges to the forward declaration node to the actual definition.
110 * A pox on the house of anyone who changes the algorithm without updating
119 #include "ctf_headers.h"
120 #include "ctftools.h"
124 #include "traverse.h"
126 typedef struct equiv_data equiv_data_t
;
127 typedef struct merge_cb_data merge_cb_data_t
;
130 * There are two traversals in this file, for equivalency and for tdesc_t
131 * re-creation, that do not fit into the tdtraverse() framework. We have our
132 * own traversal mechanism and ops vector here for those two cases.
134 typedef struct tdesc_ops
{
136 int (*equiv
)(tdesc_t
*, tdesc_t
*, equiv_data_t
*);
137 tdesc_t
*(*conjure
)(tdesc_t
*, int, merge_cb_data_t
*);
139 extern tdesc_ops_t tdesc_ops
[];
142 * The workhorse structure of tdata_t merging. Holds all lists of nodes to be
143 * processed during various phases of the merge algorithm.
145 struct merge_cb_data
{
148 alist_t
*md_ta
; /* Type Association */
149 alist_t
*md_fdida
; /* Forward -> Definition ID Association */
150 list_t
**md_iitba
; /* iidesc_t nodes To Be Added to the parent */
151 hash_t
*md_tdtba
; /* tdesc_t nodes To Be Added to the parent */
152 list_t
**md_tdtbr
; /* tdesc_t nodes To Be Remapped */
154 }; /* merge_cb_data_t */
157 * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158 * Normal merges, however, assume that the child tdata_t is already self-unique,
159 * and for speed reasons do not attempt to self-uniquify. If this flag is set,
160 * the merge algorithm will self-uniquify by avoiding the insertion of
161 * duplicates in the md_tdtdba list.
163 #define MCD_F_SELFUNIQUIFY 0x1
166 * When we merge the CTF data for the modules, we don't want it to contain any
167 * data that can be found in the reference module (usually genunix). If this
168 * flag is set, we're doing a merge between the fully merged tdata_t for this
169 * module and the tdata_t for the reference module, with the data unique to this
170 * module ending up in a third tdata_t. It is this third tdata_t that will end
171 * up in the .SUNW_ctf section for the module.
173 #define MCD_F_REFMERGE 0x2
176 * Mapping of child type IDs to parent type IDs
180 add_mapping(alist_t
*ta
, tid_t srcid
, tid_t tgtid
)
182 debug(3, "Adding mapping %u => %u\n", srcid
, tgtid
);
184 assert(!alist_find(ta
, (void *)srcid
, NULL
));
185 assert(srcid
!= 0 && tgtid
!= 0);
187 alist_add(ta
, (void *)srcid
, (void *)tgtid
);
191 get_mapping(alist_t
*ta
, int srcid
)
195 if (alist_find(ta
, (void *)srcid
, (void **)<gtid
))
196 return ((int)ltgtid
);
202 * Determining equivalence of tdesc_t subgraphs
213 }; /* equiv_data_t */
215 static int equiv_node(tdesc_t
*, tdesc_t
*, equiv_data_t
*);
219 equiv_intrinsic(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
221 intr_t
*si
= stdp
->t_intr
;
222 intr_t
*ti
= ttdp
->t_intr
;
224 if (si
->intr_type
!= ti
->intr_type
||
225 si
->intr_signed
!= ti
->intr_signed
||
226 si
->intr_offset
!= ti
->intr_offset
||
227 si
->intr_nbits
!= ti
->intr_nbits
)
230 if (si
->intr_type
== INTR_INT
&&
231 si
->intr_iformat
!= ti
->intr_iformat
)
233 else if (si
->intr_type
== INTR_REAL
&&
234 si
->intr_fformat
!= ti
->intr_fformat
)
241 equiv_plain(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
243 return (equiv_node(stdp
->t_tdesc
, ttdp
->t_tdesc
, ed
));
