4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
31 #include <sys/zfs_context.h>
33 #include <sys/dmu_send.h>
34 #include <sys/dmu_impl.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dmu_tx.h>
42 #include <sys/dmu_zfetch.h>
44 #include <sys/sa_impl.h>
45 #include <sys/zfeature.h>
46 #include <sys/blkptr.h>
47 #include <sys/range_tree.h>
48 #include <sys/callb.h>
51 uint_t zfs_dbuf_evict_key
;
53 static boolean_t
dbuf_undirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
);
54 static void dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
);
57 extern inline void dmu_buf_init_user(dmu_buf_user_t
*dbu
,
58 dmu_buf_evict_func_t
*evict_func_sync
,
59 dmu_buf_evict_func_t
*evict_func_async
,
60 dmu_buf_t
**clear_on_evict_dbufp
);
64 * Global data structures and functions for the dbuf cache.
66 static kmem_cache_t
*dbuf_kmem_cache
;
67 static taskq_t
*dbu_evict_taskq
;
69 static kthread_t
*dbuf_cache_evict_thread
;
70 static kmutex_t dbuf_evict_lock
;
71 static kcondvar_t dbuf_evict_cv
;
72 static boolean_t dbuf_evict_thread_exit
;
75 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
76 * are not currently held but have been recently released. These dbufs
77 * are not eligible for arc eviction until they are aged out of the cache.
78 * Dbufs are added to the dbuf cache once the last hold is released. If a
79 * dbuf is later accessed and still exists in the dbuf cache, then it will
80 * be removed from the cache and later re-added to the head of the cache.
81 * Dbufs that are aged out of the cache will be immediately destroyed and
82 * become eligible for arc eviction.
84 static multilist_t
*dbuf_cache
;
85 static refcount_t dbuf_cache_size
;
86 uint64_t dbuf_cache_max_bytes
= 100 * 1024 * 1024;
88 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
89 int dbuf_cache_max_shift
= 5;
92 * The dbuf cache uses a three-stage eviction policy:
93 * - A low water marker designates when the dbuf eviction thread
94 * should stop evicting from the dbuf cache.
95 * - When we reach the maximum size (aka mid water mark), we
96 * signal the eviction thread to run.
97 * - The high water mark indicates when the eviction thread
98 * is unable to keep up with the incoming load and eviction must
99 * happen in the context of the calling thread.
103 * low water mid water hi water
104 * +----------------------------------------+----------+----------+
109 * +----------------------------------------+----------+----------+
111 * evicting eviction directly
114 * The high and low water marks indicate the operating range for the eviction
115 * thread. The low water mark is, by default, 90% of the total size of the
116 * cache and the high water mark is at 110% (both of these percentages can be
117 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
118 * respectively). The eviction thread will try to ensure that the cache remains
119 * within this range by waking up every second and checking if the cache is
120 * above the low water mark. The thread can also be woken up by callers adding
121 * elements into the cache if the cache is larger than the mid water (i.e max
122 * cache size). Once the eviction thread is woken up and eviction is required,
123 * it will continue evicting buffers until it's able to reduce the cache size
124 * to the low water mark. If the cache size continues to grow and hits the high
125 * water mark, then callers adding elments to the cache will begin to evict
126 * directly from the cache until the cache is no longer above the high water
131 * The percentage above and below the maximum cache size.
133 uint_t dbuf_cache_hiwater_pct
= 10;
134 uint_t dbuf_cache_lowater_pct
= 10;
138 dbuf_cons(void *vdb
, void *unused
, int kmflag
)
140 dmu_buf_impl_t
*db
= vdb
;
141 bzero(db
, sizeof (dmu_buf_impl_t
));
143 mutex_init(&db
->db_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
144 cv_init(&db
->db_changed
, NULL
, CV_DEFAULT
, NULL
);
145 multilist_link_init(&db
->db_cache_link
);
146 refcount_create(&db
->db_holds
);
153 dbuf_dest(void *vdb
, void *unused
)
155 dmu_buf_impl_t
*db
= vdb
;
156 mutex_destroy(&db
->db_mtx
);
157 cv_destroy(&db
->db_changed
);
158 ASSERT(!multilist_link_active(&db
->db_cache_link
));
159 refcount_destroy(&db
->db_holds
);
163 * dbuf hash table routines
165 static dbuf_hash_table_t dbuf_hash_table
;
167 static uint64_t dbuf_hash_count
;
170 dbuf_hash(void *os
, uint64_t obj
, uint8_t lvl
, uint64_t blkid
)
172 uintptr_t osv
= (uintptr_t)os
;
173 uint64_t crc
= -1ULL;
175 ASSERT(zfs_crc64_table
[128] == ZFS_CRC64_POLY
);
176 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (lvl
)) & 0xFF];
177 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (osv
>> 6)) & 0xFF];
178 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (obj
>> 0)) & 0xFF];
179 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (obj
>> 8)) & 0xFF];
180 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (blkid
>> 0)) & 0xFF];
181 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (blkid
>> 8)) & 0xFF];
183 crc
^= (osv
>>14) ^ (obj
>>16) ^ (blkid
>>16);
188 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
189 ((dbuf)->db.db_object == (obj) && \
190 (dbuf)->db_objset == (os) && \
191 (dbuf)->db_level == (level) && \
192 (dbuf)->db_blkid == (blkid))
195 dbuf_find(objset_t
*os
, uint64_t obj
, uint8_t level
, uint64_t blkid
)
197 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
198 uint64_t hv
= dbuf_hash(os
, obj
, level
, blkid
);
199 uint64_t idx
= hv
& h
->hash_table_mask
;
202 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
203 for (db
= h
->hash_table
[idx
]; db
!= NULL
; db
= db
->db_hash_next
) {
204 if (DBUF_EQUAL(db
, os
, obj
, level
, blkid
)) {
205 mutex_enter(&db
->db_mtx
);
206 if (db
->db_state
!= DB_EVICTING
) {
207 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
210 mutex_exit(&db
->db_mtx
);
213 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
217 static dmu_buf_impl_t
*
218 dbuf_find_bonus(objset_t
*os
, uint64_t object
)
221 dmu_buf_impl_t
*db
= NULL
;
223 if (dnode_hold(os
, object
, FTAG
, &dn
) == 0) {
224 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
225 if (dn
->dn_bonus
!= NULL
) {
227 mutex_enter(&db
->db_mtx
);
229 rw_exit(&dn
->dn_struct_rwlock
);
230 dnode_rele(dn
, FTAG
);
236 * Insert an entry into the hash table. If there is already an element
237 * equal to elem in the hash table, then the already existing element
238 * will be returned and the new element will not be inserted.
239 * Otherwise returns NULL.
241 static dmu_buf_impl_t
*
242 dbuf_hash_insert(dmu_buf_impl_t
*db
)
244 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
245 objset_t
*os
= db
->db_objset
;
246 uint64_t obj
= db
->db
.db_object
;
247 int level
= db
->db_level
;
248 uint64_t blkid
= db
->db_blkid
;
249 uint64_t hv
= dbuf_hash(os
, obj
, level
, blkid
);
250 uint64_t idx
= hv
& h
->hash_table_mask
;
253 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
254 for (dbf
= h
->hash_table
[idx
]; dbf
!= NULL
; dbf
= dbf
->db_hash_next
) {
255 if (DBUF_EQUAL(dbf
, os
, obj
, level
, blkid
)) {
256 mutex_enter(&dbf
->db_mtx
);
257 if (dbf
->db_state
!= DB_EVICTING
) {
258 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
261 mutex_exit(&dbf
->db_mtx
);
265 mutex_enter(&db
->db_mtx
);
266 db
->db_hash_next
= h
->hash_table
[idx
];
267 h
->hash_table
[idx
] = db
;
268 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
269 atomic_inc_64(&dbuf_hash_count
);
275 * Remove an entry from the hash table. It must be in the EVICTING state.
278 dbuf_hash_remove(dmu_buf_impl_t
*db
)
280 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
281 uint64_t hv
= dbuf_hash(db
->db_objset
, db
->db
.db_object
,
282 db
->db_level
, db
->db_blkid
);
283 uint64_t idx
= hv
& h
->hash_table_mask
;
284 dmu_buf_impl_t
*dbf
, **dbp
;
287 * We musn't hold db_mtx to maintain lock ordering:
288 * DBUF_HASH_MUTEX > db_mtx.
290 ASSERT(refcount_is_zero(&db
->db_holds
));
291 ASSERT(db
->db_state
== DB_EVICTING
);
292 ASSERT(!MUTEX_HELD(&db
->db_mtx
));
294 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
295 dbp
= &h
->hash_table
[idx
];
296 while ((dbf
= *dbp
) != db
) {
297 dbp
= &dbf
->db_hash_next
;
300 *dbp
= db
->db_hash_next
;
301 db
->db_hash_next
= NULL
;
302 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
303 atomic_dec_64(&dbuf_hash_count
);
309 } dbvu_verify_type_t
;
312 dbuf_verify_user(dmu_buf_impl_t
*db
, dbvu_verify_type_t verify_type
)
317 if (db
->db_user
== NULL
)
320 /* Only data blocks support the attachment of user data. */
321 ASSERT(db
->db_level
== 0);
323 /* Clients must resolve a dbuf before attaching user data. */
324 ASSERT(db
->db
.db_data
!= NULL
);
325 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
327 holds
= refcount_count(&db
->db_holds
);
328 if (verify_type
== DBVU_EVICTING
) {
330 * Immediate eviction occurs when holds == dirtycnt.
331 * For normal eviction buffers, holds is zero on
332 * eviction, except when dbuf_fix_old_data() calls
333 * dbuf_clear_data(). However, the hold count can grow
334 * during eviction even though db_mtx is held (see
335 * dmu_bonus_hold() for an example), so we can only
336 * test the generic invariant that holds >= dirtycnt.
338 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
340 if (db
->db_user_immediate_evict
== TRUE
)
341 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
343 ASSERT3U(holds
, >, 0);
349 dbuf_evict_user(dmu_buf_impl_t
*db
)
351 dmu_buf_user_t
*dbu
= db
->db_user
;
353 ASSERT(MUTEX_HELD(&db
->db_mtx
));
358 dbuf_verify_user(db
, DBVU_EVICTING
);
362 if (dbu
->dbu_clear_on_evict_dbufp
!= NULL
)
363 *dbu
->dbu_clear_on_evict_dbufp
= NULL
;
367 * There are two eviction callbacks - one that we call synchronously
368 * and one that we invoke via a taskq. The async one is useful for
369 * avoiding lock order reversals and limiting stack depth.
371 * Note that if we have a sync callback but no async callback,
372 * it's likely that the sync callback will free the structure
373 * containing the dbu. In that case we need to take care to not
374 * dereference dbu after calling the sync evict func.
376 boolean_t has_async
= (dbu
->dbu_evict_func_async
!= NULL
);
378 if (dbu
->dbu_evict_func_sync
!= NULL
)
379 dbu
->dbu_evict_func_sync(dbu
);
382 taskq_dispatch_ent(dbu_evict_taskq
, dbu
->dbu_evict_func_async
,
383 dbu
, 0, &dbu
->dbu_tqent
);
388 dbuf_is_metadata(dmu_buf_impl_t
*db
)
390 if (db
->db_level
> 0) {
393 boolean_t is_metadata
;
396 is_metadata
= DMU_OT_IS_METADATA(DB_DNODE(db
)->dn_type
);
399 return (is_metadata
);
404 * This function *must* return indices evenly distributed between all
405 * sublists of the multilist. This is needed due to how the dbuf eviction
406 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
407 * distributed between all sublists and uses this assumption when
408 * deciding which sublist to evict from and how much to evict from it.
411 dbuf_cache_multilist_index_func(multilist_t
*ml
, void *obj
)
413 dmu_buf_impl_t
*db
= obj
;
416 * The assumption here, is the hash value for a given
417 * dmu_buf_impl_t will remain constant throughout it's lifetime
418 * (i.e. it's objset, object, level and blkid fields don't change).
419 * Thus, we don't need to store the dbuf's sublist index
420 * on insertion, as this index can be recalculated on removal.
422 * Also, the low order bits of the hash value are thought to be
423 * distributed evenly. Otherwise, in the case that the multilist
424 * has a power of two number of sublists, each sublists' usage
425 * would not be evenly distributed.
427 return (dbuf_hash(db
->db_objset
, db
->db
.db_object
,
428 db
->db_level
, db
->db_blkid
) %
429 multilist_get_num_sublists(ml
));
432 static inline boolean_t
433 dbuf_cache_above_hiwater(void)
435 uint64_t dbuf_cache_hiwater_bytes
=
436 (dbuf_cache_max_bytes
* dbuf_cache_hiwater_pct
) / 100;
438 return (refcount_count(&dbuf_cache_size
) >
439 dbuf_cache_max_bytes
+ dbuf_cache_hiwater_bytes
);
442 static inline boolean_t
443 dbuf_cache_above_lowater(void)
445 uint64_t dbuf_cache_lowater_bytes
=
446 (dbuf_cache_max_bytes
* dbuf_cache_lowater_pct
) / 100;
448 return (refcount_count(&dbuf_cache_size
) >
449 dbuf_cache_max_bytes
- dbuf_cache_lowater_bytes
);
453 * Evict the oldest eligible dbuf from the dbuf cache.
458 int idx
= multilist_get_random_index(dbuf_cache
);
459 multilist_sublist_t
*mls
= multilist_sublist_lock(dbuf_cache
, idx
);
461 ASSERT(!MUTEX_HELD(&dbuf_evict_lock
));
464 * Set the thread's tsd to indicate that it's processing evictions.
465 * Once a thread stops evicting from the dbuf cache it will
466 * reset its tsd to NULL.
468 ASSERT3P(tsd_get(zfs_dbuf_evict_key
), ==, NULL
);
469 (void) tsd_set(zfs_dbuf_evict_key
, (void *)B_TRUE
);
471 dmu_buf_impl_t
*db
= multilist_sublist_tail(mls
);
472 while (db
!= NULL
&& mutex_tryenter(&db
->db_mtx
) == 0) {
473 db
= multilist_sublist_prev(mls
, db
);
476 DTRACE_PROBE2(dbuf__evict__one
, dmu_buf_impl_t
*, db
,
477 multilist_sublist_t
*, mls
);
480 multilist_sublist_remove(mls
, db
);
481 multilist_sublist_unlock(mls
);
482 (void) refcount_remove_many(&dbuf_cache_size
,
486 multilist_sublist_unlock(mls
);
488 (void) tsd_set(zfs_dbuf_evict_key
, NULL
);
492 * The dbuf evict thread is responsible for aging out dbufs from the
493 * cache. Once the cache has reached it's maximum size, dbufs are removed
494 * and destroyed. The eviction thread will continue running until the size
495 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
496 * out of the cache it is destroyed and becomes eligible for arc eviction.
