4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
40 #include <sys/metaslab.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
52 * Filesystem and Snapshot Limits
53 * ------------------------------
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
126 extern inline dsl_dir_phys_t
*dsl_dir_phys(dsl_dir_t
*dd
);
128 static uint64_t dsl_dir_space_towrite(dsl_dir_t
*dd
);
131 dsl_dir_evict_async(void *dbu
)
134 dsl_pool_t
*dp
= dd
->dd_pool
;
139 for (t
= 0; t
< TXG_SIZE
; t
++) {
140 ASSERT(!txg_list_member(&dp
->dp_dirty_dirs
, dd
, t
));
141 ASSERT(dd
->dd_tempreserved
[t
] == 0);
142 ASSERT(dd
->dd_space_towrite
[t
] == 0);
146 dsl_dir_async_rele(dd
->dd_parent
, dd
);
148 spa_async_close(dd
->dd_pool
->dp_spa
, dd
);
151 mutex_destroy(&dd
->dd_lock
);
152 kmem_free(dd
, sizeof (dsl_dir_t
));
156 dsl_dir_hold_obj(dsl_pool_t
*dp
, uint64_t ddobj
,
157 const char *tail
, void *tag
, dsl_dir_t
**ddp
)
163 ASSERT(dsl_pool_config_held(dp
));
165 err
= dmu_bonus_hold(dp
->dp_meta_objset
, ddobj
, tag
, &dbuf
);
168 dd
= dmu_buf_get_user(dbuf
);
171 dmu_object_info_t doi
;
172 dmu_object_info_from_db(dbuf
, &doi
);
173 ASSERT3U(doi
.doi_bonus_type
, ==, DMU_OT_DSL_DIR
);
174 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (dsl_dir_phys_t
));
180 dd
= kmem_zalloc(sizeof (dsl_dir_t
), KM_SLEEP
);
181 dd
->dd_object
= ddobj
;
184 mutex_init(&dd
->dd_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
187 dsl_dir_snap_cmtime_update(dd
);
189 if (dsl_dir_phys(dd
)->dd_parent_obj
) {
190 err
= dsl_dir_hold_obj(dp
,
191 dsl_dir_phys(dd
)->dd_parent_obj
, NULL
, dd
,
199 err
= zap_lookup(dp
->dp_meta_objset
,
200 dsl_dir_phys(dd
->dd_parent
)->
201 dd_child_dir_zapobj
, tail
,
202 sizeof (foundobj
), 1, &foundobj
);
203 ASSERT(err
|| foundobj
== ddobj
);
205 (void) strcpy(dd
->dd_myname
, tail
);
207 err
= zap_value_search(dp
->dp_meta_objset
,
208 dsl_dir_phys(dd
->dd_parent
)->
210 ddobj
, 0, dd
->dd_myname
);
215 (void) strcpy(dd
->dd_myname
, spa_name(dp
->dp_spa
));
218 if (dsl_dir_is_clone(dd
)) {
219 dmu_buf_t
*origin_bonus
;
220 dsl_dataset_phys_t
*origin_phys
;
223 * We can't open the origin dataset, because
224 * that would require opening this dsl_dir.
225 * Just look at its phys directly instead.
227 err
= dmu_bonus_hold(dp
->dp_meta_objset
,
228 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
,
232 origin_phys
= origin_bonus
->db_data
;
234 origin_phys
->ds_creation_txg
;
235 dmu_buf_rele(origin_bonus
, FTAG
);
238 dmu_buf_init_user(&dd
->dd_dbu
, NULL
, dsl_dir_evict_async
,
240 winner
= dmu_buf_set_user_ie(dbuf
, &dd
->dd_dbu
);
241 if (winner
!= NULL
) {
243 dsl_dir_rele(dd
->dd_parent
, dd
);
245 mutex_destroy(&dd
->dd_lock
);
246 kmem_free(dd
, sizeof (dsl_dir_t
));
249 spa_open_ref(dp
->dp_spa
, dd
);
254 * The dsl_dir_t has both open-to-close and instantiate-to-evict
255 * holds on the spa. We need the open-to-close holds because
256 * otherwise the spa_refcnt wouldn't change when we open a
257 * dir which the spa also has open, so we could incorrectly
258 * think it was OK to unload/export/destroy the pool. We need
259 * the instantiate-to-evict hold because the dsl_dir_t has a
260 * pointer to the dd_pool, which has a pointer to the spa_t.
