8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / common / fs / ufs / ufs_vnops.c
blob898be4d7b231198082c53405503f13f6d387d03b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1984, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent, Inc.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
32 * Portions of this source code were derived from Berkeley 4.3 BSD
33 * under license from the Regents of the University of California.
36 #include <sys/types.h>
37 #include <sys/t_lock.h>
38 #include <sys/ksynch.h>
39 #include <sys/param.h>
40 #include <sys/time.h>
41 #include <sys/systm.h>
42 #include <sys/sysmacros.h>
43 #include <sys/resource.h>
44 #include <sys/signal.h>
45 #include <sys/cred.h>
46 #include <sys/user.h>
47 #include <sys/buf.h>
48 #include <sys/vfs.h>
49 #include <sys/vfs_opreg.h>
50 #include <sys/vnode.h>
51 #include <sys/proc.h>
52 #include <sys/disp.h>
53 #include <sys/file.h>
54 #include <sys/fcntl.h>
55 #include <sys/flock.h>
56 #include <sys/atomic.h>
57 #include <sys/kmem.h>
58 #include <sys/uio.h>
59 #include <sys/dnlc.h>
60 #include <sys/conf.h>
61 #include <sys/mman.h>
62 #include <sys/pathname.h>
63 #include <sys/debug.h>
64 #include <sys/vmsystm.h>
65 #include <sys/cmn_err.h>
66 #include <sys/filio.h>
67 #include <sys/policy.h>
69 #include <sys/fs/ufs_fs.h>
70 #include <sys/fs/ufs_lockfs.h>
71 #include <sys/fs/ufs_filio.h>
72 #include <sys/fs/ufs_inode.h>
73 #include <sys/fs/ufs_fsdir.h>
74 #include <sys/fs/ufs_quota.h>
75 #include <sys/fs/ufs_log.h>
76 #include <sys/fs/ufs_snap.h>
77 #include <sys/fs/ufs_trans.h>
78 #include <sys/fs/ufs_panic.h>
79 #include <sys/fs/ufs_bio.h>
80 #include <sys/dirent.h> /* must be AFTER <sys/fs/fsdir.h>! */
81 #include <sys/errno.h>
82 #include <sys/fssnap_if.h>
83 #include <sys/unistd.h>
84 #include <sys/sunddi.h>
86 #include <sys/filio.h> /* _FIOIO */
88 #include <vm/hat.h>
89 #include <vm/page.h>
90 #include <vm/pvn.h>
91 #include <vm/as.h>
92 #include <vm/seg.h>
93 #include <vm/seg_map.h>
94 #include <vm/seg_vn.h>
95 #include <vm/seg_kmem.h>
96 #include <vm/rm.h>
97 #include <sys/swap.h>
99 #include <fs/fs_subr.h>
101 #include <sys/fs/decomp.h>
103 static struct instats ins;
105 static int ufs_getpage_ra(struct vnode *, u_offset_t, struct seg *, caddr_t);
106 static int ufs_getpage_miss(struct vnode *, u_offset_t, size_t, struct seg *,
107 caddr_t, struct page **, size_t, enum seg_rw, int);
108 static int ufs_open(struct vnode **, int, struct cred *, caller_context_t *);
109 static int ufs_close(struct vnode *, int, int, offset_t, struct cred *,
110 caller_context_t *);
111 static int ufs_read(struct vnode *, struct uio *, int, struct cred *,
112 struct caller_context *);
113 static int ufs_write(struct vnode *, struct uio *, int, struct cred *,
114 struct caller_context *);
115 static int ufs_ioctl(struct vnode *, int, intptr_t, int, struct cred *,
116 int *, caller_context_t *);
117 static int ufs_getattr(struct vnode *, struct vattr *, int, struct cred *,
118 caller_context_t *);
119 static int ufs_setattr(struct vnode *, struct vattr *, int, struct cred *,
120 caller_context_t *);
121 static int ufs_access(struct vnode *, int, int, struct cred *,
122 caller_context_t *);
123 static int ufs_lookup(struct vnode *, char *, struct vnode **,
124 struct pathname *, int, struct vnode *, struct cred *,
125 caller_context_t *, int *, pathname_t *);
126 static int ufs_create(struct vnode *, char *, struct vattr *, enum vcexcl,
127 int, struct vnode **, struct cred *, int,
128 caller_context_t *, vsecattr_t *);
129 static int ufs_remove(struct vnode *, char *, struct cred *,
130 caller_context_t *, int);
131 static int ufs_link(struct vnode *, struct vnode *, char *, struct cred *,
132 caller_context_t *, int);
133 static int ufs_rename(struct vnode *, char *, struct vnode *, char *,
134 struct cred *, caller_context_t *, int);
135 static int ufs_mkdir(struct vnode *, char *, struct vattr *, struct vnode **,
136 struct cred *, caller_context_t *, int, vsecattr_t *);
137 static int ufs_rmdir(struct vnode *, char *, struct vnode *, struct cred *,
138 caller_context_t *, int);
139 static int ufs_readdir(struct vnode *, struct uio *, struct cred *, int *,
140 caller_context_t *, int);
141 static int ufs_symlink(struct vnode *, char *, struct vattr *, char *,
142 struct cred *, caller_context_t *, int);
143 static int ufs_readlink(struct vnode *, struct uio *, struct cred *,
144 caller_context_t *);
145 static int ufs_fsync(struct vnode *, int, struct cred *, caller_context_t *);
146 static void ufs_inactive(struct vnode *, struct cred *, caller_context_t *);
147 static int ufs_fid(struct vnode *, struct fid *, caller_context_t *);
148 static int ufs_rwlock(struct vnode *, int, caller_context_t *);
149 static void ufs_rwunlock(struct vnode *, int, caller_context_t *);
150 static int ufs_seek(struct vnode *, offset_t, offset_t *, caller_context_t *);
151 static int ufs_frlock(struct vnode *, int, struct flock64 *, int, offset_t,
152 struct flk_callback *, struct cred *,
153 caller_context_t *);
154 static int ufs_space(struct vnode *, int, struct flock64 *, int, offset_t,
155 cred_t *, caller_context_t *);
156 static int ufs_getpage(struct vnode *, offset_t, size_t, uint_t *,
157 struct page **, size_t, struct seg *, caddr_t,
158 enum seg_rw, struct cred *, caller_context_t *);
159 static int ufs_putpage(struct vnode *, offset_t, size_t, int, struct cred *,
160 caller_context_t *);
161 static int ufs_putpages(struct vnode *, offset_t, size_t, int, struct cred *);
162 static int ufs_map(struct vnode *, offset_t, struct as *, caddr_t *, size_t,
163 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
164 static int ufs_addmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
165 uchar_t, uchar_t, uint_t, struct cred *, caller_context_t *);
166 static int ufs_delmap(struct vnode *, offset_t, struct as *, caddr_t, size_t,
167 uint_t, uint_t, uint_t, struct cred *, caller_context_t *);
168 static int ufs_poll(vnode_t *, short, int, short *, struct pollhead **,
169 caller_context_t *);
170 static int ufs_dump(vnode_t *, caddr_t, offset_t, offset_t,
171 caller_context_t *);
172 static int ufs_l_pathconf(struct vnode *, int, ulong_t *, struct cred *,
173 caller_context_t *);
174 static int ufs_pageio(struct vnode *, struct page *, u_offset_t, size_t, int,
175 struct cred *, caller_context_t *);
176 static int ufs_dumpctl(vnode_t *, int, offset_t *, caller_context_t *);
177 static daddr32_t *save_dblks(struct inode *, struct ufsvfs *, daddr32_t *,
178 daddr32_t *, int, int);
179 static int ufs_getsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
180 caller_context_t *);
181 static int ufs_setsecattr(struct vnode *, vsecattr_t *, int, struct cred *,
182 caller_context_t *);
183 static int ufs_priv_access(void *, int, struct cred *);
184 static int ufs_eventlookup(struct vnode *, char *, struct cred *,
185 struct vnode **);
186 extern int as_map_locked(struct as *, caddr_t, size_t, int ((*)()), void *);
189 * For lockfs: ulockfs begin/end is now inlined in the ufs_xxx functions.
191 * XXX - ULOCKFS in fs_pathconf and ufs_ioctl is not inlined yet.
193 struct vnodeops *ufs_vnodeops;
195 /* NOTE: "not blkd" below means that the operation isn't blocked by lockfs */
196 const fs_operation_def_t ufs_vnodeops_template[] = {
197 VOPNAME_OPEN, { .vop_open = ufs_open }, /* not blkd */
198 VOPNAME_CLOSE, { .vop_close = ufs_close }, /* not blkd */
199 VOPNAME_READ, { .vop_read = ufs_read },
200 VOPNAME_WRITE, { .vop_write = ufs_write },
201 VOPNAME_IOCTL, { .vop_ioctl = ufs_ioctl },
202 VOPNAME_GETATTR, { .vop_getattr = ufs_getattr },
203 VOPNAME_SETATTR, { .vop_setattr = ufs_setattr },
204 VOPNAME_ACCESS, { .vop_access = ufs_access },
205 VOPNAME_LOOKUP, { .vop_lookup = ufs_lookup },
206 VOPNAME_CREATE, { .vop_create = ufs_create },
207 VOPNAME_REMOVE, { .vop_remove = ufs_remove },
208 VOPNAME_LINK, { .vop_link = ufs_link },
209 VOPNAME_RENAME, { .vop_rename = ufs_rename },
210 VOPNAME_MKDIR, { .vop_mkdir = ufs_mkdir },
211 VOPNAME_RMDIR, { .vop_rmdir = ufs_rmdir },
212 VOPNAME_READDIR, { .vop_readdir = ufs_readdir },
213 VOPNAME_SYMLINK, { .vop_symlink = ufs_symlink },
214 VOPNAME_READLINK, { .vop_readlink = ufs_readlink },
215 VOPNAME_FSYNC, { .vop_fsync = ufs_fsync },
216 VOPNAME_INACTIVE, { .vop_inactive = ufs_inactive }, /* not blkd */
217 VOPNAME_FID, { .vop_fid = ufs_fid },
218 VOPNAME_RWLOCK, { .vop_rwlock = ufs_rwlock }, /* not blkd */
219 VOPNAME_RWUNLOCK, { .vop_rwunlock = ufs_rwunlock }, /* not blkd */
220 VOPNAME_SEEK, { .vop_seek = ufs_seek },
221 VOPNAME_FRLOCK, { .vop_frlock = ufs_frlock },
222 VOPNAME_SPACE, { .vop_space = ufs_space },
223 VOPNAME_GETPAGE, { .vop_getpage = ufs_getpage },
224 VOPNAME_PUTPAGE, { .vop_putpage = ufs_putpage },
225 VOPNAME_MAP, { .vop_map = ufs_map },
226 VOPNAME_ADDMAP, { .vop_addmap = ufs_addmap }, /* not blkd */
227 VOPNAME_DELMAP, { .vop_delmap = ufs_delmap }, /* not blkd */
228 VOPNAME_POLL, { .vop_poll = ufs_poll }, /* not blkd */
229 VOPNAME_DUMP, { .vop_dump = ufs_dump },
230 VOPNAME_PATHCONF, { .vop_pathconf = ufs_l_pathconf },
231 VOPNAME_PAGEIO, { .vop_pageio = ufs_pageio },
232 VOPNAME_DUMPCTL, { .vop_dumpctl = ufs_dumpctl },
233 VOPNAME_GETSECATTR, { .vop_getsecattr = ufs_getsecattr },
234 VOPNAME_SETSECATTR, { .vop_setsecattr = ufs_setsecattr },
235 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
236 NULL, NULL
239 #define MAX_BACKFILE_COUNT 9999
242 * Created by ufs_dumpctl() to store a file's disk block info into memory.
243 * Used by ufs_dump() to dump data to disk directly.
245 struct dump {
246 struct inode *ip; /* the file we contain */
247 daddr_t fsbs; /* number of blocks stored */
248 struct timeval32 time; /* time stamp for the struct */
249 daddr32_t dblk[1]; /* place holder for block info */
252 static struct dump *dump_info = NULL;
255 * Previously there was no special action required for ordinary files.
256 * (Devices are handled through the device file system.)
257 * Now we support Large Files and Large File API requires open to
258 * fail if file is large.
259 * We could take care to prevent data corruption
260 * by doing an atomic check of size and truncate if file is opened with
261 * FTRUNC flag set but traditionally this is being done by the vfs/vnode
262 * layers. So taking care of truncation here is a change in the existing
263 * semantics of VOP_OPEN and therefore we chose not to implement any thing
264 * here. The check for the size of the file > 2GB is being done at the
265 * vfs layer in routine vn_open().
268 /* ARGSUSED */
269 static int
270 ufs_open(struct vnode **vpp, int flag, struct cred *cr, caller_context_t *ct)
272 return (0);
275 /*ARGSUSED*/
276 static int
277 ufs_close(struct vnode *vp, int flag, int count, offset_t offset,
278 struct cred *cr, caller_context_t *ct)
280 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
281 cleanshares(vp, ttoproc(curthread)->p_pid);
284 * Push partially filled cluster at last close.
285 * ``last close'' is approximated because the dnlc
286 * may have a hold on the vnode.
287 * Checking for VBAD here will also act as a forced umount check.
289 if (vp->v_count <= 2 && vp->v_type != VBAD) {
290 struct inode *ip = VTOI(vp);
291 if (ip->i_delaylen) {
292 ins.in_poc.value.ul++;
293 (void) ufs_putpages(vp, ip->i_delayoff, ip->i_delaylen,
294 B_ASYNC | B_FREE, cr);
295 ip->i_delaylen = 0;
299 return (0);
302 /*ARGSUSED*/
303 static int
304 ufs_read(struct vnode *vp, struct uio *uiop, int ioflag, struct cred *cr,
305 struct caller_context *ct)
307 struct inode *ip = VTOI(vp);
308 struct ufsvfs *ufsvfsp;
309 struct ulockfs *ulp = NULL;
310 int error = 0;
311 int intrans = 0;
313 ASSERT(RW_READ_HELD(&ip->i_rwlock));
316 * Mandatory locking needs to be done before ufs_lockfs_begin()
317 * and TRANS_BEGIN_SYNC() calls since mandatory locks can sleep.
319 if (MANDLOCK(vp, ip->i_mode)) {
321 * ufs_getattr ends up being called by chklock
323 error = chklock(vp, FREAD, uiop->uio_loffset,
324 uiop->uio_resid, uiop->uio_fmode, ct);
325 if (error)
326 goto out;
329 ufsvfsp = ip->i_ufsvfs;
330 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READ_MASK);
331 if (error)
332 goto out;
335 * In the case that a directory is opened for reading as a file
336 * (eg "cat .") with the O_RSYNC, O_SYNC and O_DSYNC flags set.
337 * The locking order had to be changed to avoid a deadlock with
338 * an update taking place on that directory at the same time.
340 if ((ip->i_mode & IFMT) == IFDIR) {
342 rw_enter(&ip->i_contents, RW_READER);
343 error = rdip(ip, uiop, ioflag, cr);
344 rw_exit(&ip->i_contents);
346 if (error) {
347 if (ulp)
348 ufs_lockfs_end(ulp);
349 goto out;
352 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
353 TRANS_ISTRANS(ufsvfsp)) {
354 rw_exit(&ip->i_rwlock);
355 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
356 error);
357 ASSERT(!error);
358 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
359 TOP_READ_SIZE);
360 rw_enter(&ip->i_rwlock, RW_READER);
362 } else {
364 * Only transact reads to files opened for sync-read and
365 * sync-write on a file system that is not write locked.
367 * The ``not write locked'' check prevents problems with
368 * enabling/disabling logging on a busy file system. E.g.,
369 * logging exists at the beginning of the read but does not
370 * at the end.
373 if (ulp && (ioflag & FRSYNC) && (ioflag & (FSYNC | FDSYNC)) &&
374 TRANS_ISTRANS(ufsvfsp)) {
375 TRANS_BEGIN_SYNC(ufsvfsp, TOP_READ_SYNC, TOP_READ_SIZE,
376 error);
377 ASSERT(!error);
378 intrans = 1;
381 rw_enter(&ip->i_contents, RW_READER);
382 error = rdip(ip, uiop, ioflag, cr);
383 rw_exit(&ip->i_contents);
385 if (intrans) {
386 TRANS_END_SYNC(ufsvfsp, error, TOP_READ_SYNC,
387 TOP_READ_SIZE);
391 if (ulp) {
392 ufs_lockfs_end(ulp);
394 out:
396 return (error);
399 extern int ufs_HW; /* high water mark */
400 extern int ufs_LW; /* low water mark */
401 int ufs_WRITES = 1; /* XXX - enable/disable */
402 int ufs_throttles = 0; /* throttling count */
403 int ufs_allow_shared_writes = 1; /* directio shared writes */
405 static int
406 ufs_check_rewrite(struct inode *ip, struct uio *uiop, int ioflag)
408 int shared_write;
411 * If the FDSYNC flag is set then ignore the global
412 * ufs_allow_shared_writes in this case.
414 shared_write = (ioflag & FDSYNC) | ufs_allow_shared_writes;
417 * Filter to determine if this request is suitable as a
418 * concurrent rewrite. This write must not allocate blocks
419 * by extending the file or filling in holes. No use trying
420 * through FSYNC descriptors as the inode will be synchronously
421 * updated after the write. The uio structure has not yet been
422 * checked for sanity, so assume nothing.
424 return (((ip->i_mode & IFMT) == IFREG) && !(ioflag & FAPPEND) &&
425 (uiop->uio_loffset >= (offset_t)0) &&
426 (uiop->uio_loffset < ip->i_size) && (uiop->uio_resid > 0) &&
427 ((ip->i_size - uiop->uio_loffset) >= uiop->uio_resid) &&
428 !(ioflag & FSYNC) && !bmap_has_holes(ip) &&
429 shared_write);
432 /*ARGSUSED*/
433 static int
434 ufs_write(struct vnode *vp, struct uio *uiop, int ioflag, cred_t *cr,
435 caller_context_t *ct)
437 struct inode *ip = VTOI(vp);
438 struct ufsvfs *ufsvfsp;
439 struct ulockfs *ulp;
440 int retry = 1;
441 int error, resv, resid = 0;
442 int directio_status;
443 int exclusive;
444 int rewriteflg;
445 long start_resid = uiop->uio_resid;
447 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
449 retry_mandlock:
451 * Mandatory locking needs to be done before ufs_lockfs_begin()
452 * and TRANS_BEGIN_[A]SYNC() calls since mandatory locks can sleep.
453 * Check for forced unmounts normally done in ufs_lockfs_begin().
455 if ((ufsvfsp = ip->i_ufsvfs) == NULL) {
456 error = EIO;
457 goto out;
459 if (MANDLOCK(vp, ip->i_mode)) {
461 ASSERT(RW_WRITE_HELD(&ip->i_rwlock));
464 * ufs_getattr ends up being called by chklock
466 error = chklock(vp, FWRITE, uiop->uio_loffset,
467 uiop->uio_resid, uiop->uio_fmode, ct);
468 if (error)
469 goto out;
472 /* i_rwlock can change in chklock */
473 exclusive = rw_write_held(&ip->i_rwlock);
474 rewriteflg = ufs_check_rewrite(ip, uiop, ioflag);
477 * Check for fast-path special case of directio re-writes.
479 if ((ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) &&
480 !exclusive && rewriteflg) {
482 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
483 if (error)
484 goto out;
486 rw_enter(&ip->i_contents, RW_READER);
487 error = ufs_directio_write(ip, uiop, ioflag, 1, cr,
488 &directio_status);
489 if (directio_status == DIRECTIO_SUCCESS) {
490 uint_t i_flag_save;
492 if (start_resid != uiop->uio_resid)
493 error = 0;
495 * Special treatment of access times for re-writes.
496 * If IMOD is not already set, then convert it
497 * to IMODACC for this operation. This defers
498 * entering a delta into the log until the inode
499 * is flushed. This mimics what is done for read
500 * operations and inode access time.
502 mutex_enter(&ip->i_tlock);
503 i_flag_save = ip->i_flag;
504 ip->i_flag |= IUPD | ICHG;
505 ip->i_seq++;
506 ITIMES_NOLOCK(ip);
507 if ((i_flag_save & IMOD) == 0) {
508 ip->i_flag &= ~IMOD;
509 ip->i_flag |= IMODACC;
511 mutex_exit(&ip->i_tlock);
512 rw_exit(&ip->i_contents);
513 if (ulp)
514 ufs_lockfs_end(ulp);
515 goto out;
517 rw_exit(&ip->i_contents);
518 if (ulp)
519 ufs_lockfs_end(ulp);
522 if (!exclusive && !rw_tryupgrade(&ip->i_rwlock)) {
523 rw_exit(&ip->i_rwlock);
524 rw_enter(&ip->i_rwlock, RW_WRITER);
526 * Mandatory locking could have been enabled
527 * after dropping the i_rwlock.
529 if (MANDLOCK(vp, ip->i_mode))
530 goto retry_mandlock;
533 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_WRITE_MASK);
534 if (error)
535 goto out;
538 * Amount of log space needed for this write
540 if (!rewriteflg || !(ioflag & FDSYNC))
541 TRANS_WRITE_RESV(ip, uiop, ulp, &resv, &resid);
544 * Throttle writes.
546 if (ufs_WRITES && (ip->i_writes > ufs_HW)) {
547 mutex_enter(&ip->i_tlock);
548 while (ip->i_writes > ufs_HW) {
549 ufs_throttles++;
550 cv_wait(&ip->i_wrcv, &ip->i_tlock);
552 mutex_exit(&ip->i_tlock);
556 * Enter Transaction
558 * If the write is a rewrite there is no need to open a transaction
559 * if the FDSYNC flag is set and not the FSYNC. In this case just
560 * set the IMODACC flag to modify do the update at a later time
561 * thus avoiding the overhead of the logging transaction that is
562 * not required.
564 if (ioflag & (FSYNC|FDSYNC)) {
565 if (ulp) {
566 if (rewriteflg) {
567 uint_t i_flag_save;
569 rw_enter(&ip->i_contents, RW_READER);
570 mutex_enter(&ip->i_tlock);
571 i_flag_save = ip->i_flag;
572 ip->i_flag |= IUPD | ICHG;
573 ip->i_seq++;
574 ITIMES_NOLOCK(ip);
575 if ((i_flag_save & IMOD) == 0) {
576 ip->i_flag &= ~IMOD;
577 ip->i_flag |= IMODACC;
579 mutex_exit(&ip->i_tlock);
580 rw_exit(&ip->i_contents);
581 } else {
582 int terr = 0;
583 TRANS_BEGIN_SYNC(ufsvfsp, TOP_WRITE_SYNC, resv,
584 terr);
585 ASSERT(!terr);
588 } else {
589 if (ulp)
590 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_WRITE, resv);
594 * Write the file
596 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
597 rw_enter(&ip->i_contents, RW_WRITER);
598 if ((ioflag & FAPPEND) != 0 && (ip->i_mode & IFMT) == IFREG) {
600 * In append mode start at end of file.
602 uiop->uio_loffset = ip->i_size;
606 * Mild optimisation, don't call ufs_trans_write() unless we have to
607 * Also, suppress file system full messages if we will retry.
609 if (retry)
610 ip->i_flag |= IQUIET;
611 if (resid) {
612 TRANS_WRITE(ip, uiop, ioflag, error, ulp, cr, resv, resid);
613 } else {
614 error = wrip(ip, uiop, ioflag, cr);
616 ip->i_flag &= ~IQUIET;
618 rw_exit(&ip->i_contents);
619 rw_exit(&ufsvfsp->vfs_dqrwlock);
622 * Leave Transaction
624 if (ulp) {
625 if (ioflag & (FSYNC|FDSYNC)) {
626 if (!rewriteflg) {
627 int terr = 0;
629 TRANS_END_SYNC(ufsvfsp, terr, TOP_WRITE_SYNC,
630 resv);
631 if (error == 0)
632 error = terr;
634 } else {
635 TRANS_END_ASYNC(ufsvfsp, TOP_WRITE, resv);
637 ufs_lockfs_end(ulp);
639 out:
640 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
642 * Any blocks tied up in pending deletes?
644 ufs_delete_drain_wait(ufsvfsp, 1);
645 retry = 0;
646 goto retry_mandlock;
649 if (error == ENOSPC && (start_resid != uiop->uio_resid))
650 error = 0;
652 return (error);
656 * Don't cache write blocks to files with the sticky bit set.
657 * Used to keep swap files from blowing the page cache on a server.
659 int stickyhack = 1;
662 * Free behind hacks. The pager is busted.
663 * XXX - need to pass the information down to writedone() in a flag like B_SEQ
664 * or B_FREE_IF_TIGHT_ON_MEMORY.
666 int freebehind = 1;
667 int smallfile = 0;
668 u_offset_t smallfile64 = 32 * 1024;
671 * While we should, in most cases, cache the pages for write, we
672 * may also want to cache the pages for read as long as they are
673 * frequently re-usable.
675 * If cache_read_ahead = 1, the pages for read will go to the tail
676 * of the cache list when they are released, otherwise go to the head.
678 int cache_read_ahead = 0;
681 * Freebehind exists so that as we read large files sequentially we
682 * don't consume most of memory with pages from a few files. It takes
683 * longer to re-read from disk multiple small files as it does reading
684 * one large one sequentially. As system memory grows customers need
685 * to retain bigger chunks of files in memory. The advent of the
686 * cachelist opens up of the possibility freeing pages to the head or
687 * tail of the list.
689 * Not freeing a page is a bet that the page will be read again before
690 * it's segmap slot is needed for something else. If we loose the bet,
691 * it means some other thread is burdened with the page free we did
692 * not do. If we win we save a free and reclaim.
694 * Freeing it at the tail vs the head of cachelist is a bet that the
695 * page will survive until the next read. It's also saying that this
696 * page is more likely to be re-used than a page freed some time ago
697 * and never reclaimed.
699 * Freebehind maintains a range of file offset [smallfile1; smallfile2]
701 * 0 < offset < smallfile1 : pages are not freed.
702 * smallfile1 < offset < smallfile2 : pages freed to tail of cachelist.
703 * smallfile2 < offset : pages freed to head of cachelist.
705 * The range is computed at most once per second and depends on
706 * freemem and ncpus_online. Both parameters are bounded to be
707 * >= smallfile && >= smallfile64.
709 * smallfile1 = (free memory / ncpu) / 1000
710 * smallfile2 = (free memory / ncpu) / 10
712 * A few examples values:
714 * Free Mem (in Bytes) [smallfile1; smallfile2] [smallfile1; smallfile2]
715 * ncpus_online = 4 ncpus_online = 64
716 * ------------------ ----------------------- -----------------------
717 * 1G [256K; 25M] [32K; 1.5M]
718 * 10G [2.5M; 250M] [156K; 15M]
719 * 100G [25M; 2.5G] [1.5M; 150M]
723 #define SMALLFILE1_D 1000
724 #define SMALLFILE2_D 10
725 static u_offset_t smallfile1 = 32 * 1024;
726 static u_offset_t smallfile2 = 32 * 1024;
727 static clock_t smallfile_update = 0; /* lbolt value of when to recompute */
728 uint_t smallfile1_d = SMALLFILE1_D;
729 uint_t smallfile2_d = SMALLFILE2_D;
732 * wrip does the real work of write requests for ufs.