499 dbuf_evict_thread(void)
503 CALLB_CPR_INIT(&cpr
, &dbuf_evict_lock
, callb_generic_cpr
, FTAG
);
505 mutex_enter(&dbuf_evict_lock
);
506 while (!dbuf_evict_thread_exit
) {
507 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
508 CALLB_CPR_SAFE_BEGIN(&cpr
);
509 (void) cv_timedwait_hires(&dbuf_evict_cv
,
510 &dbuf_evict_lock
, SEC2NSEC(1), MSEC2NSEC(1), 0);
511 CALLB_CPR_SAFE_END(&cpr
, &dbuf_evict_lock
);
513 mutex_exit(&dbuf_evict_lock
);
516 * Keep evicting as long as we're above the low water mark
517 * for the cache. We do this without holding the locks to
518 * minimize lock contention.
520 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
524 mutex_enter(&dbuf_evict_lock
);
527 dbuf_evict_thread_exit
= B_FALSE
;
528 cv_broadcast(&dbuf_evict_cv
);
529 CALLB_CPR_EXIT(&cpr
); /* drops dbuf_evict_lock */
534 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
535 * If the dbuf cache is at its high water mark, then evict a dbuf from the
536 * dbuf cache using the callers context.
539 dbuf_evict_notify(void)
543 * We use thread specific data to track when a thread has
544 * started processing evictions. This allows us to avoid deeply
545 * nested stacks that would have a call flow similar to this:
547 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
550 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
552 * The dbuf_eviction_thread will always have its tsd set until
553 * that thread exits. All other threads will only set their tsd
554 * if they are participating in the eviction process. This only
555 * happens if the eviction thread is unable to process evictions
556 * fast enough. To keep the dbuf cache size in check, other threads
557 * can evict from the dbuf cache directly. Those threads will set
558 * their tsd values so that we ensure that they only evict one dbuf
559 * from the dbuf cache.
561 if (tsd_get(zfs_dbuf_evict_key
) != NULL
)
565 * We check if we should evict without holding the dbuf_evict_lock,
566 * because it's OK to occasionally make the wrong decision here,
567 * and grabbing the lock results in massive lock contention.
569 if (refcount_count(&dbuf_cache_size
) > dbuf_cache_max_bytes
) {
570 if (dbuf_cache_above_hiwater())
572 cv_signal(&dbuf_evict_cv
);
579 uint64_t hsize
= 1ULL << 16;
580 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
584 * The hash table is big enough to fill all of physical memory
585 * with an average 4K block size. The table will take up
586 * totalmem*sizeof(void*)/4K (i.e. 2MB/GB with 8-byte pointers).
588 while (hsize
* 4096 < physmem
* PAGESIZE
)
592 h
->hash_table_mask
= hsize
- 1;
593 h
->hash_table
= kmem_zalloc(hsize
* sizeof (void *), KM_NOSLEEP
);
594 if (h
->hash_table
== NULL
) {
595 /* XXX - we should really return an error instead of assert */
596 ASSERT(hsize
> (1ULL << 10));
601 dbuf_kmem_cache
= kmem_cache_create("dmu_buf_impl_t",
602 sizeof (dmu_buf_impl_t
),
603 0, dbuf_cons
, dbuf_dest
, NULL
, NULL
, NULL
, 0);
605 for (i
= 0; i
< DBUF_MUTEXES
; i
++)
606 mutex_init(&h
->hash_mutexes
[i
], NULL
, MUTEX_DEFAULT
, NULL
);
609 * Setup the parameters for the dbuf cache. We cap the size of the
610 * dbuf cache to 1/32nd (default) of the size of the ARC.
612 dbuf_cache_max_bytes
= MIN(dbuf_cache_max_bytes
,
613 arc_max_bytes() >> dbuf_cache_max_shift
);
616 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
617 * configuration is not required.
619 dbu_evict_taskq
= taskq_create("dbu_evict", 1, minclsyspri
, 0, 0, 0);
621 dbuf_cache
= multilist_create(sizeof (dmu_buf_impl_t
),
622 offsetof(dmu_buf_impl_t
, db_cache_link
),
623 dbuf_cache_multilist_index_func
);
624 refcount_create(&dbuf_cache_size
);
626 tsd_create(&zfs_dbuf_evict_key
, NULL
);
627 dbuf_evict_thread_exit
= B_FALSE
;
628 mutex_init(&dbuf_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
629 cv_init(&dbuf_evict_cv
, NULL
, CV_DEFAULT
, NULL
);
630 dbuf_cache_evict_thread
= thread_create(NULL
, 0, dbuf_evict_thread
,
631 NULL
, 0, &p0
, TS_RUN
, minclsyspri
);
637 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
640 for (i
= 0; i
< DBUF_MUTEXES
; i
++)
641 mutex_destroy(&h
->hash_mutexes
[i
]);
642 kmem_free(h
->hash_table
, (h
->hash_table_mask
+ 1) * sizeof (void *));
643 kmem_cache_destroy(dbuf_kmem_cache
);
644 taskq_destroy(dbu_evict_taskq
);
646 mutex_enter(&dbuf_evict_lock
);
647 dbuf_evict_thread_exit
= B_TRUE
;
648 while (dbuf_evict_thread_exit
) {
649 cv_signal(&dbuf_evict_cv
);
650 cv_wait(&dbuf_evict_cv
, &dbuf_evict_lock
);
652 mutex_exit(&dbuf_evict_lock
);
653 tsd_destroy(&zfs_dbuf_evict_key
);
655 mutex_destroy(&dbuf_evict_lock
);
656 cv_destroy(&dbuf_evict_cv
);
658 refcount_destroy(&dbuf_cache_size
);
659 multilist_destroy(dbuf_cache
);
668 dbuf_verify(dmu_buf_impl_t
*db
)
671 dbuf_dirty_record_t
*dr
;
673 ASSERT(MUTEX_HELD(&db
->db_mtx
));
675 if (!(zfs_flags
& ZFS_DEBUG_DBUF_VERIFY
))
678 ASSERT(db
->db_objset
!= NULL
);
682 ASSERT(db
->db_parent
== NULL
);
683 ASSERT(db
->db_blkptr
== NULL
);
685 ASSERT3U(db
->db
.db_object
, ==, dn
->dn_object
);
686 ASSERT3P(db
->db_objset
, ==, dn
->dn_objset
);
687 ASSERT3U(db
->db_level
, <, dn
->dn_nlevels
);
688 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
||
689 db
->db_blkid
== DMU_SPILL_BLKID
||
690 !avl_is_empty(&dn
->dn_dbufs
));
692 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
694 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
695 ASSERT3U(db
->db
.db_offset
, ==, DMU_BONUS_BLKID
);
696 } else if (db
->db_blkid
== DMU_SPILL_BLKID
) {
698 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
699 ASSERT0(db
->db
.db_offset
);
701 ASSERT3U(db
->db
.db_offset
, ==, db
->db_blkid
* db
->db
.db_size
);
704 for (dr
= db
->db_data_pending
; dr
!= NULL
; dr
= dr
->dr_next
)
705 ASSERT(dr
->dr_dbuf
== db
);
707 for (dr
= db
->db_last_dirty
; dr
!= NULL
; dr
= dr
->dr_next
)
708 ASSERT(dr
->dr_dbuf
== db
);
711 * We can't assert that db_size matches dn_datablksz because it
712 * can be momentarily different when another thread is doing
715 if (db
->db_level
== 0 && db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
716 dr
= db
->db_data_pending
;
718 * It should only be modified in syncing context, so
719 * make sure we only have one copy of the data.
721 ASSERT(dr
== NULL
|| dr
->dt
.dl
.dr_data
== db
->db_buf
);
724 /* verify db->db_blkptr */
726 if (db
->db_parent
== dn
->dn_dbuf
) {
727 /* db is pointed to by the dnode */
728 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
729 if (DMU_OBJECT_IS_SPECIAL(db
->db
.db_object
))
730 ASSERT(db
->db_parent
== NULL
);
732 ASSERT(db
->db_parent
!= NULL
);
733 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
734 ASSERT3P(db
->db_blkptr
, ==,
735 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
737 /* db is pointed to by an indirect block */
738 int epb
= db
->db_parent
->db
.db_size
>> SPA_BLKPTRSHIFT
;
739 ASSERT3U(db
->db_parent
->db_level
, ==, db
->db_level
+1);
740 ASSERT3U(db
->db_parent
->db
.db_object
, ==,
743 * dnode_grow_indblksz() can make this fail if we don't
744 * have the struct_rwlock. XXX indblksz no longer
745 * grows. safe to do this now?
747 if (RW_WRITE_HELD(&dn
->dn_struct_rwlock
)) {
748 ASSERT3P(db
->db_blkptr
, ==,
749 ((blkptr_t
*)db
->db_parent
->db
.db_data
+
750 db
->db_blkid
% epb
));
754 if ((db
->db_blkptr
== NULL
|| BP_IS_HOLE(db
->db_blkptr
)) &&
755 (db
->db_buf
== NULL
|| db
->db_buf
->b_data
) &&
756 db
->db
.db_data
&& db
->db_blkid
!= DMU_BONUS_BLKID
&&
757 db
->db_state
!= DB_FILL
&& !dn
->dn_free_txg
) {
759 * If the blkptr isn't set but they have nonzero data,
760 * it had better be dirty, otherwise we'll lose that
761 * data when we evict this buffer.
763 * There is an exception to this rule for indirect blocks; in
764 * this case, if the indirect block is a hole, we fill in a few
765 * fields on each of the child blocks (importantly, birth time)
766 * to prevent hole birth times from being lost when you
767 * partially fill in a hole.
769 if (db
->db_dirtycnt
== 0) {
770 if (db
->db_level
== 0) {
771 uint64_t *buf
= db
->db
.db_data
;
774 for (i
= 0; i
< db
->db
.db_size
>> 3; i
++) {
778 blkptr_t
*bps
= db
->db
.db_data
;
779 ASSERT3U(1 << DB_DNODE(db
)->dn_indblkshift
, ==,
782 * We want to verify that all the blkptrs in the
783 * indirect block are holes, but we may have
784 * automatically set up a few fields for them.
785 * We iterate through each blkptr and verify
786 * they only have those fields set.
789 i
< db
->db
.db_size
/ sizeof (blkptr_t
);
791 blkptr_t
*bp
= &bps
[i
];
792 ASSERT(ZIO_CHECKSUM_IS_ZERO(
795 DVA_IS_EMPTY(&bp
->blk_dva
[0]) &&
796 DVA_IS_EMPTY(&bp
->blk_dva
[1]) &&
797 DVA_IS_EMPTY(&bp
->blk_dva
[2]));
798 ASSERT0(bp
->blk_fill
);
799 ASSERT0(bp
->blk_pad
[0]);
800 ASSERT0(bp
->blk_pad
[1]);
801 ASSERT(!BP_IS_EMBEDDED(bp
));
802 ASSERT(BP_IS_HOLE(bp
));
803 ASSERT0(bp
->blk_phys_birth
);
813 dbuf_clear_data(dmu_buf_impl_t
*db
)
815 ASSERT(MUTEX_HELD(&db
->db_mtx
));
817 ASSERT3P(db
->db_buf
, ==, NULL
);
818 db
->db
.db_data
= NULL
;
819 if (db
->db_state
!= DB_NOFILL
)
820 db
->db_state
= DB_UNCACHED
;
824 dbuf_set_data(dmu_buf_impl_t
*db
, arc_buf_t
*buf
)
826 ASSERT(MUTEX_HELD(&db
->db_mtx
));
830 ASSERT(buf
->b_data
!= NULL
);
831 db
->db
.db_data
= buf
->b_data
;
835 * Loan out an arc_buf for read. Return the loaned arc_buf.
838 dbuf_loan_arcbuf(dmu_buf_impl_t
*db
)
842 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
843 mutex_enter(&db
->db_mtx
);
844 if (arc_released(db
->db_buf
) || refcount_count(&db
->db_holds
) > 1) {
845 int blksz
= db
->db
.db_size
;
846 spa_t
*spa
= db
->db_objset
->os_spa
;
848 mutex_exit(&db
->db_mtx
);
849 abuf
= arc_loan_buf(spa
, B_FALSE
, blksz
);
850 bcopy(db
->db
.db_data
, abuf
->b_data
, blksz
);
853 arc_loan_inuse_buf(abuf
, db
);
856 mutex_exit(&db
->db_mtx
);
862 * Calculate which level n block references the data at the level 0 offset
866 dbuf_whichblock(dnode_t
*dn
, int64_t level
, uint64_t offset
)
868 if (dn
->dn_datablkshift
!= 0 && dn
->dn_indblkshift
!= 0) {
870 * The level n blkid is equal to the level 0 blkid divided by
871 * the number of level 0s in a level n block.
873 * The level 0 blkid is offset >> datablkshift =
874 * offset / 2^datablkshift.
876 * The number of level 0s in a level n is the number of block
877 * pointers in an indirect block, raised to the power of level.
878 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
879 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
881 * Thus, the level n blkid is: offset /
882 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
883 * = offset / 2^(datablkshift + level *
884 * (indblkshift - SPA_BLKPTRSHIFT))
885 * = offset >> (datablkshift + level *
886 * (indblkshift - SPA_BLKPTRSHIFT))
888 return (offset
>> (dn
->dn_datablkshift
+ level
*
889 (dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
)));
891 ASSERT3U(offset
, <, dn
->dn_datablksz
);
897 dbuf_read_done(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
899 dmu_buf_impl_t
*db
= vdb
;
901 mutex_enter(&db
->db_mtx
);
902 ASSERT3U(db
->db_state
, ==, DB_READ
);
904 * All reads are synchronous, so we must have a hold on the dbuf
906 ASSERT(refcount_count(&db
->db_holds
) > 0);
907 ASSERT(db
->db_buf
== NULL
);
908 ASSERT(db
->db
.db_data
== NULL
);
909 if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
910 /* we were freed in flight; disregard any error */
911 arc_release(buf
, db
);
912 bzero(buf
->b_data
, db
->db
.db_size
);
914 db
->db_freed_in_flight
= FALSE
;
915 dbuf_set_data(db
, buf
);
916 db
->db_state
= DB_CACHED
;
917 } else if (zio
== NULL
|| zio
->io_error
== 0) {
918 dbuf_set_data(db
, buf
);
919 db
->db_state
= DB_CACHED
;
921 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
922 ASSERT3P(db
->db_buf
, ==, NULL
);
923 arc_buf_destroy(buf
, db
);
924 db
->db_state
= DB_UNCACHED
;
926 cv_broadcast(&db
->db_changed
);
927 dbuf_rele_and_unlock(db
, NULL
);
931 dbuf_read_impl(dmu_buf_impl_t
*db
, zio_t
*zio
, uint32_t flags
)
935 arc_flags_t aflags
= ARC_FLAG_NOWAIT
;
939 ASSERT(!refcount_is_zero(&db
->db_holds
));
940 /* We need the struct_rwlock to prevent db_blkptr from changing. */
941 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
942 ASSERT(MUTEX_HELD(&db
->db_mtx
));
943 ASSERT(db
->db_state
== DB_UNCACHED
);
944 ASSERT(db
->db_buf
== NULL
);
946 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
947 int bonuslen
= MIN(dn
->dn_bonuslen
, dn
->dn_phys
->dn_bonuslen
);
949 ASSERT3U(bonuslen
, <=, db
->db
.db_size
);
950 db
->db
.db_data
= zio_buf_alloc(DN_MAX_BONUSLEN
);
951 arc_space_consume(DN_MAX_BONUSLEN
, ARC_SPACE_OTHER
);
952 if (bonuslen
< DN_MAX_BONUSLEN
)
953 bzero(db
->db
.db_data
, DN_MAX_BONUSLEN
);
955 bcopy(DN_BONUS(dn
->dn_phys
), db
->db
.db_data
, bonuslen
);
957 db
->db_state
= DB_CACHED
;
958 mutex_exit(&db
->db_mtx
);
963 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
964 * processes the delete record and clears the bp while we are waiting
965 * for the dn_mtx (resulting in a "no" from block_freed).