247 equiv_function(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
249 fndef_t
*fn1
= stdp
->t_fndef
, *fn2
= ttdp
->t_fndef
;
252 if (fn1
->fn_nargs
!= fn2
->fn_nargs
||
253 fn1
->fn_vargs
!= fn2
->fn_vargs
)
256 if (!equiv_node(fn1
->fn_ret
, fn2
->fn_ret
, ed
))
259 for (i
= 0; i
< fn1
->fn_nargs
; i
++) {
260 if (!equiv_node(fn1
->fn_args
[i
], fn2
->fn_args
[i
], ed
))
268 equiv_array(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
270 ardef_t
*ar1
= stdp
->t_ardef
, *ar2
= ttdp
->t_ardef
;
272 if (!equiv_node(ar1
->ad_contents
, ar2
->ad_contents
, ed
) ||
273 !equiv_node(ar1
->ad_idxtype
, ar2
->ad_idxtype
, ed
))
276 if (ar1
->ad_nelems
!= ar2
->ad_nelems
)
283 equiv_su(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
285 mlist_t
*ml1
= stdp
->t_members
, *ml2
= ttdp
->t_members
;
286 mlist_t
*olm1
= NULL
;
289 if (ml1
->ml_offset
!= ml2
->ml_offset
||
290 strcmp(ml1
->ml_name
, ml2
->ml_name
) != 0)
294 * Don't do the recursive equivalency checking more than
297 if (olm1
== NULL
|| olm1
->ml_type
->t_id
!= ml1
->ml_type
->t_id
) {
298 if (ml1
->ml_size
!= ml2
->ml_size
||
299 !equiv_node(ml1
->ml_type
, ml2
->ml_type
, ed
))
316 equiv_enum(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
318 elist_t
*el1
= stdp
->t_emem
;
319 elist_t
*el2
= ttdp
->t_emem
;
322 if (el1
->el_number
!= el2
->el_number
||
323 strcmp(el1
->el_name
, el2
->el_name
) != 0)
338 equiv_assert(tdesc_t
*stdp
, tdesc_t
*ttdp
, equiv_data_t
*ed
)
340 /* foul, evil, and very bad - this is a "shouldn't happen" */
347 fwd_equiv(tdesc_t
*ctdp
, tdesc_t
*mtdp
)
349 tdesc_t
*defn
= (ctdp
->t_type
== FORWARD
? mtdp
: ctdp
);
351 return (defn
->t_type
== STRUCT
|| defn
->t_type
== UNION
);
355 equiv_node(tdesc_t
*ctdp
, tdesc_t
*mtdp
, equiv_data_t
*ed
)
360 if (ctdp
->t_emark
> ed
->ed_clear_mark
||
361 mtdp
->t_emark
> ed
->ed_clear_mark
)
362 return (ctdp
->t_emark
== mtdp
->t_emark
);
365 * In normal (non-self-uniquify) mode, we don't want to do equivalency
366 * checking on a subgraph that has already been checked. If a mapping
367 * has already been established for a given child node, we can simply
368 * compare the mapping for the child node with the ID of the parent
369 * node. If we are in self-uniquify mode, then we're comparing two
370 * subgraphs within the child graph, and thus need to ignore any
371 * type mappings that have been created, as they are only valid into the
374 if ((mapping
= get_mapping(ed
->ed_ta
, ctdp
->t_id
)) > 0 &&
375 mapping
== mtdp
->t_id
&& !ed
->ed_selfuniquify
)
378 if (!streq(ctdp
->t_name
, mtdp
->t_name
))
381 if (ctdp
->t_type
!= mtdp
->t_type
) {
382 if (ctdp
->t_type
== FORWARD
|| mtdp
->t_type
== FORWARD
)
383 return (fwd_equiv(ctdp
, mtdp
));
388 ctdp
->t_emark
= ed
->ed_cur_mark
;
389 mtdp
->t_emark
= ed
->ed_cur_mark
;
392 if ((equiv
= tdesc_ops
[ctdp
->t_type
].equiv
) != NULL
)
393 return (equiv(ctdp
, mtdp
, ed
));
399 * We perform an equivalency check on two subgraphs by traversing through them
400 * in lockstep. If a given node is equivalent in both the parent and the child,
401 * we mark it in both subgraphs, using the t_emark field, with a monotonically
402 * increasing number. If, in the course of the traversal, we reach a node that
403 * we have visited and numbered during this equivalency check, we have a cycle.