735 wrip(struct inode *ip, struct uio *uio, int ioflag, struct cred *cr)
737 rlim64_t limit = uio->uio_llimit;
738 u_offset_t off;
739 u_offset_t old_i_size;
740 struct fs *fs;
741 struct vnode *vp;
742 struct ufsvfs *ufsvfsp;
743 caddr_t base;
744 long start_resid = uio->uio_resid; /* save starting resid */
745 long premove_resid; /* resid before uiomove() */
746 uint_t flags;
747 int newpage;
748 int iupdat_flag, directio_status;
749 int n, on, mapon;
750 int error, pagecreate;
751 int do_dqrwlock; /* drop/reacquire vfs_dqrwlock */
752 int32_t iblocks;
753 int new_iblocks;
756 * ip->i_size is incremented before the uiomove
757 * is done on a write. If the move fails (bad user
758 * address) reset ip->i_size.
759 * The better way would be to increment ip->i_size
760 * only if the uiomove succeeds.
762 int i_size_changed = 0;
763 o_mode_t type;
764 int i_seq_needed = 0;
766 vp = ITOV(ip);
769 * check for forced unmount - should not happen as
770 * the request passed the lockfs checks.
772 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
773 return (EIO);
775 fs = ip->i_fs;
777 ASSERT(RW_WRITE_HELD(&ip->i_contents));
779 /* check for valid filetype */
780 type = ip->i_mode & IFMT;
781 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
782 (type != IFLNK) && (type != IFSHAD)) {
783 return (EIO);
787 * the actual limit of UFS file size
788 * is UFS_MAXOFFSET_T
790 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
791 limit = MAXOFFSET_T;
793 if (uio->uio_loffset >= limit) {
794 proc_t *p = ttoproc(curthread);
796 mutex_enter(&p->p_lock);
797 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE], p->p_rctls,
798 p, RCA_UNSAFE_SIGINFO);
799 mutex_exit(&p->p_lock);
800 return (EFBIG);
804 * if largefiles are disallowed, the limit is
805 * the pre-largefiles value of 2GB
807 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
808 limit = MIN(UFS_MAXOFFSET_T, limit);
809 else
810 limit = MIN(MAXOFF32_T, limit);
812 if (uio->uio_loffset < (offset_t)0) {
813 return (EINVAL);
815 if (uio->uio_resid == 0) {
816 return (0);
819 if (uio->uio_loffset >= limit)
820 return (EFBIG);
822 ip->i_flag |= INOACC; /* don't update ref time in getpage */
824 if (ioflag & (FSYNC|FDSYNC)) {
825 ip->i_flag |= ISYNC;
826 iupdat_flag = 1;
829 * Try to go direct
831 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
832 uio->uio_llimit = limit;
833 error = ufs_directio_write(ip, uio, ioflag, 0, cr,
834 &directio_status);
836 * If ufs_directio wrote to the file or set the flags,
837 * we need to update i_seq, but it may be deferred.
839 if (start_resid != uio->uio_resid ||
840 (ip->i_flag & (ICHG|IUPD))) {
841 i_seq_needed = 1;
842 ip->i_flag |= ISEQ;
844 if (directio_status == DIRECTIO_SUCCESS)
845 goto out;
849 * Behavior with respect to dropping/reacquiring vfs_dqrwlock:
851 * o shadow inodes: vfs_dqrwlock is not held at all
852 * o quota updates: vfs_dqrwlock is read or write held
853 * o other updates: vfs_dqrwlock is read held
855 * The first case is the only one where we do not hold
856 * vfs_dqrwlock at all while entering wrip().
857 * We must make sure not to downgrade/drop vfs_dqrwlock if we
858 * have it as writer, i.e. if we are updating the quota inode.
859 * There is no potential deadlock scenario in this case as
860 * ufs_getpage() takes care of this and avoids reacquiring
861 * vfs_dqrwlock in that case.
863 * This check is done here since the above conditions do not change
864 * and we possibly loop below, so save a few cycles.
866 if ((type == IFSHAD) ||
867 (rw_owner(&ufsvfsp->vfs_dqrwlock) == curthread)) {
868 do_dqrwlock = 0;
869 } else {
870 do_dqrwlock = 1;
874 * Large Files: We cast MAXBMASK to offset_t
875 * inorder to mask out the higher bits. Since offset_t
876 * is a signed value, the high order bit set in MAXBMASK
877 * value makes it do the right thing by having all bits 1
878 * in the higher word. May be removed for _SOLARIS64_.
881 fs = ip->i_fs;
882 do {
883 u_offset_t uoff = uio->uio_loffset;
884 off = uoff & (offset_t)MAXBMASK;
885 mapon = (int)(uoff & (offset_t)MAXBOFFSET);
886 on = (int)blkoff(fs, uoff);
887 n = (int)MIN(fs->fs_bsize - on, uio->uio_resid);
888 new_iblocks = 1;
890 if (type == IFREG && uoff + n >= limit) {
891 if (uoff >= limit) {
892 error = EFBIG;
893 goto out;
896 * since uoff + n >= limit,
897 * therefore n >= limit - uoff, and n is an int
898 * so it is safe to cast it to an int
900 n = (int)(limit - (rlim64_t)uoff);
902 if (uoff + n > ip->i_size) {
904 * We are extending the length of the file.
905 * bmap is used so that we are sure that
906 * if we need to allocate new blocks, that it
907 * is done here before we up the file size.
909 error = bmap_write(ip, uoff, (int)(on + n),
910 mapon == 0, NULL, cr);
912 * bmap_write never drops i_contents so if
913 * the flags are set it changed the file.
915 if (ip->i_flag & (ICHG|IUPD)) {
916 i_seq_needed = 1;
917 ip->i_flag |= ISEQ;
919 if (error)
920 break;
922 * There is a window of vulnerability here.
923 * The sequence of operations: allocate file
924 * system blocks, uiomove the data into pages,
925 * and then update the size of the file in the
926 * inode, must happen atomically. However, due
927 * to current locking constraints, this can not
928 * be done.
930 ASSERT(ip->i_writer == NULL);
931 ip->i_writer = curthread;
932 i_size_changed = 1;
934 * If we are writing from the beginning of
935 * the mapping, we can just create the
936 * pages without having to read them.
938 pagecreate = (mapon == 0);
939 } else if (n == MAXBSIZE) {
941 * Going to do a whole mappings worth,
942 * so we can just create the pages w/o
943 * having to read them in. But before
944 * we do that, we need to make sure any
945 * needed blocks are allocated first.
947 iblocks = ip->i_blocks;
948 error = bmap_write(ip, uoff, (int)(on + n),
949 BI_ALLOC_ONLY, NULL, cr);
951 * bmap_write never drops i_contents so if
952 * the flags are set it changed the file.
954 if (ip->i_flag & (ICHG|IUPD)) {
955 i_seq_needed = 1;
956 ip->i_flag |= ISEQ;
958 if (error)
959 break;
960 pagecreate = 1;
962 * check if the new created page needed the
963 * allocation of new disk blocks.
965 if (iblocks == ip->i_blocks)
966 new_iblocks = 0; /* no new blocks allocated */
967 } else {
968 pagecreate = 0;
970 * In sync mode flush the indirect blocks which
971 * may have been allocated and not written on
972 * disk. In above cases bmap_write will allocate
973 * in sync mode.
975 if (ioflag & (FSYNC|FDSYNC)) {
976 error = ufs_indirblk_sync(ip, uoff);
977 if (error)
978 break;
983 * At this point we can enter ufs_getpage() in one
984 * of two ways:
985 * 1) segmap_getmapflt() calls ufs_getpage() when the
986 * forcefault parameter is true (pagecreate == 0)
987 * 2) uiomove() causes a page fault.
989 * We have to drop the contents lock to prevent the VM
990 * system from trying to reacquire it in ufs_getpage()
991 * should the uiomove cause a pagefault.
993 * We have to drop the reader vfs_dqrwlock here as well.
995 rw_exit(&ip->i_contents);
996 if (do_dqrwlock) {
997 ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock));
998 ASSERT(!(RW_WRITE_HELD(&ufsvfsp->vfs_dqrwlock)));
999 rw_exit(&ufsvfsp->vfs_dqrwlock);
1002 newpage = 0;
1003 premove_resid = uio->uio_resid;
1006 * Touch the page and fault it in if it is not in core
1007 * before segmap_getmapflt or vpm_data_copy can lock it.
1008 * This is to avoid the deadlock if the buffer is mapped
1009 * to the same file through mmap which we want to write.
1011 uio_prefaultpages((long)n, uio);
1013 if (vpm_enable) {
1015 * Copy data. If new pages are created, part of
1016 * the page that is not written will be initizliazed
1017 * with zeros.
1019 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1020 uio, !pagecreate, &newpage, 0, S_WRITE);
1021 } else {
1023 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1024 (uint_t)n, !pagecreate, S_WRITE);
1027 * segmap_pagecreate() returns 1 if it calls
1028 * page_create_va() to allocate any pages.
1031 if (pagecreate)
1032 newpage = segmap_pagecreate(segkmap, base,
1033 (size_t)n, 0);
1035 error = uiomove(base + mapon, (long)n, UIO_WRITE, uio);
1039 * If "newpage" is set, then a new page was created and it
1040 * does not contain valid data, so it needs to be initialized
1041 * at this point.
1042 * Otherwise the page contains old data, which was overwritten
1043 * partially or as a whole in uiomove.
1044 * If there is only one iovec structure within uio, then
1045 * on error uiomove will not be able to update uio->uio_loffset
1046 * and we would zero the whole page here!
1048 * If uiomove fails because of an error, the old valid data
1049 * is kept instead of filling the rest of the page with zero's.
1051 if (!vpm_enable && newpage &&
1052 uio->uio_loffset < roundup(off + mapon + n, PAGESIZE)) {
1054 * We created pages w/o initializing them completely,
1055 * thus we need to zero the part that wasn't set up.
1056 * This happens on most EOF write cases and if
1057 * we had some sort of error during the uiomove.
1059 int nzero, nmoved;
1061 nmoved = (int)(uio->uio_loffset - (off + mapon));
1062 ASSERT(nmoved >= 0 && nmoved <= n);
1063 nzero = roundup(on + n, PAGESIZE) - nmoved;
1064 ASSERT(nzero > 0 && mapon + nmoved + nzero <= MAXBSIZE);
1065 (void) kzero(base + mapon + nmoved, (uint_t)nzero);
1069 * Unlock the pages allocated by page_create_va()
1070 * in segmap_pagecreate()
1072 if (!vpm_enable && newpage)
1073 segmap_pageunlock(segkmap, base, (size_t)n, S_WRITE);
1076 * If the size of the file changed, then update the
1077 * size field in the inode now. This can't be done
1078 * before the call to segmap_pageunlock or there is
1079 * a potential deadlock with callers to ufs_putpage().
1080 * They will be holding i_contents and trying to lock
1081 * a page, while this thread is holding a page locked
1082 * and trying to acquire i_contents.
1084 if (i_size_changed) {
1085 rw_enter(&ip->i_contents, RW_WRITER);
1086 old_i_size = ip->i_size;
1087 UFS_SET_ISIZE(uoff + n, ip);
1088 TRANS_INODE(ufsvfsp, ip);
1090 * file has grown larger than 2GB. Set flag
1091 * in superblock to indicate this, if it
1092 * is not already set.
1094 if ((ip->i_size > MAXOFF32_T) &&
1095 !(fs->fs_flags & FSLARGEFILES)) {
1096 ASSERT(ufsvfsp->vfs_lfflags & UFS_LARGEFILES);
1097 mutex_enter(&ufsvfsp->vfs_lock);
1098 fs->fs_flags |= FSLARGEFILES;
1099 ufs_sbwrite(ufsvfsp);
1100 mutex_exit(&ufsvfsp->vfs_lock);
1102 mutex_enter(&ip->i_tlock);
1103 ip->i_writer = NULL;
1104 cv_broadcast(&ip->i_wrcv);
1105 mutex_exit(&ip->i_tlock);
1106 rw_exit(&ip->i_contents);
1109 if (error) {
1111 * If we failed on a write, we may have already
1112 * allocated file blocks as well as pages. It's
1113 * hard to undo the block allocation, but we must
1114 * be sure to invalidate any pages that may have
1115 * been allocated.
1117 * If the page was created without initialization
1118 * then we must check if it should be possible
1119 * to destroy the new page and to keep the old data
1120 * on the disk.
1122 * It is possible to destroy the page without
1123 * having to write back its contents only when
1124 * - the size of the file keeps unchanged
1125 * - bmap_write() did not allocate new disk blocks
1126 * it is possible to create big files using "seek" and
1127 * write to the end of the file. A "write" to a
1128 * position before the end of the file would not
1129 * change the size of the file but it would allocate
1130 * new disk blocks.
1131 * - uiomove intended to overwrite the whole page.
1132 * - a new page was created (newpage == 1).
1135 if (i_size_changed == 0 && new_iblocks == 0 &&
1136 newpage) {
1138 /* unwind what uiomove eventually last did */
1139 uio->uio_resid = premove_resid;
1142 * destroy the page, do not write ambiguous
1143 * data to the disk.
1145 flags = SM_DESTROY;
1146 } else {
1148 * write the page back to the disk, if dirty,
1149 * and remove the page from the cache.
1151 flags = SM_INVAL;
1154 if (vpm_enable) {
1156 * Flush pages.
1158 (void) vpm_sync_pages(vp, off, n, flags);
1159 } else {
1160 (void) segmap_release(segkmap, base, flags);
1162 } else {
1163 flags = 0;
1165 * Force write back for synchronous write cases.
1167 if ((ioflag & (FSYNC|FDSYNC)) || type == IFDIR) {
1169 * If the sticky bit is set but the
1170 * execute bit is not set, we do a
1171 * synchronous write back and free
1172 * the page when done. We set up swap
1173 * files to be handled this way to
1174 * prevent servers from keeping around
1175 * the client's swap pages too long.
1176 * XXX - there ought to be a better way.
1178 if (IS_SWAPVP(vp)) {
1179 flags = SM_WRITE | SM_FREE |
1180 SM_DONTNEED;
1181 iupdat_flag = 0;
1182 } else {
1183 flags = SM_WRITE;
1185 } else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
1187 * Have written a whole block.
1188 * Start an asynchronous write and
1189 * mark the buffer to indicate that
1190 * it won't be needed again soon.
1192 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
1194 if (vpm_enable) {
1196 * Flush pages.
1198 error = vpm_sync_pages(vp, off, n, flags);
1199 } else {
1200 error = segmap_release(segkmap, base, flags);
1203 * If the operation failed and is synchronous,
1204 * then we need to unwind what uiomove() last
1205 * did so we can potentially return an error to
1206 * the caller. If this write operation was
1207 * done in two pieces and the first succeeded,
1208 * then we won't return an error for the second
1209 * piece that failed. However, we only want to
1210 * return a resid value that reflects what was
1211 * really done.
1213 * Failures for non-synchronous operations can
1214 * be ignored since the page subsystem will
1215 * retry the operation until it succeeds or the
1216 * file system is unmounted.
1218 if (error) {
1219 if ((ioflag & (FSYNC | FDSYNC)) ||
1220 type == IFDIR) {
1221 uio->uio_resid = premove_resid;
1222 } else {
1223 error = 0;
1229 * Re-acquire contents lock.
1230 * If it was dropped, reacquire reader vfs_dqrwlock as well.
1232 if (do_dqrwlock)
1233 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1234 rw_enter(&ip->i_contents, RW_WRITER);
1237 * If the uiomove() failed or if a synchronous
1238 * page push failed, fix up i_size.
1240 if (error) {
1241 if (i_size_changed) {
1243 * The uiomove failed, and we
1244 * allocated blocks,so get rid
1245 * of them.
1247 (void) ufs_itrunc(ip, old_i_size, 0, cr);
1249 } else {
1251 * XXX - Can this be out of the loop?
1253 ip->i_flag |= IUPD | ICHG;
1255 * Only do one increase of i_seq for multiple
1256 * pieces. Because we drop locks, record
1257 * the fact that we changed the timestamp and
1258 * are deferring the increase in case another thread
1259 * pushes our timestamp update.
1261 i_seq_needed = 1;
1262 ip->i_flag |= ISEQ;
1263 if (i_size_changed)
1264 ip->i_flag |= IATTCHG;
1265 if ((ip->i_mode & (IEXEC | (IEXEC >> 3) |
1266 (IEXEC >> 6))) != 0 &&
1267 (ip->i_mode & (ISUID | ISGID)) != 0 &&
1268 secpolicy_vnode_setid_retain(cr,
1269 (ip->i_mode & ISUID) != 0 && ip->i_uid == 0) != 0) {
1271 * Clear Set-UID & Set-GID bits on
1272 * successful write if not privileged
1273 * and at least one of the execute bits
1274 * is set. If we always clear Set-GID,
1275 * mandatory file and record locking is
1276 * unuseable.
1278 ip->i_mode &= ~(ISUID | ISGID);
1282 * In the case the FDSYNC flag is set and this is a
1283 * "rewrite" we won't log a delta.
1284 * The FSYNC flag overrides all cases.
1286 if (!ufs_check_rewrite(ip, uio, ioflag) || !(ioflag & FDSYNC)) {
1287 TRANS_INODE(ufsvfsp, ip);
1289 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1291 out:
1293 * Make sure i_seq is increased at least once per write
1295 if (i_seq_needed) {
1296 ip->i_seq++;
1297 ip->i_flag &= ~ISEQ; /* no longer deferred */
1301 * Inode is updated according to this table -
1303 * FSYNC FDSYNC(posix.4)
1304 * --------------------------
1305 * always@ IATTCHG|IBDWRITE
1307 * @ - If we are doing synchronous write the only time we should
1308 * not be sync'ing the ip here is if we have the stickyhack
1309 * activated, the file is marked with the sticky bit and
1310 * no exec bit, the file length has not been changed and
1311 * no new blocks have been allocated during this write.
1314 if ((ip->i_flag & ISYNC) != 0) {
1316 * we have eliminated nosync
1318 if ((ip->i_flag & (IATTCHG|IBDWRITE)) ||
1319 ((ioflag & FSYNC) && iupdat_flag)) {
1320 ufs_iupdat(ip, 1);
1325 * If we've already done a partial-write, terminate
1326 * the write but return no error unless the error is ENOSPC
1327 * because the caller can detect this and free resources and
1328 * try again.
1330 if ((start_resid != uio->uio_resid) && (error != ENOSPC))
1331 error = 0;
1333 ip->i_flag &= ~(INOACC | ISYNC);
1334 ITIMES_NOLOCK(ip);
1335 return (error);
1339 * rdip does the real work of read requests for ufs.
1342 rdip(struct inode *ip, struct uio *uio, int ioflag, cred_t *cr)
1344 u_offset_t off;
1345 caddr_t base;
1346 struct fs *fs;
1347 struct ufsvfs *ufsvfsp;
1348 struct vnode *vp;
1349 long oresid = uio->uio_resid;
1350 u_offset_t n, on, mapon;
1351 int error = 0;
1352 int doupdate = 1;
1353 uint_t flags;
1354 int dofree, directio_status;
1355 krw_t rwtype;
1356 o_mode_t type;
1357 clock_t now;
1359 vp = ITOV(ip);
1361 ASSERT(RW_LOCK_HELD(&ip->i_contents));
1363 ufsvfsp = ip->i_ufsvfs;
1365 if (ufsvfsp == NULL)
1366 return (EIO);
1368 fs = ufsvfsp->vfs_fs;
1370 /* check for valid filetype */
1371 type = ip->i_mode & IFMT;
1372 if ((type != IFREG) && (type != IFDIR) && (type != IFATTRDIR) &&
1373 (type != IFLNK) && (type != IFSHAD)) {
1374 return (EIO);
1377 if (uio->uio_loffset > UFS_MAXOFFSET_T) {
1378 error = 0;
1379 goto out;
1381 if (uio->uio_loffset < (offset_t)0) {
1382 return (EINVAL);
1384 if (uio->uio_resid == 0) {
1385 return (0);
1388 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (fs->fs_ronly == 0) &&
1389 (!ufsvfsp->vfs_noatime)) {
1390 mutex_enter(&ip->i_tlock);
1391 ip->i_flag |= IACC;
1392 mutex_exit(&ip->i_tlock);
1395 * Try to go direct
1397 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio) {
1398 error = ufs_directio_read(ip, uio, cr, &directio_status);
1399 if (directio_status == DIRECTIO_SUCCESS)
1400 goto out;
1403 rwtype = (rw_write_held(&ip->i_contents)?RW_WRITER:RW_READER);
1405 do {
1406 offset_t diff;
1407 u_offset_t uoff = uio->uio_loffset;
1408 off = uoff & (offset_t)MAXBMASK;
1409 mapon = (u_offset_t)(uoff & (offset_t)MAXBOFFSET);
1410 on = (u_offset_t)blkoff(fs, uoff);
1411 n = MIN((u_offset_t)fs->fs_bsize - on,
1412 (u_offset_t)uio->uio_resid);
1414 diff = ip->i_size - uoff;
1416 if (diff <= (offset_t)0) {
1417 error = 0;
1418 goto out;
1420 if (diff < (offset_t)n)
1421 n = (int)diff;
1424 * We update smallfile2 and smallfile1 at most every second.
1426 now = ddi_get_lbolt();
1427 if (now >= smallfile_update) {
1428 uint64_t percpufreeb;
1429 if (smallfile1_d == 0) smallfile1_d = SMALLFILE1_D;
1430 if (smallfile2_d == 0) smallfile2_d = SMALLFILE2_D;
1431 percpufreeb = ptob((uint64_t)freemem) / ncpus_online;
1432 smallfile1 = percpufreeb / smallfile1_d;
1433 smallfile2 = percpufreeb / smallfile2_d;
1434 smallfile1 = MAX(smallfile1, smallfile);
1435 smallfile1 = MAX(smallfile1, smallfile64);
1436 smallfile2 = MAX(smallfile1, smallfile2);
1437 smallfile_update = now + hz;
1440 dofree = freebehind &&
1441 ip->i_nextr == (off & PAGEMASK) && off > smallfile1;
1444 * At this point we can enter ufs_getpage() in one of two
1445 * ways:
1446 * 1) segmap_getmapflt() calls ufs_getpage() when the
1447 * forcefault parameter is true (value of 1 is passed)
1448 * 2) uiomove() causes a page fault.
1450 * We cannot hold onto an i_contents reader lock without
1451 * risking deadlock in ufs_getpage() so drop a reader lock.
1452 * The ufs_getpage() dolock logic already allows for a
1453 * thread holding i_contents as writer to work properly
1454 * so we keep a writer lock.
1456 if (rwtype == RW_READER)
1457 rw_exit(&ip->i_contents);
1459 if (vpm_enable) {
1461 * Copy data.
1463 error = vpm_data_copy(vp, (off + mapon), (uint_t)n,
1464 uio, 1, NULL, 0, S_READ);
1465 } else {
1466 base = segmap_getmapflt(segkmap, vp, (off + mapon),
1467 (uint_t)n, 1, S_READ);
1468 error = uiomove(base + mapon, (long)n, UIO_READ, uio);
1471 flags = 0;
1472 if (!error) {
1474 * If reading sequential we won't need this
1475 * buffer again soon. For offsets in range
1476 * [smallfile1, smallfile2] release the pages
1477 * at the tail of the cache list, larger
1478 * offsets are released at the head.
1480 if (dofree) {
1481 flags = SM_FREE | SM_ASYNC;
1482 if ((cache_read_ahead == 0) &&
1483 (off > smallfile2))
1484 flags |= SM_DONTNEED;
1487 * In POSIX SYNC (FSYNC and FDSYNC) read mode,
1488 * we want to make sure that the page which has
1489 * been read, is written on disk if it is dirty.
1490 * And corresponding indirect blocks should also
1491 * be flushed out.
1493 if ((ioflag & FRSYNC) && (ioflag & (FSYNC|FDSYNC))) {
1494 flags &= ~SM_ASYNC;
1495 flags |= SM_WRITE;
1497 if (vpm_enable) {
1498 error = vpm_sync_pages(vp, off, n, flags);
1499 } else {
1500 error = segmap_release(segkmap, base, flags);
1502 } else {
1503 if (vpm_enable) {
1504 (void) vpm_sync_pages(vp, off, n, flags);
1505 } else {
1506 (void) segmap_release(segkmap, base, flags);
1510 if (rwtype == RW_READER)
1511 rw_enter(&ip->i_contents, rwtype);
1512 } while (error == 0 && uio->uio_resid > 0 && n != 0);
1513 out:
1515 * Inode is updated according to this table if FRSYNC is set.
1517 * FSYNC FDSYNC(posix.4)
1518 * --------------------------
1519 * always IATTCHG|IBDWRITE
1522 * The inode is not updated if we're logging and the inode is a
1523 * directory with FRSYNC, FSYNC and FDSYNC flags set.
1525 if (ioflag & FRSYNC) {
1526 if (TRANS_ISTRANS(ufsvfsp) && ((ip->i_mode & IFMT) == IFDIR)) {
1527 doupdate = 0;
1529 if (doupdate) {
1530 if ((ioflag & FSYNC) ||
1531 ((ioflag & FDSYNC) &&
1532 (ip->i_flag & (IATTCHG|IBDWRITE)))) {
1533 ufs_iupdat(ip, 1);
1538 * If we've already done a partial read, terminate
1539 * the read but return no error.