967 if (db
->db_blkptr
== NULL
|| BP_IS_HOLE(db
->db_blkptr
) ||
968 (db
->db_level
== 0 && (dnode_block_freed(dn
, db
->db_blkid
) ||
969 BP_IS_HOLE(db
->db_blkptr
)))) {
970 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
972 dbuf_set_data(db
, arc_alloc_buf(db
->db_objset
->os_spa
, db
, type
,
974 bzero(db
->db
.db_data
, db
->db
.db_size
);
976 if (db
->db_blkptr
!= NULL
&& db
->db_level
> 0 &&
977 BP_IS_HOLE(db
->db_blkptr
) &&
978 db
->db_blkptr
->blk_birth
!= 0) {
979 blkptr_t
*bps
= db
->db
.db_data
;
980 for (int i
= 0; i
< ((1 <<
981 DB_DNODE(db
)->dn_indblkshift
) / sizeof (blkptr_t
));
983 blkptr_t
*bp
= &bps
[i
];
984 ASSERT3U(BP_GET_LSIZE(db
->db_blkptr
), ==,
985 1 << dn
->dn_indblkshift
);
987 BP_GET_LEVEL(db
->db_blkptr
) == 1 ?
989 BP_GET_LSIZE(db
->db_blkptr
));
990 BP_SET_TYPE(bp
, BP_GET_TYPE(db
->db_blkptr
));
992 BP_GET_LEVEL(db
->db_blkptr
) - 1);
993 BP_SET_BIRTH(bp
, db
->db_blkptr
->blk_birth
, 0);
997 db
->db_state
= DB_CACHED
;
998 mutex_exit(&db
->db_mtx
);
1004 db
->db_state
= DB_READ
;
1005 mutex_exit(&db
->db_mtx
);
1007 if (DBUF_IS_L2CACHEABLE(db
))
1008 aflags
|= ARC_FLAG_L2CACHE
;
1010 SET_BOOKMARK(&zb
, db
->db_objset
->os_dsl_dataset
?
1011 db
->db_objset
->os_dsl_dataset
->ds_object
: DMU_META_OBJSET
,
1012 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1014 dbuf_add_ref(db
, NULL
);
1016 (void) arc_read(zio
, db
->db_objset
->os_spa
, db
->db_blkptr
,
1017 dbuf_read_done
, db
, ZIO_PRIORITY_SYNC_READ
,
1018 (flags
& DB_RF_CANFAIL
) ? ZIO_FLAG_CANFAIL
: ZIO_FLAG_MUSTSUCCEED
,
1023 * This is our just-in-time copy function. It makes a copy of buffers that
1024 * have been modified in a previous transaction group before we access them in
1025 * the current active group.
1027 * This function is used in three places: when we are dirtying a buffer for the
1028 * first time in a txg, when we are freeing a range in a dnode that includes
1029 * this buffer, and when we are accessing a buffer which was received compressed
1030 * and later referenced in a WRITE_BYREF record.
1032 * Note that when we are called from dbuf_free_range() we do not put a hold on
1033 * the buffer, we just traverse the active dbuf list for the dnode.
1036 dbuf_fix_old_data(dmu_buf_impl_t
*db
, uint64_t txg
)
1038 dbuf_dirty_record_t
*dr
= db
->db_last_dirty
;
1040 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1041 ASSERT(db
->db
.db_data
!= NULL
);
1042 ASSERT(db
->db_level
== 0);
1043 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
);
1046 (dr
->dt
.dl
.dr_data
!=
1047 ((db
->db_blkid
== DMU_BONUS_BLKID
) ? db
->db
.db_data
: db
->db_buf
)))
1051 * If the last dirty record for this dbuf has not yet synced
1052 * and its referencing the dbuf data, either:
1053 * reset the reference to point to a new copy,
1054 * or (if there a no active holders)
1055 * just null out the current db_data pointer.
1057 ASSERT(dr
->dr_txg
>= txg
- 2);
1058 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1059 /* Note that the data bufs here are zio_bufs */
1060 dr
->dt
.dl
.dr_data
= zio_buf_alloc(DN_MAX_BONUSLEN
);
1061 arc_space_consume(DN_MAX_BONUSLEN
, ARC_SPACE_OTHER
);
1062 bcopy(db
->db
.db_data
, dr
->dt
.dl
.dr_data
, DN_MAX_BONUSLEN
);
1063 } else if (refcount_count(&db
->db_holds
) > db
->db_dirtycnt
) {
1064 int size
= arc_buf_size(db
->db_buf
);
1065 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
1066 spa_t
*spa
= db
->db_objset
->os_spa
;
1067 enum zio_compress compress_type
=
1068 arc_get_compression(db
->db_buf
);
1070 if (compress_type
== ZIO_COMPRESS_OFF
) {
1071 dr
->dt
.dl
.dr_data
= arc_alloc_buf(spa
, db
, type
, size
);
1073 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
1074 dr
->dt
.dl
.dr_data
= arc_alloc_compressed_buf(spa
, db
,
1075 size
, arc_buf_lsize(db
->db_buf
), compress_type
);
1077 bcopy(db
->db
.db_data
, dr
->dt
.dl
.dr_data
->b_data
, size
);
1080 dbuf_clear_data(db
);
1085 dbuf_read(dmu_buf_impl_t
*db
, zio_t
*zio
, uint32_t flags
)
1092 * We don't have to hold the mutex to check db_state because it
1093 * can't be freed while we have a hold on the buffer.
1095 ASSERT(!refcount_is_zero(&db
->db_holds
));
1097 if (db
->db_state
== DB_NOFILL
)
1098 return (SET_ERROR(EIO
));
1102 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
1103 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1105 prefetch
= db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
1106 (flags
& DB_RF_NOPREFETCH
) == 0 && dn
!= NULL
&&
1107 DBUF_IS_CACHEABLE(db
);
1109 mutex_enter(&db
->db_mtx
);
1110 if (db
->db_state
== DB_CACHED
) {
1112 * If the arc buf is compressed, we need to decompress it to
1113 * read the data. This could happen during the "zfs receive" of
1114 * a stream which is compressed and deduplicated.
1116 if (db
->db_buf
!= NULL
&&
1117 arc_get_compression(db
->db_buf
) != ZIO_COMPRESS_OFF
) {
1118 dbuf_fix_old_data(db
,
1119 spa_syncing_txg(dmu_objset_spa(db
->db_objset
)));
1120 err
= arc_decompress(db
->db_buf
);
1121 dbuf_set_data(db
, db
->db_buf
);
1123 mutex_exit(&db
->db_mtx
);
1125 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
);
1126 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
1127 rw_exit(&dn
->dn_struct_rwlock
);
1129 } else if (db
->db_state
== DB_UNCACHED
) {
1130 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1131 boolean_t need_wait
= B_FALSE
;
1134 db
->db_blkptr
!= NULL
&& !BP_IS_HOLE(db
->db_blkptr
)) {
1135 zio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
1138 dbuf_read_impl(db
, zio
, flags
);
1140 /* dbuf_read_impl has dropped db_mtx for us */
1143 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
);
1145 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
1146 rw_exit(&dn
->dn_struct_rwlock
);
1150 err
= zio_wait(zio
);
1153 * Another reader came in while the dbuf was in flight
1154 * between UNCACHED and CACHED. Either a writer will finish
1155 * writing the buffer (sending the dbuf to CACHED) or the
1156 * first reader's request will reach the read_done callback
1157 * and send the dbuf to CACHED. Otherwise, a failure
1158 * occurred and the dbuf went to UNCACHED.
1160 mutex_exit(&db
->db_mtx
);
1162 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
);
1163 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
1164 rw_exit(&dn
->dn_struct_rwlock
);
1167 /* Skip the wait per the caller's request. */
1168 mutex_enter(&db
->db_mtx
);
1169 if ((flags
& DB_RF_NEVERWAIT
) == 0) {
1170 while (db
->db_state
== DB_READ
||
1171 db
->db_state
== DB_FILL
) {
1172 ASSERT(db
->db_state
== DB_READ
||
1173 (flags
& DB_RF_HAVESTRUCT
) == 0);
1174 DTRACE_PROBE2(blocked__read
, dmu_buf_impl_t
*,
1176 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1178 if (db
->db_state
== DB_UNCACHED
)
1179 err
= SET_ERROR(EIO
);
1181 mutex_exit(&db
->db_mtx
);
1188 dbuf_noread(dmu_buf_impl_t
*db
)
1190 ASSERT(!refcount_is_zero(&db
->db_holds
));
1191 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1192 mutex_enter(&db
->db_mtx
);
1193 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
1194 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1195 if (db
->db_state
== DB_UNCACHED
) {
1196 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
1197 spa_t
*spa
= db
->db_objset
->os_spa
;
1199 ASSERT(db
->db_buf
== NULL
);
1200 ASSERT(db
->db
.db_data
== NULL
);
1201 dbuf_set_data(db
, arc_alloc_buf(spa
, db
, type
, db
->db
.db_size
));
1202 db
->db_state
= DB_FILL
;
1203 } else if (db
->db_state
== DB_NOFILL
) {
1204 dbuf_clear_data(db
);
1206 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
1208 mutex_exit(&db
->db_mtx
);
1212 dbuf_unoverride(dbuf_dirty_record_t
*dr
)
1214 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1215 blkptr_t
*bp
= &dr
->dt
.dl
.dr_overridden_by
;
1216 uint64_t txg
= dr
->dr_txg
;
1218 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1220 * This assert is valid because dmu_sync() expects to be called by
1221 * a zilog's get_data while holding a range lock. This call only
1222 * comes from dbuf_dirty() callers who must also hold a range lock.
1224 ASSERT(dr
->dt
.dl
.dr_override_state
!= DR_IN_DMU_SYNC
);
1225 ASSERT(db
->db_level
== 0);
1227 if (db
->db_blkid
== DMU_BONUS_BLKID
||
1228 dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
)
1231 ASSERT(db
->db_data_pending
!= dr
);
1233 /* free this block */
1234 if (!BP_IS_HOLE(bp
) && !dr
->dt
.dl
.dr_nopwrite
)
1235 zio_free(db
->db_objset
->os_spa
, txg
, bp
);
1237 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1238 dr
->dt
.dl
.dr_nopwrite
= B_FALSE
;
1241 * Release the already-written buffer, so we leave it in
1242 * a consistent dirty state. Note that all callers are
1243 * modifying the buffer, so they will immediately do
1244 * another (redundant) arc_release(). Therefore, leave
1245 * the buf thawed to save the effort of freezing &
1246 * immediately re-thawing it.
1248 arc_release(dr
->dt
.dl
.dr_data
, db
);
1252 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1253 * data blocks in the free range, so that any future readers will find
1257 dbuf_free_range(dnode_t
*dn
, uint64_t start_blkid
, uint64_t end_blkid
,
1260 dmu_buf_impl_t db_search
;
1261 dmu_buf_impl_t
*db
, *db_next
;
1262 uint64_t txg
= tx
->tx_txg
;
1265 if (end_blkid
> dn
->dn_maxblkid
&&
1266 !(start_blkid
== DMU_SPILL_BLKID
|| end_blkid
== DMU_SPILL_BLKID
))
1267 end_blkid
= dn
->dn_maxblkid
;
1268 dprintf_dnode(dn
, "start=%llu end=%llu\n", start_blkid
, end_blkid
);
1270 db_search
.db_level
= 0;
1271 db_search
.db_blkid
= start_blkid
;
1272 db_search
.db_state
= DB_SEARCH
;
1274 mutex_enter(&dn
->dn_dbufs_mtx
);
1275 db
= avl_find(&dn
->dn_dbufs
, &db_search
, &where
);
1276 ASSERT3P(db
, ==, NULL
);
1278 db
= avl_nearest(&dn
->dn_dbufs
, where
, AVL_AFTER
);
1280 for (; db
!= NULL
; db
= db_next
) {
1281 db_next
= AVL_NEXT(&dn
->dn_dbufs
, db
);
1282 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1284 if (db
->db_level
!= 0 || db
->db_blkid
> end_blkid
) {
1287 ASSERT3U(db
->db_blkid
, >=, start_blkid
);
1289 /* found a level 0 buffer in the range */
1290 mutex_enter(&db
->db_mtx
);
1291 if (dbuf_undirty(db
, tx
)) {
1292 /* mutex has been dropped and dbuf destroyed */
1296 if (db
->db_state
== DB_UNCACHED
||
1297 db
->db_state
== DB_NOFILL
||
1298 db
->db_state
== DB_EVICTING
) {
1299 ASSERT(db
->db
.db_data
== NULL
);
1300 mutex_exit(&db
->db_mtx
);
1303 if (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
) {
1304 /* will be handled in dbuf_read_done or dbuf_rele */
1305 db
->db_freed_in_flight
= TRUE
;
1306 mutex_exit(&db
->db_mtx
);
1309 if (refcount_count(&db
->db_holds
) == 0) {
1314 /* The dbuf is referenced */
1316 if (db
->db_last_dirty
!= NULL
) {
1317 dbuf_dirty_record_t
*dr
= db
->db_last_dirty
;
1319 if (dr
->dr_txg
== txg
) {
1321 * This buffer is "in-use", re-adjust the file
1322 * size to reflect that this buffer may
1323 * contain new data when we sync.
1325 if (db
->db_blkid
!= DMU_SPILL_BLKID
&&
1326 db
->db_blkid
> dn
->dn_maxblkid
)
1327 dn
->dn_maxblkid
= db
->db_blkid
;
1328 dbuf_unoverride(dr
);
1331 * This dbuf is not dirty in the open context.