404 * If the previously-visited nodes don't have the same emark, then the edges
405 * that brought us to these nodes are not equivalent, and so the check ends.
406 * If the emarks are the same, the edges are equivalent. We then backtrack and
407 * continue the traversal. If we have exhausted all edges in the subgraph, and
408 * have not found any inequivalent nodes, then the subgraphs are equivalent.
411 equiv_cb(void *bucket
, void *arg
)
413 equiv_data_t
*ed
= arg
;
414 tdesc_t
*mtdp
= bucket
;
415 tdesc_t
*ctdp
= ed
->ed_node
;
417 ed
->ed_clear_mark
= ed
->ed_cur_mark
+ 1;
418 ed
->ed_cur_mark
= ed
->ed_clear_mark
+ 1;
420 if (equiv_node(ctdp
, mtdp
, ed
)) {
421 debug(3, "equiv_node matched %d %d\n", ctdp
->t_id
, mtdp
->t_id
);
423 /* matched. stop looking */
432 map_td_tree_pre(tdesc_t
*ctdp
, tdesc_t
**ctdpp
, void *private)
434 merge_cb_data_t
*mcd
= private;
436 if (get_mapping(mcd
->md_ta
, ctdp
->t_id
) > 0)
444 map_td_tree_post(tdesc_t
*ctdp
, tdesc_t
**ctdpp
, void *private)
446 merge_cb_data_t
*mcd
= private;
449 ed
.ed_ta
= mcd
->md_ta
;
450 ed
.ed_clear_mark
= mcd
->md_parent
->td_curemark
;
451 ed
.ed_cur_mark
= mcd
->md_parent
->td_curemark
+ 1;
453 ed
.ed_selfuniquify
= 0;
455 debug(3, "map_td_tree_post on %d %s\n", ctdp
->t_id
, tdesc_name(ctdp
));
457 if (hash_find_iter(mcd
->md_parent
->td_layouthash
, ctdp
,
458 equiv_cb
, &ed
) < 0) {
459 /* We found an equivalent node */
460 if (ed
.ed_tgt
->t_type
== FORWARD
&& ctdp
->t_type
!= FORWARD
) {
461 int id
= mcd
->md_tgt
->td_nextid
++;
463 debug(3, "Creating new defn type %d\n", id
);
464 add_mapping(mcd
->md_ta
, ctdp
->t_id
, id
);
465 alist_add(mcd
->md_fdida
, (void *)(ulong_t
)ed
.ed_tgt
,
466 (void *)(ulong_t
)id
);
467 hash_add(mcd
->md_tdtba
, ctdp
);
469 add_mapping(mcd
->md_ta
, ctdp
->t_id
, ed
.ed_tgt
->t_id
);
471 } else if (debug_level
> 1 && hash_iter(mcd
->md_parent
->td_idhash
,
472 equiv_cb
, &ed
) < 0) {
474 * We didn't find an equivalent node by looking through the
475 * layout hash, but we somehow found it by performing an
476 * exhaustive search through the entire graph. This usually
477 * means that the "name" hash function is broken.