1541 if (oresid != uio->uio_resid)
1542 error = 0;
1543 ITIMES(ip);
1545 return (error);
1548 /* ARGSUSED */
1549 static int
1550 ufs_ioctl(
1551 struct vnode *vp,
1552 int cmd,
1553 intptr_t arg,
1554 int flag,
1555 struct cred *cr,
1556 int *rvalp,
1557 caller_context_t *ct)
1559 struct lockfs lockfs, lockfs_out;
1560 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
1561 char *comment, *original_comment;
1562 struct fs *fs;
1563 struct ulockfs *ulp;
1564 offset_t off;
1565 extern int maxphys;
1566 int error;
1567 int issync;
1568 int trans_size;
1572 * forcibly unmounted
1574 if (ufsvfsp == NULL || vp->v_vfsp == NULL ||
1575 vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)
1576 return (EIO);
1577 fs = ufsvfsp->vfs_fs;
1579 if (cmd == Q_QUOTACTL) {
1580 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_QUOTA_MASK);
1581 if (error)
1582 return (error);
1584 if (ulp) {
1585 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_QUOTA,
1586 TOP_SETQUOTA_SIZE(fs));
1589 error = quotactl(vp, arg, flag, cr);
1591 if (ulp) {
1592 TRANS_END_ASYNC(ufsvfsp, TOP_QUOTA,
1593 TOP_SETQUOTA_SIZE(fs));
1594 ufs_lockfs_end(ulp);
1596 return (error);
1599 switch (cmd) {
1600 case _FIOLFS:
1602 * file system locking
1604 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1605 return (EPERM);
1607 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1608 if (copyin((caddr_t)arg, &lockfs,
1609 sizeof (struct lockfs)))
1610 return (EFAULT);
1612 #ifdef _SYSCALL32_IMPL
1613 else {
1614 struct lockfs32 lockfs32;
1615 /* Translate ILP32 lockfs to LP64 lockfs */
1616 if (copyin((caddr_t)arg, &lockfs32,
1617 sizeof (struct lockfs32)))
1618 return (EFAULT);
1619 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1620 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1621 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1622 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1623 lockfs.lf_comment =
1624 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1626 #endif /* _SYSCALL32_IMPL */
1628 if (lockfs.lf_comlen) {
1629 if (lockfs.lf_comlen > LOCKFS_MAXCOMMENTLEN)
1630 return (ENAMETOOLONG);
1631 comment =
1632 kmem_alloc(lockfs.lf_comlen, KM_SLEEP);
1633 if (copyin(lockfs.lf_comment, comment,
1634 lockfs.lf_comlen)) {
1635 kmem_free(comment, lockfs.lf_comlen);
1636 return (EFAULT);
1638 original_comment = lockfs.lf_comment;
1639 lockfs.lf_comment = comment;
1641 if ((error = ufs_fiolfs(vp, &lockfs, 0)) == 0) {
1642 lockfs.lf_comment = original_comment;
1644 if ((flag & DATAMODEL_MASK) ==
1645 DATAMODEL_NATIVE) {
1646 (void) copyout(&lockfs, (caddr_t)arg,
1647 sizeof (struct lockfs));
1649 #ifdef _SYSCALL32_IMPL
1650 else {
1651 struct lockfs32 lockfs32;
1652 /* Translate LP64 to ILP32 lockfs */
1653 lockfs32.lf_lock =
1654 (uint32_t)lockfs.lf_lock;
1655 lockfs32.lf_flags =
1656 (uint32_t)lockfs.lf_flags;
1657 lockfs32.lf_key =
1658 (uint32_t)lockfs.lf_key;
1659 lockfs32.lf_comlen =
1660 (uint32_t)lockfs.lf_comlen;
1661 lockfs32.lf_comment =
1662 (uint32_t)(uintptr_t)
1663 lockfs.lf_comment;
1664 (void) copyout(&lockfs32, (caddr_t)arg,
1665 sizeof (struct lockfs32));
1667 #endif /* _SYSCALL32_IMPL */
1669 } else {
1670 if (lockfs.lf_comlen)
1671 kmem_free(comment, lockfs.lf_comlen);
1673 return (error);
1675 case _FIOLFSS:
1677 * get file system locking status
1680 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1681 if (copyin((caddr_t)arg, &lockfs,
1682 sizeof (struct lockfs)))
1683 return (EFAULT);
1685 #ifdef _SYSCALL32_IMPL
1686 else {
1687 struct lockfs32 lockfs32;
1688 /* Translate ILP32 lockfs to LP64 lockfs */
1689 if (copyin((caddr_t)arg, &lockfs32,
1690 sizeof (struct lockfs32)))
1691 return (EFAULT);
1692 lockfs.lf_lock = (ulong_t)lockfs32.lf_lock;
1693 lockfs.lf_flags = (ulong_t)lockfs32.lf_flags;
1694 lockfs.lf_key = (ulong_t)lockfs32.lf_key;
1695 lockfs.lf_comlen = (ulong_t)lockfs32.lf_comlen;
1696 lockfs.lf_comment =
1697 (caddr_t)(uintptr_t)lockfs32.lf_comment;
1699 #endif /* _SYSCALL32_IMPL */
1701 if (error = ufs_fiolfss(vp, &lockfs_out))
1702 return (error);
1703 lockfs.lf_lock = lockfs_out.lf_lock;
1704 lockfs.lf_key = lockfs_out.lf_key;
1705 lockfs.lf_flags = lockfs_out.lf_flags;
1706 lockfs.lf_comlen = MIN(lockfs.lf_comlen,
1707 lockfs_out.lf_comlen);
1709 if ((flag & DATAMODEL_MASK) == DATAMODEL_NATIVE) {
1710 if (copyout(&lockfs, (caddr_t)arg,
1711 sizeof (struct lockfs)))
1712 return (EFAULT);
1714 #ifdef _SYSCALL32_IMPL
1715 else {
1716 /* Translate LP64 to ILP32 lockfs */
1717 struct lockfs32 lockfs32;
1718 lockfs32.lf_lock = (uint32_t)lockfs.lf_lock;
1719 lockfs32.lf_flags = (uint32_t)lockfs.lf_flags;
1720 lockfs32.lf_key = (uint32_t)lockfs.lf_key;
1721 lockfs32.lf_comlen = (uint32_t)lockfs.lf_comlen;
1722 lockfs32.lf_comment =
1723 (uint32_t)(uintptr_t)lockfs.lf_comment;
1724 if (copyout(&lockfs32, (caddr_t)arg,
1725 sizeof (struct lockfs32)))
1726 return (EFAULT);
1728 #endif /* _SYSCALL32_IMPL */
1730 if (lockfs.lf_comlen &&
1731 lockfs.lf_comment && lockfs_out.lf_comment)
1732 if (copyout(lockfs_out.lf_comment,
1733 lockfs.lf_comment, lockfs.lf_comlen))
1734 return (EFAULT);
1735 return (0);
1737 case _FIOSATIME:
1739 * set access time
1743 * if mounted w/o atime, return quietly.
1744 * I briefly thought about returning ENOSYS, but
1745 * figured that most apps would consider this fatal
1746 * but the idea is to make this as seamless as poss.
1748 if (ufsvfsp->vfs_noatime)
1749 return (0);
1751 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1752 ULOCKFS_SETATTR_MASK);
1753 if (error)
1754 return (error);
1756 if (ulp) {
1757 trans_size = (int)TOP_SETATTR_SIZE(VTOI(vp));
1758 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
1759 TOP_SETATTR, trans_size);
1762 error = ufs_fiosatime(vp, (struct timeval *)arg,
1763 flag, cr);
1765 if (ulp) {
1766 TRANS_END_CSYNC(ufsvfsp, error, issync,
1767 TOP_SETATTR, trans_size);
1768 ufs_lockfs_end(ulp);
1770 return (error);
1772 case _FIOSDIO:
1774 * set delayed-io
1776 return (ufs_fiosdio(vp, (uint_t *)arg, flag, cr));
1778 case _FIOGDIO:
1780 * get delayed-io
1782 return (ufs_fiogdio(vp, (uint_t *)arg, flag, cr));
1784 case _FIOIO:
1786 * inode open
1788 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1789 ULOCKFS_VGET_MASK);
1790 if (error)
1791 return (error);
1793 error = ufs_fioio(vp, (struct fioio *)arg, flag, cr);
1795 if (ulp) {
1796 ufs_lockfs_end(ulp);
1798 return (error);
1800 case _FIOFFS:
1802 * file system flush (push w/invalidate)
1804 if ((caddr_t)arg != NULL)
1805 return (EINVAL);
1806 return (ufs_fioffs(vp, NULL, cr));
1808 case _FIOISBUSY:
1810 * Contract-private interface for Legato
1811 * Purge this vnode from the DNLC and decide
1812 * if this vnode is busy (*arg == 1) or not
1813 * (*arg == 0)
1815 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1816 return (EPERM);
1817 error = ufs_fioisbusy(vp, (int *)arg, cr);
1818 return (error);
1820 case _FIODIRECTIO:
1821 return (ufs_fiodirectio(vp, (int)arg, cr));
1823 case _FIOTUNE:
1825 * Tune the file system (aka setting fs attributes)
1827 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1828 ULOCKFS_SETATTR_MASK);
1829 if (error)
1830 return (error);
1832 error = ufs_fiotune(vp, (struct fiotune *)arg, cr);
1834 if (ulp)
1835 ufs_lockfs_end(ulp);
1836 return (error);
1838 case _FIOLOGENABLE:
1839 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1840 return (EPERM);
1841 return (ufs_fiologenable(vp, (void *)arg, cr, flag));
1843 case _FIOLOGDISABLE:
1844 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1845 return (EPERM);
1846 return (ufs_fiologdisable(vp, (void *)arg, cr, flag));
1848 case _FIOISLOG:
1849 return (ufs_fioislog(vp, (void *)arg, cr, flag));
1851 case _FIOSNAPSHOTCREATE_MULTI:
1853 struct fiosnapcreate_multi fc, *fcp;
1854 size_t fcm_size;
1856 if (copyin((void *)arg, &fc, sizeof (fc)))
1857 return (EFAULT);
1858 if (fc.backfilecount > MAX_BACKFILE_COUNT)
1859 return (EINVAL);
1860 fcm_size = sizeof (struct fiosnapcreate_multi) +
1861 (fc.backfilecount - 1) * sizeof (int);
1862 fcp = (struct fiosnapcreate_multi *)
1863 kmem_alloc(fcm_size, KM_SLEEP);
1864 if (copyin((void *)arg, fcp, fcm_size)) {
1865 kmem_free(fcp, fcm_size);
1866 return (EFAULT);
1868 error = ufs_snap_create(vp, fcp, cr);
1870 * Do copyout even if there is an error because
1871 * the details of error is stored in fcp.
1873 if (copyout(fcp, (void *)arg, fcm_size))
1874 error = EFAULT;
1875 kmem_free(fcp, fcm_size);
1876 return (error);
1879 case _FIOSNAPSHOTDELETE:
1881 struct fiosnapdelete fc;
1883 if (copyin((void *)arg, &fc, sizeof (fc)))
1884 return (EFAULT);
1885 error = ufs_snap_delete(vp, &fc, cr);
1886 if (!error && copyout(&fc, (void *)arg, sizeof (fc)))
1887 error = EFAULT;
1888 return (error);
1891 case _FIOGETSUPERBLOCK:
1892 if (copyout(fs, (void *)arg, SBSIZE))
1893 return (EFAULT);
1894 return (0);
1896 case _FIOGETMAXPHYS:
1897 if (copyout(&maxphys, (void *)arg, sizeof (maxphys)))
1898 return (EFAULT);
1899 return (0);
1902 * The following 3 ioctls are for TSufs support
1903 * although could potentially be used elsewhere
1905 case _FIO_SET_LUFS_DEBUG:
1906 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1907 return (EPERM);
1908 lufs_debug = (uint32_t)arg;
1909 return (0);
1911 case _FIO_SET_LUFS_ERROR:
1912 if (secpolicy_fs_config(cr, ufsvfsp->vfs_vfs) != 0)
1913 return (EPERM);
1914 TRANS_SETERROR(ufsvfsp);
1915 return (0);
1917 case _FIO_GET_TOP_STATS:
1919 fio_lufs_stats_t *ls;
1920 ml_unit_t *ul = ufsvfsp->vfs_log;
1922 ls = kmem_zalloc(sizeof (*ls), KM_SLEEP);
1923 ls->ls_debug = ul->un_debug; /* return debug value */
1924 /* Copy stucture if statistics are being kept */
1925 if (ul->un_logmap->mtm_tops) {
1926 ls->ls_topstats = *(ul->un_logmap->mtm_tops);
1928 error = 0;
1929 if (copyout(ls, (void *)arg, sizeof (*ls)))
1930 error = EFAULT;
1931 kmem_free(ls, sizeof (*ls));
1932 return (error);
1935 case _FIO_SEEK_DATA:
1936 case _FIO_SEEK_HOLE:
1937 if (ddi_copyin((void *)arg, &off, sizeof (off), flag))
1938 return (EFAULT);
1939 /* offset paramater is in/out */
1940 error = ufs_fio_holey(vp, cmd, &off);
1941 if (error)
1942 return (error);
1943 if (ddi_copyout(&off, (void *)arg, sizeof (off), flag))
1944 return (EFAULT);
1945 return (0);
1947 case _FIO_COMPRESSED:
1950 * This is a project private ufs ioctl() to mark
1951 * the inode as that belonging to a compressed
1952 * file. This is used to mark individual
1953 * compressed files in a miniroot archive.
1954 * The files compressed in this manner are
1955 * automatically decompressed by the dcfs filesystem
1956 * (via an interception in ufs_lookup - see decompvp())
1957 * which is layered on top of ufs on a system running
1958 * from the archive. See uts/common/fs/dcfs for details.
1959 * This ioctl only marks the file as compressed - the
1960 * actual compression is done by fiocompress (a
1961 * userland utility) which invokes this ioctl().
1963 struct inode *ip = VTOI(vp);
1965 error = ufs_lockfs_begin(ufsvfsp, &ulp,
1966 ULOCKFS_SETATTR_MASK);
1967 if (error)
1968 return (error);
1970 if (ulp) {
1971 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_IUPDAT,
1972 TOP_IUPDAT_SIZE(ip));
1975 error = ufs_mark_compressed(vp);
1977 if (ulp) {
1978 TRANS_END_ASYNC(ufsvfsp, TOP_IUPDAT,
1979 TOP_IUPDAT_SIZE(ip));
1980 ufs_lockfs_end(ulp);
1983 return (error);
1987 default:
1988 return (ENOTTY);
1993 /* ARGSUSED */
1994 static int
1995 ufs_getattr(struct vnode *vp, struct vattr *vap, int flags,
1996 struct cred *cr, caller_context_t *ct)
1998 struct inode *ip = VTOI(vp);
1999 struct ufsvfs *ufsvfsp;
2000 int err;
2002 if (vap->va_mask == AT_SIZE) {
2004 * for performance, if only the size is requested don't bother
2005 * with anything else.
2007 UFS_GET_ISIZE(&vap->va_size, ip);
2008 return (0);
2012 * inlined lockfs checks
2014 ufsvfsp = ip->i_ufsvfs;
2015 if ((ufsvfsp == NULL) || ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs)) {
2016 err = EIO;
2017 goto out;
2020 rw_enter(&ip->i_contents, RW_READER);
2022 * Return all the attributes. This should be refined so
2023 * that it only returns what's asked for.
2027 * Copy from inode table.
2029 vap->va_type = vp->v_type;
2030 vap->va_mode = ip->i_mode & MODEMASK;
2032 * If there is an ACL and there is a mask entry, then do the
2033 * extra work that completes the equivalent of an acltomode(3)
2034 * call. According to POSIX P1003.1e, the acl mask should be
2035 * returned in the group permissions field.
2037 * - start with the original permission and mode bits (from above)
2038 * - clear the group owner bits
2039 * - add in the mask bits.
2041 if (ip->i_ufs_acl && ip->i_ufs_acl->aclass.acl_ismask) {
2042 vap->va_mode &= ~((VREAD | VWRITE | VEXEC) >> 3);
2043 vap->va_mode |=
2044 (ip->i_ufs_acl->aclass.acl_maskbits & PERMMASK) << 3;
2046 vap->va_uid = ip->i_uid;
2047 vap->va_gid = ip->i_gid;
2048 vap->va_fsid = ip->i_dev;
2049 vap->va_nodeid = (ino64_t)ip->i_number;
2050 vap->va_nlink = ip->i_nlink;
2051 vap->va_size = ip->i_size;
2052 if (vp->v_type == VCHR || vp->v_type == VBLK)
2053 vap->va_rdev = ip->i_rdev;
2054 else
2055 vap->va_rdev = 0; /* not a b/c spec. */
2056 mutex_enter(&ip->i_tlock);
2057 ITIMES_NOLOCK(ip); /* mark correct time in inode */
2058 vap->va_seq = ip->i_seq;
2059 vap->va_atime.tv_sec = (time_t)ip->i_atime.tv_sec;
2060 vap->va_atime.tv_nsec = ip->i_atime.tv_usec*1000;
2061 vap->va_mtime.tv_sec = (time_t)ip->i_mtime.tv_sec;
2062 vap->va_mtime.tv_nsec = ip->i_mtime.tv_usec*1000;
2063 vap->va_ctime.tv_sec = (time_t)ip->i_ctime.tv_sec;
2064 vap->va_ctime.tv_nsec = ip->i_ctime.tv_usec*1000;
2065 mutex_exit(&ip->i_tlock);
2067 switch (ip->i_mode & IFMT) {
2069 case IFBLK:
2070 vap->va_blksize = MAXBSIZE; /* was BLKDEV_IOSIZE */
2071 break;
2073 case IFCHR:
2074 vap->va_blksize = MAXBSIZE;
2075 break;
2077 default:
2078 vap->va_blksize = ip->i_fs->fs_bsize;
2079 break;
2081 vap->va_nblocks = (fsblkcnt64_t)ip->i_blocks;
2082 rw_exit(&ip->i_contents);
2083 err = 0;
2085 out:
2086 return (err);
2090 * Special wrapper to provide a callback for secpolicy_vnode_setattr().
2091 * The i_contents lock is already held by the caller and we need to
2092 * declare the inode as 'void *' argument.
2094 static int
2095 ufs_priv_access(void *vip, int mode, struct cred *cr)
2097 struct inode *ip = vip;
2099 return (ufs_iaccess(ip, mode, cr, 0));
2102 /*ARGSUSED4*/
2103 static int
2104 ufs_setattr(
2105 struct vnode *vp,
2106 struct vattr *vap,
2107 int flags,
2108 struct cred *cr,
2109 caller_context_t *ct)
2111 struct inode *ip = VTOI(vp);
2112 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2113 struct fs *fs;
2114 struct ulockfs *ulp;
2115 char *errmsg1;
2116 char *errmsg2;
2117 long blocks;
2118 long int mask = vap->va_mask;
2119 size_t len1, len2;
2120 int issync;
2121 int trans_size;
2122 int dotrans;
2123 int dorwlock;
2124 int error;
2125 int owner_change;
2126 int dodqlock;
2127 timestruc_t now;
2128 vattr_t oldva;
2129 int retry = 1;
2130 int indeadlock;
2133 * Cannot set these attributes.
2135 if ((mask & AT_NOSET) || (mask & AT_XVATTR))
2136 return (EINVAL);
2139 * check for forced unmount
2141 if (ufsvfsp == NULL)
2142 return (EIO);
2144 fs = ufsvfsp->vfs_fs;
2145 if (fs->fs_ronly != 0)
2146 return (EROFS);
2148 again:
2149 errmsg1 = NULL;
2150 errmsg2 = NULL;
2151 dotrans = 0;
2152 dorwlock = 0;
2153 dodqlock = 0;
2155 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK);
2156 if (error)
2157 goto out;
2160 * Acquire i_rwlock before TRANS_BEGIN_CSYNC() if this is a file.
2161 * This follows the protocol for read()/write().
2163 if (vp->v_type != VDIR) {
2165 * ufs_tryirwlock uses rw_tryenter and checks for SLOCK to
2166 * avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2167 * possible, retries the operation.
2169 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_file);
2170 if (indeadlock) {
2171 if (ulp)
2172 ufs_lockfs_end(ulp);
2173 goto again;
2175 dorwlock = 1;
2179 * Truncate file. Must have write permission and not be a directory.
2181 if (mask & AT_SIZE) {
2182 rw_enter(&ip->i_contents, RW_WRITER);
2183 if (vp->v_type == VDIR) {
2184 error = EISDIR;
2185 goto update_inode;
2187 if (error = ufs_iaccess(ip, IWRITE, cr, 0))
2188 goto update_inode;
2190 rw_exit(&ip->i_contents);
2191 error = TRANS_ITRUNC(ip, vap->va_size, 0, cr);
2192 if (error) {
2193 rw_enter(&ip->i_contents, RW_WRITER);
2194 goto update_inode;
2197 if (error == 0 && vap->va_size)
2198 vnevent_truncate(vp, ct);
2201 if (ulp) {
2202 trans_size = (int)TOP_SETATTR_SIZE(ip);
2203 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SETATTR, trans_size);
2204 ++dotrans;
2208 * Acquire i_rwlock after TRANS_BEGIN_CSYNC() if this is a directory.
2209 * This follows the protocol established by
2210 * ufs_link/create/remove/rename/mkdir/rmdir/symlink.
2212 if (vp->v_type == VDIR) {
2213 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_SETATTR,
2214 retry_dir);
2215 if (indeadlock)
2216 goto again;
2217 dorwlock = 1;
2221 * Grab quota lock if we are changing the file's owner.
2223 if (mask & AT_UID) {
2224 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2225 dodqlock = 1;
2227 rw_enter(&ip->i_contents, RW_WRITER);
2229 oldva.va_mode = ip->i_mode;
2230 oldva.va_uid = ip->i_uid;
2231 oldva.va_gid = ip->i_gid;
2233 vap->va_mask &= ~AT_SIZE;
2235 error = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2236 ufs_priv_access, ip);
2237 if (error)
2238 goto update_inode;
2240 mask = vap->va_mask;
2243 * Change file access modes.
2245 if (mask & AT_MODE) {
2246 ip->i_mode = (ip->i_mode & IFMT) | (vap->va_mode & ~IFMT);
2247 TRANS_INODE(ufsvfsp, ip);
2248 ip->i_flag |= ICHG;
2249 if (stickyhack) {
2250 mutex_enter(&vp->v_lock);
2251 if ((ip->i_mode & (ISVTX | IEXEC | IFDIR)) == ISVTX)
2252 vp->v_flag |= VSWAPLIKE;
2253 else
2254 vp->v_flag &= ~VSWAPLIKE;
2255 mutex_exit(&vp->v_lock);
2258 if (mask & (AT_UID|AT_GID)) {
2259 if (mask & AT_UID) {
2261 * Don't change ownership of the quota inode.
2263 if (ufsvfsp->vfs_qinod == ip) {
2264 ASSERT(ufsvfsp->vfs_qflags & MQ_ENABLED);
2265 error = EINVAL;
2266 goto update_inode;
2270 * No real ownership change.
2272 if (ip->i_uid == vap->va_uid) {
2273 blocks = 0;
2274 owner_change = 0;
2277 * Remove the blocks and the file, from the old user's
2278 * quota.
2280 else {
2281 blocks = ip->i_blocks;
2282 owner_change = 1;
2284 (void) chkdq(ip, -blocks, /* force */ 1, cr,
2285 (char **)NULL, (size_t *)NULL);
2286 (void) chkiq(ufsvfsp, /* change */ -1, ip,
2287 (uid_t)ip->i_uid, /* force */ 1, cr,
2288 (char **)NULL, (size_t *)NULL);
2289 dqrele(ip->i_dquot);
2292 ip->i_uid = vap->va_uid;
2295 * There is a real ownership change.
2297 if (owner_change) {
2299 * Add the blocks and the file to the new
2300 * user's quota.
2302 ip->i_dquot = getinoquota(ip);
2303 (void) chkdq(ip, blocks, /* force */ 1, cr,
2304 &errmsg1, &len1);
2305 (void) chkiq(ufsvfsp, /* change */ 1,
2306 (struct inode *)NULL, (uid_t)ip->i_uid,
2307 /* force */ 1, cr, &errmsg2, &len2);
2310 if (mask & AT_GID) {
2311 ip->i_gid = vap->va_gid;
2313 TRANS_INODE(ufsvfsp, ip);
2314 ip->i_flag |= ICHG;
2317 * Change file access or modified times.
2319 if (mask & (AT_ATIME|AT_MTIME)) {
2320 /* Check that the time value is within ufs range */
2321 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2322 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2323 error = EOVERFLOW;
2324 goto update_inode;
2328 * if the "noaccess" mount option is set and only atime
2329 * update is requested, do nothing. No error is returned.
2331 if ((ufsvfsp->vfs_noatime) &&
2332 ((mask & (AT_ATIME|AT_MTIME)) == AT_ATIME))
2333 goto skip_atime;
2335 if (mask & AT_ATIME) {
2336 ip->i_atime.tv_sec = vap->va_atime.tv_sec;
2337 ip->i_atime.tv_usec = vap->va_atime.tv_nsec / 1000;
2338 ip->i_flag &= ~IACC;
2340 if (mask & AT_MTIME) {
2341 ip->i_mtime.tv_sec = vap->va_mtime.tv_sec;
2342 ip->i_mtime.tv_usec = vap->va_mtime.tv_nsec / 1000;
2343 gethrestime(&now);
2344 if (now.tv_sec > TIME32_MAX) {
2346 * In 2038, ctime sticks forever..
2348 ip->i_ctime.tv_sec = TIME32_MAX;
2349 ip->i_ctime.tv_usec = 0;
2350 } else {
2351 ip->i_ctime.tv_sec = now.tv_sec;
2352 ip->i_ctime.tv_usec = now.tv_nsec / 1000;
2354 ip->i_flag &= ~(IUPD|ICHG);
2355 ip->i_flag |= IMODTIME;
2357 TRANS_INODE(ufsvfsp, ip);
2358 ip->i_flag |= IMOD;
2361 skip_atime:
2363 * The presence of a shadow inode may indicate an ACL, but does
2364 * not imply an ACL. Future FSD types should be handled here too
2365 * and check for the presence of the attribute-specific data
2366 * before referencing it.
2368 if (ip->i_shadow) {
2370 * XXX if ufs_iupdat is changed to sandbagged write fix
2371 * ufs_acl_setattr to push ip to keep acls consistent
2373 * Suppress out of inodes messages if we will retry.
2375 if (retry)
2376 ip->i_flag |= IQUIET;
2377 error = ufs_acl_setattr(ip, vap, cr);
2378 ip->i_flag &= ~IQUIET;
2381 update_inode:
2383 * Setattr always increases the sequence number
2385 ip->i_seq++;
2388 * if nfsd and not logging; push synchronously
2390 if ((curthread->t_flag & T_DONTPEND) && !TRANS_ISTRANS(ufsvfsp)) {
2391 ufs_iupdat(ip, 1);
2392 } else {
2393 ITIMES_NOLOCK(ip);
2396 rw_exit(&ip->i_contents);
2397 if (dodqlock) {
2398 rw_exit(&ufsvfsp->vfs_dqrwlock);
2400 if (dorwlock)
2401 rw_exit(&ip->i_rwlock);
2403 if (ulp) {
2404 if (dotrans) {
2405 int terr = 0;
2406 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SETATTR,
2407 trans_size);
2408 if (error == 0)
2409 error = terr;
2411 ufs_lockfs_end(ulp);
2413 out:
2415 * If out of inodes or blocks, see if we can free something
2416 * up from the delete queue.
2418 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
2419 ufs_delete_drain_wait(ufsvfsp, 1);
2420 retry = 0;
2421 if (errmsg1 != NULL)
2422 kmem_free(errmsg1, len1);
2423 if (errmsg2 != NULL)
2424 kmem_free(errmsg2, len2);
2425 goto again;
2427 if (errmsg1 != NULL) {
2428 uprintf(errmsg1);
2429 kmem_free(errmsg1, len1);
2431 if (errmsg2 != NULL) {
2432 uprintf(errmsg2);
2433 kmem_free(errmsg2, len2);
2435 return (error);
2438 /*ARGSUSED*/
2439 static int
2440 ufs_access(struct vnode *vp, int mode, int flags, struct cred *cr,
2441 caller_context_t *ct)
2443 struct inode *ip = VTOI(vp);
2445 if (ip->i_ufsvfs == NULL)
2446 return (EIO);
2449 * The ufs_iaccess function wants to be called with
2450 * mode bits expressed as "ufs specific" bits.