1332 * Either uncache it (if its not referenced in
1333 * the open context) or reset its contents to
1336 dbuf_fix_old_data(db
, txg
);
1339 /* clear the contents if its cached */
1340 if (db
->db_state
== DB_CACHED
) {
1341 ASSERT(db
->db
.db_data
!= NULL
);
1342 arc_release(db
->db_buf
, db
);
1343 bzero(db
->db
.db_data
, db
->db
.db_size
);
1344 arc_buf_freeze(db
->db_buf
);
1347 mutex_exit(&db
->db_mtx
);
1349 mutex_exit(&dn
->dn_dbufs_mtx
);
1353 dbuf_new_size(dmu_buf_impl_t
*db
, int size
, dmu_tx_t
*tx
)
1355 arc_buf_t
*buf
, *obuf
;
1356 int osize
= db
->db
.db_size
;
1357 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
1360 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1365 /* XXX does *this* func really need the lock? */
1366 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
1369 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1370 * is OK, because there can be no other references to the db
1371 * when we are changing its size, so no concurrent DB_FILL can
1375 * XXX we should be doing a dbuf_read, checking the return
1376 * value and returning that up to our callers
1378 dmu_buf_will_dirty(&db
->db
, tx
);
1380 /* create the data buffer for the new block */
1381 buf
= arc_alloc_buf(dn
->dn_objset
->os_spa
, db
, type
, size
);
1383 /* copy old block data to the new block */
1385 bcopy(obuf
->b_data
, buf
->b_data
, MIN(osize
, size
));
1386 /* zero the remainder */
1388 bzero((uint8_t *)buf
->b_data
+ osize
, size
- osize
);
1390 mutex_enter(&db
->db_mtx
);
1391 dbuf_set_data(db
, buf
);
1392 arc_buf_destroy(obuf
, db
);
1393 db
->db
.db_size
= size
;
1395 if (db
->db_level
== 0) {
1396 ASSERT3U(db
->db_last_dirty
->dr_txg
, ==, tx
->tx_txg
);
1397 db
->db_last_dirty
->dt
.dl
.dr_data
= buf
;
1399 mutex_exit(&db
->db_mtx
);
1401 dmu_objset_willuse_space(dn
->dn_objset
, size
- osize
, tx
);
1406 dbuf_release_bp(dmu_buf_impl_t
*db
)
1408 objset_t
*os
= db
->db_objset
;
1410 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os
)));
1411 ASSERT(arc_released(os
->os_phys_buf
) ||
1412 list_link_active(&os
->os_dsl_dataset
->ds_synced_link
));
1413 ASSERT(db
->db_parent
== NULL
|| arc_released(db
->db_parent
->db_buf
));
1415 (void) arc_release(db
->db_buf
, db
);
1419 * We already have a dirty record for this TXG, and we are being
1423 dbuf_redirty(dbuf_dirty_record_t
*dr
)
1425 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1427 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1429 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
) {
1431 * If this buffer has already been written out,
1432 * we now need to reset its state.
1434 dbuf_unoverride(dr
);
1435 if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
&&
1436 db
->db_state
!= DB_NOFILL
) {
1437 /* Already released on initial dirty, so just thaw. */
1438 ASSERT(arc_released(db
->db_buf
));
1439 arc_buf_thaw(db
->db_buf
);
1444 dbuf_dirty_record_t
*
1445 dbuf_dirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
1449 dbuf_dirty_record_t
**drp
, *dr
;
1450 int drop_struct_lock
= FALSE
;
1451 int txgoff
= tx
->tx_txg
& TXG_MASK
;
1453 ASSERT(tx
->tx_txg
!= 0);
1454 ASSERT(!refcount_is_zero(&db
->db_holds
));
1455 DMU_TX_DIRTY_BUF(tx
, db
);
1460 * Shouldn't dirty a regular buffer in syncing context. Private
1461 * objects may be dirtied in syncing context, but only if they
1462 * were already pre-dirtied in open context.
1465 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
) {
1466 rrw_enter(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
,
1469 ASSERT(!dmu_tx_is_syncing(tx
) ||
1470 BP_IS_HOLE(dn
->dn_objset
->os_rootbp
) ||
1471 DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
1472 dn
->dn_objset
->os_dsl_dataset
== NULL
);
1473 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
1474 rrw_exit(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
1477 * We make this assert for private objects as well, but after we
1478 * check if we're already dirty. They are allowed to re-dirty
1479 * in syncing context.
1481 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
1482 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
1483 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
1485 mutex_enter(&db
->db_mtx
);
1487 * XXX make this true for indirects too? The problem is that
1488 * transactions created with dmu_tx_create_assigned() from
1489 * syncing context don't bother holding ahead.
1491 ASSERT(db
->db_level
!= 0 ||
1492 db
->db_state
== DB_CACHED
|| db
->db_state
== DB_FILL
||
1493 db
->db_state
== DB_NOFILL
);
1495 mutex_enter(&dn
->dn_mtx
);
1497 * Don't set dirtyctx to SYNC if we're just modifying this as we
1498 * initialize the objset.
1500 if (dn
->dn_dirtyctx
== DN_UNDIRTIED
) {
1501 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
) {
1502 rrw_enter(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
,
1505 if (!BP_IS_HOLE(dn
->dn_objset
->os_rootbp
)) {
1506 dn
->dn_dirtyctx
= (dmu_tx_is_syncing(tx
) ?
1507 DN_DIRTY_SYNC
: DN_DIRTY_OPEN
);
1508 ASSERT(dn
->dn_dirtyctx_firstset
== NULL
);
1509 dn
->dn_dirtyctx_firstset
= kmem_alloc(1, KM_SLEEP
);
1511 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
) {
1512 rrw_exit(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
,
1516 mutex_exit(&dn
->dn_mtx
);
1518 if (db
->db_blkid
== DMU_SPILL_BLKID
)
1519 dn
->dn_have_spill
= B_TRUE
;
1522 * If this buffer is already dirty, we're done.
1524 drp
= &db
->db_last_dirty
;
1525 ASSERT(*drp
== NULL
|| (*drp
)->dr_txg
<= tx
->tx_txg
||
1526 db
->db
.db_object
== DMU_META_DNODE_OBJECT
);
1527 while ((dr
= *drp
) != NULL
&& dr
->dr_txg
> tx
->tx_txg
)
1529 if (dr
&& dr
->dr_txg
== tx
->tx_txg
) {
1533 mutex_exit(&db
->db_mtx
);
1538 * Only valid if not already dirty.
1540 ASSERT(dn
->dn_object
== 0 ||
1541 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
1542 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
1544 ASSERT3U(dn
->dn_nlevels
, >, db
->db_level
);
1545 ASSERT((dn
->dn_phys
->dn_nlevels
== 0 && db
->db_level
== 0) ||
1546 dn
->dn_phys
->dn_nlevels
> db
->db_level
||
1547 dn
->dn_next_nlevels
[txgoff
] > db
->db_level
||
1548 dn
->dn_next_nlevels
[(tx
->tx_txg
-1) & TXG_MASK
] > db
->db_level
||
1549 dn
->dn_next_nlevels
[(tx
->tx_txg
-2) & TXG_MASK
] > db
->db_level
);
1552 * We should only be dirtying in syncing context if it's the
1553 * mos or we're initializing the os or it's a special object.
1554 * However, we are allowed to dirty in syncing context provided
1555 * we already dirtied it in open context. Hence we must make
1556 * this assertion only if we're not already dirty.
1559 VERIFY3U(tx
->tx_txg
, <=, spa_final_dirty_txg(os
->os_spa
));
1561 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
1562 rrw_enter(&os
->os_dsl_dataset
->ds_bp_rwlock
, RW_READER
, FTAG
);
1563 ASSERT(!dmu_tx_is_syncing(tx
) || DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
1564 os
->os_dsl_dataset
== NULL
|| BP_IS_HOLE(os
->os_rootbp
));
1565 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
1566 rrw_exit(&os
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
1568 ASSERT(db
->db
.db_size
!= 0);
1570 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
1572 if (db
->db_blkid
!= DMU_BONUS_BLKID
) {
1573 dmu_objset_willuse_space(os
, db
->db
.db_size
, tx
);
1577 * If this buffer is dirty in an old transaction group we need
1578 * to make a copy of it so that the changes we make in this
1579 * transaction group won't leak out when we sync the older txg.
1581 dr
= kmem_zalloc(sizeof (dbuf_dirty_record_t
), KM_SLEEP
);
1582 if (db
->db_level
== 0) {
1583 void *data_old
= db
->db_buf
;
1585 if (db
->db_state
!= DB_NOFILL
) {
1586 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1587 dbuf_fix_old_data(db
, tx
->tx_txg
);
1588 data_old
= db
->db
.db_data
;
1589 } else if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
) {
1591 * Release the data buffer from the cache so
1592 * that we can modify it without impacting
1593 * possible other users of this cached data
1594 * block. Note that indirect blocks and
1595 * private objects are not released until the
1596 * syncing state (since they are only modified
1599 arc_release(db
->db_buf
, db
);
1600 dbuf_fix_old_data(db
, tx
->tx_txg
);
1601 data_old
= db
->db_buf
;
1603 ASSERT(data_old
!= NULL
);
1605 dr
->dt
.dl
.dr_data
= data_old
;
1607 mutex_init(&dr
->dt
.di
.dr_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
1608 list_create(&dr
->dt
.di
.dr_children
,
1609 sizeof (dbuf_dirty_record_t
),
1610 offsetof(dbuf_dirty_record_t
, dr_dirty_node
));
1612 if (db
->db_blkid
!= DMU_BONUS_BLKID
&& os
->os_dsl_dataset
!= NULL
)
1613 dr
->dr_accounted
= db
->db
.db_size
;
1615 dr
->dr_txg
= tx
->tx_txg
;
1620 * We could have been freed_in_flight between the dbuf_noread
1621 * and dbuf_dirty. We win, as though the dbuf_noread() had
1622 * happened after the free.
1624 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
1625 db
->db_blkid
!= DMU_SPILL_BLKID
) {
1626 mutex_enter(&dn
->dn_mtx
);
1627 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
1628 range_tree_clear(dn
->dn_free_ranges
[txgoff
],
1631 mutex_exit(&dn
->dn_mtx
);
1632 db
->db_freed_in_flight
= FALSE
;
1636 * This buffer is now part of this txg
1638 dbuf_add_ref(db
, (void *)(uintptr_t)tx
->tx_txg
);
1639 db
->db_dirtycnt
+= 1;
1640 ASSERT3U(db
->db_dirtycnt
, <=, 3);
1642 mutex_exit(&db
->db_mtx
);
1644 if (db
->db_blkid
== DMU_BONUS_BLKID
||
1645 db
->db_blkid
== DMU_SPILL_BLKID
) {
1646 mutex_enter(&dn
->dn_mtx
);
1647 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
1648 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
1649 mutex_exit(&dn
->dn_mtx
);
1650 dnode_setdirty(dn
, tx
);
1656 * The dn_struct_rwlock prevents db_blkptr from changing
1657 * due to a write from syncing context completing
1658 * while we are running, so we want to acquire it before
1659 * looking at db_blkptr.
1661 if (!RW_WRITE_HELD(&dn
->dn_struct_rwlock
)) {
1662 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1663 drop_struct_lock
= TRUE
;
1667 * If we are overwriting a dedup BP, then unless it is snapshotted,
1668 * when we get to syncing context we will need to decrement its
1669 * refcount in the DDT. Prefetch the relevant DDT block so that
1670 * syncing context won't have to wait for the i/o.
1672 ddt_prefetch(os
->os_spa
, db
->db_blkptr
);
1674 if (db
->db_level
== 0) {
1675 dnode_new_blkid(dn
, db
->db_blkid
, tx
, drop_struct_lock
);
1676 ASSERT(dn
->dn_maxblkid
>= db
->db_blkid
);
1679 if (db
->db_level
+1 < dn
->dn_nlevels
) {
1680 dmu_buf_impl_t
*parent
= db
->db_parent
;
1681 dbuf_dirty_record_t
*di
;
1682 int parent_held
= FALSE
;
1684 if (db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
) {
1685 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
1687 parent
= dbuf_hold_level(dn
, db
->db_level
+1,
1688 db
->db_blkid
>> epbs
, FTAG
);
1689 ASSERT(parent
!= NULL
);
1692 if (drop_struct_lock
)
1693 rw_exit(&dn
->dn_struct_rwlock
);
1694 ASSERT3U(db
->db_level
+1, ==, parent
->db_level
);
1695 di
= dbuf_dirty(parent
, tx
);
1697 dbuf_rele(parent
, FTAG
);
1699 mutex_enter(&db
->db_mtx
);
1701 * Since we've dropped the mutex, it's possible that
1702 * dbuf_undirty() might have changed this out from under us.
1704 if (db
->db_last_dirty
== dr
||
1705 dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
1706 mutex_enter(&di
->dt
.di
.dr_mtx
);
1707 ASSERT3U(di
->dr_txg
, ==, tx
->tx_txg
);
1708 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
1709 list_insert_tail(&di
->dt
.di
.dr_children
, dr
);
1710 mutex_exit(&di
->dt
.di
.dr_mtx
);
1713 mutex_exit(&db
->db_mtx
);
1715 ASSERT(db
->db_level
+1 == dn
->dn_nlevels
);
1716 ASSERT(db
->db_blkid
< dn
->dn_nblkptr
);
1717 ASSERT(db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
1718 mutex_enter(&dn
->dn_mtx
);
1719 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
1720 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
1721 mutex_exit(&dn
->dn_mtx
);
1722 if (drop_struct_lock
)
1723 rw_exit(&dn
->dn_struct_rwlock
);
1726 dnode_setdirty(dn
, tx
);
1732 * Undirty a buffer in the transaction group referenced by the given
1733 * transaction. Return whether this evicted the dbuf.
1736 dbuf_undirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
1739 uint64_t txg
= tx
->tx_txg
;
1740 dbuf_dirty_record_t
*dr
, **drp
;
1745 * Due to our use of dn_nlevels below, this can only be called
1746 * in open context, unless we are operating on the MOS.
1747 * From syncing context, dn_nlevels may be different from the
1748 * dn_nlevels used when dbuf was dirtied.
1750 ASSERT(db
->db_objset
==
1751 dmu_objset_pool(db
->db_objset
)->dp_meta_objset
||
1752 txg
!= spa_syncing_txg(dmu_objset_spa(db
->db_objset
)));
1753 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1754 ASSERT0(db
->db_level
);
1755 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1758 * If this buffer is not dirty, we're done.
1760 for (drp
= &db
->db_last_dirty
; (dr
= *drp
) != NULL
; drp
= &dr
->dr_next
)
1761 if (dr
->dr_txg
<= txg
)
1763 if (dr
== NULL
|| dr
->dr_txg
< txg
)
1765 ASSERT(dr
->dr_txg
== txg
);
1766 ASSERT(dr
->dr_dbuf
== db
);
1771 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
1773 ASSERT(db
->db
.db_size
!= 0);
1775 dsl_pool_undirty_space(dmu_objset_pool(dn
->dn_objset
),
1776 dr
->dr_accounted
, txg
);
1781 * Note that there are three places in dbuf_dirty()
1782 * where this dirty record may be put on a list.
1783 * Make sure to do a list_remove corresponding to
1784 * every one of those list_insert calls.