479 aborterr("Second pass for %d (%s) == %d\n", ctdp
->t_id
,
480 tdesc_name(ctdp
), ed
.ed_tgt
->t_id
);
482 int id
= mcd
->md_tgt
->td_nextid
++;
484 debug(3, "Creating new type %d\n", id
);
485 add_mapping(mcd
->md_ta
, ctdp
->t_id
, id
);
486 hash_add(mcd
->md_tdtba
, ctdp
);
489 mcd
->md_parent
->td_curemark
= ed
.ed_cur_mark
+ 1;
496 map_td_tree_self_post(tdesc_t
*ctdp
, tdesc_t
**ctdpp
, void *private)
498 merge_cb_data_t
*mcd
= private;
501 ed
.ed_ta
= mcd
->md_ta
;
502 ed
.ed_clear_mark
= mcd
->md_parent
->td_curemark
;
503 ed
.ed_cur_mark
= mcd
->md_parent
->td_curemark
+ 1;
505 ed
.ed_selfuniquify
= 1;
508 if (hash_find_iter(mcd
->md_tdtba
, ctdp
, equiv_cb
, &ed
) < 0) {
509 debug(3, "Self check found %d in %d\n", ctdp
->t_id
,
511 add_mapping(mcd
->md_ta
, ctdp
->t_id
,
512 get_mapping(mcd
->md_ta
, ed
.ed_tgt
->t_id
));
513 } else if (debug_level
> 1 && hash_iter(mcd
->md_tdtba
,
514 equiv_cb
, &ed
) < 0) {
516 * We didn't find an equivalent node using the quick way (going
517 * through the hash normally), but we did find it by iterating
518 * through the entire hash. This usually means that the hash
519 * function is broken.
521 aborterr("Self-unique second pass for %d (%s) == %d\n",
522 ctdp
->t_id
, tdesc_name(ctdp
), ed
.ed_tgt
->t_id
);
524 int id
= mcd
->md_tgt
->td_nextid
++;
526 debug(3, "Creating new type %d\n", id
);
527 add_mapping(mcd
->md_ta
, ctdp
->t_id
, id
);
528 hash_add(mcd
->md_tdtba
, ctdp
);
531 mcd
->md_parent
->td_curemark
= ed
.ed_cur_mark
+ 1;
536 static tdtrav_cb_f map_pre
[] = {
538 map_td_tree_pre
, /* intrinsic */
539 map_td_tree_pre
, /* pointer */
540 map_td_tree_pre
, /* array */
541 map_td_tree_pre
, /* function */
542 map_td_tree_pre
, /* struct */
543 map_td_tree_pre
, /* union */
544 map_td_tree_pre
, /* enum */
545 map_td_tree_pre
, /* forward */
546 map_td_tree_pre
, /* typedef */
547 tdtrav_assert
, /* typedef_unres */
548 map_td_tree_pre
, /* volatile */
549 map_td_tree_pre
, /* const */
550 map_td_tree_pre
/* restrict */
553 static tdtrav_cb_f map_post
[] = {
555 map_td_tree_post
, /* intrinsic */
556 map_td_tree_post
, /* pointer */
557 map_td_tree_post
, /* array */
558 map_td_tree_post
, /* function */
559 map_td_tree_post
, /* struct */
560 map_td_tree_post
, /* union */
561 map_td_tree_post
, /* enum */
562 map_td_tree_post
, /* forward */
563 map_td_tree_post
, /* typedef */
564 tdtrav_assert
, /* typedef_unres */
565 map_td_tree_post
, /* volatile */
566 map_td_tree_post
, /* const */
567 map_td_tree_post
/* restrict */
570 static tdtrav_cb_f map_self_post
[] = {
572 map_td_tree_self_post
, /* intrinsic */
573 map_td_tree_self_post
, /* pointer */
574 map_td_tree_self_post
, /* array */
575 map_td_tree_self_post
, /* function */
576 map_td_tree_self_post
, /* struct */
577 map_td_tree_self_post
, /* union */
578 map_td_tree_self_post
, /* enum */
579 map_td_tree_self_post
, /* forward */
580 map_td_tree_self_post
, /* typedef */
581 tdtrav_assert
, /* typedef_unres */
582 map_td_tree_self_post
, /* volatile */
583 map_td_tree_self_post
, /* const */
584 map_td_tree_self_post
/* restrict */
588 * Determining equivalence of iidesc_t nodes
591 typedef struct iifind_data
{
592 iidesc_t
*iif_template
;
599 * Check to see if this iidesc_t (node) - the current one on the list we're
600 * iterating through - matches the target one (iif->iif_template). Return -1
601 * if it matches, to stop the iteration.