2451 * I.e., VWRITE|VREAD|VEXEC do not make sense to
2452 * ufs_iaccess() but IWRITE|IREAD|IEXEC do.
2453 * But since they're the same we just pass the vnode mode
2454 * bit but just verify that assumption at compile time.
2456 #if IWRITE != VWRITE || IREAD != VREAD || IEXEC != VEXEC
2457 #error "ufs_access needs to map Vmodes to Imodes"
2458 #endif
2459 return (ufs_iaccess(ip, mode, cr, 1));
2462 /* ARGSUSED */
2463 static int
2464 ufs_readlink(struct vnode *vp, struct uio *uiop, struct cred *cr,
2465 caller_context_t *ct)
2467 struct inode *ip = VTOI(vp);
2468 struct ufsvfs *ufsvfsp;
2469 struct ulockfs *ulp;
2470 int error;
2471 int fastsymlink;
2473 if (vp->v_type != VLNK) {
2474 error = EINVAL;
2475 goto nolockout;
2479 * If the symbolic link is empty there is nothing to read.
2480 * Fast-track these empty symbolic links
2482 if (ip->i_size == 0) {
2483 error = 0;
2484 goto nolockout;
2487 ufsvfsp = ip->i_ufsvfs;
2488 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READLINK_MASK);
2489 if (error)
2490 goto nolockout;
2492 * The ip->i_rwlock protects the data blocks used for FASTSYMLINK
2494 again:
2495 fastsymlink = 0;
2496 if (ip->i_flag & IFASTSYMLNK) {
2497 rw_enter(&ip->i_rwlock, RW_READER);
2498 rw_enter(&ip->i_contents, RW_READER);
2499 if (ip->i_flag & IFASTSYMLNK) {
2500 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
2501 (ip->i_fs->fs_ronly == 0) &&
2502 (!ufsvfsp->vfs_noatime)) {
2503 mutex_enter(&ip->i_tlock);
2504 ip->i_flag |= IACC;
2505 mutex_exit(&ip->i_tlock);
2507 error = uiomove((caddr_t)&ip->i_db[1],
2508 MIN(ip->i_size, uiop->uio_resid),
2509 UIO_READ, uiop);
2510 ITIMES(ip);
2511 ++fastsymlink;
2513 rw_exit(&ip->i_contents);
2514 rw_exit(&ip->i_rwlock);
2516 if (!fastsymlink) {
2517 ssize_t size; /* number of bytes read */
2518 caddr_t basep; /* pointer to input data */
2519 ino_t ino;
2520 long igen;
2521 struct uio tuio; /* temp uio struct */
2522 struct uio *tuiop;
2523 iovec_t tiov; /* temp iovec struct */
2524 char kbuf[FSL_SIZE]; /* buffer to hold fast symlink */
2525 int tflag = 0; /* flag to indicate temp vars used */
2527 ino = ip->i_number;
2528 igen = ip->i_gen;
2529 size = uiop->uio_resid;
2530 basep = uiop->uio_iov->iov_base;
2531 tuiop = uiop;
2533 rw_enter(&ip->i_rwlock, RW_WRITER);
2534 rw_enter(&ip->i_contents, RW_WRITER);
2535 if (ip->i_flag & IFASTSYMLNK) {
2536 rw_exit(&ip->i_contents);
2537 rw_exit(&ip->i_rwlock);
2538 goto again;
2541 /* can this be a fast symlink and is it a user buffer? */
2542 if (ip->i_size <= FSL_SIZE &&
2543 (uiop->uio_segflg == UIO_USERSPACE ||
2544 uiop->uio_segflg == UIO_USERISPACE)) {
2546 bzero(&tuio, sizeof (struct uio));
2548 * setup a kernel buffer to read link into. this
2549 * is to fix a race condition where the user buffer
2550 * got corrupted before copying it into the inode.
2552 size = ip->i_size;
2553 tiov.iov_len = size;
2554 tiov.iov_base = kbuf;
2555 tuio.uio_iov = &tiov;
2556 tuio.uio_iovcnt = 1;
2557 tuio.uio_offset = uiop->uio_offset;
2558 tuio.uio_segflg = UIO_SYSSPACE;
2559 tuio.uio_fmode = uiop->uio_fmode;
2560 tuio.uio_extflg = uiop->uio_extflg;
2561 tuio.uio_limit = uiop->uio_limit;
2562 tuio.uio_resid = size;
2564 basep = tuio.uio_iov->iov_base;
2565 tuiop = &tuio;
2566 tflag = 1;
2569 error = rdip(ip, tuiop, 0, cr);
2570 if (!(error == 0 && ip->i_number == ino && ip->i_gen == igen)) {
2571 rw_exit(&ip->i_contents);
2572 rw_exit(&ip->i_rwlock);
2573 goto out;
2576 if (tflag == 0)
2577 size -= uiop->uio_resid;
2579 if ((tflag == 0 && ip->i_size <= FSL_SIZE &&
2580 ip->i_size == size) || (tflag == 1 &&
2581 tuio.uio_resid == 0)) {
2582 error = kcopy(basep, &ip->i_db[1], ip->i_size);
2583 if (error == 0) {
2584 ip->i_flag |= IFASTSYMLNK;
2586 * free page
2588 (void) VOP_PUTPAGE(ITOV(ip),
2589 (offset_t)0, PAGESIZE,
2590 (B_DONTNEED | B_FREE | B_FORCE | B_ASYNC),
2591 cr, ct);
2592 } else {
2593 int i;
2594 /* error, clear garbage left behind */
2595 for (i = 1; i < NDADDR; i++)
2596 ip->i_db[i] = 0;
2597 for (i = 0; i < NIADDR; i++)
2598 ip->i_ib[i] = 0;
2601 if (tflag == 1) {
2602 /* now, copy it into the user buffer */
2603 error = uiomove((caddr_t)kbuf,
2604 MIN(size, uiop->uio_resid),
2605 UIO_READ, uiop);
2607 rw_exit(&ip->i_contents);
2608 rw_exit(&ip->i_rwlock);
2610 out:
2611 if (ulp) {
2612 ufs_lockfs_end(ulp);
2614 nolockout:
2615 return (error);
2618 /* ARGSUSED */
2619 static int
2620 ufs_fsync(struct vnode *vp, int syncflag, struct cred *cr,
2621 caller_context_t *ct)
2623 struct inode *ip = VTOI(vp);
2624 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
2625 struct ulockfs *ulp;
2626 int error;
2628 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_FSYNC_MASK);
2629 if (error)
2630 return (error);
2632 if (TRANS_ISTRANS(ufsvfsp)) {
2634 * First push out any data pages
2636 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2637 (vp->v_type != VCHR) && !(IS_SWAPVP(vp))) {
2638 error = VOP_PUTPAGE(vp, (offset_t)0, (size_t)0,
2639 0, CRED(), ct);
2640 if (error)
2641 goto out;
2645 * Delta any delayed inode times updates
2646 * and push inode to log.
2647 * All other inode deltas will have already been delta'd
2648 * and will be pushed during the commit.
2650 if (!(syncflag & FDSYNC) &&
2651 ((ip->i_flag & (IMOD|IMODACC)) == IMODACC)) {
2652 if (ulp) {
2653 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_FSYNC,
2654 TOP_SYNCIP_SIZE);
2656 rw_enter(&ip->i_contents, RW_READER);
2657 mutex_enter(&ip->i_tlock);
2658 ip->i_flag &= ~IMODTIME;
2659 mutex_exit(&ip->i_tlock);
2660 ufs_iupdat(ip, I_SYNC);
2661 rw_exit(&ip->i_contents);
2662 if (ulp) {
2663 TRANS_END_ASYNC(ufsvfsp, TOP_FSYNC,
2664 TOP_SYNCIP_SIZE);
2669 * Commit the Moby transaction
2671 * Deltas have already been made so we just need to
2672 * commit them with a synchronous transaction.
2673 * TRANS_BEGIN_SYNC() will return an error
2674 * if there are no deltas to commit, for an
2675 * empty transaction.
2677 if (ulp) {
2678 TRANS_BEGIN_SYNC(ufsvfsp, TOP_FSYNC, TOP_COMMIT_SIZE,
2679 error);
2680 if (error) {
2681 error = 0; /* commit wasn't needed */
2682 goto out;
2684 TRANS_END_SYNC(ufsvfsp, error, TOP_FSYNC,
2685 TOP_COMMIT_SIZE);
2687 } else { /* not logging */
2688 if (!(IS_SWAPVP(vp)))
2689 if (syncflag & FNODSYNC) {
2690 /* Just update the inode only */
2691 TRANS_IUPDAT(ip, 1);
2692 error = 0;
2693 } else if (syncflag & FDSYNC)
2694 /* Do data-synchronous writes */
2695 error = TRANS_SYNCIP(ip, 0, I_DSYNC, TOP_FSYNC);
2696 else
2697 /* Do synchronous writes */
2698 error = TRANS_SYNCIP(ip, 0, I_SYNC, TOP_FSYNC);
2700 rw_enter(&ip->i_contents, RW_WRITER);
2701 if (!error)
2702 error = ufs_sync_indir(ip);
2703 rw_exit(&ip->i_contents);
2705 out:
2706 if (ulp) {
2707 ufs_lockfs_end(ulp);
2709 return (error);
2712 /*ARGSUSED*/
2713 static void
2714 ufs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ct)
2716 ufs_iinactive(VTOI(vp));
2720 * Unix file system operations having to do with directory manipulation.
2722 int ufs_lookup_idle_count = 2; /* Number of inodes to idle each time */
2723 /* ARGSUSED */
2724 static int
2725 ufs_lookup(struct vnode *dvp, char *nm, struct vnode **vpp,
2726 struct pathname *pnp, int flags, struct vnode *rdir, struct cred *cr,
2727 caller_context_t *ct, int *direntflags, pathname_t *realpnp)
2729 struct inode *ip;
2730 struct inode *sip;
2731 struct inode *xip;
2732 struct ufsvfs *ufsvfsp;
2733 struct ulockfs *ulp;
2734 struct vnode *vp;
2735 int error;
2738 * Check flags for type of lookup (regular file or attribute file)
2741 ip = VTOI(dvp);
2743 if (flags & LOOKUP_XATTR) {
2746 * If not mounted with XATTR support then return EINVAL
2749 if (!(ip->i_ufsvfs->vfs_vfs->vfs_flag & VFS_XATTR))
2750 return (EINVAL);
2752 * We don't allow recursive attributes...
2753 * Maybe someday we will.
2755 if ((ip->i_cflags & IXATTR)) {
2756 return (EINVAL);
2759 if ((vp = dnlc_lookup(dvp, XATTR_DIR_NAME)) == NULL) {
2760 error = ufs_xattr_getattrdir(dvp, &sip, flags, cr);
2761 if (error) {
2762 *vpp = NULL;
2763 goto out;
2766 vp = ITOV(sip);
2767 dnlc_update(dvp, XATTR_DIR_NAME, vp);
2771 * Check accessibility of directory.
2773 if (vp == DNLC_NO_VNODE) {
2774 VN_RELE(vp);
2775 error = ENOENT;
2776 goto out;
2778 if ((error = ufs_iaccess(VTOI(vp), IEXEC, cr, 1)) != 0) {
2779 VN_RELE(vp);
2780 goto out;
2783 *vpp = vp;
2784 return (0);
2788 * Check for a null component, which we should treat as
2789 * looking at dvp from within it's parent, so we don't
2790 * need a call to ufs_iaccess(), as it has already been
2791 * done.
2793 if (nm[0] == 0) {
2794 VN_HOLD(dvp);
2795 error = 0;
2796 *vpp = dvp;
2797 goto out;
2801 * Check for "." ie itself. this is a quick check and
2802 * avoids adding "." into the dnlc (which have been seen
2803 * to occupy >10% of the cache).
2805 if ((nm[0] == '.') && (nm[1] == 0)) {
2807 * Don't return without checking accessibility
2808 * of the directory. We only need the lock if
2809 * we are going to return it.
2811 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) == 0) {
2812 VN_HOLD(dvp);
2813 *vpp = dvp;
2815 goto out;
2819 * Fast path: Check the directory name lookup cache.
2821 if (vp = dnlc_lookup(dvp, nm)) {
2823 * Check accessibility of directory.
2825 if ((error = ufs_iaccess(ip, IEXEC, cr, 1)) != 0) {
2826 VN_RELE(vp);
2827 goto out;
2829 if (vp == DNLC_NO_VNODE) {
2830 VN_RELE(vp);
2831 error = ENOENT;
2832 goto out;
2834 xip = VTOI(vp);
2835 ulp = NULL;
2836 goto fastpath;
2840 * Keep the idle queue from getting too long by
2841 * idling two inodes before attempting to allocate another.
2842 * This operation must be performed before entering
2843 * lockfs or a transaction.
2845 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2846 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2847 ins.in_lidles.value.ul += ufs_lookup_idle_count;
2848 ufs_idle_some(ufs_lookup_idle_count);
2851 retry_lookup:
2853 * Check accessibility of directory.
2855 if (error = ufs_diraccess(ip, IEXEC, cr))
2856 goto out;
2858 ufsvfsp = ip->i_ufsvfs;
2859 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK);
2860 if (error)
2861 goto out;
2863 error = ufs_dirlook(ip, nm, &xip, cr, 1, 0);
2865 fastpath:
2866 if (error == 0) {
2867 ip = xip;
2868 *vpp = ITOV(ip);
2871 * If vnode is a device return special vnode instead.
2873 if (IS_DEVVP(*vpp)) {
2874 struct vnode *newvp;
2876 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type,
2877 cr);
2878 VN_RELE(*vpp);
2879 if (newvp == NULL)
2880 error = ENOSYS;
2881 else
2882 *vpp = newvp;
2883 } else if (ip->i_cflags & ICOMPRESS) {
2884 struct vnode *newvp;
2887 * Compressed file, substitute dcfs vnode
2889 newvp = decompvp(*vpp, cr, ct);
2890 VN_RELE(*vpp);
2891 if (newvp == NULL)
2892 error = ENOSYS;
2893 else
2894 *vpp = newvp;
2897 if (ulp) {
2898 ufs_lockfs_end(ulp);
2901 if (error == EAGAIN)
2902 goto retry_lookup;
2904 out:
2905 return (error);
2908 /*ARGSUSED*/
2909 static int
2910 ufs_create(struct vnode *dvp, char *name, struct vattr *vap, enum vcexcl excl,
2911 int mode, struct vnode **vpp, struct cred *cr, int flag,
2912 caller_context_t *ct, vsecattr_t *vsecp)
2914 struct inode *ip;
2915 struct inode *xip;
2916 struct inode *dip;
2917 struct vnode *xvp;
2918 struct ufsvfs *ufsvfsp;
2919 struct ulockfs *ulp;
2920 int error;
2921 int issync;
2922 int truncflag;
2923 int trans_size;
2924 int noentry;
2925 int defer_dip_seq_update = 0; /* need to defer update of dip->i_seq */
2926 int retry = 1;
2927 int indeadlock;
2929 again:
2930 ip = VTOI(dvp);
2931 ufsvfsp = ip->i_ufsvfs;
2932 truncflag = 0;
2934 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_CREATE_MASK);
2935 if (error)
2936 goto out;
2938 if (ulp) {
2939 trans_size = (int)TOP_CREATE_SIZE(ip);
2940 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_CREATE, trans_size);
2943 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr) != 0)
2944 vap->va_mode &= ~VSVTX;
2946 if (*name == '\0') {
2948 * Null component name refers to the directory itself.
2950 VN_HOLD(dvp);
2952 * Even though this is an error case, we need to grab the
2953 * quota lock since the error handling code below is common.
2955 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2956 rw_enter(&ip->i_contents, RW_WRITER);
2957 error = EEXIST;
2958 } else {
2959 xip = NULL;
2960 noentry = 0;
2962 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
2963 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
2964 * possible, retries the operation.
2966 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_CREATE,
2967 retry_dir);
2968 if (indeadlock)
2969 goto again;
2971 xvp = dnlc_lookup(dvp, name);
2972 if (xvp == DNLC_NO_VNODE) {
2973 noentry = 1;
2974 VN_RELE(xvp);
2975 xvp = NULL;
2977 if (xvp) {
2978 rw_exit(&ip->i_rwlock);
2979 if (error = ufs_iaccess(ip, IEXEC, cr, 1)) {
2980 VN_RELE(xvp);
2981 } else {
2982 error = EEXIST;
2983 xip = VTOI(xvp);
2985 } else {
2987 * Suppress file system full message if we will retry
2989 error = ufs_direnter_cm(ip, name, DE_CREATE,
2990 vap, &xip, cr, (noentry | (retry ? IQUIET : 0)));
2991 if (error == EAGAIN) {
2992 if (ulp) {
2993 TRANS_END_CSYNC(ufsvfsp, error, issync,
2994 TOP_CREATE, trans_size);
2995 ufs_lockfs_end(ulp);
2997 goto again;
2999 rw_exit(&ip->i_rwlock);
3001 ip = xip;
3002 if (ip != NULL) {
3003 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
3004 rw_enter(&ip->i_contents, RW_WRITER);
3009 * If the file already exists and this is a non-exclusive create,
3010 * check permissions and allow access for non-directories.
3011 * Read-only create of an existing directory is also allowed.
3012 * We fail an exclusive create of anything which already exists.
3014 if (error == EEXIST) {
3015 dip = VTOI(dvp);
3016 if (excl == NONEXCL) {
3017 if ((((ip->i_mode & IFMT) == IFDIR) ||
3018 ((ip->i_mode & IFMT) == IFATTRDIR)) &&
3019 (mode & IWRITE))
3020 error = EISDIR;
3021 else if (mode)
3022 error = ufs_iaccess(ip, mode, cr, 0);
3023 else
3024 error = 0;
3026 if (error) {
3027 rw_exit(&ip->i_contents);
3028 rw_exit(&ufsvfsp->vfs_dqrwlock);
3029 VN_RELE(ITOV(ip));
3030 goto unlock;
3033 * If the error EEXIST was set, then i_seq can not
3034 * have been updated. The sequence number interface
3035 * is defined such that a non-error VOP_CREATE must
3036 * increase the dir va_seq it by at least one. If we
3037 * have cleared the error, increase i_seq. Note that
3038 * we are increasing the dir i_seq and in rare cases
3039 * ip may actually be from the dvp, so we already have
3040 * the locks and it will not be subject to truncation.
3041 * In case we have to update i_seq of the parent
3042 * directory dip, we have to defer it till we have
3043 * released our locks on ip due to lock ordering requirements.
3045 if (ip != dip)
3046 defer_dip_seq_update = 1;
3047 else
3048 ip->i_seq++;
3050 if (((ip->i_mode & IFMT) == IFREG) &&
3051 (vap->va_mask & AT_SIZE) && vap->va_size == 0) {
3053 * Truncate regular files, if requested by caller.
3054 * Grab i_rwlock to make sure no one else is
3055 * currently writing to the file (we promised
3056 * bmap we would do this).
3057 * Must get the locks in the correct order.
3059 if (ip->i_size == 0) {
3060 ip->i_flag |= ICHG | IUPD;
3061 ip->i_seq++;
3062 TRANS_INODE(ufsvfsp, ip);
3063 } else {
3065 * Large Files: Why this check here?
3066 * Though we do it in vn_create() we really
3067 * want to guarantee that we do not destroy
3068 * Large file data by atomically checking
3069 * the size while holding the contents
3070 * lock.
3072 if (flag && !(flag & FOFFMAX) &&
3073 ((ip->i_mode & IFMT) == IFREG) &&
3074 (ip->i_size > (offset_t)MAXOFF32_T)) {
3075 rw_exit(&ip->i_contents);
3076 rw_exit(&ufsvfsp->vfs_dqrwlock);
3077 error = EOVERFLOW;
3078 goto unlock;
3080 if (TRANS_ISTRANS(ufsvfsp))
3081 truncflag++;
3082 else {
3083 rw_exit(&ip->i_contents);
3084 rw_exit(&ufsvfsp->vfs_dqrwlock);
3085 ufs_tryirwlock_trans(&ip->i_rwlock,
3086 RW_WRITER, TOP_CREATE,
3087 retry_file);
3088 if (indeadlock) {
3089 VN_RELE(ITOV(ip));
3090 goto again;
3092 rw_enter(&ufsvfsp->vfs_dqrwlock,
3093 RW_READER);
3094 rw_enter(&ip->i_contents, RW_WRITER);
3095 (void) ufs_itrunc(ip, (u_offset_t)0, 0,
3096 cr);
3097 rw_exit(&ip->i_rwlock);
3101 if (error == 0) {
3102 vnevent_create(ITOV(ip), ct);
3107 if (error) {
3108 if (ip != NULL) {
3109 rw_exit(&ufsvfsp->vfs_dqrwlock);
3110 rw_exit(&ip->i_contents);
3112 goto unlock;
3115 *vpp = ITOV(ip);
3116 ITIMES(ip);
3117 rw_exit(&ip->i_contents);
3118 rw_exit(&ufsvfsp->vfs_dqrwlock);
3121 * If vnode is a device return special vnode instead.
3123 if (!error && IS_DEVVP(*vpp)) {
3124 struct vnode *newvp;
3126 newvp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
3127 VN_RELE(*vpp);
3128 if (newvp == NULL) {
3129 error = ENOSYS;
3130 goto unlock;
3132 truncflag = 0;
3133 *vpp = newvp;
3135 unlock:
3138 * Do the deferred update of the parent directory's sequence
3139 * number now.
3141 if (defer_dip_seq_update == 1) {
3142 rw_enter(&dip->i_contents, RW_READER);
3143 mutex_enter(&dip->i_tlock);
3144 dip->i_seq++;
3145 mutex_exit(&dip->i_tlock);
3146 rw_exit(&dip->i_contents);
3149 if (ulp) {
3150 int terr = 0;
3152 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_CREATE,
3153 trans_size);
3156 * If we haven't had a more interesting failure
3157 * already, then anything that might've happened
3158 * here should be reported.
3160 if (error == 0)
3161 error = terr;
3164 if (!error && truncflag) {
3165 ufs_tryirwlock(&ip->i_rwlock, RW_WRITER, retry_trunc);
3166 if (indeadlock) {
3167 if (ulp)
3168 ufs_lockfs_end(ulp);
3169 VN_RELE(ITOV(ip));
3170 goto again;
3172 (void) TRANS_ITRUNC(ip, (u_offset_t)0, 0, cr);
3173 rw_exit(&ip->i_rwlock);
3176 if (ulp)
3177 ufs_lockfs_end(ulp);
3180 * If no inodes available, try to free one up out of the
3181 * pending delete queue.
3183 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3184 ufs_delete_drain_wait(ufsvfsp, 1);
3185 retry = 0;
3186 goto again;
3189 out:
3190 return (error);
3193 extern int ufs_idle_max;
3194 /*ARGSUSED*/
3195 static int
3196 ufs_remove(struct vnode *vp, char *nm, struct cred *cr,
3197 caller_context_t *ct, int flags)
3199 struct inode *ip = VTOI(vp);
3200 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3201 struct ulockfs *ulp;
3202 vnode_t *rmvp = NULL; /* Vnode corresponding to name being removed */
3203 int indeadlock;
3204 int error;
3205 int issync;
3206 int trans_size;
3209 * don't let the delete queue get too long
3211 if (ufsvfsp == NULL) {
3212 error = EIO;
3213 goto out;
3215 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3216 ufs_delete_drain(vp->v_vfsp, 1, 1);
3218 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3219 if (rmvp != NULL) {
3220 /* Only send the event if there were no errors */
3221 if (error == 0)
3222 vnevent_remove(rmvp, vp, nm, ct);
3223 VN_RELE(rmvp);
3226 retry_remove:
3227 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_REMOVE_MASK);
3228 if (error)
3229 goto out;
3231 if (ulp)
3232 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_REMOVE,
3233 trans_size = (int)TOP_REMOVE_SIZE(VTOI(vp)));
3236 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3237 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3238 * possible, retries the operation.
3240 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_REMOVE, retry);
3241 if (indeadlock)
3242 goto retry_remove;
3243 error = ufs_dirremove(ip, nm, (struct inode *)0, (struct vnode *)0,
3244 DR_REMOVE, cr);
3245 rw_exit(&ip->i_rwlock);
3247 if (ulp) {
3248 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_REMOVE, trans_size);
3249 ufs_lockfs_end(ulp);
3252 out:
3253 return (error);
3257 * Link a file or a directory. Only privileged processes are allowed to
3258 * make links to directories.
3260 /*ARGSUSED*/
3261 static int
3262 ufs_link(struct vnode *tdvp, struct vnode *svp, char *tnm, struct cred *cr,
3263 caller_context_t *ct, int flags)
3265 struct inode *sip;
3266 struct inode *tdp = VTOI(tdvp);
3267 struct ufsvfs *ufsvfsp = tdp->i_ufsvfs;
3268 struct ulockfs *ulp;
3269 struct vnode *realvp;
3270 int error;
3271 int issync;
3272 int trans_size;
3273 int isdev;
3274 int indeadlock;
3276 retry_link:
3277 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LINK_MASK);
3278 if (error)
3279 goto out;
3281 if (ulp)
3282 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_LINK,
3283 trans_size = (int)TOP_LINK_SIZE(VTOI(tdvp)));
3285 if (VOP_REALVP(svp, &realvp, ct) == 0)
3286 svp = realvp;
3289 * Make sure link for extended attributes is valid
3290 * We only support hard linking of attr in ATTRDIR to ATTRDIR
3292 * Make certain we don't attempt to look at a device node as
3293 * a ufs inode.
3296 isdev = IS_DEVVP(svp);
3297 if (((isdev == 0) && ((VTOI(svp)->i_cflags & IXATTR) == 0) &&
3298 ((tdp->i_mode & IFMT) == IFATTRDIR)) ||
3299 ((isdev == 0) && (VTOI(svp)->i_cflags & IXATTR) &&
3300 ((tdp->i_mode & IFMT) == IFDIR))) {
3301 error = EINVAL;
3302 goto unlock;
3305 sip = VTOI(svp);
3306 if ((svp->v_type == VDIR &&
3307 secpolicy_fs_linkdir(cr, ufsvfsp->vfs_vfs) != 0) ||
3308 (sip->i_uid != crgetuid(cr) && secpolicy_basic_link(cr) != 0)) {
3309 error = EPERM;
3310 goto unlock;
3314 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3315 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3316 * possible, retries the operation.
3318 ufs_tryirwlock_trans(&tdp->i_rwlock, RW_WRITER, TOP_LINK, retry);
3319 if (indeadlock)
3320 goto retry_link;
3321 error = ufs_direnter_lr(tdp, tnm, DE_LINK, (struct inode *)0,
3322 sip, cr);
3323 rw_exit(&tdp->i_rwlock);
3325 unlock:
3326 if (ulp) {
3327 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_LINK, trans_size);
3328 ufs_lockfs_end(ulp);
3331 if (!error) {
3332 vnevent_link(svp, ct);
3334 out:
3335 return (error);
3338 uint64_t ufs_rename_retry_cnt;
3339 uint64_t ufs_rename_upgrade_retry_cnt;
3340 uint64_t ufs_rename_dircheck_retry_cnt;
3341 clock_t ufs_rename_backoff_delay = 1;
3344 * Rename a file or directory.