1786 if (dr
->dr_parent
) {
1787 mutex_enter(&dr
->dr_parent
->dt
.di
.dr_mtx
);
1788 list_remove(&dr
->dr_parent
->dt
.di
.dr_children
, dr
);
1789 mutex_exit(&dr
->dr_parent
->dt
.di
.dr_mtx
);
1790 } else if (db
->db_blkid
== DMU_SPILL_BLKID
||
1791 db
->db_level
+ 1 == dn
->dn_nlevels
) {
1792 ASSERT(db
->db_blkptr
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
1793 mutex_enter(&dn
->dn_mtx
);
1794 list_remove(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
1795 mutex_exit(&dn
->dn_mtx
);
1799 if (db
->db_state
!= DB_NOFILL
) {
1800 dbuf_unoverride(dr
);
1802 ASSERT(db
->db_buf
!= NULL
);
1803 ASSERT(dr
->dt
.dl
.dr_data
!= NULL
);
1804 if (dr
->dt
.dl
.dr_data
!= db
->db_buf
)
1805 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
1808 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
1810 ASSERT(db
->db_dirtycnt
> 0);
1811 db
->db_dirtycnt
-= 1;
1813 if (refcount_remove(&db
->db_holds
, (void *)(uintptr_t)txg
) == 0) {
1814 ASSERT(db
->db_state
== DB_NOFILL
|| arc_released(db
->db_buf
));
1823 dmu_buf_will_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
1825 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1826 int rf
= DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
;
1828 ASSERT(tx
->tx_txg
!= 0);
1829 ASSERT(!refcount_is_zero(&db
->db_holds
));
1832 * Quick check for dirtyness. For already dirty blocks, this
1833 * reduces runtime of this function by >90%, and overall performance
1834 * by 50% for some workloads (e.g. file deletion with indirect blocks
1837 mutex_enter(&db
->db_mtx
);
1838 dbuf_dirty_record_t
*dr
;
1839 for (dr
= db
->db_last_dirty
;
1840 dr
!= NULL
&& dr
->dr_txg
>= tx
->tx_txg
; dr
= dr
->dr_next
) {
1842 * It's possible that it is already dirty but not cached,
1843 * because there are some calls to dbuf_dirty() that don't
1844 * go through dmu_buf_will_dirty().
1846 if (dr
->dr_txg
== tx
->tx_txg
&& db
->db_state
== DB_CACHED
) {
1847 /* This dbuf is already dirty and cached. */
1849 mutex_exit(&db
->db_mtx
);
1853 mutex_exit(&db
->db_mtx
);
1856 if (RW_WRITE_HELD(&DB_DNODE(db
)->dn_struct_rwlock
))
1857 rf
|= DB_RF_HAVESTRUCT
;
1859 (void) dbuf_read(db
, NULL
, rf
);
1860 (void) dbuf_dirty(db
, tx
);
1864 dmu_buf_will_not_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
1866 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1868 db
->db_state
= DB_NOFILL
;
1870 dmu_buf_will_fill(db_fake
, tx
);
1874 dmu_buf_will_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
1876 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1878 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1879 ASSERT(tx
->tx_txg
!= 0);
1880 ASSERT(db
->db_level
== 0);
1881 ASSERT(!refcount_is_zero(&db
->db_holds
));
1883 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
||
1884 dmu_tx_private_ok(tx
));
1887 (void) dbuf_dirty(db
, tx
);
1890 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1893 dbuf_fill_done(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
1895 mutex_enter(&db
->db_mtx
);
1898 if (db
->db_state
== DB_FILL
) {
1899 if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
1900 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1901 /* we were freed while filling */
1902 /* XXX dbuf_undirty? */
1903 bzero(db
->db
.db_data
, db
->db
.db_size
);
1904 db
->db_freed_in_flight
= FALSE
;
1906 db
->db_state
= DB_CACHED
;
1907 cv_broadcast(&db
->db_changed
);
1909 mutex_exit(&db
->db_mtx
);
1913 dmu_buf_write_embedded(dmu_buf_t
*dbuf
, void *data
,
1914 bp_embedded_type_t etype
, enum zio_compress comp
,
1915 int uncompressed_size
, int compressed_size
, int byteorder
,
1918 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
1919 struct dirty_leaf
*dl
;
1920 dmu_object_type_t type
;
1922 if (etype
== BP_EMBEDDED_TYPE_DATA
) {
1923 ASSERT(spa_feature_is_active(dmu_objset_spa(db
->db_objset
),
1924 SPA_FEATURE_EMBEDDED_DATA
));
1928 type
= DB_DNODE(db
)->dn_type
;
1931 ASSERT0(db
->db_level
);
1932 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1934 dmu_buf_will_not_fill(dbuf
, tx
);
1936 ASSERT3U(db
->db_last_dirty
->dr_txg
, ==, tx
->tx_txg
);
1937 dl
= &db
->db_last_dirty
->dt
.dl
;
1938 encode_embedded_bp_compressed(&dl
->dr_overridden_by
,
1939 data
, comp
, uncompressed_size
, compressed_size
);
1940 BPE_SET_ETYPE(&dl
->dr_overridden_by
, etype
);
1941 BP_SET_TYPE(&dl
->dr_overridden_by
, type
);
1942 BP_SET_LEVEL(&dl
->dr_overridden_by
, 0);
1943 BP_SET_BYTEORDER(&dl
->dr_overridden_by
, byteorder
);
1945 dl
->dr_override_state
= DR_OVERRIDDEN
;
1946 dl
->dr_overridden_by
.blk_birth
= db
->db_last_dirty
->dr_txg
;
1950 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1951 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1954 dbuf_assign_arcbuf(dmu_buf_impl_t
*db
, arc_buf_t
*buf
, dmu_tx_t
*tx
)
1956 ASSERT(!refcount_is_zero(&db
->db_holds
));
1957 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1958 ASSERT(db
->db_level
== 0);
1959 ASSERT3U(dbuf_is_metadata(db
), ==, arc_is_metadata(buf
));
1960 ASSERT(buf
!= NULL
);
1961 ASSERT(arc_buf_lsize(buf
) == db
->db
.db_size
);
1962 ASSERT(tx
->tx_txg
!= 0);
1964 arc_return_buf(buf
, db
);
1965 ASSERT(arc_released(buf
));
1967 mutex_enter(&db
->db_mtx
);
1969 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
1970 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1972 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_UNCACHED
);
1974 if (db
->db_state
== DB_CACHED
&&
1975 refcount_count(&db
->db_holds
) - 1 > db
->db_dirtycnt
) {
1976 mutex_exit(&db
->db_mtx
);
1977 (void) dbuf_dirty(db
, tx
);
1978 bcopy(buf
->b_data
, db
->db
.db_data
, db
->db
.db_size
);
1979 arc_buf_destroy(buf
, db
);
1980 xuio_stat_wbuf_copied();
1984 xuio_stat_wbuf_nocopy();
1985 if (db
->db_state
== DB_CACHED
) {
1986 dbuf_dirty_record_t
*dr
= db
->db_last_dirty
;
1988 ASSERT(db
->db_buf
!= NULL
);
1989 if (dr
!= NULL
&& dr
->dr_txg
== tx
->tx_txg
) {
1990 ASSERT(dr
->dt
.dl
.dr_data
== db
->db_buf
);
1991 if (!arc_released(db
->db_buf
)) {
1992 ASSERT(dr
->dt
.dl
.dr_override_state
==
1994 arc_release(db
->db_buf
, db
);
1996 dr
->dt
.dl
.dr_data
= buf
;
1997 arc_buf_destroy(db
->db_buf
, db
);
1998 } else if (dr
== NULL
|| dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
1999 arc_release(db
->db_buf
, db
);
2000 arc_buf_destroy(db
->db_buf
, db
);
2004 ASSERT(db
->db_buf
== NULL
);
2005 dbuf_set_data(db
, buf
);
2006 db
->db_state
= DB_FILL
;
2007 mutex_exit(&db
->db_mtx
);
2008 (void) dbuf_dirty(db
, tx
);
2009 dmu_buf_fill_done(&db
->db
, tx
);
2013 dbuf_destroy(dmu_buf_impl_t
*db
)
2016 dmu_buf_impl_t
*parent
= db
->db_parent
;
2017 dmu_buf_impl_t
*dndb
;
2019 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2020 ASSERT(refcount_is_zero(&db
->db_holds
));
2022 if (db
->db_buf
!= NULL
) {
2023 arc_buf_destroy(db
->db_buf
, db
);
2027 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2028 ASSERT(db
->db
.db_data
!= NULL
);
2029 zio_buf_free(db
->db
.db_data
, DN_MAX_BONUSLEN
);
2030 arc_space_return(DN_MAX_BONUSLEN
, ARC_SPACE_OTHER
);
2031 db
->db_state
= DB_UNCACHED
;
2034 dbuf_clear_data(db
);
2036 if (multilist_link_active(&db
->db_cache_link
)) {
2037 multilist_remove(dbuf_cache
, db
);
2038 (void) refcount_remove_many(&dbuf_cache_size
,
2039 db
->db
.db_size
, db
);
2042 ASSERT(db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
);
2043 ASSERT(db
->db_data_pending
== NULL
);
2045 db
->db_state
= DB_EVICTING
;
2046 db
->db_blkptr
= NULL
;
2049 * Now that db_state is DB_EVICTING, nobody else can find this via
2050 * the hash table. We can now drop db_mtx, which allows us to
2051 * acquire the dn_dbufs_mtx.
2053 mutex_exit(&db
->db_mtx
);
2058 if (db
->db_blkid
!= DMU_BONUS_BLKID
) {
2059 boolean_t needlock
= !MUTEX_HELD(&dn
->dn_dbufs_mtx
);
2061 mutex_enter(&dn
->dn_dbufs_mtx
);
2062 avl_remove(&dn
->dn_dbufs
, db
);
2063 atomic_dec_32(&dn
->dn_dbufs_count
);
2067 mutex_exit(&dn
->dn_dbufs_mtx
);
2069 * Decrementing the dbuf count means that the hold corresponding
2070 * to the removed dbuf is no longer discounted in dnode_move(),
2071 * so the dnode cannot be moved until after we release the hold.
2072 * The membar_producer() ensures visibility of the decremented
2073 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2077 db
->db_dnode_handle
= NULL
;
2079 dbuf_hash_remove(db
);
2084 ASSERT(refcount_is_zero(&db
->db_holds
));
2086 db
->db_parent
= NULL
;
2088 ASSERT(db
->db_buf
== NULL
);
2089 ASSERT(db
->db
.db_data
== NULL
);
2090 ASSERT(db
->db_hash_next
== NULL
);
2091 ASSERT(db
->db_blkptr
== NULL
);
2092 ASSERT(db
->db_data_pending
== NULL
);
2093 ASSERT(!multilist_link_active(&db
->db_cache_link
));
2095 kmem_cache_free(dbuf_kmem_cache
, db
);
2096 arc_space_return(sizeof (dmu_buf_impl_t
), ARC_SPACE_OTHER
);
2099 * If this dbuf is referenced from an indirect dbuf,
2100 * decrement the ref count on the indirect dbuf.
2102 if (parent
&& parent
!= dndb
)
2103 dbuf_rele(parent
, db
);
2107 * Note: While bpp will always be updated if the function returns success,
2108 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2109 * this happens when the dnode is the meta-dnode, or a userused or groupused
2113 dbuf_findbp(dnode_t
*dn
, int level
, uint64_t blkid
, int fail_sparse
,
2114 dmu_buf_impl_t
**parentp
, blkptr_t
**bpp
)
2119 ASSERT(blkid
!= DMU_BONUS_BLKID
);
2121 if (blkid
== DMU_SPILL_BLKID
) {
2122 mutex_enter(&dn
->dn_mtx
);
2123 if (dn
->dn_have_spill
&&
2124 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
2125 *bpp
= &dn
->dn_phys
->dn_spill
;
2128 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
2129 *parentp
= dn
->dn_dbuf
;
2130 mutex_exit(&dn
->dn_mtx
);
2135 (dn
->dn_phys
->dn_nlevels
== 0) ? 1 : dn
->dn_phys
->dn_nlevels
;
2136 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2138 ASSERT3U(level
* epbs
, <, 64);
2139 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
2141 * This assertion shouldn't trip as long as the max indirect block size
2142 * is less than 1M. The reason for this is that up to that point,
2143 * the number of levels required to address an entire object with blocks
2144 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2145 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2146 * (i.e. we can address the entire object), objects will all use at most
2147 * N-1 levels and the assertion won't overflow. However, once epbs is
2148 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2149 * enough to address an entire object, so objects will have 5 levels,
2150 * but then this assertion will overflow.
2152 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2153 * need to redo this logic to handle overflows.
2155 ASSERT(level
>= nlevels
||
2156 ((nlevels
- level
- 1) * epbs
) +
2157 highbit64(dn
->dn_phys
->dn_nblkptr
) <= 64);
2158 if (level
>= nlevels
||
2159 blkid
>= ((uint64_t)dn
->dn_phys
->dn_nblkptr
<<
2160 ((nlevels
- level
- 1) * epbs
)) ||
2162 blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))) {
2163 /* the buffer has no parent yet */
2164 return (SET_ERROR(ENOENT
));
2165 } else if (level
< nlevels
-1) {
2166 /* this block is referenced from an indirect block */
2167 int err
= dbuf_hold_impl(dn
, level
+1,
2168 blkid
>> epbs
, fail_sparse
, FALSE
, NULL
, parentp
);
2171 err
= dbuf_read(*parentp
, NULL
,
2172 (DB_RF_HAVESTRUCT
| DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
2174 dbuf_rele(*parentp
, NULL
);
2178 *bpp
= ((blkptr_t
*)(*parentp
)->db
.db_data
) +
2179 (blkid
& ((1ULL << epbs
) - 1));
2180 if (blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))
2181 ASSERT(BP_IS_HOLE(*bpp
));
2184 /* the block is referenced from the dnode */
2185 ASSERT3U(level
, ==, nlevels
-1);
2186 ASSERT(dn
->dn_phys
->dn_nblkptr
== 0 ||
2187 blkid
< dn
->dn_phys
->dn_nblkptr
);
2189 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
2190 *parentp
= dn
->dn_dbuf
;
2192 *bpp
= &dn
->dn_phys
->dn_blkptr
[blkid
];
2197 static dmu_buf_impl_t
*
2198 dbuf_create(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
2199 dmu_buf_impl_t
*parent
, blkptr_t
*blkptr
)
2201 objset_t
*os
= dn
->dn_objset
;
2202 dmu_buf_impl_t
*db
, *odb
;
2204 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
2205 ASSERT(dn
->dn_type
!= DMU_OT_NONE
);
2207 db
= kmem_cache_alloc(dbuf_kmem_cache
, KM_SLEEP
);
2210 db
->db
.db_object
= dn
->dn_object
;
2211 db
->db_level
= level
;
2212 db
->db_blkid
= blkid
;
2213 db
->db_last_dirty
= NULL
;
2214 db
->db_dirtycnt
= 0;
2215 db
->db_dnode_handle
= dn
->dn_handle
;
2216 db
->db_parent
= parent
;
2217 db
->db_blkptr
= blkptr
;
2220 db
->db_user_immediate_evict
= FALSE
;
2221 db
->db_freed_in_flight
= FALSE
;
2222 db
->db_pending_evict
= FALSE
;
2224 if (blkid
== DMU_BONUS_BLKID
) {
2225 ASSERT3P(parent
, ==, dn
->dn_dbuf
);
2226 db
->db
.db_size
= DN_MAX_BONUSLEN
-
2227 (dn
->dn_nblkptr
-1) * sizeof (blkptr_t
);
2228 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
2229 db
->db
.db_offset
= DMU_BONUS_BLKID
;
2230 db
->db_state
= DB_UNCACHED
;
2231 /* the bonus dbuf is not placed in the hash table */
2232 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_OTHER
);
2234 } else if (blkid
== DMU_SPILL_BLKID
) {
2235 db
->db
.db_size
= (blkptr
!= NULL
) ?