604 iidesc_match(void *data
, void *arg
)
606 iidesc_t
*node
= data
;
607 iifind_data_t
*iif
= arg
;
610 if (node
->ii_type
!= iif
->iif_template
->ii_type
||
611 !streq(node
->ii_name
, iif
->iif_template
->ii_name
) ||
612 node
->ii_dtype
->t_id
!= iif
->iif_newidx
)
615 if ((node
->ii_type
== II_SVAR
|| node
->ii_type
== II_SFUN
) &&
616 !streq(node
->ii_owner
, iif
->iif_template
->ii_owner
))
619 if (node
->ii_nargs
!= iif
->iif_template
->ii_nargs
)
622 for (i
= 0; i
< node
->ii_nargs
; i
++) {
623 if (get_mapping(iif
->iif_ta
,
624 iif
->iif_template
->ii_args
[i
]->t_id
) !=
625 node
->ii_args
[i
]->t_id
)
629 if (iif
->iif_refmerge
) {
630 switch (iif
->iif_template
->ii_type
) {
635 debug(3, "suppressing duping of %d %s from %s\n",
636 iif
->iif_template
->ii_type
,
637 iif
->iif_template
->ii_name
,
638 (iif
->iif_template
->ii_owner
?
639 iif
->iif_template
->ii_owner
: "NULL"));
653 merge_type_cb(void *data
, void *arg
)
655 iidesc_t
*sii
= data
;
656 merge_cb_data_t
*mcd
= arg
;
660 post
= (mcd
->md_flags
& MCD_F_SELFUNIQUIFY
? map_self_post
: map_post
);
662 /* Map the tdesc nodes */
663 (void) iitraverse(sii
, &mcd
->md_parent
->td_curvgen
, NULL
, map_pre
, post
,
666 /* Map the iidesc nodes */
667 iif
.iif_template
= sii
;
668 iif
.iif_ta
= mcd
->md_ta
;
669 iif
.iif_newidx
= get_mapping(mcd
->md_ta
, sii
->ii_dtype
->t_id
);
670 iif
.iif_refmerge
= (mcd
->md_flags
& MCD_F_REFMERGE
);
672 if (hash_match(mcd
->md_parent
->td_iihash
, sii
, iidesc_match
,
674 /* successfully mapped */
677 debug(3, "tba %s (%d)\n", (sii
->ii_name
? sii
->ii_name
: "(anon)"),
680 list_add(mcd
->md_iitba
, sii
);
686 remap_node(tdesc_t
**tgtp
, tdesc_t
*oldtgt
, int selftid
, tdesc_t
*newself
,
687 merge_cb_data_t
*mcd
)
691 int oldid
= oldtgt
->t_id
;
693 if (oldid
== selftid
) {
698 if ((template.t_id
= get_mapping(mcd
->md_ta
, oldid
)) == 0)
699 aborterr("failed to get mapping for tid %d\n", oldid
);
701 if (!hash_find(mcd
->md_parent
->td_idhash
, (void *)&template,
702 (void *)&tgt
) && (!(mcd
->md_flags
& MCD_F_REFMERGE
) ||
703 !hash_find(mcd
->md_tgt
->td_idhash
, (void *)&template,
705 debug(3, "Remap couldn't find %d (from %d)\n", template.t_id
,
708 list_add(mcd
->md_tdtbr
, tgtp
);
717 conjure_template(tdesc_t
*old
, int newselfid
)
719 tdesc_t
*new = xcalloc(sizeof (tdesc_t
));
721 new->t_name
= old
->t_name
? xstrdup(old
->t_name
) : NULL
;
722 new->t_type
= old
->t_type
;
723 new->t_size
= old
->t_size
;
724 new->t_id
= newselfid
;
725 new->t_flags
= old
->t_flags
;
732 conjure_intrinsic(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
734 tdesc_t
*new = conjure_template(old
, newselfid
);
736 new->t_intr
= xmalloc(sizeof (intr_t
));
737 bcopy(old
->t_intr
, new->t_intr
, sizeof (intr_t
));
743 conjure_plain(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