3345 * We are given the vnode and entry string of the source and the
3346 * vnode and entry string of the place we want to move the source
3347 * to (the target). The essential operation is:
3348 * unlink(target);
3349 * link(source, target);
3350 * unlink(source);
3351 * but "atomically". Can't do full commit without saving state in
3352 * the inode on disk, which isn't feasible at this time. Best we
3353 * can do is always guarantee that the TARGET exists.
3356 /*ARGSUSED*/
3357 static int
3358 ufs_rename(
3359 struct vnode *sdvp, /* old (source) parent vnode */
3360 char *snm, /* old (source) entry name */
3361 struct vnode *tdvp, /* new (target) parent vnode */
3362 char *tnm, /* new (target) entry name */
3363 struct cred *cr,
3364 caller_context_t *ct,
3365 int flags)
3367 struct inode *sip = NULL; /* source inode */
3368 struct inode *ip = NULL; /* check inode */
3369 struct inode *sdp; /* old (source) parent inode */
3370 struct inode *tdp; /* new (target) parent inode */
3371 struct vnode *svp = NULL; /* source vnode */
3372 struct vnode *tvp = NULL; /* target vnode, if it exists */
3373 struct vnode *realvp;
3374 struct ufsvfs *ufsvfsp;
3375 struct ulockfs *ulp = NULL;
3376 struct ufs_slot slot;
3377 timestruc_t now;
3378 int error;
3379 int issync;
3380 int trans_size;
3381 krwlock_t *first_lock;
3382 krwlock_t *second_lock;
3383 krwlock_t *reverse_lock;
3384 int serr, terr;
3386 sdp = VTOI(sdvp);
3387 slot.fbp = NULL;
3388 ufsvfsp = sdp->i_ufsvfs;
3390 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3391 tdvp = realvp;
3393 /* Must do this before taking locks in case of DNLC miss */
3394 terr = ufs_eventlookup(tdvp, tnm, cr, &tvp);
3395 serr = ufs_eventlookup(sdvp, snm, cr, &svp);
3397 if ((serr == 0) && ((terr == 0) || (terr == ENOENT))) {
3398 if (tvp != NULL)
3399 vnevent_pre_rename_dest(tvp, tdvp, tnm, ct);
3402 * Notify the target directory of the rename event
3403 * if source and target directories are not the same.
3405 if (sdvp != tdvp)
3406 vnevent_pre_rename_dest_dir(tdvp, svp, tnm, ct);
3408 if (svp != NULL)
3409 vnevent_pre_rename_src(svp, sdvp, snm, ct);
3412 if (svp != NULL)
3413 VN_RELE(svp);
3415 retry_rename:
3416 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RENAME_MASK);
3417 if (error)
3418 goto unlock;
3420 if (ulp)
3421 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RENAME,
3422 trans_size = (int)TOP_RENAME_SIZE(sdp));
3424 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3425 tdvp = realvp;
3427 tdp = VTOI(tdvp);
3430 * We only allow renaming of attributes from ATTRDIR to ATTRDIR.
3432 if ((tdp->i_mode & IFMT) != (sdp->i_mode & IFMT)) {
3433 error = EINVAL;
3434 goto unlock;
3438 * Check accessibility of directory.
3440 if (error = ufs_diraccess(sdp, IEXEC, cr))
3441 goto unlock;
3444 * Look up inode of file we're supposed to rename.
3446 gethrestime(&now);
3447 if (error = ufs_dirlook(sdp, snm, &sip, cr, 0, 0)) {
3448 if (error == EAGAIN) {
3449 if (ulp) {
3450 TRANS_END_CSYNC(ufsvfsp, error, issync,
3451 TOP_RENAME, trans_size);
3452 ufs_lockfs_end(ulp);
3454 goto retry_rename;
3457 goto unlock;
3461 * Lock both the source and target directories (they may be
3462 * the same) to provide the atomicity semantics that was
3463 * previously provided by the per file system vfs_rename_lock
3465 * with vfs_rename_lock removed to allow simultaneous renames
3466 * within a file system, ufs_dircheckpath can deadlock while
3467 * traversing back to ensure that source is not a parent directory
3468 * of target parent directory. This is because we get into
3469 * ufs_dircheckpath with the sdp and tdp locks held as RW_WRITER.
3470 * If the tdp and sdp of the simultaneous renames happen to be
3471 * in the path of each other, it can lead to a deadlock. This
3472 * can be avoided by getting the locks as RW_READER here and then
3473 * upgrading to RW_WRITER after completing the ufs_dircheckpath.
3475 * We hold the target directory's i_rwlock after calling
3476 * ufs_lockfs_begin but in many other operations (like ufs_readdir)
3477 * VOP_RWLOCK is explicitly called by the filesystem independent code
3478 * before calling the file system operation. In these cases the order
3479 * is reversed (i.e i_rwlock is taken first and then ufs_lockfs_begin
3480 * is called). This is fine as long as ufs_lockfs_begin acts as a VOP
3481 * counter but with ufs_quiesce setting the SLOCK bit this becomes a
3482 * synchronizing object which might lead to a deadlock. So we use
3483 * rw_tryenter instead of rw_enter. If we fail to get this lock and
3484 * find that SLOCK bit is set, we call ufs_lockfs_end and restart the
3485 * operation.
3487 retry:
3488 first_lock = &tdp->i_rwlock;
3489 second_lock = &sdp->i_rwlock;
3490 retry_firstlock:
3491 if (!rw_tryenter(first_lock, RW_READER)) {
3493 * We didn't get the lock. Check if the SLOCK is set in the
3494 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3495 * and wait for SLOCK to be cleared.
3498 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3499 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3500 trans_size);
3501 ufs_lockfs_end(ulp);
3502 goto retry_rename;
3504 } else {
3506 * SLOCK isn't set so this is a genuine synchronization
3507 * case. Let's try again after giving them a breather.
3509 delay(RETRY_LOCK_DELAY);
3510 goto retry_firstlock;
3514 * Need to check if the tdp and sdp are same !!!
3516 if ((tdp != sdp) && (!rw_tryenter(second_lock, RW_READER))) {
3518 * We didn't get the lock. Check if the SLOCK is set in the
3519 * ufsvfs. If yes, we might be in a deadlock. Safer to give up
3520 * and wait for SLOCK to be cleared.
3523 rw_exit(first_lock);
3524 if (ulp && ULOCKFS_IS_SLOCK(ulp)) {
3525 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME,
3526 trans_size);
3527 ufs_lockfs_end(ulp);
3528 goto retry_rename;
3530 } else {
3532 * So we couldn't get the second level peer lock *and*
3533 * the SLOCK bit isn't set. Too bad we can be
3534 * contentding with someone wanting these locks otherway
3535 * round. Reverse the locks in case there is a heavy
3536 * contention for the second level lock.
3538 reverse_lock = first_lock;
3539 first_lock = second_lock;
3540 second_lock = reverse_lock;
3541 ufs_rename_retry_cnt++;
3542 goto retry_firstlock;
3546 if (sip == tdp) {
3547 error = EINVAL;
3548 goto errout;
3551 * Make sure we can delete the source entry. This requires
3552 * write permission on the containing directory.
3553 * Check for sticky directories.
3555 rw_enter(&sdp->i_contents, RW_READER);
3556 rw_enter(&sip->i_contents, RW_READER);
3557 if ((error = ufs_iaccess(sdp, IWRITE, cr, 0)) != 0 ||
3558 (error = ufs_sticky_remove_access(sdp, sip, cr)) != 0) {
3559 rw_exit(&sip->i_contents);
3560 rw_exit(&sdp->i_contents);
3561 goto errout;
3565 * If this is a rename of a directory and the parent is
3566 * different (".." must be changed), then the source
3567 * directory must not be in the directory hierarchy
3568 * above the target, as this would orphan everything
3569 * below the source directory. Also the user must have
3570 * write permission in the source so as to be able to
3571 * change "..".
3573 if ((((sip->i_mode & IFMT) == IFDIR) ||
3574 ((sip->i_mode & IFMT) == IFATTRDIR)) && sdp != tdp) {
3575 ino_t inum;
3577 if (error = ufs_iaccess(sip, IWRITE, cr, 0)) {
3578 rw_exit(&sip->i_contents);
3579 rw_exit(&sdp->i_contents);
3580 goto errout;
3582 inum = sip->i_number;
3583 rw_exit(&sip->i_contents);
3584 rw_exit(&sdp->i_contents);
3585 if ((error = ufs_dircheckpath(inum, tdp, sdp, cr))) {
3587 * If we got EAGAIN ufs_dircheckpath detected a
3588 * potential deadlock and backed out. We need
3589 * to retry the operation since sdp and tdp have
3590 * to be released to avoid the deadlock.
3592 if (error == EAGAIN) {
3593 rw_exit(&tdp->i_rwlock);
3594 if (tdp != sdp)
3595 rw_exit(&sdp->i_rwlock);
3596 delay(ufs_rename_backoff_delay);
3597 ufs_rename_dircheck_retry_cnt++;
3598 goto retry;
3600 goto errout;
3602 } else {
3603 rw_exit(&sip->i_contents);
3604 rw_exit(&sdp->i_contents);
3609 * Check for renaming '.' or '..' or alias of '.'
3611 if (strcmp(snm, ".") == 0 || strcmp(snm, "..") == 0 || sdp == sip) {
3612 error = EINVAL;
3613 goto errout;
3617 * Simultaneous renames can deadlock in ufs_dircheckpath since it
3618 * tries to traverse back the file tree with both tdp and sdp held
3619 * as RW_WRITER. To avoid that we have to hold the tdp and sdp locks
3620 * as RW_READERS till ufs_dircheckpath is done.
3621 * Now that ufs_dircheckpath is done with, we can upgrade the locks
3622 * to RW_WRITER.
3624 if (!rw_tryupgrade(&tdp->i_rwlock)) {
3626 * The upgrade failed. We got to give away the lock
3627 * as to avoid deadlocking with someone else who is
3628 * waiting for writer lock. With the lock gone, we
3629 * cannot be sure the checks done above will hold
3630 * good when we eventually get them back as writer.
3631 * So if we can't upgrade we drop the locks and retry
3632 * everything again.
3634 rw_exit(&tdp->i_rwlock);
3635 if (tdp != sdp)
3636 rw_exit(&sdp->i_rwlock);
3637 delay(ufs_rename_backoff_delay);
3638 ufs_rename_upgrade_retry_cnt++;
3639 goto retry;
3641 if (tdp != sdp) {
3642 if (!rw_tryupgrade(&sdp->i_rwlock)) {
3644 * The upgrade failed. We got to give away the lock
3645 * as to avoid deadlocking with someone else who is
3646 * waiting for writer lock. With the lock gone, we
3647 * cannot be sure the checks done above will hold
3648 * good when we eventually get them back as writer.
3649 * So if we can't upgrade we drop the locks and retry
3650 * everything again.
3652 rw_exit(&tdp->i_rwlock);
3653 rw_exit(&sdp->i_rwlock);
3654 delay(ufs_rename_backoff_delay);
3655 ufs_rename_upgrade_retry_cnt++;
3656 goto retry;
3661 * Now that all the locks are held check to make sure another thread
3662 * didn't slip in and take out the sip.
3664 slot.status = NONE;
3665 if ((sip->i_ctime.tv_usec * 1000) > now.tv_nsec ||
3666 sip->i_ctime.tv_sec > now.tv_sec) {
3667 rw_enter(&sdp->i_ufsvfs->vfs_dqrwlock, RW_READER);
3668 rw_enter(&sdp->i_contents, RW_WRITER);
3669 error = ufs_dircheckforname(sdp, snm, strlen(snm), &slot,
3670 &ip, cr, 0);
3671 rw_exit(&sdp->i_contents);
3672 rw_exit(&sdp->i_ufsvfs->vfs_dqrwlock);
3673 if (error) {
3674 goto errout;
3676 if (ip == NULL) {
3677 error = ENOENT;
3678 goto errout;
3679 } else {
3681 * If the inode was found need to drop the v_count
3682 * so as not to keep the filesystem from being
3683 * unmounted at a later time.
3685 VN_RELE(ITOV(ip));
3689 * Release the slot.fbp that has the page mapped and
3690 * locked SE_SHARED, and could be used in in
3691 * ufs_direnter_lr() which needs to get the SE_EXCL lock
3692 * on said page.
3694 if (slot.fbp) {
3695 fbrelse(slot.fbp, S_OTHER);
3696 slot.fbp = NULL;
3701 * Link source to the target.
3703 if (error = ufs_direnter_lr(tdp, tnm, DE_RENAME, sdp, sip, cr)) {
3705 * ESAME isn't really an error; it indicates that the
3706 * operation should not be done because the source and target
3707 * are the same file, but that no error should be reported.
3709 if (error == ESAME)
3710 error = 0;
3711 goto errout;
3714 if (error == 0 && tvp != NULL)
3715 vnevent_rename_dest(tvp, tdvp, tnm, ct);
3718 * Unlink the source.
3719 * Remove the source entry. ufs_dirremove() checks that the entry
3720 * still reflects sip, and returns an error if it doesn't.
3721 * If the entry has changed just forget about it. Release
3722 * the source inode.
3724 if ((error = ufs_dirremove(sdp, snm, sip, (struct vnode *)0,
3725 DR_RENAME, cr)) == ENOENT)
3726 error = 0;
3728 if (error == 0) {
3729 vnevent_rename_src(ITOV(sip), sdvp, snm, ct);
3731 * Notify the target directory of the rename event
3732 * if source and target directories are not the same.
3734 if (sdvp != tdvp)
3735 vnevent_rename_dest_dir(tdvp, ct);
3738 errout:
3739 if (slot.fbp)
3740 fbrelse(slot.fbp, S_OTHER);
3742 rw_exit(&tdp->i_rwlock);
3743 if (sdp != tdp) {
3744 rw_exit(&sdp->i_rwlock);
3747 unlock:
3748 if (tvp != NULL)
3749 VN_RELE(tvp);
3750 if (sip != NULL)
3751 VN_RELE(ITOV(sip));
3753 if (ulp) {
3754 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RENAME, trans_size);
3755 ufs_lockfs_end(ulp);
3758 return (error);
3761 /*ARGSUSED*/
3762 static int
3763 ufs_mkdir(struct vnode *dvp, char *dirname, struct vattr *vap,
3764 struct vnode **vpp, struct cred *cr, caller_context_t *ct, int flags,
3765 vsecattr_t *vsecp)
3767 struct inode *ip;
3768 struct inode *xip;
3769 struct ufsvfs *ufsvfsp;
3770 struct ulockfs *ulp;
3771 int error;
3772 int issync;
3773 int trans_size;
3774 int indeadlock;
3775 int retry = 1;
3777 ASSERT((vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
3780 * Can't make directory in attr hidden dir
3782 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
3783 return (EINVAL);
3785 again:
3786 ip = VTOI(dvp);
3787 ufsvfsp = ip->i_ufsvfs;
3788 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_MKDIR_MASK);
3789 if (error)
3790 goto out;
3791 if (ulp)
3792 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_MKDIR,
3793 trans_size = (int)TOP_MKDIR_SIZE(ip));
3796 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3797 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3798 * possible, retries the operation.
3800 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_MKDIR, retry);
3801 if (indeadlock)
3802 goto again;
3804 error = ufs_direnter_cm(ip, dirname, DE_MKDIR, vap, &xip, cr,
3805 (retry ? IQUIET : 0));
3806 if (error == EAGAIN) {
3807 if (ulp) {
3808 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_MKDIR,
3809 trans_size);
3810 ufs_lockfs_end(ulp);
3812 goto again;
3815 rw_exit(&ip->i_rwlock);
3816 if (error == 0) {
3817 ip = xip;
3818 *vpp = ITOV(ip);
3819 } else if (error == EEXIST)
3820 VN_RELE(ITOV(xip));
3822 if (ulp) {
3823 int terr = 0;
3824 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_MKDIR, trans_size);
3825 ufs_lockfs_end(ulp);
3826 if (error == 0)
3827 error = terr;
3829 out:
3830 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
3831 ufs_delete_drain_wait(ufsvfsp, 1);
3832 retry = 0;
3833 goto again;
3836 return (error);
3839 /*ARGSUSED*/
3840 static int
3841 ufs_rmdir(struct vnode *vp, char *nm, struct vnode *cdir, struct cred *cr,
3842 caller_context_t *ct, int flags)
3844 struct inode *ip = VTOI(vp);
3845 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
3846 struct ulockfs *ulp;
3847 vnode_t *rmvp = NULL; /* Vnode of removed directory */
3848 int error;
3849 int issync;
3850 int trans_size;
3851 int indeadlock;
3854 * don't let the delete queue get too long
3856 if (ufsvfsp == NULL) {
3857 error = EIO;
3858 goto out;
3860 if (ufsvfsp->vfs_delete.uq_ne > ufs_idle_max)
3861 ufs_delete_drain(vp->v_vfsp, 1, 1);
3863 error = ufs_eventlookup(vp, nm, cr, &rmvp);
3864 if (rmvp != NULL) {
3865 /* Only send the event if there were no errors */
3866 if (error == 0)
3867 vnevent_rmdir(rmvp, vp, nm, ct);
3868 VN_RELE(rmvp);
3871 retry_rmdir:
3872 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_RMDIR_MASK);
3873 if (error)
3874 goto out;
3876 if (ulp)
3877 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_RMDIR,
3878 trans_size = TOP_RMDIR_SIZE);
3881 * ufs_tryirwlock_trans uses rw_tryenter and checks for SLOCK
3882 * to avoid i_rwlock, ufs_lockfs_begin deadlock. If deadlock
3883 * possible, retries the operation.
3885 ufs_tryirwlock_trans(&ip->i_rwlock, RW_WRITER, TOP_RMDIR, retry);
3886 if (indeadlock)
3887 goto retry_rmdir;
3888 error = ufs_dirremove(ip, nm, (struct inode *)0, cdir, DR_RMDIR, cr);
3890 rw_exit(&ip->i_rwlock);
3892 if (ulp) {
3893 TRANS_END_CSYNC(ufsvfsp, error, issync, TOP_RMDIR,
3894 trans_size);
3895 ufs_lockfs_end(ulp);
3898 out:
3899 return (error);
3902 /* ARGSUSED */
3903 static int
3904 ufs_readdir(
3905 struct vnode *vp,
3906 struct uio *uiop,
3907 struct cred *cr,
3908 int *eofp,
3909 caller_context_t *ct,
3910 int flags)
3912 struct iovec *iovp;
3913 struct inode *ip;
3914 struct direct *idp;
3915 struct dirent64 *odp;
3916 struct fbuf *fbp;
3917 struct ufsvfs *ufsvfsp;
3918 struct ulockfs *ulp;
3919 caddr_t outbuf;
3920 size_t bufsize;
3921 uint_t offset;
3922 uint_t bytes_wanted, total_bytes_wanted;
3923 int incount = 0;
3924 int outcount = 0;
3925 int error;
3927 ip = VTOI(vp);
3928 ASSERT(RW_READ_HELD(&ip->i_rwlock));
3930 if (uiop->uio_loffset >= MAXOFF32_T) {
3931 if (eofp)
3932 *eofp = 1;
3933 return (0);
3937 * Check if we have been called with a valid iov_len
3938 * and bail out if not, otherwise we may potentially loop
3939 * forever further down.
3941 if (uiop->uio_iov->iov_len <= 0) {
3942 error = EINVAL;
3943 goto out;
3947 * Large Files: When we come here we are guaranteed that
3948 * uio_offset can be used safely. The high word is zero.
3951 ufsvfsp = ip->i_ufsvfs;
3952 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_READDIR_MASK);
3953 if (error)
3954 goto out;
3956 iovp = uiop->uio_iov;
3957 total_bytes_wanted = iovp->iov_len;
3959 /* Large Files: directory files should not be "large" */
3961 ASSERT(ip->i_size <= MAXOFF32_T);
3963 /* Force offset to be valid (to guard against bogus lseek() values) */
3964 offset = (uint_t)uiop->uio_offset & ~(DIRBLKSIZ - 1);
3966 /* Quit if at end of file or link count of zero (posix) */
3967 if (offset >= (uint_t)ip->i_size || ip->i_nlink <= 0) {
3968 if (eofp)
3969 *eofp = 1;
3970 error = 0;
3971 goto unlock;
3975 * Get space to change directory entries into fs independent format.
3976 * Do fast alloc for the most commonly used-request size (filesystem
3977 * block size).
3979 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1) {
3980 bufsize = total_bytes_wanted;
3981 outbuf = kmem_alloc(bufsize, KM_SLEEP);
3982 odp = (struct dirent64 *)outbuf;
3983 } else {
3984 bufsize = total_bytes_wanted;
3985 odp = (struct dirent64 *)iovp->iov_base;
3988 nextblk:
3989 bytes_wanted = total_bytes_wanted;
3991 /* Truncate request to file size */
3992 if (offset + bytes_wanted > (int)ip->i_size)
3993 bytes_wanted = (int)(ip->i_size - offset);
3995 /* Comply with MAXBSIZE boundary restrictions of fbread() */
3996 if ((offset & MAXBOFFSET) + bytes_wanted > MAXBSIZE)
3997 bytes_wanted = MAXBSIZE - (offset & MAXBOFFSET);
4000 * Read in the next chunk.
4001 * We are still holding the i_rwlock.
4003 error = fbread(vp, (offset_t)offset, bytes_wanted, S_OTHER, &fbp);
4005 if (error)
4006 goto update_inode;
4007 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) && (ip->i_fs->fs_ronly == 0) &&
4008 (!ufsvfsp->vfs_noatime)) {
4009 ip->i_flag |= IACC;
4011 incount = 0;
4012 idp = (struct direct *)fbp->fb_addr;
4013 if (idp->d_ino == 0 && idp->d_reclen == 0 && idp->d_namlen == 0) {
4014 cmn_err(CE_WARN, "ufs_readdir: bad dir, inumber = %llu, "
4015 "fs = %s\n",
4016 (u_longlong_t)ip->i_number, ufsvfsp->vfs_fs->fs_fsmnt);
4017 fbrelse(fbp, S_OTHER);
4018 error = ENXIO;
4019 goto update_inode;
4021 /* Transform to file-system independent format */
4022 while (incount < bytes_wanted) {
4024 * If the current directory entry is mangled, then skip
4025 * to the next block. It would be nice to set the FSBAD
4026 * flag in the super-block so that a fsck is forced on
4027 * next reboot, but locking is a problem.
4029 if (idp->d_reclen & 0x3) {
4030 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4031 break;
4034 /* Skip to requested offset and skip empty entries */
4035 if (idp->d_ino != 0 && offset >= (uint_t)uiop->uio_offset) {
4036 ushort_t this_reclen =
4037 DIRENT64_RECLEN(idp->d_namlen);
4038 /* Buffer too small for any entries */
4039 if (!outcount && this_reclen > bufsize) {
4040 fbrelse(fbp, S_OTHER);
4041 error = EINVAL;
4042 goto update_inode;
4044 /* If would overrun the buffer, quit */
4045 if (outcount + this_reclen > bufsize) {
4046 break;
4048 /* Take this entry */
4049 odp->d_ino = (ino64_t)idp->d_ino;
4050 odp->d_reclen = (ushort_t)this_reclen;
4051 odp->d_off = (offset_t)(offset + idp->d_reclen);
4053 /* use strncpy(9f) to zero out uninitialized bytes */
4055 ASSERT(strlen(idp->d_name) + 1 <=
4056 DIRENT64_NAMELEN(this_reclen));
4057 (void) strncpy(odp->d_name, idp->d_name,
4058 DIRENT64_NAMELEN(this_reclen));
4059 outcount += odp->d_reclen;
4060 odp = (struct dirent64 *)
4061 ((intptr_t)odp + odp->d_reclen);
4062 ASSERT(outcount <= bufsize);
4064 if (idp->d_reclen) {
4065 incount += idp->d_reclen;
4066 offset += idp->d_reclen;
4067 idp = (struct direct *)((intptr_t)idp + idp->d_reclen);
4068 } else {
4069 offset = (offset + DIRBLKSIZ) & ~(DIRBLKSIZ-1);
4070 break;
4073 /* Release the chunk */
4074 fbrelse(fbp, S_OTHER);
4076 /* Read whole block, but got no entries, read another if not eof */
4079 * Large Files: casting i_size to int here is not a problem
4080 * because directory sizes are always less than MAXOFF32_T.
4081 * See assertion above.
4084 if (offset < (int)ip->i_size && !outcount)
4085 goto nextblk;
4087 /* Copy out the entry data */
4088 if (uiop->uio_segflg == UIO_SYSSPACE && uiop->uio_iovcnt == 1) {
4089 iovp->iov_base += outcount;
4090 iovp->iov_len -= outcount;
4091 uiop->uio_resid -= outcount;
4092 uiop->uio_offset = offset;
4093 } else if ((error = uiomove(outbuf, (long)outcount, UIO_READ,
4094 uiop)) == 0)
4095 uiop->uio_offset = offset;
4096 update_inode:
4097 ITIMES(ip);
4098 if (uiop->uio_segflg != UIO_SYSSPACE || uiop->uio_iovcnt != 1)
4099 kmem_free(outbuf, bufsize);
4101 if (eofp && error == 0)
4102 *eofp = (uiop->uio_offset >= (int)ip->i_size);
4103 unlock:
4104 if (ulp) {
4105 ufs_lockfs_end(ulp);
4107 out:
4108 return (error);
4111 /*ARGSUSED*/
4112 static int
4113 ufs_symlink(
4114 struct vnode *dvp, /* ptr to parent dir vnode */
4115 char *linkname, /* name of symbolic link */
4116 struct vattr *vap, /* attributes */
4117 char *target, /* target path */
4118 struct cred *cr, /* user credentials */
4119 caller_context_t *ct,
4120 int flags)
4122 struct inode *ip, *dip = VTOI(dvp);
4123 struct ufsvfs *ufsvfsp = dip->i_ufsvfs;
4124 struct ulockfs *ulp;
4125 int error;
4126 int issync;
4127 int trans_size;
4128 int residual;
4129 int ioflag;
4130 int retry = 1;
4133 * No symlinks in attrdirs at this time
4135 if ((VTOI(dvp)->i_mode & IFMT) == IFATTRDIR)
4136 return (EINVAL);
4138 again:
4139 ip = (struct inode *)NULL;
4140 vap->va_type = VLNK;
4141 vap->va_rdev = 0;
4143 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SYMLINK_MASK);
4144 if (error)
4145 goto out;
4147 if (ulp)
4148 TRANS_BEGIN_CSYNC(ufsvfsp, issync, TOP_SYMLINK,
4149 trans_size = (int)TOP_SYMLINK_SIZE(dip));
4152 * We must create the inode before the directory entry, to avoid
4153 * racing with readlink(). ufs_dirmakeinode requires that we
4154 * hold the quota lock as reader, and directory locks as writer.