262 spa_open_ref(dp
->dp_spa
, tag
);
263 ASSERT3P(dd
->dd_pool
, ==, dp
);
264 ASSERT3U(dd
->dd_object
, ==, ddobj
);
265 ASSERT3P(dd
->dd_dbuf
, ==, dbuf
);
271 dsl_dir_rele(dd
->dd_parent
, dd
);
273 mutex_destroy(&dd
->dd_lock
);
274 kmem_free(dd
, sizeof (dsl_dir_t
));
275 dmu_buf_rele(dbuf
, tag
);
280 dsl_dir_rele(dsl_dir_t
*dd
, void *tag
)
282 dprintf_dd(dd
, "%s\n", "");
283 spa_close(dd
->dd_pool
->dp_spa
, tag
);
284 dmu_buf_rele(dd
->dd_dbuf
, tag
);
288 * Remove a reference to the given dsl dir that is being asynchronously
289 * released. Async releases occur from a taskq performing eviction of
290 * dsl datasets and dirs. This process is identical to a normal release
291 * with the exception of using the async API for releasing the reference on
295 dsl_dir_async_rele(dsl_dir_t
*dd
, void *tag
)
297 dprintf_dd(dd
, "%s\n", "");
298 spa_async_close(dd
->dd_pool
->dp_spa
, tag
);
299 dmu_buf_rele(dd
->dd_dbuf
, tag
);
302 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
304 dsl_dir_name(dsl_dir_t
*dd
, char *buf
)
307 dsl_dir_name(dd
->dd_parent
, buf
);
308 VERIFY3U(strlcat(buf
, "/", ZFS_MAX_DATASET_NAME_LEN
), <,
309 ZFS_MAX_DATASET_NAME_LEN
);
313 if (!MUTEX_HELD(&dd
->dd_lock
)) {
315 * recursive mutex so that we can use
316 * dprintf_dd() with dd_lock held
318 mutex_enter(&dd
->dd_lock
);
319 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
320 <, ZFS_MAX_DATASET_NAME_LEN
);
321 mutex_exit(&dd
->dd_lock
);
323 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
324 <, ZFS_MAX_DATASET_NAME_LEN
);
328 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
330 dsl_dir_namelen(dsl_dir_t
*dd
)
335 /* parent's name + 1 for the "/" */
336 result
= dsl_dir_namelen(dd
->dd_parent
) + 1;
339 if (!MUTEX_HELD(&dd
->dd_lock
)) {
340 /* see dsl_dir_name */
341 mutex_enter(&dd
->dd_lock
);
342 result
+= strlen(dd
->dd_myname
);
343 mutex_exit(&dd
->dd_lock
);
345 result
+= strlen(dd
->dd_myname
);
352 getcomponent(const char *path
, char *component
, const char **nextp
)
356 if ((path
== NULL
) || (path
[0] == '\0'))
357 return (SET_ERROR(ENOENT
));
358 /* This would be a good place to reserve some namespace... */
359 p
= strpbrk(path
, "/@");
360 if (p
&& (p
[1] == '/' || p
[1] == '@')) {
361 /* two separators in a row */
362 return (SET_ERROR(EINVAL
));
364 if (p
== NULL
|| p
== path
) {
366 * if the first thing is an @ or /, it had better be an
367 * @ and it had better not have any more ats or slashes,
368 * and it had better have something after the @.
371 (p
[0] != '@' || strpbrk(path
+1, "/@") || p
[1] == '\0'))
372 return (SET_ERROR(EINVAL
));
373 if (strlen(path
) >= ZFS_MAX_DATASET_NAME_LEN
)
374 return (SET_ERROR(ENAMETOOLONG
));
375 (void) strcpy(component
, path
);
377 } else if (p
[0] == '/') {
378 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
379 return (SET_ERROR(ENAMETOOLONG
));
380 (void) strncpy(component
, path
, p
- path
);
381 component
[p
- path
] = '\0';
383 } else if (p
[0] == '@') {
385 * if the next separator is an @, there better not be
388 if (strchr(path
, '/'))
389 return (SET_ERROR(EINVAL
));
390 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
391 return (SET_ERROR(ENAMETOOLONG
));
392 (void) strncpy(component
, path
, p
- path
);
393 component
[p
- path
] = '\0';
395 panic("invalid p=%p", (void *)p
);
402 * Return the dsl_dir_t, and possibly the last component which couldn't
403 * be found in *tail. The name must be in the specified dsl_pool_t. This
404 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
405 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
406 * (*tail)[0] == '@' means that the last component is a snapshot.