745 tdesc_t
*new = conjure_template(old
, newselfid
);
747 (void) remap_node(&new->t_tdesc
, old
->t_tdesc
, old
->t_id
, new, mcd
);
753 conjure_function(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
755 tdesc_t
*new = conjure_template(old
, newselfid
);
756 fndef_t
*nfn
= xmalloc(sizeof (fndef_t
));
757 fndef_t
*ofn
= old
->t_fndef
;
760 (void) remap_node(&nfn
->fn_ret
, ofn
->fn_ret
, old
->t_id
, new, mcd
);
762 nfn
->fn_nargs
= ofn
->fn_nargs
;
763 nfn
->fn_vargs
= ofn
->fn_vargs
;
765 if (nfn
->fn_nargs
> 0)
766 nfn
->fn_args
= xcalloc(sizeof (tdesc_t
*) * ofn
->fn_nargs
);
768 for (i
= 0; i
< ofn
->fn_nargs
; i
++) {
769 (void) remap_node(&nfn
->fn_args
[i
], ofn
->fn_args
[i
], old
->t_id
,
779 conjure_array(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
781 tdesc_t
*new = conjure_template(old
, newselfid
);
782 ardef_t
*nar
= xmalloc(sizeof (ardef_t
));
783 ardef_t
*oar
= old
->t_ardef
;
785 (void) remap_node(&nar
->ad_contents
, oar
->ad_contents
, old
->t_id
, new,
787 (void) remap_node(&nar
->ad_idxtype
, oar
->ad_idxtype
, old
->t_id
, new,
790 nar
->ad_nelems
= oar
->ad_nelems
;
798 conjure_su(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
800 tdesc_t
*new = conjure_template(old
, newselfid
);
801 mlist_t
*omem
, **nmemp
;
803 for (omem
= old
->t_members
, nmemp
= &new->t_members
;
804 omem
; omem
= omem
->ml_next
, nmemp
= &((*nmemp
)->ml_next
)) {
805 *nmemp
= xmalloc(sizeof (mlist_t
));
806 (*nmemp
)->ml_offset
= omem
->ml_offset
;
807 (*nmemp
)->ml_size
= omem
->ml_size
;
808 (*nmemp
)->ml_name
= xstrdup(omem
->ml_name
);
809 (void) remap_node(&((*nmemp
)->ml_type
), omem
->ml_type
,
810 old
->t_id
, new, mcd
);
819 conjure_enum(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
821 tdesc_t
*new = conjure_template(old
, newselfid
);
822 elist_t
*oel
, **nelp
;
824 for (oel
= old
->t_emem
, nelp
= &new->t_emem
;
825 oel
; oel
= oel
->el_next
, nelp
= &((*nelp
)->el_next
)) {
826 *nelp
= xmalloc(sizeof (elist_t
));
827 (*nelp
)->el_name
= xstrdup(oel
->el_name
);
828 (*nelp
)->el_number
= oel
->el_number
;
837 conjure_forward(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
839 tdesc_t
*new = conjure_template(old
, newselfid
);
841 list_add(&mcd
->md_tgt
->td_fwdlist
, new);
848 conjure_assert(tdesc_t
*old
, int newselfid
, merge_cb_data_t
*mcd
)
855 conjure_iidesc(iidesc_t
*old
, merge_cb_data_t
*mcd
)
857 iidesc_t
*new = iidesc_dup(old
);
860 (void) remap_node(&new->ii_dtype
, old
->ii_dtype
, -1, NULL
, mcd
);
861 for (i
= 0; i
< new->ii_nargs
; i
++) {
862 (void) remap_node(&new->ii_args
[i
], old
->ii_args
[i
], -1, NULL
,
870 fwd_redir(tdesc_t
*fwd
, tdesc_t
**fwdp
, void *private)
872 alist_t
*map
= private;
875 if (!alist_find(map
, (void *)fwd
, (void **)&defn
))
878 debug(3, "Redirecting an edge to %s\n", tdesc_name(defn
));