4157 rw_enter(&dip->i_rwlock, RW_WRITER);
4158 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4159 rw_enter(&dip->i_contents, RW_WRITER);
4162 * Suppress any out of inodes messages if we will retry on
4163 * ENOSP
4165 if (retry)
4166 dip->i_flag |= IQUIET;
4168 error = ufs_dirmakeinode(dip, &ip, vap, DE_SYMLINK, cr);
4170 dip->i_flag &= ~IQUIET;
4172 rw_exit(&dip->i_contents);
4173 rw_exit(&ufsvfsp->vfs_dqrwlock);
4174 rw_exit(&dip->i_rwlock);
4176 if (error)
4177 goto unlock;
4180 * OK. The inode has been created. Write out the data of the
4181 * symbolic link. Since symbolic links are metadata, and should
4182 * remain consistent across a system crash, we need to force the
4183 * data out synchronously.
4185 * (This is a change from the semantics in earlier releases, which
4186 * only created symbolic links synchronously if the semi-documented
4187 * 'syncdir' option was set, or if we were being invoked by the NFS
4188 * server, which requires symbolic links to be created synchronously.)
4190 * We need to pass in a pointer for the residual length; otherwise
4191 * ufs_rdwri() will always return EIO if it can't write the data,
4192 * even if the error was really ENOSPC or EDQUOT.
4195 ioflag = FWRITE | FDSYNC;
4196 residual = 0;
4198 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4199 rw_enter(&ip->i_contents, RW_WRITER);
4202 * Suppress file system full messages if we will retry
4204 if (retry)
4205 ip->i_flag |= IQUIET;
4207 error = ufs_rdwri(UIO_WRITE, ioflag, ip, target, strlen(target),
4208 (offset_t)0, UIO_SYSSPACE, &residual, cr);
4210 ip->i_flag &= ~IQUIET;
4212 if (error) {
4213 rw_exit(&ip->i_contents);
4214 rw_exit(&ufsvfsp->vfs_dqrwlock);
4215 goto remove;
4219 * If the link's data is small enough, we can cache it in the inode.
4220 * This is a "fast symbolic link". We don't use the first direct
4221 * block because that's actually used to point at the symbolic link's
4222 * contents on disk; but we know that none of the other direct or
4223 * indirect blocks can be used because symbolic links are restricted
4224 * to be smaller than a file system block.
4227 ASSERT(MAXPATHLEN <= VBSIZE(ITOV(ip)));
4229 if (ip->i_size > 0 && ip->i_size <= FSL_SIZE) {
4230 if (kcopy(target, &ip->i_db[1], ip->i_size) == 0) {
4231 ip->i_flag |= IFASTSYMLNK;
4232 } else {
4233 int i;
4234 /* error, clear garbage left behind */
4235 for (i = 1; i < NDADDR; i++)
4236 ip->i_db[i] = 0;
4237 for (i = 0; i < NIADDR; i++)
4238 ip->i_ib[i] = 0;
4242 rw_exit(&ip->i_contents);
4243 rw_exit(&ufsvfsp->vfs_dqrwlock);
4246 * OK. We've successfully created the symbolic link. All that
4247 * remains is to insert it into the appropriate directory.
4250 rw_enter(&dip->i_rwlock, RW_WRITER);
4251 error = ufs_direnter_lr(dip, linkname, DE_SYMLINK, NULL, ip, cr);
4252 rw_exit(&dip->i_rwlock);
4255 * Fall through into remove-on-error code. We're either done, or we
4256 * need to remove the inode (if we couldn't insert it).
4259 remove:
4260 if (error && (ip != NULL)) {
4261 rw_enter(&ip->i_contents, RW_WRITER);
4262 ip->i_nlink--;
4263 ip->i_flag |= ICHG;
4264 ip->i_seq++;
4265 ufs_setreclaim(ip);
4266 rw_exit(&ip->i_contents);
4269 unlock:
4270 if (ip != NULL)
4271 VN_RELE(ITOV(ip));
4273 if (ulp) {
4274 int terr = 0;
4276 TRANS_END_CSYNC(ufsvfsp, terr, issync, TOP_SYMLINK,
4277 trans_size);
4278 ufs_lockfs_end(ulp);
4279 if (error == 0)
4280 error = terr;
4284 * We may have failed due to lack of an inode or of a block to
4285 * store the target in. Try flushing the delete queue to free
4286 * logically-available things up and try again.
4288 if ((error == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
4289 ufs_delete_drain_wait(ufsvfsp, 1);
4290 retry = 0;
4291 goto again;
4294 out:
4295 return (error);
4299 * Ufs specific routine used to do ufs io.
4302 ufs_rdwri(enum uio_rw rw, int ioflag, struct inode *ip, caddr_t base,
4303 ssize_t len, offset_t offset, enum uio_seg seg, int *aresid,
4304 struct cred *cr)
4306 struct uio auio;
4307 struct iovec aiov;
4308 int error;
4310 ASSERT(RW_LOCK_HELD(&ip->i_contents));
4312 bzero((caddr_t)&auio, sizeof (uio_t));
4313 bzero((caddr_t)&aiov, sizeof (iovec_t));
4315 aiov.iov_base = base;
4316 aiov.iov_len = len;
4317 auio.uio_iov = &aiov;
4318 auio.uio_iovcnt = 1;
4319 auio.uio_loffset = offset;
4320 auio.uio_segflg = (short)seg;
4321 auio.uio_resid = len;
4323 if (rw == UIO_WRITE) {
4324 auio.uio_fmode = FWRITE;
4325 auio.uio_extflg = UIO_COPY_DEFAULT;
4326 auio.uio_llimit = curproc->p_fsz_ctl;
4327 error = wrip(ip, &auio, ioflag, cr);
4328 } else {
4329 auio.uio_fmode = FREAD;
4330 auio.uio_extflg = UIO_COPY_CACHED;
4331 auio.uio_llimit = MAXOFFSET_T;
4332 error = rdip(ip, &auio, ioflag, cr);
4335 if (aresid) {
4336 *aresid = auio.uio_resid;
4337 } else if (auio.uio_resid) {
4338 error = EIO;
4340 return (error);
4343 /*ARGSUSED*/
4344 static int
4345 ufs_fid(struct vnode *vp, struct fid *fidp, caller_context_t *ct)
4347 struct ufid *ufid;
4348 struct inode *ip = VTOI(vp);
4350 if (ip->i_ufsvfs == NULL)
4351 return (EIO);
4353 if (fidp->fid_len < (sizeof (struct ufid) - sizeof (ushort_t))) {
4354 fidp->fid_len = sizeof (struct ufid) - sizeof (ushort_t);
4355 return (ENOSPC);
4358 ufid = (struct ufid *)fidp;
4359 bzero((char *)ufid, sizeof (struct ufid));
4360 ufid->ufid_len = sizeof (struct ufid) - sizeof (ushort_t);
4361 ufid->ufid_ino = ip->i_number;
4362 ufid->ufid_gen = ip->i_gen;
4364 return (0);
4367 /* ARGSUSED2 */
4368 static int
4369 ufs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4371 struct inode *ip = VTOI(vp);
4372 struct ufsvfs *ufsvfsp;
4373 int forcedirectio;
4376 * Read case is easy.
4378 if (!write_lock) {
4379 rw_enter(&ip->i_rwlock, RW_READER);
4380 return (V_WRITELOCK_FALSE);
4384 * Caller has requested a writer lock, but that inhibits any
4385 * concurrency in the VOPs that follow. Acquire the lock shared
4386 * and defer exclusive access until it is known to be needed in
4387 * other VOP handlers. Some cases can be determined here.
4391 * If directio is not set, there is no chance of concurrency,
4392 * so just acquire the lock exclusive. Beware of a forced
4393 * unmount before looking at the mount option.
4395 ufsvfsp = ip->i_ufsvfs;
4396 forcedirectio = ufsvfsp ? ufsvfsp->vfs_forcedirectio : 0;
4397 if (!(ip->i_flag & IDIRECTIO || forcedirectio) ||
4398 !ufs_allow_shared_writes) {
4399 rw_enter(&ip->i_rwlock, RW_WRITER);
4400 return (V_WRITELOCK_TRUE);
4404 * Mandatory locking forces acquiring i_rwlock exclusive.
4406 if (MANDLOCK(vp, ip->i_mode)) {
4407 rw_enter(&ip->i_rwlock, RW_WRITER);
4408 return (V_WRITELOCK_TRUE);
4412 * Acquire the lock shared in case a concurrent write follows.
4413 * Mandatory locking could have become enabled before the lock
4414 * was acquired. Re-check and upgrade if needed.
4416 rw_enter(&ip->i_rwlock, RW_READER);
4417 if (MANDLOCK(vp, ip->i_mode)) {
4418 rw_exit(&ip->i_rwlock);
4419 rw_enter(&ip->i_rwlock, RW_WRITER);
4420 return (V_WRITELOCK_TRUE);
4422 return (V_WRITELOCK_FALSE);
4425 /*ARGSUSED*/
4426 static void
4427 ufs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
4429 struct inode *ip = VTOI(vp);
4431 rw_exit(&ip->i_rwlock);
4434 /* ARGSUSED */
4435 static int
4436 ufs_seek(struct vnode *vp, offset_t ooff, offset_t *noffp,
4437 caller_context_t *ct)
4439 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4442 /* ARGSUSED */
4443 static int
4444 ufs_frlock(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4445 offset_t offset, struct flk_callback *flk_cbp, struct cred *cr,
4446 caller_context_t *ct)
4448 struct inode *ip = VTOI(vp);
4450 if (ip->i_ufsvfs == NULL)
4451 return (EIO);
4454 * If file is being mapped, disallow frlock.
4455 * XXX I am not holding tlock while checking i_mapcnt because the
4456 * current locking strategy drops all locks before calling fs_frlock.
4457 * So, mapcnt could change before we enter fs_frlock making is
4458 * meaningless to have held tlock in the first place.
4460 if (ip->i_mapcnt > 0 && MANDLOCK(vp, ip->i_mode))
4461 return (EAGAIN);
4462 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4465 /* ARGSUSED */
4466 static int
4467 ufs_space(struct vnode *vp, int cmd, struct flock64 *bfp, int flag,
4468 offset_t offset, cred_t *cr, caller_context_t *ct)
4470 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
4471 struct ulockfs *ulp;
4472 int error;
4474 if ((error = convoff(vp, bfp, 0, offset)) == 0) {
4475 if (cmd == F_FREESP) {
4476 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4477 ULOCKFS_SPACE_MASK);
4478 if (error)
4479 return (error);
4480 error = ufs_freesp(vp, bfp, flag, cr);
4482 if (error == 0 && bfp->l_start == 0)
4483 vnevent_truncate(vp, ct);
4484 } else if (cmd == F_ALLOCSP) {
4485 error = ufs_lockfs_begin(ufsvfsp, &ulp,
4486 ULOCKFS_FALLOCATE_MASK);
4487 if (error)
4488 return (error);
4489 error = ufs_allocsp(vp, bfp, cr);
4490 } else
4491 return (EINVAL); /* Command not handled here */
4493 if (ulp)
4494 ufs_lockfs_end(ulp);
4497 return (error);
4501 * Used to determine if read ahead should be done. Also used to
4502 * to determine when write back occurs.
4504 #define CLUSTSZ(ip) ((ip)->i_ufsvfs->vfs_ioclustsz)
4507 * A faster version of ufs_getpage.
4509 * We optimize by inlining the pvn_getpages iterator, eliminating
4510 * calls to bmap_read if file doesn't have UFS holes, and avoiding
4511 * the overhead of page_exists().
4513 * When files has UFS_HOLES and ufs_getpage is called with S_READ,
4514 * we set *protp to PROT_READ to avoid calling bmap_read. This approach
4515 * victimizes performance when a file with UFS holes is faulted
4516 * first in the S_READ mode, and then in the S_WRITE mode. We will get
4517 * two MMU faults in this case.
4519 * XXX - the inode fields which control the sequential mode are not
4520 * protected by any mutex. The read ahead will act wild if
4521 * multiple processes will access the file concurrently and
4522 * some of them in sequential mode. One particulary bad case
4523 * is if another thread will change the value of i_nextrio between
4524 * the time this thread tests the i_nextrio value and then reads it
4525 * again to use it as the offset for the read ahead.
4527 /*ARGSUSED*/
4528 static int
4529 ufs_getpage(struct vnode *vp, offset_t off, size_t len, uint_t *protp,
4530 page_t *plarr[], size_t plsz, struct seg *seg, caddr_t addr,
4531 enum seg_rw rw, struct cred *cr, caller_context_t *ct)
4533 u_offset_t uoff = (u_offset_t)off; /* type conversion */
4534 u_offset_t pgoff;
4535 u_offset_t eoff;
4536 struct inode *ip = VTOI(vp);
4537 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
4538 struct fs *fs;
4539 struct ulockfs *ulp;
4540 page_t **pl;
4541 caddr_t pgaddr;
4542 krw_t rwtype;
4543 int err;
4544 int has_holes;
4545 int beyond_eof;
4546 int seqmode;
4547 int pgsize = PAGESIZE;
4548 int dolock;
4549 int do_qlock;
4550 int trans_size;
4552 ASSERT((uoff & PAGEOFFSET) == 0);
4554 if (protp)
4555 *protp = PROT_ALL;
4558 * Obey the lockfs protocol
4560 err = ufs_lockfs_begin_getpage(ufsvfsp, &ulp, seg,
4561 rw == S_READ || rw == S_EXEC, protp);
4562 if (err)
4563 goto out;
4565 fs = ufsvfsp->vfs_fs;
4567 if (ulp && (rw == S_CREATE || rw == S_WRITE) &&
4568 !(vp->v_flag & VISSWAP)) {
4570 * Try to start a transaction, will return if blocking is
4571 * expected to occur and the address space is not the
4572 * kernel address space.
4574 trans_size = TOP_GETPAGE_SIZE(ip);
4575 if (seg->s_as != &kas) {
4576 TRANS_TRY_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE,
4577 trans_size, err)
4578 if (err == EWOULDBLOCK) {
4580 * Use EDEADLK here because the VM code
4581 * can normally never see this error.
4583 err = EDEADLK;
4584 ufs_lockfs_end(ulp);
4585 goto out;
4587 } else {
4588 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4592 if (vp->v_flag & VNOMAP) {
4593 err = ENOSYS;
4594 goto unlock;
4597 seqmode = ip->i_nextr == uoff && rw != S_CREATE;
4599 rwtype = RW_READER; /* start as a reader */
4600 dolock = (rw_owner(&ip->i_contents) != curthread);
4602 * If this thread owns the lock, i.e., this thread grabbed it
4603 * as writer somewhere above, then we don't need to grab the
4604 * lock as reader in this routine.
4606 do_qlock = (rw_owner(&ufsvfsp->vfs_dqrwlock) != curthread);
4608 retrylock:
4609 if (dolock) {
4611 * Grab the quota lock if we need to call
4612 * bmap_write() below (with i_contents as writer).
4614 if (do_qlock && rwtype == RW_WRITER)
4615 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
4616 rw_enter(&ip->i_contents, rwtype);
4620 * We may be getting called as a side effect of a bmap using
4621 * fbread() when the blocks might be being allocated and the
4622 * size has not yet been up'ed. In this case we want to be
4623 * able to return zero pages if we get back UFS_HOLE from
4624 * calling bmap for a non write case here. We also might have
4625 * to read some frags from the disk into a page if we are
4626 * extending the number of frags for a given lbn in bmap().
4627 * Large Files: The read of i_size here is atomic because
4628 * i_contents is held here. If dolock is zero, the lock
4629 * is held in bmap routines.
4631 beyond_eof = uoff + len >
4632 P2ROUNDUP_TYPED(ip->i_size, PAGESIZE, u_offset_t);
4633 if (beyond_eof && seg != segkmap) {
4634 if (dolock) {
4635 rw_exit(&ip->i_contents);
4636 if (do_qlock && rwtype == RW_WRITER)
4637 rw_exit(&ufsvfsp->vfs_dqrwlock);
4639 err = EFAULT;
4640 goto unlock;
4644 * Must hold i_contents lock throughout the call to pvn_getpages
4645 * since locked pages are returned from each call to ufs_getapage.
4646 * Must *not* return locked pages and then try for contents lock
4647 * due to lock ordering requirements (inode > page)
4650 has_holes = bmap_has_holes(ip);
4652 if ((rw == S_WRITE || rw == S_CREATE) && has_holes && !beyond_eof) {
4653 int blk_size;
4654 u_offset_t offset;
4657 * We must acquire the RW_WRITER lock in order to
4658 * call bmap_write().
4660 if (dolock && rwtype == RW_READER) {
4661 rwtype = RW_WRITER;
4664 * Grab the quota lock before
4665 * upgrading i_contents, but if we can't grab it
4666 * don't wait here due to lock order:
4667 * vfs_dqrwlock > i_contents.
4669 if (do_qlock &&
4670 rw_tryenter(&ufsvfsp->vfs_dqrwlock, RW_READER)
4671 == 0) {
4672 rw_exit(&ip->i_contents);
4673 goto retrylock;
4675 if (!rw_tryupgrade(&ip->i_contents)) {
4676 rw_exit(&ip->i_contents);
4677 if (do_qlock)
4678 rw_exit(&ufsvfsp->vfs_dqrwlock);
4679 goto retrylock;
4684 * May be allocating disk blocks for holes here as
4685 * a result of mmap faults. write(2) does the bmap_write
4686 * in rdip/wrip, not here. We are not dealing with frags
4687 * in this case.
4690 * Large Files: We cast fs_bmask field to offset_t
4691 * just as we do for MAXBMASK because uoff is a 64-bit
4692 * data type. fs_bmask will still be a 32-bit type
4693 * as we cannot change any ondisk data structures.
4696 offset = uoff & (offset_t)fs->fs_bmask;
4697 while (offset < uoff + len) {
4698 blk_size = (int)blksize(fs, ip, lblkno(fs, offset));
4699 err = bmap_write(ip, offset, blk_size,
4700 BI_NORMAL, NULL, cr);
4701 if (ip->i_flag & (ICHG|IUPD))
4702 ip->i_seq++;
4703 if (err)
4704 goto update_inode;
4705 offset += blk_size; /* XXX - make this contig */
4710 * Can be a reader from now on.
4712 if (dolock && rwtype == RW_WRITER) {
4713 rw_downgrade(&ip->i_contents);
4715 * We can release vfs_dqrwlock early so do it, but make
4716 * sure we don't try to release it again at the bottom.
4718 if (do_qlock) {
4719 rw_exit(&ufsvfsp->vfs_dqrwlock);
4720 do_qlock = 0;
4725 * We remove PROT_WRITE in cases when the file has UFS holes
4726 * because we don't want to call bmap_read() to check each
4727 * page if it is backed with a disk block.
4729 if (protp && has_holes && rw != S_WRITE && rw != S_CREATE)
4730 *protp &= ~PROT_WRITE;
4732 err = 0;
4735 * The loop looks up pages in the range [off, off + len).
4736 * For each page, we first check if we should initiate an asynchronous
4737 * read ahead before we call page_lookup (we may sleep in page_lookup
4738 * for a previously initiated disk read).
4740 eoff = (uoff + len);
4741 for (pgoff = uoff, pgaddr = addr, pl = plarr;
4742 pgoff < eoff; /* empty */) {
4743 page_t *pp;
4744 u_offset_t nextrio;
4745 se_t se;
4746 int retval;
4748 se = ((rw == S_CREATE || rw == S_OTHER) ? SE_EXCL : SE_SHARED);
4750 /* Handle async getpage (faultahead) */
4751 if (plarr == NULL) {
4752 ip->i_nextrio = pgoff;
4753 (void) ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4754 pgoff += pgsize;
4755 pgaddr += pgsize;
4756 continue;
4759 * Check if we should initiate read ahead of next cluster.
4760 * We call page_exists only when we need to confirm that
4761 * we have the current page before we initiate the read ahead.
4763 nextrio = ip->i_nextrio;
4764 if (seqmode &&
4765 pgoff + CLUSTSZ(ip) >= nextrio && pgoff <= nextrio &&
4766 nextrio < ip->i_size && page_exists(vp, pgoff)) {
4767 retval = ufs_getpage_ra(vp, pgoff, seg, pgaddr);
4769 * We always read ahead the next cluster of data
4770 * starting from i_nextrio. If the page (vp,nextrio)
4771 * is actually in core at this point, the routine
4772 * ufs_getpage_ra() will stop pre-fetching data
4773 * until we read that page in a synchronized manner
4774 * through ufs_getpage_miss(). So, we should increase
4775 * i_nextrio if the page (vp, nextrio) exists.
4777 if ((retval == 0) && page_exists(vp, nextrio)) {
4778 ip->i_nextrio = nextrio + pgsize;
4782 if ((pp = page_lookup(vp, pgoff, se)) != NULL) {
4784 * We found the page in the page cache.
4786 *pl++ = pp;
4787 pgoff += pgsize;
4788 pgaddr += pgsize;
4789 len -= pgsize;
4790 plsz -= pgsize;
4791 } else {
4793 * We have to create the page, or read it from disk.
4795 if (err = ufs_getpage_miss(vp, pgoff, len, seg, pgaddr,
4796 pl, plsz, rw, seqmode))
4797 goto error;
4799 while (*pl != NULL) {
4800 pl++;
4801 pgoff += pgsize;
4802 pgaddr += pgsize;
4803 len -= pgsize;
4804 plsz -= pgsize;
4810 * Return pages up to plsz if they are in the page cache.
4811 * We cannot return pages if there is a chance that they are
4812 * backed with a UFS hole and rw is S_WRITE or S_CREATE.
4814 if (plarr && !(has_holes && (rw == S_WRITE || rw == S_CREATE))) {
4816 ASSERT((protp == NULL) ||
4817 !(has_holes && (*protp & PROT_WRITE)));
4819 eoff = pgoff + plsz;
4820 while (pgoff < eoff) {
4821 page_t *pp;
4823 if ((pp = page_lookup_nowait(vp, pgoff,
4824 SE_SHARED)) == NULL)
4825 break;
4827 *pl++ = pp;
4828 pgoff += pgsize;
4829 plsz -= pgsize;
4833 if (plarr)
4834 *pl = NULL; /* Terminate page list */
4835 ip->i_nextr = pgoff;
4837 error:
4838 if (err && plarr) {
4840 * Release any pages we have locked.
4842 while (pl > &plarr[0])
4843 page_unlock(*--pl);
4845 plarr[0] = NULL;
4848 update_inode:
4850 * If the inode is not already marked for IACC (in rdip() for read)
4851 * and the inode is not marked for no access time update (in wrip()
4852 * for write) then update the inode access time and mod time now.
4854 if ((ip->i_flag & (IACC | INOACC)) == 0) {
4855 if ((rw != S_OTHER) && (ip->i_mode & IFMT) != IFDIR) {
4856 if (!ULOCKFS_IS_NOIACC(ITOUL(ip)) &&
4857 (fs->fs_ronly == 0) &&
4858 (!ufsvfsp->vfs_noatime)) {
4859 mutex_enter(&ip->i_tlock);
4860 ip->i_flag |= IACC;
4861 ITIMES_NOLOCK(ip);
4862 mutex_exit(&ip->i_tlock);
4867 if (dolock) {
4868 rw_exit(&ip->i_contents);
4869 if (do_qlock && rwtype == RW_WRITER)
4870 rw_exit(&ufsvfsp->vfs_dqrwlock);
4873 unlock:
4874 if (ulp) {
4875 if ((rw == S_CREATE || rw == S_WRITE) &&
4876 !(vp->v_flag & VISSWAP)) {
4877 TRANS_END_ASYNC(ufsvfsp, TOP_GETPAGE, trans_size);
4879 ufs_lockfs_end(ulp);
4881 out:
4882 return (err);
4886 * ufs_getpage_miss is called when ufs_getpage missed the page in the page
4887 * cache. The page is either read from the disk, or it's created.
4888 * A page is created (without disk read) if rw == S_CREATE, or if
4889 * the page is not backed with a real disk block (UFS hole).
4891 /* ARGSUSED */
4892 static int
4893 ufs_getpage_miss(struct vnode *vp, u_offset_t off, size_t len, struct seg *seg,
4894 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw, int seq)
4896 struct inode *ip = VTOI(vp);
4897 page_t *pp;
4898 daddr_t bn;
4899 size_t io_len;
4900 int crpage = 0;
4901 int err;
4902 int contig;
4903 int bsize = ip->i_fs->fs_bsize;
4906 * Figure out whether the page can be created, or must be
4907 * must be read from the disk.
4909 if (rw == S_CREATE)
4910 crpage = 1;
4911 else {
4912 contig = 0;
4913 if (err = bmap_read(ip, off, &bn, &contig))
4914 return (err);
4916 crpage = (bn == UFS_HOLE);
4919 * If its also a fallocated block that hasn't been written to
4920 * yet, we will treat it just like a UFS_HOLE and create
4921 * a zero page for it
4923 if (ISFALLOCBLK(ip, bn))
4924 crpage = 1;
4927 if (crpage) {
4928 if ((pp = page_create_va(vp, off, PAGESIZE, PG_WAIT, seg,
4929 addr)) == NULL) {
4930 return (ufs_fault(vp,
4931 "ufs_getpage_miss: page_create == NULL"));
4934 if (rw != S_CREATE)
4935 pagezero(pp, 0, PAGESIZE);
4937 io_len = PAGESIZE;
4938 } else {
4939 u_offset_t io_off;
4940 uint_t xlen;
4941 struct buf *bp;
4942 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
4945 * If access is not in sequential order, we read from disk
4946 * in bsize units.
4948 * We limit the size of the transfer to bsize if we are reading
4949 * from the beginning of the file. Note in this situation we
4950 * will hedge our bets and initiate an async read ahead of
4951 * the second block.
4953 if (!seq || off == 0)
4954 contig = MIN(contig, bsize);
4956 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4957 &io_len, off, contig, 0);
4960 * Some other thread has entered the page.
4961 * ufs_getpage will retry page_lookup.
4963 if (pp == NULL) {
4964 pl[0] = NULL;
4965 return (0);
4969 * Zero part of the page which we are not
4970 * going to read from the disk.
4972 xlen = io_len & PAGEOFFSET;
4973 if (xlen != 0)
4974 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
4976 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ);
4977 bp->b_edev = ip->i_dev;
4978 bp->b_dev = cmpdev(ip->i_dev);
4979 bp->b_blkno = bn;
4980 bp->b_un.b_addr = (caddr_t)0;
4981 bp->b_file = ip->i_vnode;
4982 bp->b_offset = off;
4984 if (ufsvfsp->vfs_log) {
4985 lufs_read_strategy(ufsvfsp->vfs_log, bp);
4986 } else if (ufsvfsp->vfs_snapshot) {
4987 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
4988 } else {
4989 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
4990 ub.ub_getpages.value.ul++;
4991 (void) bdev_strategy(bp);
4992 lwp_stat_update(LWP_STAT_INBLK, 1);
4995 ip->i_nextrio = off + ((io_len + PAGESIZE - 1) & PAGEMASK);
4998 * If the file access is sequential, initiate read ahead
4999 * of the next cluster.