2236 BP_GET_LSIZE(blkptr
) : SPA_MINBLOCKSIZE
;
2237 db
->db
.db_offset
= 0;
2240 db
->db_level
? 1 << dn
->dn_indblkshift
: dn
->dn_datablksz
;
2241 db
->db
.db_size
= blocksize
;
2242 db
->db
.db_offset
= db
->db_blkid
* blocksize
;
2246 * Hold the dn_dbufs_mtx while we get the new dbuf
2247 * in the hash table *and* added to the dbufs list.
2248 * This prevents a possible deadlock with someone
2249 * trying to look up this dbuf before its added to the
2252 mutex_enter(&dn
->dn_dbufs_mtx
);
2253 db
->db_state
= DB_EVICTING
;
2254 if ((odb
= dbuf_hash_insert(db
)) != NULL
) {
2255 /* someone else inserted it first */
2256 kmem_cache_free(dbuf_kmem_cache
, db
);
2257 mutex_exit(&dn
->dn_dbufs_mtx
);
2260 avl_add(&dn
->dn_dbufs
, db
);
2262 db
->db_state
= DB_UNCACHED
;
2263 mutex_exit(&dn
->dn_dbufs_mtx
);
2264 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_OTHER
);
2266 if (parent
&& parent
!= dn
->dn_dbuf
)
2267 dbuf_add_ref(parent
, db
);
2269 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
2270 refcount_count(&dn
->dn_holds
) > 0);
2271 (void) refcount_add(&dn
->dn_holds
, db
);
2272 atomic_inc_32(&dn
->dn_dbufs_count
);
2274 dprintf_dbuf(db
, "db=%p\n", db
);
2279 typedef struct dbuf_prefetch_arg
{
2280 spa_t
*dpa_spa
; /* The spa to issue the prefetch in. */
2281 zbookmark_phys_t dpa_zb
; /* The target block to prefetch. */
2282 int dpa_epbs
; /* Entries (blkptr_t's) Per Block Shift. */
2283 int dpa_curlevel
; /* The current level that we're reading */
2284 dnode_t
*dpa_dnode
; /* The dnode associated with the prefetch */
2285 zio_priority_t dpa_prio
; /* The priority I/Os should be issued at. */
2286 zio_t
*dpa_zio
; /* The parent zio_t for all prefetches. */
2287 arc_flags_t dpa_aflags
; /* Flags to pass to the final prefetch. */
2288 } dbuf_prefetch_arg_t
;
2291 * Actually issue the prefetch read for the block given.
2294 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t
*dpa
, blkptr_t
*bp
)
2296 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
))
2299 arc_flags_t aflags
=
2300 dpa
->dpa_aflags
| ARC_FLAG_NOWAIT
| ARC_FLAG_PREFETCH
;
2302 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
2303 ASSERT3U(dpa
->dpa_curlevel
, ==, dpa
->dpa_zb
.zb_level
);
2304 ASSERT(dpa
->dpa_zio
!= NULL
);
2305 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
, bp
, NULL
, NULL
,
2306 dpa
->dpa_prio
, ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
2307 &aflags
, &dpa
->dpa_zb
);
2311 * Called when an indirect block above our prefetch target is read in. This
2312 * will either read in the next indirect block down the tree or issue the actual
2313 * prefetch if the next block down is our target.
2316 dbuf_prefetch_indirect_done(zio_t
*zio
, arc_buf_t
*abuf
, void *private)
2318 dbuf_prefetch_arg_t
*dpa
= private;
2320 ASSERT3S(dpa
->dpa_zb
.zb_level
, <, dpa
->dpa_curlevel
);
2321 ASSERT3S(dpa
->dpa_curlevel
, >, 0);
2324 * The dpa_dnode is only valid if we are called with a NULL
2325 * zio. This indicates that the arc_read() returned without
2326 * first calling zio_read() to issue a physical read. Once
2327 * a physical read is made the dpa_dnode must be invalidated
2328 * as the locks guarding it may have been dropped. If the
2329 * dpa_dnode is still valid, then we want to add it to the dbuf
2330 * cache. To do so, we must hold the dbuf associated with the block
2331 * we just prefetched, read its contents so that we associate it
2332 * with an arc_buf_t, and then release it.
2335 ASSERT3S(BP_GET_LEVEL(zio
->io_bp
), ==, dpa
->dpa_curlevel
);
2336 if (zio
->io_flags
& ZIO_FLAG_RAW
) {
2337 ASSERT3U(BP_GET_PSIZE(zio
->io_bp
), ==, zio
->io_size
);
2339 ASSERT3U(BP_GET_LSIZE(zio
->io_bp
), ==, zio
->io_size
);
2341 ASSERT3P(zio
->io_spa
, ==, dpa
->dpa_spa
);
2343 dpa
->dpa_dnode
= NULL
;
2344 } else if (dpa
->dpa_dnode
!= NULL
) {
2345 uint64_t curblkid
= dpa
->dpa_zb
.zb_blkid
>>
2346 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
-
2347 dpa
->dpa_zb
.zb_level
));
2348 dmu_buf_impl_t
*db
= dbuf_hold_level(dpa
->dpa_dnode
,
2349 dpa
->dpa_curlevel
, curblkid
, FTAG
);
2350 (void) dbuf_read(db
, NULL
,
2351 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_HAVESTRUCT
);
2352 dbuf_rele(db
, FTAG
);
2355 dpa
->dpa_curlevel
--;
2357 uint64_t nextblkid
= dpa
->dpa_zb
.zb_blkid
>>
2358 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
- dpa
->dpa_zb
.zb_level
));
2359 blkptr_t
*bp
= ((blkptr_t
*)abuf
->b_data
) +
2360 P2PHASE(nextblkid
, 1ULL << dpa
->dpa_epbs
);
2361 if (BP_IS_HOLE(bp
) || (zio
!= NULL
&& zio
->io_error
!= 0)) {
2362 kmem_free(dpa
, sizeof (*dpa
));
2363 } else if (dpa
->dpa_curlevel
== dpa
->dpa_zb
.zb_level
) {
2364 ASSERT3U(nextblkid
, ==, dpa
->dpa_zb
.zb_blkid
);
2365 dbuf_issue_final_prefetch(dpa
, bp
);
2366 kmem_free(dpa
, sizeof (*dpa
));
2368 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
2369 zbookmark_phys_t zb
;
2371 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
2373 SET_BOOKMARK(&zb
, dpa
->dpa_zb
.zb_objset
,
2374 dpa
->dpa_zb
.zb_object
, dpa
->dpa_curlevel
, nextblkid
);
2376 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
2377 bp
, dbuf_prefetch_indirect_done
, dpa
, dpa
->dpa_prio
,
2378 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
2382 arc_buf_destroy(abuf
, private);
2386 * Issue prefetch reads for the given block on the given level. If the indirect
2387 * blocks above that block are not in memory, we will read them in
2388 * asynchronously. As a result, this call never blocks waiting for a read to
2392 dbuf_prefetch(dnode_t
*dn
, int64_t level
, uint64_t blkid
, zio_priority_t prio
,
2396 int epbs
, nlevels
, curlevel
;
2399 ASSERT(blkid
!= DMU_BONUS_BLKID
);
2400 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
2402 if (blkid
> dn
->dn_maxblkid
)
2405 if (dnode_block_freed(dn
, blkid
))
2409 * This dnode hasn't been written to disk yet, so there's nothing to
2412 nlevels
= dn
->dn_phys
->dn_nlevels
;
2413 if (level
>= nlevels
|| dn
->dn_phys
->dn_nblkptr
== 0)
2416 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2417 if (dn
->dn_phys
->dn_maxblkid
< blkid
<< (epbs
* level
))
2420 dmu_buf_impl_t
*db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
,
2423 mutex_exit(&db
->db_mtx
);
2425 * This dbuf already exists. It is either CACHED, or
2426 * (we assume) about to be read or filled.
2432 * Find the closest ancestor (indirect block) of the target block
2433 * that is present in the cache. In this indirect block, we will
2434 * find the bp that is at curlevel, curblkid.
2438 while (curlevel
< nlevels
- 1) {
2439 int parent_level
= curlevel
+ 1;
2440 uint64_t parent_blkid
= curblkid
>> epbs
;
2443 if (dbuf_hold_impl(dn
, parent_level
, parent_blkid
,
2444 FALSE
, TRUE
, FTAG
, &db
) == 0) {
2445 blkptr_t
*bpp
= db
->db_buf
->b_data
;
2446 bp
= bpp
[P2PHASE(curblkid
, 1 << epbs
)];
2447 dbuf_rele(db
, FTAG
);
2451 curlevel
= parent_level
;
2452 curblkid
= parent_blkid
;
2455 if (curlevel
== nlevels
- 1) {
2456 /* No cached indirect blocks found. */
2457 ASSERT3U(curblkid
, <, dn
->dn_phys
->dn_nblkptr
);
2458 bp
= dn
->dn_phys
->dn_blkptr
[curblkid
];
2460 if (BP_IS_HOLE(&bp
))
2463 ASSERT3U(curlevel
, ==, BP_GET_LEVEL(&bp
));
2465 zio_t
*pio
= zio_root(dmu_objset_spa(dn
->dn_objset
), NULL
, NULL
,
2468 dbuf_prefetch_arg_t
*dpa
= kmem_zalloc(sizeof (*dpa
), KM_SLEEP
);
2469 dsl_dataset_t
*ds
= dn
->dn_objset
->os_dsl_dataset
;
2470 SET_BOOKMARK(&dpa
->dpa_zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
2471 dn
->dn_object
, level
, blkid
);
2472 dpa
->dpa_curlevel
= curlevel
;
2473 dpa
->dpa_prio
= prio
;
2474 dpa
->dpa_aflags
= aflags
;
2475 dpa
->dpa_spa
= dn
->dn_objset
->os_spa
;
2476 dpa
->dpa_dnode
= dn
;
2477 dpa
->dpa_epbs
= epbs
;
2481 * If we have the indirect just above us, no need to do the asynchronous
2482 * prefetch chain; we'll just run the last step ourselves. If we're at
2483 * a higher level, though, we want to issue the prefetches for all the
2484 * indirect blocks asynchronously, so we can go on with whatever we were
2487 if (curlevel
== level
) {
2488 ASSERT3U(curblkid
, ==, blkid
);
2489 dbuf_issue_final_prefetch(dpa
, &bp
);
2490 kmem_free(dpa
, sizeof (*dpa
));
2492 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
2493 zbookmark_phys_t zb
;
2495 SET_BOOKMARK(&zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
2496 dn
->dn_object
, curlevel
, curblkid
);
2497 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
2498 &bp
, dbuf_prefetch_indirect_done
, dpa
, prio
,
2499 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
2503 * We use pio here instead of dpa_zio since it's possible that
2504 * dpa may have already been freed.
2510 * Returns with db_holds incremented, and db_mtx not held.
2511 * Note: dn_struct_rwlock must be held.
2514 dbuf_hold_impl(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
2515 boolean_t fail_sparse
, boolean_t fail_uncached
,
2516 void *tag
, dmu_buf_impl_t
**dbp
)
2518 dmu_buf_impl_t
*db
, *parent
= NULL
;
2520 ASSERT(blkid
!= DMU_BONUS_BLKID
);
2521 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
2522 ASSERT3U(dn
->dn_nlevels
, >, level
);
2526 /* dbuf_find() returns with db_mtx held */
2527 db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
, level
, blkid
);
2530 blkptr_t
*bp
= NULL
;
2534 return (SET_ERROR(ENOENT
));
2536 ASSERT3P(parent
, ==, NULL
);
2537 err
= dbuf_findbp(dn
, level
, blkid
, fail_sparse
, &parent
, &bp
);
2539 if (err
== 0 && bp
&& BP_IS_HOLE(bp
))
2540 err
= SET_ERROR(ENOENT
);
2543 dbuf_rele(parent
, NULL
);
2547 if (err
&& err
!= ENOENT
)
2549 db
= dbuf_create(dn
, level
, blkid
, parent
, bp
);
2552 if (fail_uncached
&& db
->db_state
!= DB_CACHED
) {
2553 mutex_exit(&db
->db_mtx
);
2554 return (SET_ERROR(ENOENT
));
2557 if (db
->db_buf
!= NULL
)
2558 ASSERT3P(db
->db
.db_data
, ==, db
->db_buf
->b_data
);
2560 ASSERT(db
->db_buf
== NULL
|| arc_referenced(db
->db_buf
));
2563 * If this buffer is currently syncing out, and we are are
2564 * still referencing it from db_data, we need to make a copy
2565 * of it in case we decide we want to dirty it again in this txg.