885 static tdtrav_cb_f fwd_redir_cbs
[] = {
887 NULL
, /* intrinsic */
894 fwd_redir
, /* forward */
896 tdtrav_assert
, /* typedef_unres */
902 typedef struct redir_mstr_data
{
908 redir_mstr_fwd_cb(void *name
, void *value
, void *arg
)
911 int defnid
= (int)value
;
912 redir_mstr_data_t
*rmd
= arg
;
916 template.t_id
= defnid
;
918 if (!hash_find(rmd
->rmd_tgt
->td_idhash
, (void *)&template,
920 aborterr("Couldn't unforward %d (%s)\n", defnid
,
924 debug(3, "Forward map: resolved %d to %s\n", defnid
, tdesc_name(defn
));
926 alist_add(rmd
->rmd_map
, (void *)fwd
, (void *)defn
);
932 redir_mstr_fwds(merge_cb_data_t
*mcd
)
934 redir_mstr_data_t rmd
;
935 alist_t
*map
= alist_new(NULL
, NULL
);
937 rmd
.rmd_tgt
= mcd
->md_tgt
;
940 if (alist_iter(mcd
->md_fdida
, redir_mstr_fwd_cb
, &rmd
)) {
941 (void) iitraverse_hash(mcd
->md_tgt
->td_iihash
,
942 &mcd
->md_tgt
->td_curvgen
, fwd_redir_cbs
, NULL
, NULL
, map
);
949 add_iitba_cb(void *data
, void *private)
951 merge_cb_data_t
*mcd
= private;
952 iidesc_t
*tba
= data
;
957 newidx
= get_mapping(mcd
->md_ta
, tba
->ii_dtype
->t_id
);
958 assert(newidx
!= -1);
960 (void) list_remove(mcd
->md_iitba
, data
, NULL
, NULL
);
962 iif
.iif_template
= tba
;
963 iif
.iif_ta
= mcd
->md_ta
;
964 iif
.iif_newidx
= newidx
;
965 iif
.iif_refmerge
= (mcd
->md_flags
& MCD_F_REFMERGE
);
967 if (hash_match(mcd
->md_parent
->td_iihash
, tba
, iidesc_match
,
969 debug(3, "iidesc_t %s already exists\n",
970 (tba
->ii_name
? tba
->ii_name
: "(anon)"));
974 new = conjure_iidesc(tba
, mcd
);
975 hash_add(mcd
->md_tgt
->td_iihash
, new);
981 add_tdesc(tdesc_t
*oldtdp
, int newid
, merge_cb_data_t
*mcd
)
986 template.t_id
= newid
;
987 assert(hash_find(mcd
->md_parent
->td_idhash
,
988 (void *)&template, NULL
) == 0);
990 debug(3, "trying to conjure %d %s (%d) as %d\n",
991 oldtdp
->t_type
, tdesc_name(oldtdp
), oldtdp
->t_id
, newid
);
993 if ((newtdp
= tdesc_ops
[oldtdp
->t_type
].conjure(oldtdp
, newid
,
995 /* couldn't map everything */
998 debug(3, "succeeded\n");
1000 hash_add(mcd
->md_tgt
->td_idhash
, newtdp
);
1001 hash_add(mcd
->md_tgt
->td_layouthash
, newtdp
);
1007 add_tdtba_cb(void *data
, void *arg
)
1009 tdesc_t
*tdp
= data
;
1010 merge_cb_data_t
*mcd
= arg
;
1014 newid
= get_mapping(mcd
->md_ta
, tdp
->t_id
);
1015 assert(newid
!= -1);
1017 if ((rc
= add_tdesc(tdp
, newid
, mcd
)))
1018 hash_remove(mcd
->md_tdtba
, (void *)tdp
);
1024 add_tdtbr_cb(void *data
, void *arg
)
1026 tdesc_t
**tdpp
= data
;
1027 merge_cb_data_t
*mcd
= arg
;
1029 debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp
), (*tdpp
)->t_id
);
1031 if (!remap_node(tdpp
, *tdpp
, -1, NULL
, mcd
))
1034 (void) list_remove(mcd
->md_tdtbr
, (void *)tdpp
, NULL
, NULL
);
1039 merge_types(hash_t
*src
, merge_cb_data_t
*mcd
)
1041 list_t
*iitba
= NULL
;
1042 list_t
*tdtbr
= NULL