5001 if (seq && ip->i_nextrio < ip->i_size)
5002 (void) ufs_getpage_ra(vp, off, seg, addr);
5003 err = biowait(bp);
5004 pageio_done(bp);
5006 if (err) {
5007 pvn_read_done(pp, B_ERROR);
5008 return (err);
5012 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
5013 return (0);
5017 * Read ahead a cluster from the disk. Returns the length in bytes.
5019 static int
5020 ufs_getpage_ra(struct vnode *vp, u_offset_t off, struct seg *seg, caddr_t addr)
5022 struct inode *ip = VTOI(vp);
5023 page_t *pp;
5024 u_offset_t io_off = ip->i_nextrio;
5025 ufsvfs_t *ufsvfsp;
5026 caddr_t addr2 = addr + (io_off - off);
5027 struct buf *bp;
5028 daddr_t bn;
5029 size_t io_len;
5030 int err;
5031 int contig;
5032 int xlen;
5033 int bsize = ip->i_fs->fs_bsize;
5036 * If the directio advisory is in effect on this file,
5037 * then do not do buffered read ahead. Read ahead makes
5038 * it more difficult on threads using directio as they
5039 * will be forced to flush the pages from this vnode.
5041 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5042 return (0);
5043 if (ip->i_flag & IDIRECTIO || ufsvfsp->vfs_forcedirectio)
5044 return (0);
5047 * Is this test needed?
5049 if (addr2 >= seg->s_base + seg->s_size)
5050 return (0);
5052 contig = 0;
5053 err = bmap_read(ip, io_off, &bn, &contig);
5055 * If its a UFS_HOLE or a fallocated block, do not perform
5056 * any read ahead's since there probably is nothing to read ahead
5058 if (err || bn == UFS_HOLE || ISFALLOCBLK(ip, bn))
5059 return (0);
5062 * Limit the transfer size to bsize if this is the 2nd block.
5064 if (io_off == (u_offset_t)bsize)
5065 contig = MIN(contig, bsize);
5067 if ((pp = pvn_read_kluster(vp, io_off, seg, addr2, &io_off,
5068 &io_len, io_off, contig, 1)) == NULL)
5069 return (0);
5072 * Zero part of page which we are not going to read from disk
5074 if ((xlen = (io_len & PAGEOFFSET)) > 0)
5075 pagezero(pp->p_prev, xlen, PAGESIZE - xlen);
5077 ip->i_nextrio = (io_off + io_len + PAGESIZE - 1) & PAGEMASK;
5079 bp = pageio_setup(pp, io_len, ip->i_devvp, B_READ | B_ASYNC);
5080 bp->b_edev = ip->i_dev;
5081 bp->b_dev = cmpdev(ip->i_dev);
5082 bp->b_blkno = bn;
5083 bp->b_un.b_addr = (caddr_t)0;
5084 bp->b_file = ip->i_vnode;
5085 bp->b_offset = off;
5087 if (ufsvfsp->vfs_log) {
5088 lufs_read_strategy(ufsvfsp->vfs_log, bp);
5089 } else if (ufsvfsp->vfs_snapshot) {
5090 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5091 } else {
5092 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5093 ub.ub_getras.value.ul++;
5094 (void) bdev_strategy(bp);
5095 lwp_stat_update(LWP_STAT_INBLK, 1);
5098 return (io_len);
5101 int ufs_delay = 1;
5103 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE, B_ASYNC}
5105 * LMXXX - the inode really ought to contain a pointer to one of these
5106 * async args. Stuff gunk in there and just hand the whole mess off.
5107 * This would replace i_delaylen, i_delayoff.
5109 /*ARGSUSED*/
5110 static int
5111 ufs_putpage(struct vnode *vp, offset_t off, size_t len, int flags,
5112 struct cred *cr, caller_context_t *ct)
5114 struct inode *ip = VTOI(vp);
5115 int err = 0;
5117 if (vp->v_count == 0) {
5118 return (ufs_fault(vp, "ufs_putpage: bad v_count == 0"));
5122 * XXX - Why should this check be made here?
5124 if (vp->v_flag & VNOMAP) {
5125 err = ENOSYS;
5126 goto errout;
5129 if (ip->i_ufsvfs == NULL) {
5130 err = EIO;
5131 goto errout;
5134 if (flags & B_ASYNC) {
5135 if (ufs_delay && len &&
5136 (flags & ~(B_ASYNC|B_DONTNEED|B_FREE)) == 0) {
5137 mutex_enter(&ip->i_tlock);
5139 * If nobody stalled, start a new cluster.
5141 if (ip->i_delaylen == 0) {
5142 ip->i_delayoff = off;
5143 ip->i_delaylen = len;
5144 mutex_exit(&ip->i_tlock);
5145 goto errout;
5148 * If we have a full cluster or they are not contig,
5149 * then push last cluster and start over.
5151 if (ip->i_delaylen >= CLUSTSZ(ip) ||
5152 ip->i_delayoff + ip->i_delaylen != off) {
5153 u_offset_t doff;
5154 size_t dlen;
5156 doff = ip->i_delayoff;
5157 dlen = ip->i_delaylen;
5158 ip->i_delayoff = off;
5159 ip->i_delaylen = len;
5160 mutex_exit(&ip->i_tlock);
5161 err = ufs_putpages(vp, doff, dlen,
5162 flags, cr);
5163 /* LMXXX - flags are new val, not old */
5164 goto errout;
5167 * There is something there, it's not full, and
5168 * it is contig.
5170 ip->i_delaylen += len;
5171 mutex_exit(&ip->i_tlock);
5172 goto errout;
5175 * Must have weird flags or we are not clustering.
5179 err = ufs_putpages(vp, off, len, flags, cr);
5181 errout:
5182 return (err);
5186 * If len == 0, do from off to EOF.
5188 * The normal cases should be len == 0 & off == 0 (entire vp list),
5189 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
5190 * (from pageout).
5192 /*ARGSUSED*/
5193 static int
5194 ufs_putpages(
5195 struct vnode *vp,
5196 offset_t off,
5197 size_t len,
5198 int flags,
5199 struct cred *cr)
5201 u_offset_t io_off;
5202 u_offset_t eoff;
5203 struct inode *ip = VTOI(vp);
5204 page_t *pp;
5205 size_t io_len;
5206 int err = 0;
5207 int dolock;
5209 if (vp->v_count == 0)
5210 return (ufs_fault(vp, "ufs_putpages: v_count == 0"));
5212 * Acquire the readers/write inode lock before locking
5213 * any pages in this inode.
5214 * The inode lock is held during i/o.
5216 if (len == 0) {
5217 mutex_enter(&ip->i_tlock);
5218 ip->i_delayoff = ip->i_delaylen = 0;
5219 mutex_exit(&ip->i_tlock);
5221 dolock = (rw_owner(&ip->i_contents) != curthread);
5222 if (dolock) {
5224 * Must synchronize this thread and any possible thread
5225 * operating in the window of vulnerability in wrip().
5226 * It is dangerous to allow both a thread doing a putpage
5227 * and a thread writing, so serialize them. The exception
5228 * is when the thread in wrip() does something which causes
5229 * a putpage operation. Then, the thread must be allowed
5230 * to continue. It may encounter a bmap_read problem in
5231 * ufs_putapage, but that is handled in ufs_putapage.
5232 * Allow async writers to proceed, we don't want to block
5233 * the pageout daemon.
5235 if (ip->i_writer == curthread)
5236 rw_enter(&ip->i_contents, RW_READER);
5237 else {
5238 for (;;) {
5239 rw_enter(&ip->i_contents, RW_READER);
5240 mutex_enter(&ip->i_tlock);
5242 * If there is no thread in the critical
5243 * section of wrip(), then proceed.
5244 * Otherwise, wait until there isn't one.
5246 if (ip->i_writer == NULL) {
5247 mutex_exit(&ip->i_tlock);
5248 break;
5250 rw_exit(&ip->i_contents);
5252 * Bounce async writers when we have a writer
5253 * working on this file so we don't deadlock
5254 * the pageout daemon.
5256 if (flags & B_ASYNC) {
5257 mutex_exit(&ip->i_tlock);
5258 return (0);
5260 cv_wait(&ip->i_wrcv, &ip->i_tlock);
5261 mutex_exit(&ip->i_tlock);
5266 if (!vn_has_cached_data(vp)) {
5267 if (dolock)
5268 rw_exit(&ip->i_contents);
5269 return (0);
5272 if (len == 0) {
5274 * Search the entire vp list for pages >= off.
5276 err = pvn_vplist_dirty(vp, (u_offset_t)off, ufs_putapage,
5277 flags, cr);
5278 } else {
5280 * Loop over all offsets in the range looking for
5281 * pages to deal with.
5283 if ((eoff = blkroundup(ip->i_fs, ip->i_size)) != 0)
5284 eoff = MIN(off + len, eoff);
5285 else
5286 eoff = off + len;
5288 for (io_off = off; io_off < eoff; io_off += io_len) {
5290 * If we are not invalidating, synchronously
5291 * freeing or writing pages, use the routine
5292 * page_lookup_nowait() to prevent reclaiming
5293 * them from the free list.
5295 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
5296 pp = page_lookup(vp, io_off,
5297 (flags & (B_INVAL | B_FREE)) ?
5298 SE_EXCL : SE_SHARED);
5299 } else {
5300 pp = page_lookup_nowait(vp, io_off,
5301 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
5304 if (pp == NULL || pvn_getdirty(pp, flags) == 0)
5305 io_len = PAGESIZE;
5306 else {
5307 u_offset_t *io_offp = &io_off;
5309 err = ufs_putapage(vp, pp, io_offp, &io_len,
5310 flags, cr);
5311 if (err != 0)
5312 break;
5314 * "io_off" and "io_len" are returned as
5315 * the range of pages we actually wrote.
5316 * This allows us to skip ahead more quickly
5317 * since several pages may've been dealt
5318 * with by this iteration of the loop.
5323 if (err == 0 && off == 0 && (len == 0 || len >= ip->i_size)) {
5325 * We have just sync'ed back all the pages on
5326 * the inode, turn off the IMODTIME flag.
5328 mutex_enter(&ip->i_tlock);
5329 ip->i_flag &= ~IMODTIME;
5330 mutex_exit(&ip->i_tlock);
5332 if (dolock)
5333 rw_exit(&ip->i_contents);
5334 return (err);
5337 static void
5338 ufs_iodone(buf_t *bp)
5340 struct inode *ip;
5342 ASSERT((bp->b_pages->p_vnode != NULL) && !(bp->b_flags & B_READ));
5344 bp->b_iodone = NULL;
5346 ip = VTOI(bp->b_pages->p_vnode);
5348 mutex_enter(&ip->i_tlock);
5349 if (ip->i_writes >= ufs_LW) {
5350 if ((ip->i_writes -= bp->b_bcount) <= ufs_LW)
5351 if (ufs_WRITES)
5352 cv_broadcast(&ip->i_wrcv); /* wake all up */
5353 } else {
5354 ip->i_writes -= bp->b_bcount;
5357 mutex_exit(&ip->i_tlock);
5358 iodone(bp);
5362 * Write out a single page, possibly klustering adjacent
5363 * dirty pages. The inode lock must be held.
5365 * LMXXX - bsize < pagesize not done.
5367 /*ARGSUSED*/
5369 ufs_putapage(
5370 struct vnode *vp,
5371 page_t *pp,
5372 u_offset_t *offp,
5373 size_t *lenp, /* return values */
5374 int flags,
5375 struct cred *cr)
5377 u_offset_t io_off;
5378 u_offset_t off;
5379 struct inode *ip = VTOI(vp);
5380 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
5381 struct fs *fs;
5382 struct buf *bp;
5383 size_t io_len;
5384 daddr_t bn;
5385 int err;
5386 int contig;
5387 int dotrans;
5389 ASSERT(RW_LOCK_HELD(&ip->i_contents));
5391 if (ufsvfsp == NULL) {
5392 err = EIO;
5393 goto out_trace;
5396 fs = ip->i_fs;
5397 ASSERT(fs->fs_ronly == 0);
5400 * If the modified time on the inode has not already been
5401 * set elsewhere (e.g. for write/setattr) we set the time now.
5402 * This gives us approximate modified times for mmap'ed files
5403 * which are modified via stores in the user address space.
5405 if ((ip->i_flag & IMODTIME) == 0) {
5406 mutex_enter(&ip->i_tlock);
5407 ip->i_flag |= IUPD;
5408 ip->i_seq++;
5409 ITIMES_NOLOCK(ip);
5410 mutex_exit(&ip->i_tlock);
5414 * Align the request to a block boundry (for old file systems),
5415 * and go ask bmap() how contiguous things are for this file.
5417 off = pp->p_offset & (offset_t)fs->fs_bmask; /* block align it */
5418 contig = 0;
5419 err = bmap_read(ip, off, &bn, &contig);
5420 if (err)
5421 goto out;
5422 if (bn == UFS_HOLE) { /* putpage never allocates */
5424 * logging device is in error mode; simply return EIO
5426 if (TRANS_ISERROR(ufsvfsp)) {
5427 err = EIO;
5428 goto out;
5431 * Oops, the thread in the window in wrip() did some
5432 * sort of operation which caused a putpage in the bad
5433 * range. In this case, just return an error which will
5434 * cause the software modified bit on the page to set
5435 * and the page will get written out again later.
5437 if (ip->i_writer == curthread) {
5438 err = EIO;
5439 goto out;
5442 * If the pager is trying to push a page in the bad range
5443 * just tell it to try again later when things are better.
5445 if (flags & B_ASYNC) {
5446 err = EAGAIN;
5447 goto out;
5449 err = ufs_fault(ITOV(ip), "ufs_putapage: bn == UFS_HOLE");
5450 goto out;
5454 * If it is an fallocate'd block, reverse the negativity since
5455 * we are now writing to it
5457 if (ISFALLOCBLK(ip, bn)) {
5458 err = bmap_set_bn(vp, off, dbtofsb(fs, -bn));
5459 if (err)
5460 goto out;
5462 bn = -bn;
5466 * Take the length (of contiguous bytes) passed back from bmap()
5467 * and _try_ and get a set of pages covering that extent.
5469 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, off, contig, flags);
5472 * May have run out of memory and not clustered backwards.
5473 * off p_offset
5474 * [ pp - 1 ][ pp ]
5475 * [ block ]
5476 * We told bmap off, so we have to adjust the bn accordingly.
5478 if (io_off > off) {
5479 bn += btod(io_off - off);
5480 contig -= (io_off - off);
5484 * bmap was carefull to tell us the right size so use that.
5485 * There might be unallocated frags at the end.
5486 * LMXXX - bzero the end of the page? We must be writing after EOF.
5488 if (io_len > contig) {
5489 ASSERT(io_len - contig < fs->fs_bsize);
5490 io_len -= (io_len - contig);
5494 * Handle the case where we are writing the last page after EOF.
5496 * XXX - just a patch for i-mt3.
5498 if (io_len == 0) {
5499 ASSERT(pp->p_offset >=
5500 (u_offset_t)(roundup(ip->i_size, PAGESIZE)));
5501 io_len = PAGESIZE;
5504 bp = pageio_setup(pp, io_len, ip->i_devvp, B_WRITE | flags);
5506 ULOCKFS_SET_MOD(ITOUL(ip));
5508 bp->b_edev = ip->i_dev;
5509 bp->b_dev = cmpdev(ip->i_dev);
5510 bp->b_blkno = bn;
5511 bp->b_un.b_addr = (caddr_t)0;
5512 bp->b_file = ip->i_vnode;
5515 * File contents of shadow or quota inodes are metadata, and updates
5516 * to these need to be put into a logging transaction. All direct
5517 * callers in UFS do that, but fsflush can come here _before_ the
5518 * normal codepath. An example would be updating ACL information, for
5519 * which the normal codepath would be:
5520 * ufs_si_store()
5521 * ufs_rdwri()
5522 * wrip()
5523 * segmap_release()
5524 * VOP_PUTPAGE()
5525 * Here, fsflush can pick up the dirty page before segmap_release()
5526 * forces it out. If that happens, there's no transaction.
5527 * We therefore need to test whether a transaction exists, and if not
5528 * create one - for fsflush.
5530 dotrans =
5531 (((ip->i_mode & IFMT) == IFSHAD || ufsvfsp->vfs_qinod == ip) &&
5532 ((curthread->t_flag & T_DONTBLOCK) == 0) &&
5533 (TRANS_ISTRANS(ufsvfsp)));
5535 if (dotrans) {
5536 curthread->t_flag |= T_DONTBLOCK;
5537 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5539 if (TRANS_ISTRANS(ufsvfsp)) {
5540 if ((ip->i_mode & IFMT) == IFSHAD) {
5541 TRANS_BUF(ufsvfsp, 0, io_len, bp, DT_SHAD);
5542 } else if (ufsvfsp->vfs_qinod == ip) {
5543 TRANS_DELTA(ufsvfsp, ldbtob(bn), bp->b_bcount, DT_QR,
5544 0, 0);
5547 if (dotrans) {
5548 TRANS_END_ASYNC(ufsvfsp, TOP_PUTPAGE, TOP_PUTPAGE_SIZE(ip));
5549 curthread->t_flag &= ~T_DONTBLOCK;
5552 /* write throttle */
5554 ASSERT(bp->b_iodone == NULL);
5555 bp->b_iodone = (int (*)())ufs_iodone;
5556 mutex_enter(&ip->i_tlock);
5557 ip->i_writes += bp->b_bcount;
5558 mutex_exit(&ip->i_tlock);
5560 if (bp->b_flags & B_ASYNC) {
5561 if (ufsvfsp->vfs_log) {
5562 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5563 } else if (ufsvfsp->vfs_snapshot) {
5564 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5565 } else {
5566 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5567 ub.ub_putasyncs.value.ul++;
5568 (void) bdev_strategy(bp);
5569 lwp_stat_update(LWP_STAT_OUBLK, 1);
5571 } else {
5572 if (ufsvfsp->vfs_log) {
5573 lufs_write_strategy(ufsvfsp->vfs_log, bp);
5574 } else if (ufsvfsp->vfs_snapshot) {
5575 fssnap_strategy(&ufsvfsp->vfs_snapshot, bp);
5576 } else {
5577 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
5578 ub.ub_putsyncs.value.ul++;
5579 (void) bdev_strategy(bp);
5580 lwp_stat_update(LWP_STAT_OUBLK, 1);
5582 err = biowait(bp);
5583 pageio_done(bp);
5584 pvn_write_done(pp, ((err) ? B_ERROR : 0) | B_WRITE | flags);
5587 pp = NULL;
5589 out:
5590 if (err != 0 && pp != NULL)
5591 pvn_write_done(pp, B_ERROR | B_WRITE | flags);
5593 if (offp)
5594 *offp = io_off;
5595 if (lenp)
5596 *lenp = io_len;
5597 out_trace:
5598 return (err);
5601 uint64_t ufs_map_alock_retry_cnt;
5602 uint64_t ufs_map_lockfs_retry_cnt;
5604 /* ARGSUSED */
5605 static int
5606 ufs_map(struct vnode *vp,
5607 offset_t off,
5608 struct as *as,
5609 caddr_t *addrp,
5610 size_t len,
5611 uchar_t prot,
5612 uchar_t maxprot,
5613 uint_t flags,
5614 struct cred *cr,
5615 caller_context_t *ct)
5617 struct segvn_crargs vn_a;
5618 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5619 struct ulockfs *ulp;
5620 int error, sig;
5621 k_sigset_t smask;
5622 caddr_t hint = *addrp;
5624 if (vp->v_flag & VNOMAP) {
5625 error = ENOSYS;
5626 goto out;
5629 if (off < (offset_t)0 || (offset_t)(off + len) < (offset_t)0) {
5630 error = ENXIO;
5631 goto out;
5634 if (vp->v_type != VREG) {
5635 error = ENODEV;
5636 goto out;
5639 retry_map:
5640 *addrp = hint;
5642 * If file is being locked, disallow mapping.
5644 if (vn_has_mandatory_locks(vp, VTOI(vp)->i_mode)) {
5645 error = EAGAIN;
5646 goto out;
5649 as_rangelock(as);
5651 * Note that if we are retrying (because ufs_lockfs_trybegin failed in
5652 * the previous attempt), some other thread could have grabbed
5653 * the same VA range if MAP_FIXED is set. In that case, choose_addr
5654 * would unmap the valid VA range, that is ok.
5656 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5657 if (error != 0) {
5658 as_rangeunlock(as);
5659 goto out;
5663 * a_lock has to be acquired before entering the lockfs protocol
5664 * because that is the order in which pagefault works. Also we cannot
5665 * block on a_lock here because this waiting writer will prevent
5666 * further readers like ufs_read from progressing and could cause
5667 * deadlock between ufs_read/ufs_map/pagefault when a quiesce is
5668 * pending.
5670 while (!AS_LOCK_TRYENTER(as, RW_WRITER)) {
5671 ufs_map_alock_retry_cnt++;
5672 delay(RETRY_LOCK_DELAY);
5676 * We can't hold as->a_lock and wait for lockfs to succeed because
5677 * the proc tools might hang on a_lock, so call ufs_lockfs_trybegin()
5678 * instead.
5680 if (error = ufs_lockfs_trybegin(ufsvfsp, &ulp, ULOCKFS_MAP_MASK)) {
5682 * ufs_lockfs_trybegin() did not succeed. It is safer to give up
5683 * as->a_lock and wait for ulp->ul_fs_lock status to change.
5685 ufs_map_lockfs_retry_cnt++;
5686 AS_LOCK_EXIT(as);
5687 as_rangeunlock(as);
5688 if (error == EIO)
5689 goto out;
5691 mutex_enter(&ulp->ul_lock);
5692 while (ulp->ul_fs_lock & ULOCKFS_MAP_MASK) {
5693 if (ULOCKFS_IS_SLOCK(ulp) || ufsvfsp->vfs_nointr) {
5694 cv_wait(&ulp->ul_cv, &ulp->ul_lock);
5695 } else {
5696 sigintr(&smask, 1);
5697 sig = cv_wait_sig(&ulp->ul_cv, &ulp->ul_lock);
5698 sigunintr(&smask);
5699 if (((ulp->ul_fs_lock & ULOCKFS_MAP_MASK) &&
5700 !sig) || ufsvfsp->vfs_dontblock) {
5701 mutex_exit(&ulp->ul_lock);
5702 return (EINTR);
5706 mutex_exit(&ulp->ul_lock);
5707 goto retry_map;
5710 vn_a.vp = vp;
5711 vn_a.offset = (u_offset_t)off;
5712 vn_a.type = flags & MAP_TYPE;
5713 vn_a.prot = prot;
5714 vn_a.maxprot = maxprot;
5715 vn_a.cred = cr;
5716 vn_a.amp = NULL;
5717 vn_a.flags = flags & ~MAP_TYPE;
5718 vn_a.szc = 0;
5719 vn_a.lgrp_mem_policy_flags = 0;
5721 error = as_map_locked(as, *addrp, len, segvn_create, &vn_a);
5722 if (ulp)
5723 ufs_lockfs_end(ulp);
5724 as_rangeunlock(as);
5725 out:
5726 return (error);
5729 /* ARGSUSED */
5730 static int
5731 ufs_addmap(struct vnode *vp,
5732 offset_t off,
5733 struct as *as,
5734 caddr_t addr,
5735 size_t len,
5736 uchar_t prot,
5737 uchar_t maxprot,
5738 uint_t flags,
5739 struct cred *cr,
5740 caller_context_t *ct)
5742 struct inode *ip = VTOI(vp);
5744 if (vp->v_flag & VNOMAP) {
5745 return (ENOSYS);
5748 mutex_enter(&ip->i_tlock);
5749 ip->i_mapcnt += btopr(len);
5750 mutex_exit(&ip->i_tlock);
5751 return (0);
5754 /*ARGSUSED*/
5755 static int
5756 ufs_delmap(struct vnode *vp, offset_t off, struct as *as, caddr_t addr,
5757 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5758 struct cred *cr, caller_context_t *ct)
5760 struct inode *ip = VTOI(vp);
5762 if (vp->v_flag & VNOMAP) {
5763 return (ENOSYS);
5766 mutex_enter(&ip->i_tlock);
5767 ip->i_mapcnt -= btopr(len); /* Count released mappings */
5768 ASSERT(ip->i_mapcnt >= 0);
5769 mutex_exit(&ip->i_tlock);
5770 return (0);
5773 * Return the answer requested to poll() for non-device files
5775 struct pollhead ufs_pollhd;
5777 /* ARGSUSED */
5779 ufs_poll(vnode_t *vp, short ev, int any, short *revp, struct pollhead **phpp,
5780 caller_context_t *ct)
5782 struct ufsvfs *ufsvfsp;
5784 *revp = 0;
5785 ufsvfsp = VTOI(vp)->i_ufsvfs;
5787 if (!ufsvfsp) {
5788 *revp = POLLHUP;
5789 goto out;
5792 if (ULOCKFS_IS_HLOCK(&ufsvfsp->vfs_ulockfs) ||
5793 ULOCKFS_IS_ELOCK(&ufsvfsp->vfs_ulockfs)) {
5794 *revp |= POLLERR;
5796 } else {
5797 if ((ev & POLLOUT) && !ufsvfsp->vfs_fs->fs_ronly &&
5798 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5799 *revp |= POLLOUT;
5801 if ((ev & POLLWRBAND) && !ufsvfsp->vfs_fs->fs_ronly &&
5802 !ULOCKFS_IS_WLOCK(&ufsvfsp->vfs_ulockfs))
5803 *revp |= POLLWRBAND;
5805 if (ev & POLLIN)
5806 *revp |= POLLIN;
5808 if (ev & POLLRDNORM)
5809 *revp |= POLLRDNORM;
5811 if (ev & POLLRDBAND)
5812 *revp |= POLLRDBAND;
5815 if ((ev & POLLPRI) && (*revp & (POLLERR|POLLHUP)))
5816 *revp |= POLLPRI;
5817 out:
5818 *phpp = !any && !*revp ? &ufs_pollhd : (struct pollhead *)NULL;
5820 return (0);
5823 /* ARGSUSED */
5824 static int
5825 ufs_l_pathconf(struct vnode *vp, int cmd, ulong_t *valp, struct cred *cr,
5826 caller_context_t *ct)
5828 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
5829 struct ulockfs *ulp = NULL;
5830 struct inode *sip = NULL;
5831 int error;
5832 struct inode *ip = VTOI(vp);
5833 int issync;
5835 error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_PATHCONF_MASK);
5836 if (error)
5837 return (error);
5839 switch (cmd) {
5841 * Have to handle _PC_NAME_MAX here, because the normal way
5842 * [fs_pathconf() -> VOP_STATVFS() -> ufs_statvfs()]
5843 * results in a lock ordering reversal between
5844 * ufs_lockfs_{begin,end}() and
5845 * ufs_thread_{suspend,continue}().