2567 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
2568 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
2569 db
->db_state
== DB_CACHED
&& db
->db_data_pending
) {
2570 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
2572 if (dr
->dt
.dl
.dr_data
== db
->db_buf
) {
2573 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
2576 arc_alloc_buf(dn
->dn_objset
->os_spa
, db
, type
,
2578 bcopy(dr
->dt
.dl
.dr_data
->b_data
, db
->db
.db_data
,
2583 if (multilist_link_active(&db
->db_cache_link
)) {
2584 ASSERT(refcount_is_zero(&db
->db_holds
));
2585 multilist_remove(dbuf_cache
, db
);
2586 (void) refcount_remove_many(&dbuf_cache_size
,
2587 db
->db
.db_size
, db
);
2589 (void) refcount_add(&db
->db_holds
, tag
);
2591 mutex_exit(&db
->db_mtx
);
2593 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2595 dbuf_rele(parent
, NULL
);
2597 ASSERT3P(DB_DNODE(db
), ==, dn
);
2598 ASSERT3U(db
->db_blkid
, ==, blkid
);
2599 ASSERT3U(db
->db_level
, ==, level
);
2606 dbuf_hold(dnode_t
*dn
, uint64_t blkid
, void *tag
)
2608 return (dbuf_hold_level(dn
, 0, blkid
, tag
));
2612 dbuf_hold_level(dnode_t
*dn
, int level
, uint64_t blkid
, void *tag
)
2615 int err
= dbuf_hold_impl(dn
, level
, blkid
, FALSE
, FALSE
, tag
, &db
);
2616 return (err
? NULL
: db
);
2620 dbuf_create_bonus(dnode_t
*dn
)
2622 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
2624 ASSERT(dn
->dn_bonus
== NULL
);
2625 dn
->dn_bonus
= dbuf_create(dn
, 0, DMU_BONUS_BLKID
, dn
->dn_dbuf
, NULL
);
2629 dbuf_spill_set_blksz(dmu_buf_t
*db_fake
, uint64_t blksz
, dmu_tx_t
*tx
)
2631 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2634 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
2635 return (SET_ERROR(ENOTSUP
));
2637 blksz
= SPA_MINBLOCKSIZE
;
2638 ASSERT3U(blksz
, <=, spa_maxblocksize(dmu_objset_spa(db
->db_objset
)));
2639 blksz
= P2ROUNDUP(blksz
, SPA_MINBLOCKSIZE
);
2643 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
2644 dbuf_new_size(db
, blksz
, tx
);
2645 rw_exit(&dn
->dn_struct_rwlock
);
2652 dbuf_rm_spill(dnode_t
*dn
, dmu_tx_t
*tx
)
2654 dbuf_free_range(dn
, DMU_SPILL_BLKID
, DMU_SPILL_BLKID
, tx
);
2657 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2659 dbuf_add_ref(dmu_buf_impl_t
*db
, void *tag
)
2661 int64_t holds
= refcount_add(&db
->db_holds
, tag
);
2662 ASSERT3S(holds
, >, 1);
2665 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2667 dbuf_try_add_ref(dmu_buf_t
*db_fake
, objset_t
*os
, uint64_t obj
, uint64_t blkid
,
2670 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2671 dmu_buf_impl_t
*found_db
;
2672 boolean_t result
= B_FALSE
;
2674 if (db
->db_blkid
== DMU_BONUS_BLKID
)
2675 found_db
= dbuf_find_bonus(os
, obj
);
2677 found_db
= dbuf_find(os
, obj
, 0, blkid
);
2679 if (found_db
!= NULL
) {
2680 if (db
== found_db
&& dbuf_refcount(db
) > db
->db_dirtycnt
) {
2681 (void) refcount_add(&db
->db_holds
, tag
);
2684 mutex_exit(&db
->db_mtx
);
2690 * If you call dbuf_rele() you had better not be referencing the dnode handle
2691 * unless you have some other direct or indirect hold on the dnode. (An indirect
2692 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2693 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2694 * dnode's parent dbuf evicting its dnode handles.
2697 dbuf_rele(dmu_buf_impl_t
*db
, void *tag
)
2699 mutex_enter(&db
->db_mtx
);
2700 dbuf_rele_and_unlock(db
, tag
);
2704 dmu_buf_rele(dmu_buf_t
*db
, void *tag
)
2706 dbuf_rele((dmu_buf_impl_t
*)db
, tag
);
2710 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2711 * db_dirtycnt and db_holds to be updated atomically.
2714 dbuf_rele_and_unlock(dmu_buf_impl_t
*db
, void *tag
)
2718 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2722 * Remove the reference to the dbuf before removing its hold on the
2723 * dnode so we can guarantee in dnode_move() that a referenced bonus
2724 * buffer has a corresponding dnode hold.
2726 holds
= refcount_remove(&db
->db_holds
, tag
);
2730 * We can't freeze indirects if there is a possibility that they
2731 * may be modified in the current syncing context.
2733 if (db
->db_buf
!= NULL
&&
2734 holds
== (db
->db_level
== 0 ? db
->db_dirtycnt
: 0)) {
2735 arc_buf_freeze(db
->db_buf
);
2738 if (holds
== db
->db_dirtycnt
&&
2739 db
->db_level
== 0 && db
->db_user_immediate_evict
)
2740 dbuf_evict_user(db
);
2743 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2745 boolean_t evict_dbuf
= db
->db_pending_evict
;
2748 * If the dnode moves here, we cannot cross this
2749 * barrier until the move completes.
2754 atomic_dec_32(&dn
->dn_dbufs_count
);
2757 * Decrementing the dbuf count means that the bonus
2758 * buffer's dnode hold is no longer discounted in
2759 * dnode_move(). The dnode cannot move until after
2760 * the dnode_rele() below.
2765 * Do not reference db after its lock is dropped.
2766 * Another thread may evict it.
2768 mutex_exit(&db
->db_mtx
);
2771 dnode_evict_bonus(dn
);
2774 } else if (db
->db_buf
== NULL
) {
2776 * This is a special case: we never associated this
2777 * dbuf with any data allocated from the ARC.
2779 ASSERT(db
->db_state
== DB_UNCACHED
||
2780 db
->db_state
== DB_NOFILL
);
2782 } else if (arc_released(db
->db_buf
)) {
2784 * This dbuf has anonymous data associated with it.
2788 boolean_t do_arc_evict
= B_FALSE
;
2790 spa_t
*spa
= dmu_objset_spa(db
->db_objset
);
2792 if (!DBUF_IS_CACHEABLE(db
) &&
2793 db
->db_blkptr
!= NULL
&&
2794 !BP_IS_HOLE(db
->db_blkptr
) &&
2795 !BP_IS_EMBEDDED(db
->db_blkptr
)) {
2796 do_arc_evict
= B_TRUE
;
2797 bp
= *db
->db_blkptr
;
2800 if (!DBUF_IS_CACHEABLE(db
) ||
2801 db
->db_pending_evict
) {
2803 } else if (!multilist_link_active(&db
->db_cache_link
)) {
2804 multilist_insert(dbuf_cache
, db
);
2805 (void) refcount_add_many(&dbuf_cache_size
,
2806 db
->db
.db_size
, db
);
2807 mutex_exit(&db
->db_mtx
);
2809 dbuf_evict_notify();
2813 arc_freed(spa
, &bp
);
2816 mutex_exit(&db
->db_mtx
);
2821 #pragma weak dmu_buf_refcount = dbuf_refcount
2823 dbuf_refcount(dmu_buf_impl_t
*db
)
2825 return (refcount_count(&db
->db_holds
));
2829 dmu_buf_replace_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*old_user
,
2830 dmu_buf_user_t
*new_user
)
2832 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2834 mutex_enter(&db
->db_mtx
);
2835 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
2836 if (db
->db_user
== old_user
)
2837 db
->db_user
= new_user
;
2839 old_user
= db
->db_user
;
2840 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
2841 mutex_exit(&db
->db_mtx
);
2847 dmu_buf_set_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
2849 return (dmu_buf_replace_user(db_fake
, NULL
, user
));
2853 dmu_buf_set_user_ie(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
2855 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2857 db
->db_user_immediate_evict
= TRUE
;
2858 return (dmu_buf_set_user(db_fake
, user
));
2862 dmu_buf_remove_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
2864 return (dmu_buf_replace_user(db_fake
, user
, NULL
));
2868 dmu_buf_get_user(dmu_buf_t
*db_fake
)
2870 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2872 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
2873 return (db
->db_user
);
2877 dmu_buf_user_evict_wait()
2879 taskq_wait(dbu_evict_taskq
);
2883 dmu_buf_get_blkptr(dmu_buf_t
*db
)
2885 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
2886 return (dbi
->db_blkptr
);
2890 dmu_buf_get_objset(dmu_buf_t
*db
)
2892 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
2893 return (dbi
->db_objset
);
2897 dmu_buf_dnode_enter(dmu_buf_t
*db
)
2899 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
2900 DB_DNODE_ENTER(dbi
);
2901 return (DB_DNODE(dbi
));
2905 dmu_buf_dnode_exit(dmu_buf_t
*db
)
2907 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
2912 dbuf_check_blkptr(dnode_t
*dn
, dmu_buf_impl_t
*db
)
2914 /* ASSERT(dmu_tx_is_syncing(tx) */
2915 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2917 if (db
->db_blkptr
!= NULL
)
2920 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
2921 db
->db_blkptr
= &dn
->dn_phys
->dn_spill
;
2922 BP_ZERO(db
->db_blkptr
);
2925 if (db
->db_level
== dn
->dn_phys
->dn_nlevels
-1) {
2927 * This buffer was allocated at a time when there was
2928 * no available blkptrs from the dnode, or it was
2929 * inappropriate to hook it in (i.e., nlevels mis-match).
2931 ASSERT(db
->db_blkid
< dn
->dn_phys
->dn_nblkptr
);
2932 ASSERT(db
->db_parent
== NULL
);
2933 db
->db_parent
= dn
->dn_dbuf
;
2934 db
->db_blkptr
= &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
];
2937 dmu_buf_impl_t
*parent
= db
->db_parent
;
2938 int epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2940 ASSERT(dn
->dn_phys
->dn_nlevels
> 1);
2941 if (parent
== NULL
) {
2942 mutex_exit(&db
->db_mtx
);
2943 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2944 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
2945 db
->db_blkid
>> epbs
, db
);
2946 rw_exit(&dn
->dn_struct_rwlock
);
2947 mutex_enter(&db
->db_mtx
);
2948 db
->db_parent
= parent
;
2950 db
->db_blkptr
= (blkptr_t
*)parent
->db
.db_data
+
2951 (db
->db_blkid
& ((1ULL << epbs
) - 1));
2957 dbuf_sync_indirect(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
2959 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2963 ASSERT(dmu_tx_is_syncing(tx
));
2965 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
2967 mutex_enter(&db
->db_mtx
);
2969 ASSERT(db
->db_level
> 0);
2972 /* Read the block if it hasn't been read yet. */
2973 if (db
->db_buf
== NULL
) {
2974 mutex_exit(&db
->db_mtx
);
2975 (void) dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
);
2976 mutex_enter(&db
->db_mtx
);
2978 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
2979 ASSERT(db
->db_buf
!= NULL
);
2983 /* Indirect block size must match what the dnode thinks it is. */
2984 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
2985 dbuf_check_blkptr(dn
, db
);
2988 /* Provide the pending dirty record to child dbufs */
2989 db
->db_data_pending
= dr
;
2991 mutex_exit(&db
->db_mtx
);
2992 dbuf_write(dr
, db
->db_buf
, tx
);
2995 mutex_enter(&dr
->dt
.di
.dr_mtx
);
2996 dbuf_sync_list(&dr
->dt
.di
.dr_children
, db
->db_level
- 1, tx
);
2997 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
2998 mutex_exit(&dr
->dt
.di
.dr_mtx
);
3003 dbuf_sync_leaf(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
3005 arc_buf_t
**datap
= &dr
->dt
.dl
.dr_data
;
3006 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
3009 uint64_t txg
= tx
->tx_txg
;
3011 ASSERT(dmu_tx_is_syncing(tx
));
3013 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
3015 mutex_enter(&db
->db_mtx
);
3017 * To be synced, we must be dirtied. But we
3018 * might have been freed after the dirty.
3020 if (db
->db_state
== DB_UNCACHED
) {
3021 /* This buffer has been freed since it was dirtied */
3022 ASSERT(db
->db
.db_data
== NULL
);
3023 } else if (db
->db_state
== DB_FILL
) {
3024 /* This buffer was freed and is now being re-filled */
3025 ASSERT(db
->db
.db_data
!= dr
->dt
.dl
.dr_data
);
3027 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_NOFILL
);
3034 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
3035 mutex_enter(&dn
->dn_mtx
);
3036 dn
->dn_phys
->dn_flags
|= DNODE_FLAG_SPILL_BLKPTR
;
3037 mutex_exit(&dn
->dn_mtx
);
3041 * If this is a bonus buffer, simply copy the bonus data into the
3042 * dnode. It will be written out when the dnode is synced (and it
3043 * will be synced, since it must have been dirty for dbuf_sync to
3046 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
3047 dbuf_dirty_record_t
**drp
;
3049 ASSERT(*datap
!= NULL
);
3050 ASSERT0(db
->db_level
);
3051 ASSERT3U(dn
->dn_phys
->dn_bonuslen
, <=, DN_MAX_BONUSLEN
);
3052 bcopy(*datap
, DN_BONUS(dn
->dn_phys
), dn
->dn_phys
->dn_bonuslen
);
3055 if (*datap
!= db
->db
.db_data
) {
3056 zio_buf_free(*datap
, DN_MAX_BONUSLEN
);
3057 arc_space_return(DN_MAX_BONUSLEN
, ARC_SPACE_OTHER
);
3059 db
->db_data_pending
= NULL
;
3060 drp
= &db
->db_last_dirty
;
3062 drp
= &(*drp
)->dr_next
;
3063 ASSERT(dr
->dr_next
== NULL
);
3064 ASSERT(dr
->dr_dbuf
== db
);
3066 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
3067 ASSERT(db
->db_dirtycnt
> 0);
3068 db
->db_dirtycnt
-= 1;
3069 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)txg
);
3076 * This function may have dropped the db_mtx lock allowing a dmu_sync
3077 * operation to sneak in. As a result, we need to ensure that we
3078 * don't check the dr_override_state until we have returned from
3079 * dbuf_check_blkptr.
3081 dbuf_check_blkptr(dn
, db
);
3084 * If this buffer is in the middle of an immediate write,
3085 * wait for the synchronous IO to complete.
3087 while (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
) {
3088 ASSERT(dn
->dn_object
!= DMU_META_DNODE_OBJECT
);
3089 cv_wait(&db
->db_changed
, &db
->db_mtx
);
3090 ASSERT(dr
->dt
.dl
.dr_override_state
!= DR_NOT_OVERRIDDEN
);
3093 if (db
->db_state
!= DB_NOFILL
&&
3094 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
3095 refcount_count(&db
->db_holds
) > 1 &&
3096 dr
->dt
.dl
.dr_override_state
!= DR_OVERRIDDEN
&&
3097 *datap
== db
->db_buf
) {
3099 * If this buffer is currently "in use" (i.e., there
3100 * are active holds and db_data still references it),
3101 * then make a copy before we start the write so that
3102 * any modifications from the open txg will not leak
3105 * NOTE: this copy does not need to be made for
3106 * objects only modified in the syncing context (e.g.
3107 * DNONE_DNODE blocks).
3109 int psize
= arc_buf_size(*datap
);
3110 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
3111 enum zio_compress compress_type
= arc_get_compression(*datap
);
3113 if (compress_type
== ZIO_COMPRESS_OFF
) {
3114 *datap
= arc_alloc_buf(os
->os_spa
, db
, type
, psize
);
3116 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
3117 int lsize
= arc_buf_lsize(*datap
);
3118 *datap
= arc_alloc_compressed_buf(os
->os_spa
, db
,
3119 psize
, lsize
, compress_type
);
3121 bcopy(db
->db
.db_data
, (*datap
)->b_data
, psize
);
3123 db
->db_data_pending
= dr
;
3125 mutex_exit(&db
->db_mtx
);
3127 dbuf_write(dr
, *datap
, tx
);
3129 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
3130 if (dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
3131 list_insert_tail(&dn
->dn_dirty_records
[txg
&TXG_MASK
], dr
);
3135 * Although zio_nowait() does not "wait for an IO", it does
3136 * initiate the IO. If this is an empty write it seems plausible
3137 * that the IO could actually be completed before the nowait
3138 * returns. We need to DB_DNODE_EXIT() first in case
3139 * zio_nowait() invalidates the dbuf.
3142 zio_nowait(dr
->dr_zio
);
3147 dbuf_sync_list(list_t
*list
, int level
, dmu_tx_t
*tx
)
3149 dbuf_dirty_record_t
*dr
;
3151 while (dr
= list_head(list
)) {
3152 if (dr
->dr_zio
!= NULL
) {
3154 * If we find an already initialized zio then we
3155 * are processing the meta-dnode, and we have finished.