;
1045 mcd
->md_iitba
= &iitba
;
1046 mcd
->md_tdtba
= hash_new(TDATA_LAYOUT_HASH_SIZE
, tdesc_layouthash
,
1048 mcd
->md_tdtbr
= &tdtbr
;
1050 (void) hash_iter(src
, merge_type_cb
, mcd
);
1052 tdrc
= hash_iter(mcd
->md_tdtba
, add_tdtba_cb
, (void *)mcd
);
1053 debug(3, "add_tdtba_cb added %d items\n", tdrc
);
1055 iirc
= list_iter(*mcd
->md_iitba
, add_iitba_cb
, (void *)mcd
);
1056 debug(3, "add_iitba_cb added %d items\n", iirc
);
1058 assert(list_count(*mcd
->md_iitba
) == 0 &&
1059 hash_count(mcd
->md_tdtba
) == 0);
1061 tdrc
= list_iter(*mcd
->md_tdtbr
, add_tdtbr_cb
, (void *)mcd
);
1062 debug(3, "add_tdtbr_cb added %d items\n", tdrc
);
1064 if (list_count(*mcd
->md_tdtbr
) != 0)
1065 aborterr("Couldn't remap all nodes\n");
1068 * We now have an alist of master forwards and the ids of the new master
1069 * definitions for those forwards in mcd->md_fdida. By this point,
1070 * we're guaranteed that all of the master definitions referenced in
1071 * fdida have been added to the master tree. We now traverse through
1072 * the master tree, redirecting all edges inbound to forwards that have
1073 * definitions to those definitions.
1075 if (mcd
->md_parent
== mcd
->md_tgt
) {
1076 redir_mstr_fwds(mcd
);
1081 merge_into_master(tdata_t
*cur
, tdata_t
*mstr
, tdata_t
*tgt
, int selfuniquify
)
1083 merge_cb_data_t mcd
;
1090 assert(cur
->td_ref
== 1 && mstr
->td_ref
== 1 &&
1091 (tgt
== NULL
|| tgt
->td_ref
== 1));
1093 mcd
.md_parent
= mstr
;
1094 mcd
.md_tgt
= (tgt
? tgt
: mstr
);
1095 mcd
.md_ta
= alist_new(NULL
, NULL
);
1096 mcd
.md_fdida
= alist_new(NULL
, NULL
);
1100 mcd
.md_flags
|= MCD_F_SELFUNIQUIFY
;
1102 mcd
.md_flags
|= MCD_F_REFMERGE
;
1104 mstr
->td_curvgen
= MAX(mstr
->td_curvgen
, cur
->td_curvgen
);
1105 mstr
->td_curemark
= MAX(mstr
->td_curemark
, cur
->td_curemark
);
1107 merge_types(cur
->td_iihash
, &mcd
);
1109 if (debug_level
>= 3) {
1110 debug(3, "Type association stats\n");
1111 alist_stats(mcd
.md_ta
, 0);
1112 debug(3, "Layout hash stats\n");
1113 hash_stats(mcd
.md_tgt
->td_layouthash
, 1);
1116 alist_free(mcd
.md_fdida
);
1117 alist_free(mcd
.md_ta
);
1125 tdesc_ops_t tdesc_ops
[] = {
1126 { "ERROR! BAD tdesc TYPE", NULL
, NULL
},
1127 { "intrinsic", equiv_intrinsic
, conjure_intrinsic
},
1128 { "pointer", equiv_plain
, conjure_plain
},
1129 { "array", equiv_array
, conjure_array
},
1130 { "function", equiv_function
, conjure_function
},
1131 { "struct", equiv_su
, conjure_su
},
1132 { "union", equiv_su
, conjure_su
},
1133 { "enum", equiv_enum
, conjure_enum
},
1134 { "forward", NULL
, conjure_forward
},
1135 { "typedef", equiv_plain
, conjure_plain
},
1136 { "typedef_unres", equiv_assert
, conjure_assert
},
1137 { "volatile", equiv_plain
, conjure_plain
},
1138 { "const", equiv_plain
, conjure_plain
},
1139 { "restrict", equiv_plain
, conjure_plain
}