5847 * Keep in sync with ufs_statvfs().
5849 case _PC_NAME_MAX:
5850 *valp = MAXNAMLEN;
5851 break;
5853 case _PC_FILESIZEBITS:
5854 if (ufsvfsp->vfs_lfflags & UFS_LARGEFILES)
5855 *valp = UFS_FILESIZE_BITS;
5856 else
5857 *valp = 32;
5858 break;
5860 case _PC_XATTR_EXISTS:
5861 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5863 error =
5864 ufs_xattr_getattrdir(vp, &sip, LOOKUP_XATTR, cr);
5865 if (error == 0 && sip != NULL) {
5866 /* Start transaction */
5867 if (ulp) {
5868 TRANS_BEGIN_CSYNC(ufsvfsp, issync,
5869 TOP_RMDIR, TOP_RMDIR_SIZE);
5872 * Is directory empty
5874 rw_enter(&sip->i_rwlock, RW_WRITER);
5875 rw_enter(&sip->i_contents, RW_WRITER);
5876 if (ufs_xattrdirempty(sip,
5877 sip->i_number, CRED())) {
5878 rw_enter(&ip->i_contents, RW_WRITER);
5879 ufs_unhook_shadow(ip, sip);
5880 rw_exit(&ip->i_contents);
5882 *valp = 0;
5884 } else
5885 *valp = 1;
5886 rw_exit(&sip->i_contents);
5887 rw_exit(&sip->i_rwlock);
5888 if (ulp) {
5889 TRANS_END_CSYNC(ufsvfsp, error, issync,
5890 TOP_RMDIR, TOP_RMDIR_SIZE);
5892 VN_RELE(ITOV(sip));
5893 } else if (error == ENOENT) {
5894 *valp = 0;
5895 error = 0;
5897 } else {
5898 error = fs_pathconf(vp, cmd, valp, cr, ct);
5900 break;
5902 case _PC_ACL_ENABLED:
5903 *valp = _ACL_ACLENT_ENABLED;
5904 break;
5906 case _PC_MIN_HOLE_SIZE:
5907 *valp = (ulong_t)ip->i_fs->fs_bsize;
5908 break;
5910 case _PC_SATTR_ENABLED:
5911 case _PC_SATTR_EXISTS:
5912 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
5913 (vp->v_type == VREG || vp->v_type == VDIR);
5914 break;
5916 case _PC_TIMESTAMP_RESOLUTION:
5918 * UFS keeps only microsecond timestamp resolution.
5919 * This is historical and will probably never change.
5921 *valp = 1000L;
5922 break;
5924 default:
5925 error = fs_pathconf(vp, cmd, valp, cr, ct);
5926 break;
5929 if (ulp != NULL) {
5930 ufs_lockfs_end(ulp);
5932 return (error);
5935 int ufs_pageio_writes, ufs_pageio_reads;
5937 /*ARGSUSED*/
5938 static int
5939 ufs_pageio(struct vnode *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5940 int flags, struct cred *cr, caller_context_t *ct)
5942 struct inode *ip = VTOI(vp);
5943 struct ufsvfs *ufsvfsp;
5944 page_t *npp = NULL, *opp = NULL, *cpp = pp;
5945 struct buf *bp;
5946 daddr_t bn;
5947 size_t done_len = 0, cur_len = 0;
5948 int err = 0;
5949 int contig = 0;
5950 int dolock;
5951 int vmpss = 0;
5952 struct ulockfs *ulp;
5954 if ((flags & B_READ) && pp != NULL && pp->p_vnode == vp &&
5955 vp->v_mpssdata != NULL) {
5956 vmpss = 1;
5959 dolock = (rw_owner(&ip->i_contents) != curthread);
5961 * We need a better check. Ideally, we would use another
5962 * vnodeops so that hlocked and forcibly unmounted file
5963 * systems would return EIO where appropriate and w/o the
5964 * need for these checks.
5966 if ((ufsvfsp = ip->i_ufsvfs) == NULL)
5967 return (EIO);
5970 * For vmpss (pp can be NULL) case respect the quiesce protocol.
5971 * ul_lock must be taken before locking pages so we can't use it here
5972 * if pp is non NULL because segvn already locked pages
5973 * SE_EXCL. Instead we rely on the fact that a forced umount or
5974 * applying a filesystem lock via ufs_fiolfs() will block in the
5975 * implicit call to ufs_flush() until we unlock the pages after the
5976 * return to segvn. Other ufs_quiesce() callers keep ufs_quiesce_pend
5977 * above 0 until they are done. We have to be careful not to increment
5978 * ul_vnops_cnt here after forceful unmount hlocks the file system.
5980 * If pp is NULL use ul_lock to make sure we don't increment
5981 * ul_vnops_cnt after forceful unmount hlocks the file system.
5983 if (vmpss || pp == NULL) {
5984 ulp = &ufsvfsp->vfs_ulockfs;
5985 if (pp == NULL)
5986 mutex_enter(&ulp->ul_lock);
5987 if (ulp->ul_fs_lock & ULOCKFS_GETREAD_MASK) {
5988 if (pp == NULL) {
5989 mutex_exit(&ulp->ul_lock);
5991 return (vmpss ? EIO : EINVAL);
5993 atomic_inc_ulong(&ulp->ul_vnops_cnt);
5994 if (pp == NULL)
5995 mutex_exit(&ulp->ul_lock);
5996 if (ufs_quiesce_pend) {
5997 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
5998 cv_broadcast(&ulp->ul_cv);
5999 return (vmpss ? EIO : EINVAL);
6003 if (dolock) {
6005 * segvn may call VOP_PAGEIO() instead of VOP_GETPAGE() to
6006 * handle a fault against a segment that maps vnode pages with
6007 * large mappings. Segvn creates pages and holds them locked
6008 * SE_EXCL during VOP_PAGEIO() call. In this case we have to
6009 * use rw_tryenter() to avoid a potential deadlock since in
6010 * lock order i_contents needs to be taken first.
6011 * Segvn will retry via VOP_GETPAGE() if VOP_PAGEIO() fails.
6013 if (!vmpss) {
6014 rw_enter(&ip->i_contents, RW_READER);
6015 } else if (!rw_tryenter(&ip->i_contents, RW_READER)) {
6016 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6017 cv_broadcast(&ulp->ul_cv);
6018 return (EDEADLK);
6023 * Return an error to segvn because the pagefault request is beyond
6024 * PAGESIZE rounded EOF.
6026 if (vmpss && btopr(io_off + io_len) > btopr(ip->i_size)) {
6027 if (dolock)
6028 rw_exit(&ip->i_contents);
6029 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6030 cv_broadcast(&ulp->ul_cv);
6031 return (EFAULT);
6034 if (pp == NULL) {
6035 if (bmap_has_holes(ip)) {
6036 err = ENOSYS;
6037 } else {
6038 err = EINVAL;
6040 if (dolock)
6041 rw_exit(&ip->i_contents);
6042 if (!atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6043 cv_broadcast(&ulp->ul_cv);
6044 return (err);
6048 * Break the io request into chunks, one for each contiguous
6049 * stretch of disk blocks in the target file.
6051 while (done_len < io_len) {
6052 ASSERT(cpp);
6053 contig = 0;
6054 if (err = bmap_read(ip, (u_offset_t)(io_off + done_len),
6055 &bn, &contig))
6056 break;
6058 if (bn == UFS_HOLE) { /* No holey swapfiles */
6059 if (vmpss) {
6060 err = EFAULT;
6061 break;
6063 err = ufs_fault(ITOV(ip), "ufs_pageio: bn == UFS_HOLE");
6064 break;
6067 cur_len = MIN(io_len - done_len, contig);
6069 * Zero out a page beyond EOF, when the last block of
6070 * a file is a UFS fragment so that ufs_pageio() can be used
6071 * instead of ufs_getpage() to handle faults against
6072 * segvn segments that use large pages.
6074 page_list_break(&cpp, &npp, btopr(cur_len));
6075 if ((flags & B_READ) && (cur_len & PAGEOFFSET)) {
6076 size_t xlen = cur_len & PAGEOFFSET;
6077 pagezero(cpp->p_prev, xlen, PAGESIZE - xlen);
6080 bp = pageio_setup(cpp, cur_len, ip->i_devvp, flags);
6081 ASSERT(bp != NULL);
6083 bp->b_edev = ip->i_dev;
6084 bp->b_dev = cmpdev(ip->i_dev);
6085 bp->b_blkno = bn;
6086 bp->b_un.b_addr = (caddr_t)0;
6087 bp->b_file = ip->i_vnode;
6089 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
6090 ub.ub_pageios.value.ul++;
6091 if (ufsvfsp->vfs_snapshot)
6092 fssnap_strategy(&(ufsvfsp->vfs_snapshot), bp);
6093 else
6094 (void) bdev_strategy(bp);
6096 if (flags & B_READ)
6097 ufs_pageio_reads++;
6098 else
6099 ufs_pageio_writes++;
6100 if (flags & B_READ)
6101 lwp_stat_update(LWP_STAT_INBLK, 1);
6102 else
6103 lwp_stat_update(LWP_STAT_OUBLK, 1);
6105 * If the request is not B_ASYNC, wait for i/o to complete
6106 * and re-assemble the page list to return to the caller.
6107 * If it is B_ASYNC we leave the page list in pieces and
6108 * cleanup() will dispose of them.
6110 if ((flags & B_ASYNC) == 0) {
6111 err = biowait(bp);
6112 pageio_done(bp);
6113 if (err)
6114 break;
6115 page_list_concat(&opp, &cpp);
6117 cpp = npp;
6118 npp = NULL;
6119 if (flags & B_READ)
6120 cur_len = P2ROUNDUP_TYPED(cur_len, PAGESIZE, size_t);
6121 done_len += cur_len;
6123 ASSERT(err || (cpp == NULL && npp == NULL && done_len == io_len));
6124 if (err) {
6125 if (flags & B_ASYNC) {
6126 /* Cleanup unprocessed parts of list */
6127 page_list_concat(&cpp, &npp);
6128 if (flags & B_READ)
6129 pvn_read_done(cpp, B_ERROR);
6130 else
6131 pvn_write_done(cpp, B_ERROR);
6132 } else {
6133 /* Re-assemble list and let caller clean up */
6134 page_list_concat(&opp, &cpp);
6135 page_list_concat(&opp, &npp);
6139 if (vmpss && !(ip->i_flag & IACC) && !ULOCKFS_IS_NOIACC(ulp) &&
6140 ufsvfsp->vfs_fs->fs_ronly == 0 && !ufsvfsp->vfs_noatime) {
6141 mutex_enter(&ip->i_tlock);
6142 ip->i_flag |= IACC;
6143 ITIMES_NOLOCK(ip);
6144 mutex_exit(&ip->i_tlock);
6147 if (dolock)
6148 rw_exit(&ip->i_contents);
6149 if (vmpss && !atomic_dec_ulong_nv(&ulp->ul_vnops_cnt))
6150 cv_broadcast(&ulp->ul_cv);
6151 return (err);
6155 * Called when the kernel is in a frozen state to dump data
6156 * directly to the device. It uses a private dump data structure,
6157 * set up by dump_ctl, to locate the correct disk block to which to dump.
6159 /*ARGSUSED*/
6160 static int
6161 ufs_dump(vnode_t *vp, caddr_t addr, offset_t ldbn, offset_t dblks,
6162 caller_context_t *ct)
6164 u_offset_t file_size;
6165 struct inode *ip = VTOI(vp);
6166 struct fs *fs = ip->i_fs;
6167 daddr_t dbn, lfsbn;
6168 int disk_blks = fs->fs_bsize >> DEV_BSHIFT;
6169 int error = 0;
6170 int ndbs, nfsbs;
6173 * forced unmount case
6175 if (ip->i_ufsvfs == NULL)
6176 return (EIO);
6178 * Validate the inode that it has not been modified since
6179 * the dump structure is allocated.
6181 mutex_enter(&ip->i_tlock);
6182 if ((dump_info == NULL) ||
6183 (dump_info->ip != ip) ||
6184 (dump_info->time.tv_sec != ip->i_mtime.tv_sec) ||
6185 (dump_info->time.tv_usec != ip->i_mtime.tv_usec)) {
6186 mutex_exit(&ip->i_tlock);
6187 return (-1);
6189 mutex_exit(&ip->i_tlock);
6192 * See that the file has room for this write
6194 UFS_GET_ISIZE(&file_size, ip);
6196 if (ldbtob(ldbn + dblks) > file_size)
6197 return (ENOSPC);
6200 * Find the physical disk block numbers from the dump
6201 * private data structure directly and write out the data
6202 * in contiguous block lumps
6204 while (dblks > 0 && !error) {
6205 lfsbn = (daddr_t)lblkno(fs, ldbtob(ldbn));
6206 dbn = fsbtodb(fs, dump_info->dblk[lfsbn]) + ldbn % disk_blks;
6207 nfsbs = 1;
6208 ndbs = disk_blks - ldbn % disk_blks;
6209 while (ndbs < dblks && fsbtodb(fs, dump_info->dblk[lfsbn +
6210 nfsbs]) == dbn + ndbs) {
6211 nfsbs++;
6212 ndbs += disk_blks;
6214 if (ndbs > dblks)
6215 ndbs = dblks;
6216 error = bdev_dump(ip->i_dev, addr, dbn, ndbs);
6217 addr += ldbtob((offset_t)ndbs);
6218 dblks -= ndbs;
6219 ldbn += ndbs;
6221 return (error);
6226 * Prepare the file system before and after the dump operation.
6228 * action = DUMP_ALLOC:
6229 * Preparation before dump, allocate dump private data structure
6230 * to hold all the direct and indirect block info for dump.
6232 * action = DUMP_FREE:
6233 * Clean up after dump, deallocate the dump private data structure.
6235 * action = DUMP_SCAN:
6236 * Scan dump_info for *blkp DEV_BSIZE blocks of contig fs space;
6237 * if found, the starting file-relative DEV_BSIZE lbn is written
6238 * to *bklp; that lbn is intended for use with VOP_DUMP()
6240 /*ARGSUSED*/
6241 static int
6242 ufs_dumpctl(vnode_t *vp, int action, offset_t *blkp, caller_context_t *ct)
6244 struct inode *ip = VTOI(vp);
6245 ufsvfs_t *ufsvfsp = ip->i_ufsvfs;
6246 struct fs *fs;
6247 daddr32_t *dblk, *storeblk;
6248 daddr32_t *nextblk, *endblk;
6249 struct buf *bp;
6250 int i, entry, entries;
6251 int n, ncontig;
6254 * check for forced unmount
6256 if (ufsvfsp == NULL)
6257 return (EIO);
6259 if (action == DUMP_ALLOC) {
6261 * alloc and record dump_info
6263 if (dump_info != NULL)
6264 return (EINVAL);
6266 ASSERT(vp->v_type == VREG);
6267 fs = ufsvfsp->vfs_fs;
6269 rw_enter(&ip->i_contents, RW_READER);
6271 if (bmap_has_holes(ip)) {
6272 rw_exit(&ip->i_contents);
6273 return (EFAULT);
6277 * calculate and allocate space needed according to i_size
6279 entries = (int)lblkno(fs, blkroundup(fs, ip->i_size));
6280 dump_info = kmem_alloc(sizeof (struct dump) +
6281 (entries - 1) * sizeof (daddr32_t), KM_NOSLEEP);
6282 if (dump_info == NULL) {
6283 rw_exit(&ip->i_contents);
6284 return (ENOMEM);
6287 /* Start saving the info */
6288 dump_info->fsbs = entries;
6289 dump_info->ip = ip;
6290 storeblk = &dump_info->dblk[0];
6292 /* Direct Blocks */
6293 for (entry = 0; entry < NDADDR && entry < entries; entry++)
6294 *storeblk++ = ip->i_db[entry];
6296 /* Indirect Blocks */
6297 for (i = 0; i < NIADDR; i++) {
6298 int error = 0;
6300 bp = UFS_BREAD(ufsvfsp,
6301 ip->i_dev, fsbtodb(fs, ip->i_ib[i]), fs->fs_bsize);
6302 if (bp->b_flags & B_ERROR)
6303 error = EIO;
6304 else {
6305 dblk = bp->b_un.b_daddr;
6306 if ((storeblk = save_dblks(ip, ufsvfsp,
6307 storeblk, dblk, i, entries)) == NULL)
6308 error = EIO;
6311 brelse(bp);
6313 if (error != 0) {
6314 kmem_free(dump_info, sizeof (struct dump) +
6315 (entries - 1) * sizeof (daddr32_t));
6316 rw_exit(&ip->i_contents);
6317 dump_info = NULL;
6318 return (error);
6321 /* and time stamp the information */
6322 mutex_enter(&ip->i_tlock);
6323 dump_info->time = ip->i_mtime;
6324 mutex_exit(&ip->i_tlock);
6326 rw_exit(&ip->i_contents);
6327 } else if (action == DUMP_FREE) {
6329 * free dump_info
6331 if (dump_info == NULL)
6332 return (EINVAL);
6333 entries = dump_info->fsbs - 1;
6334 kmem_free(dump_info, sizeof (struct dump) +
6335 entries * sizeof (daddr32_t));
6336 dump_info = NULL;
6337 } else if (action == DUMP_SCAN) {
6339 * scan dump_info
6341 if (dump_info == NULL)
6342 return (EINVAL);
6344 dblk = dump_info->dblk;
6345 nextblk = dblk + 1;
6346 endblk = dblk + dump_info->fsbs - 1;
6347 fs = ufsvfsp->vfs_fs;
6348 ncontig = *blkp >> (fs->fs_bshift - DEV_BSHIFT);
6351 * scan dblk[] entries; contig fs space is found when:
6352 * ((current blkno + frags per block) == next blkno)
6354 n = 0;
6355 while (n < ncontig && dblk < endblk) {
6356 if ((*dblk + fs->fs_frag) == *nextblk)
6357 n++;
6358 else
6359 n = 0;
6360 dblk++;
6361 nextblk++;
6365 * index is where size bytes of contig space begins;
6366 * conversion from index to the file's DEV_BSIZE lbn
6367 * is equivalent to: (index * fs_bsize) / DEV_BSIZE
6369 if (n == ncontig) {
6370 i = (dblk - dump_info->dblk) - ncontig;
6371 *blkp = i << (fs->fs_bshift - DEV_BSHIFT);
6372 } else
6373 return (EFAULT);
6375 return (0);
6379 * Recursive helper function for ufs_dumpctl(). It follows the indirect file
6380 * system blocks until it reaches the the disk block addresses, which are
6381 * then stored into the given buffer, storeblk.
6383 static daddr32_t *
6384 save_dblks(struct inode *ip, struct ufsvfs *ufsvfsp, daddr32_t *storeblk,
6385 daddr32_t *dblk, int level, int entries)
6387 struct fs *fs = ufsvfsp->vfs_fs;
6388 struct buf *bp;
6389 int i;
6391 if (level == 0) {
6392 for (i = 0; i < NINDIR(fs); i++) {
6393 if (storeblk - dump_info->dblk >= entries)
6394 break;
6395 *storeblk++ = dblk[i];
6397 return (storeblk);
6399 for (i = 0; i < NINDIR(fs); i++) {
6400 if (storeblk - dump_info->dblk >= entries)
6401 break;
6402 bp = UFS_BREAD(ufsvfsp,
6403 ip->i_dev, fsbtodb(fs, dblk[i]), fs->fs_bsize);
6404 if (bp->b_flags & B_ERROR) {
6405 brelse(bp);
6406 return (NULL);
6408 storeblk = save_dblks(ip, ufsvfsp, storeblk, bp->b_un.b_daddr,
6409 level - 1, entries);
6410 brelse(bp);
6412 if (storeblk == NULL)
6413 return (NULL);
6415 return (storeblk);
6418 /* ARGSUSED */
6419 static int
6420 ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,
6421 struct cred *cr, caller_context_t *ct)
6423 struct inode *ip = VTOI(vp);
6424 struct ulockfs *ulp;
6425 struct ufsvfs *ufsvfsp = ip->i_ufsvfs;
6426 ulong_t vsa_mask = vsap->vsa_mask;
6427 int err = EINVAL;
6429 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6432 * Only grab locks if needed - they're not needed to check vsa_mask
6433 * or if the mask contains no acl flags.
6435 if (vsa_mask != 0) {
6436 if (err = ufs_lockfs_begin(ufsvfsp, &ulp,
6437 ULOCKFS_GETATTR_MASK))
6438 return (err);
6440 rw_enter(&ip->i_contents, RW_READER);
6441 err = ufs_acl_get(ip, vsap, flag, cr);
6442 rw_exit(&ip->i_contents);
6444 if (ulp)
6445 ufs_lockfs_end(ulp);
6447 return (err);
6450 /* ARGSUSED */
6451 static int
6452 ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr,
6453 caller_context_t *ct)
6455 struct inode *ip = VTOI(vp);
6456 struct ulockfs *ulp = NULL;
6457 struct ufsvfs *ufsvfsp = VTOI(vp)->i_ufsvfs;
6458 ulong_t vsa_mask = vsap->vsa_mask;
6459 int err;
6460 int haverwlock = 1;
6461 int trans_size;
6462 int donetrans = 0;
6463 int retry = 1;
6465 ASSERT(RW_LOCK_HELD(&ip->i_rwlock));
6467 /* Abort now if the request is either empty or invalid. */
6468 vsa_mask &= (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT);
6469 if ((vsa_mask == 0) ||
6470 ((vsap->vsa_aclentp == NULL) &&
6471 (vsap->vsa_dfaclentp == NULL))) {
6472 err = EINVAL;
6473 goto out;
6477 * Following convention, if this is a directory then we acquire the
6478 * inode's i_rwlock after starting a UFS logging transaction;
6479 * otherwise, we acquire it beforehand. Since we were called (and
6480 * must therefore return) with the lock held, we will have to drop it,
6481 * and later reacquire it, if operating on a directory.
6483 if (vp->v_type == VDIR) {
6484 rw_exit(&ip->i_rwlock);
6485 haverwlock = 0;
6486 } else {
6487 /* Upgrade the lock if required. */
6488 if (!rw_write_held(&ip->i_rwlock)) {
6489 rw_exit(&ip->i_rwlock);
6490 rw_enter(&ip->i_rwlock, RW_WRITER);
6494 again:
6495 ASSERT(!(vp->v_type == VDIR && haverwlock));
6496 if (err = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_SETATTR_MASK)) {
6497 ulp = NULL;
6498 retry = 0;
6499 goto out;
6503 * Check that the file system supports this operation. Note that
6504 * ufs_lockfs_begin() will have checked that the file system had
6505 * not been forcibly unmounted.
6507 if (ufsvfsp->vfs_fs->fs_ronly) {
6508 err = EROFS;
6509 goto out;
6511 if (ufsvfsp->vfs_nosetsec) {
6512 err = ENOSYS;
6513 goto out;
6516 if (ulp) {
6517 TRANS_BEGIN_ASYNC(ufsvfsp, TOP_SETSECATTR,
6518 trans_size = TOP_SETSECATTR_SIZE(VTOI(vp)));
6519 donetrans = 1;
6522 if (vp->v_type == VDIR) {
6523 rw_enter(&ip->i_rwlock, RW_WRITER);
6524 haverwlock = 1;
6527 ASSERT(haverwlock);
6529 /* Do the actual work. */
6530 rw_enter(&ip->i_contents, RW_WRITER);
6532 * Suppress out of inodes messages if we will retry.
6534 if (retry)
6535 ip->i_flag |= IQUIET;
6536 err = ufs_acl_set(ip, vsap, flag, cr);
6537 ip->i_flag &= ~IQUIET;
6538 rw_exit(&ip->i_contents);
6540 out:
6541 if (ulp) {
6542 if (donetrans) {
6544 * top_end_async() can eventually call
6545 * top_end_sync(), which can block. We must
6546 * therefore observe the lock-ordering protocol
6547 * here as well.
6549 if (vp->v_type == VDIR) {
6550 rw_exit(&ip->i_rwlock);
6551 haverwlock = 0;
6553 TRANS_END_ASYNC(ufsvfsp, TOP_SETSECATTR, trans_size);
6555 ufs_lockfs_end(ulp);
6558 * If no inodes available, try scaring a logically-
6559 * free one out of the delete queue to someplace
6560 * that we can find it.
6562 if ((err == ENOSPC) && retry && TRANS_ISTRANS(ufsvfsp)) {
6563 ufs_delete_drain_wait(ufsvfsp, 1);
6564 retry = 0;
6565 if (vp->v_type == VDIR && haverwlock) {
6566 rw_exit(&ip->i_rwlock);
6567 haverwlock = 0;
6569 goto again;
6572 * If we need to reacquire the lock then it is safe to do so
6573 * as a reader. This is because ufs_rwunlock(), which will be
6574 * called by our caller after we return, does not differentiate
6575 * between shared and exclusive locks.
6577 if (!haverwlock) {
6578 ASSERT(vp->v_type == VDIR);
6579 rw_enter(&ip->i_rwlock, RW_READER);
6582 return (err);
6586 * Locate the vnode to be used for an event notification. As this will
6587 * be called prior to the name space change perform basic verification
6588 * that the change will be allowed.
6591 static int
6592 ufs_eventlookup(struct vnode *dvp, char *nm, struct cred *cr,
6593 struct vnode **vpp)
6595 int namlen;
6596 int error;
6597 struct vnode *vp;
6598 struct inode *ip;
6599 struct inode *xip;
6600 struct ufsvfs *ufsvfsp;
6601 struct ulockfs *ulp;
6603 ip = VTOI(dvp);
6604 *vpp = NULL;
6606 if ((namlen = strlen(nm)) == 0)
6607 return (EINVAL);
6609 if (nm[0] == '.') {
6610 if (namlen == 1)
6611 return (EINVAL);
6612 else if ((namlen == 2) && nm[1] == '.') {
6613 return (EEXIST);
6618 * Check accessibility and write access of parent directory as we
6619 * only want to post the event if we're able to make a change.
6621 if (error = ufs_diraccess(ip, IEXEC|IWRITE, cr))
6622 return (error);
6624 if (vp = dnlc_lookup(dvp, nm)) {
6625 if (vp == DNLC_NO_VNODE) {
6626 VN_RELE(vp);
6627 return (ENOENT);
6630 *vpp = vp;
6631 return (0);
6635 * Keep the idle queue from getting too long by idling two
6636 * inodes before attempting to allocate another.
6637 * This operation must be performed before entering lockfs
6638 * or a transaction.
6640 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
6641 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
6642 ins.in_lidles.value.ul += ufs_lookup_idle_count;
6643 ufs_idle_some(ufs_lookup_idle_count);
6646 ufsvfsp = ip->i_ufsvfs;
6648 retry_lookup:
6649 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_LOOKUP_MASK))
6650 return (error);
6652 if ((error = ufs_dirlook(ip, nm, &xip, cr, 1, 1)) == 0) {
6653 vp = ITOV(xip);
6654 *vpp = vp;
6657 if (ulp) {
6658 ufs_lockfs_end(ulp);
6661 if (error == EAGAIN)
6662 goto retry_lookup;
6664 return (error);