3156 * The dbufs for all dnodes are put back on the list
3157 * during processing, so that we can zio_wait()
3158 * these IOs after initiating all child IOs.
3160 ASSERT3U(dr
->dr_dbuf
->db
.db_object
, ==,
3161 DMU_META_DNODE_OBJECT
);
3164 if (dr
->dr_dbuf
->db_blkid
!= DMU_BONUS_BLKID
&&
3165 dr
->dr_dbuf
->db_blkid
!= DMU_SPILL_BLKID
) {
3166 VERIFY3U(dr
->dr_dbuf
->db_level
, ==, level
);
3168 list_remove(list
, dr
);
3169 if (dr
->dr_dbuf
->db_level
> 0)
3170 dbuf_sync_indirect(dr
, tx
);
3172 dbuf_sync_leaf(dr
, tx
);
3178 dbuf_write_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
3180 dmu_buf_impl_t
*db
= vdb
;
3182 blkptr_t
*bp
= zio
->io_bp
;
3183 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
3184 spa_t
*spa
= zio
->io_spa
;
3189 ASSERT3P(db
->db_blkptr
, !=, NULL
);
3190 ASSERT3P(&db
->db_data_pending
->dr_bp_copy
, ==, bp
);
3194 delta
= bp_get_dsize_sync(spa
, bp
) - bp_get_dsize_sync(spa
, bp_orig
);
3195 dnode_diduse_space(dn
, delta
- zio
->io_prev_space_delta
);
3196 zio
->io_prev_space_delta
= delta
;
3198 if (bp
->blk_birth
!= 0) {
3199 ASSERT((db
->db_blkid
!= DMU_SPILL_BLKID
&&
3200 BP_GET_TYPE(bp
) == dn
->dn_type
) ||
3201 (db
->db_blkid
== DMU_SPILL_BLKID
&&
3202 BP_GET_TYPE(bp
) == dn
->dn_bonustype
) ||
3203 BP_IS_EMBEDDED(bp
));
3204 ASSERT(BP_GET_LEVEL(bp
) == db
->db_level
);
3207 mutex_enter(&db
->db_mtx
);
3210 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
3211 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
3212 ASSERT(!(BP_IS_HOLE(bp
)) &&
3213 db
->db_blkptr
== &dn
->dn_phys
->dn_spill
);
3217 if (db
->db_level
== 0) {
3218 mutex_enter(&dn
->dn_mtx
);
3219 if (db
->db_blkid
> dn
->dn_phys
->dn_maxblkid
&&
3220 db
->db_blkid
!= DMU_SPILL_BLKID
)
3221 dn
->dn_phys
->dn_maxblkid
= db
->db_blkid
;
3222 mutex_exit(&dn
->dn_mtx
);
3224 if (dn
->dn_type
== DMU_OT_DNODE
) {
3225 dnode_phys_t
*dnp
= db
->db
.db_data
;
3226 for (i
= db
->db
.db_size
>> DNODE_SHIFT
; i
> 0;
3228 if (dnp
->dn_type
!= DMU_OT_NONE
)
3232 if (BP_IS_HOLE(bp
)) {
3239 blkptr_t
*ibp
= db
->db
.db_data
;
3240 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
3241 for (i
= db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
> 0; i
--, ibp
++) {
3242 if (BP_IS_HOLE(ibp
))
3244 fill
+= BP_GET_FILL(ibp
);
3249 if (!BP_IS_EMBEDDED(bp
))
3250 bp
->blk_fill
= fill
;
3252 mutex_exit(&db
->db_mtx
);
3254 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
3255 *db
->db_blkptr
= *bp
;
3256 rw_exit(&dn
->dn_struct_rwlock
);
3261 * This function gets called just prior to running through the compression
3262 * stage of the zio pipeline. If we're an indirect block comprised of only
3263 * holes, then we want this indirect to be compressed away to a hole. In
3264 * order to do that we must zero out any information about the holes that
3265 * this indirect points to prior to before we try to compress it.
3268 dbuf_write_children_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
3270 dmu_buf_impl_t
*db
= vdb
;
3273 unsigned int epbs
, i
;
3275 ASSERT3U(db
->db_level
, >, 0);
3278 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3279 ASSERT3U(epbs
, <, 31);
3281 /* Determine if all our children are holes */
3282 for (i
= 0, bp
= db
->db
.db_data
; i
< 1 << epbs
; i
++, bp
++) {
3283 if (!BP_IS_HOLE(bp
))
3288 * If all the children are holes, then zero them all out so that
3289 * we may get compressed away.
3291 if (i
== 1 << epbs
) {
3293 * We only found holes. Grab the rwlock to prevent
3294 * anybody from reading the blocks we're about to
3297 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
3298 bzero(db
->db
.db_data
, db
->db
.db_size
);
3299 rw_exit(&dn
->dn_struct_rwlock
);
3305 * The SPA will call this callback several times for each zio - once
3306 * for every physical child i/o (zio->io_phys_children times). This
3307 * allows the DMU to monitor the progress of each logical i/o. For example,
3308 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3309 * block. There may be a long delay before all copies/fragments are completed,
3310 * so this callback allows us to retire dirty space gradually, as the physical
3315 dbuf_write_physdone(zio_t
*zio
, arc_buf_t
*buf
, void *arg
)
3317 dmu_buf_impl_t
*db
= arg
;
3318 objset_t
*os
= db
->db_objset
;
3319 dsl_pool_t
*dp
= dmu_objset_pool(os
);
3320 dbuf_dirty_record_t
*dr
;
3323 dr
= db
->db_data_pending
;
3324 ASSERT3U(dr
->dr_txg
, ==, zio
->io_txg
);
3327 * The callback will be called io_phys_children times. Retire one
3328 * portion of our dirty space each time we are called. Any rounding
3329 * error will be cleaned up by dsl_pool_sync()'s call to
3330 * dsl_pool_undirty_space().
3332 delta
= dr
->dr_accounted
/ zio
->io_phys_children
;
3333 dsl_pool_undirty_space(dp
, delta
, zio
->io_txg
);
3338 dbuf_write_done(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
3340 dmu_buf_impl_t
*db
= vdb
;
3341 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
3342 blkptr_t
*bp
= db
->db_blkptr
;
3343 objset_t
*os
= db
->db_objset
;
3344 dmu_tx_t
*tx
= os
->os_synctx
;
3345 dbuf_dirty_record_t
**drp
, *dr
;
3347 ASSERT0(zio
->io_error
);
3348 ASSERT(db
->db_blkptr
== bp
);
3351 * For nopwrites and rewrites we ensure that the bp matches our
3352 * original and bypass all the accounting.
3354 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
3355 ASSERT(BP_EQUAL(bp
, bp_orig
));
3357 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
3358 (void) dsl_dataset_block_kill(ds
, bp_orig
, tx
, B_TRUE
);
3359 dsl_dataset_block_born(ds
, bp
, tx
);
3362 mutex_enter(&db
->db_mtx
);
3366 drp
= &db
->db_last_dirty
;
3367 while ((dr
= *drp
) != db
->db_data_pending
)
3369 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
3370 ASSERT(dr
->dr_dbuf
== db
);
3371 ASSERT(dr
->dr_next
== NULL
);
3375 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
3380 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
3381 ASSERT(!(BP_IS_HOLE(db
->db_blkptr
)) &&
3382 db
->db_blkptr
== &dn
->dn_phys
->dn_spill
);
3387 if (db
->db_level
== 0) {
3388 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
3389 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
3390 if (db
->db_state
!= DB_NOFILL
) {
3391 if (dr
->dt
.dl
.dr_data
!= db
->db_buf
)
3392 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
3399 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
3400 ASSERT3U(db
->db
.db_size
, ==, 1 << dn
->dn_phys
->dn_indblkshift
);
3401 if (!BP_IS_HOLE(db
->db_blkptr
)) {
3403 dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3404 ASSERT3U(db
->db_blkid
, <=,
3405 dn
->dn_phys
->dn_maxblkid
>> (db
->db_level
* epbs
));
3406 ASSERT3U(BP_GET_LSIZE(db
->db_blkptr
), ==,
3410 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
3411 list_destroy(&dr
->dt
.di
.dr_children
);
3413 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
3415 cv_broadcast(&db
->db_changed
);
3416 ASSERT(db
->db_dirtycnt
> 0);
3417 db
->db_dirtycnt
-= 1;
3418 db
->db_data_pending
= NULL
;
3419 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
);
3423 dbuf_write_nofill_ready(zio_t
*zio
)
3425 dbuf_write_ready(zio
, NULL
, zio
->io_private
);
3429 dbuf_write_nofill_done(zio_t
*zio
)
3431 dbuf_write_done(zio
, NULL
, zio
->io_private
);
3435 dbuf_write_override_ready(zio_t
*zio
)
3437 dbuf_dirty_record_t
*dr
= zio
->io_private
;
3438 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
3440 dbuf_write_ready(zio
, NULL
, db
);
3444 dbuf_write_override_done(zio_t
*zio
)
3446 dbuf_dirty_record_t
*dr
= zio
->io_private
;
3447 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
3448 blkptr_t
*obp
= &dr
->dt
.dl
.dr_overridden_by
;
3450 mutex_enter(&db
->db_mtx
);
3451 if (!BP_EQUAL(zio
->io_bp
, obp
)) {
3452 if (!BP_IS_HOLE(obp
))
3453 dsl_free(spa_get_dsl(zio
->io_spa
), zio
->io_txg
, obp
);
3454 arc_release(dr
->dt
.dl
.dr_data
, db
);
3456 mutex_exit(&db
->db_mtx
);
3457 dbuf_write_done(zio
, NULL
, db
);
3459 if (zio
->io_abd
!= NULL
)
3460 abd_put(zio
->io_abd
);
3463 /* Issue I/O to commit a dirty buffer to disk. */
3465 dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
)
3467 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
3470 dmu_buf_impl_t
*parent
= db
->db_parent
;
3471 uint64_t txg
= tx
->tx_txg
;
3472 zbookmark_phys_t zb
;
3477 ASSERT(dmu_tx_is_syncing(tx
));
3483 if (db
->db_state
!= DB_NOFILL
) {
3484 if (db
->db_level
> 0 || dn
->dn_type
== DMU_OT_DNODE
) {
3486 * Private object buffers are released here rather
3487 * than in dbuf_dirty() since they are only modified
3488 * in the syncing context and we don't want the
3489 * overhead of making multiple copies of the data.
3491 if (BP_IS_HOLE(db
->db_blkptr
)) {
3494 dbuf_release_bp(db
);
3499 if (parent
!= dn
->dn_dbuf
) {
3500 /* Our parent is an indirect block. */
3501 /* We have a dirty parent that has been scheduled for write. */
3502 ASSERT(parent
&& parent
->db_data_pending
);
3503 /* Our parent's buffer is one level closer to the dnode. */
3504 ASSERT(db
->db_level
== parent
->db_level
-1);
3506 * We're about to modify our parent's db_data by modifying
3507 * our block pointer, so the parent must be released.
3509 ASSERT(arc_released(parent
->db_buf
));
3510 zio
= parent
->db_data_pending
->dr_zio
;
3512 /* Our parent is the dnode itself. */
3513 ASSERT((db
->db_level
== dn
->dn_phys
->dn_nlevels
-1 &&
3514 db
->db_blkid
!= DMU_SPILL_BLKID
) ||
3515 (db
->db_blkid
== DMU_SPILL_BLKID
&& db
->db_level
== 0));
3516 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
3517 ASSERT3P(db
->db_blkptr
, ==,
3518 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
3522 ASSERT(db
->db_level
== 0 || data
== db
->db_buf
);
3523 ASSERT3U(db
->db_blkptr
->blk_birth
, <=, txg
);
3526 SET_BOOKMARK(&zb
, os
->os_dsl_dataset
?
3527 os
->os_dsl_dataset
->ds_object
: DMU_META_OBJSET
,
3528 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
3530 if (db
->db_blkid
== DMU_SPILL_BLKID
)
3532 wp_flag
|= (db
->db_state
== DB_NOFILL
) ? WP_NOFILL
: 0;
3534 dmu_write_policy(os
, dn
, db
->db_level
, wp_flag
, &zp
);
3538 * We copy the blkptr now (rather than when we instantiate the dirty
3539 * record), because its value can change between open context and
3540 * syncing context. We do not need to hold dn_struct_rwlock to read
3541 * db_blkptr because we are in syncing context.
3543 dr
->dr_bp_copy
= *db
->db_blkptr
;
3545 if (db
->db_level
== 0 &&
3546 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
3548 * The BP for this block has been provided by open context
3549 * (by dmu_sync() or dmu_buf_write_embedded()).
3551 abd_t
*contents
= (data
!= NULL
) ?
3552 abd_get_from_buf(data
->b_data
, arc_buf_size(data
)) : NULL
;
3554 dr
->dr_zio
= zio_write(zio
, os
->os_spa
, txg
, &dr
->dr_bp_copy
,
3555 contents
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
3556 dbuf_write_override_ready
, NULL
, NULL
,
3557 dbuf_write_override_done
,
3558 dr
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_MUSTSUCCEED
, &zb
);
3559 mutex_enter(&db
->db_mtx
);
3560 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
3561 zio_write_override(dr
->dr_zio
, &dr
->dt
.dl
.dr_overridden_by
,
3562 dr
->dt
.dl
.dr_copies
, dr
->dt
.dl
.dr_nopwrite
);
3563 mutex_exit(&db
->db_mtx
);
3564 } else if (db
->db_state
== DB_NOFILL
) {
3565 ASSERT(zp
.zp_checksum
== ZIO_CHECKSUM_OFF
||
3566 zp
.zp_checksum
== ZIO_CHECKSUM_NOPARITY
);
3567 dr
->dr_zio
= zio_write(zio
, os
->os_spa
, txg
,
3568 &dr
->dr_bp_copy
, NULL
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
3569 dbuf_write_nofill_ready
, NULL
, NULL
,
3570 dbuf_write_nofill_done
, db
,
3571 ZIO_PRIORITY_ASYNC_WRITE
,
3572 ZIO_FLAG_MUSTSUCCEED
| ZIO_FLAG_NODATA
, &zb
);
3574 ASSERT(arc_released(data
));
3577 * For indirect blocks, we want to setup the children
3578 * ready callback so that we can properly handle an indirect
3579 * block that only contains holes.
3581 arc_done_func_t
*children_ready_cb
= NULL
;
3582 if (db
->db_level
!= 0)
3583 children_ready_cb
= dbuf_write_children_ready
;
3585 dr
->dr_zio
= arc_write(zio
, os
->os_spa
, txg
,
3586 &dr
->dr_bp_copy
, data
, DBUF_IS_L2CACHEABLE(db
),
3587 &zp
, dbuf_write_ready
, children_ready_cb
,
3588 dbuf_write_physdone
, dbuf_write_done
, db
,
3589 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_MUSTSUCCEED
, &zb
);