409 dsl_dir_hold(dsl_pool_t
*dp
, const char *name
, void *tag
,
410 dsl_dir_t
**ddp
, const char **tailp
)
412 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
413 const char *spaname
, *next
, *nextnext
= NULL
;
418 err
= getcomponent(name
, buf
, &next
);
422 /* Make sure the name is in the specified pool. */
423 spaname
= spa_name(dp
->dp_spa
);
424 if (strcmp(buf
, spaname
) != 0)
425 return (SET_ERROR(EXDEV
));
427 ASSERT(dsl_pool_config_held(dp
));
429 err
= dsl_dir_hold_obj(dp
, dp
->dp_root_dir_obj
, NULL
, tag
, &dd
);
434 while (next
!= NULL
) {
436 err
= getcomponent(next
, buf
, &nextnext
);
439 ASSERT(next
[0] != '\0');
442 dprintf("looking up %s in obj%lld\n",
443 buf
, dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
445 err
= zap_lookup(dp
->dp_meta_objset
,
446 dsl_dir_phys(dd
)->dd_child_dir_zapobj
,
447 buf
, sizeof (ddobj
), 1, &ddobj
);
454 err
= dsl_dir_hold_obj(dp
, ddobj
, buf
, tag
, &child_dd
);
457 dsl_dir_rele(dd
, tag
);
463 dsl_dir_rele(dd
, tag
);
468 * It's an error if there's more than one component left, or
469 * tailp==NULL and there's any component left.
472 (tailp
== NULL
|| (nextnext
&& nextnext
[0] != '\0'))) {
474 dsl_dir_rele(dd
, tag
);
475 dprintf("next=%p (%s) tail=%p\n", next
, next
?next
:"", tailp
);
476 err
= SET_ERROR(ENOENT
);
485 * If the counts are already initialized for this filesystem and its
486 * descendants then do nothing, otherwise initialize the counts.
488 * The counts on this filesystem, and those below, may be uninitialized due to
489 * either the use of a pre-existing pool which did not support the
490 * filesystem/snapshot limit feature, or one in which the feature had not yet
493 * Recursively descend the filesystem tree and update the filesystem/snapshot
494 * counts on each filesystem below, then update the cumulative count on the
495 * current filesystem. If the filesystem already has a count set on it,
496 * then we know that its counts, and the counts on the filesystems below it,
497 * are already correct, so we don't have to update this filesystem.
500 dsl_dir_init_fs_ss_count(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
502 uint64_t my_fs_cnt
= 0;
503 uint64_t my_ss_cnt
= 0;
504 dsl_pool_t
*dp
= dd
->dd_pool
;
505 objset_t
*os
= dp
->dp_meta_objset
;
510 ASSERT(spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
));
511 ASSERT(dsl_pool_config_held(dp
));
512 ASSERT(dmu_tx_is_syncing(tx
));
514 dsl_dir_zapify(dd
, tx
);
517 * If the filesystem count has already been initialized then we
518 * don't need to recurse down any further.
520 if (zap_contains(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
) == 0)
523 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
524 za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
526 /* Iterate my child dirs */
527 for (zap_cursor_init(zc
, os
, dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
528 zap_cursor_retrieve(zc
, za
) == 0; zap_cursor_advance(zc
)) {
532 VERIFY0(dsl_dir_hold_obj(dp
, za
->za_first_integer
, NULL
, FTAG
,
536 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
537 * temporary datasets.
539 if (chld_dd
->dd_myname
[0] == '$' ||
540 chld_dd
->dd_myname
[0] == '%') {
541 dsl_dir_rele(chld_dd
, FTAG
);
545 my_fs_cnt
++; /* count this child */
547 dsl_dir_init_fs_ss_count(chld_dd
, tx
);
549 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
550 DD_FIELD_FILESYSTEM_COUNT
, sizeof (count
), 1, &count
));
552 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
553 DD_FIELD_SNAPSHOT_COUNT
, sizeof (count
), 1, &count
));
556 dsl_dir_rele(chld_dd
, FTAG
);
559 /* Count my snapshots (we counted children's snapshots above) */
560 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
561 dsl_dir_phys(dd
)->dd_head_dataset_obj
, FTAG
, &ds
));
563 for (zap_cursor_init(zc
, os
, dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
564 zap_cursor_retrieve(zc
, za
) == 0;
565 zap_cursor_advance(zc
)) {
566 /* Don't count temporary snapshots */
567 if (za
->za_name
[0] != '%')
572 dsl_dataset_rele(ds
, FTAG
);
574 kmem_free(zc
, sizeof (zap_cursor_t
));
575 kmem_free(za
, sizeof (zap_attribute_t
));
577 /* we're in a sync task, update counts */
578 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
579 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
580 sizeof (my_fs_cnt
), 1, &my_fs_cnt
, tx
));
581 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
582 sizeof (my_ss_cnt
), 1, &my_ss_cnt
, tx
));
586 dsl_dir_actv_fs_ss_limit_check(void *arg
, dmu_tx_t
*tx
)
588 char *ddname
= (char *)arg
;
589 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
594 error
= dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
);
598 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
599 dsl_dataset_rele(ds
, FTAG
);
600 return (SET_ERROR(ENOTSUP
));
604 if (spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
) &&
605 dsl_dir_is_zapified(dd
) &&
606 zap_contains(dp
->dp_meta_objset
, dd
->dd_object
,
607 DD_FIELD_FILESYSTEM_COUNT
) == 0) {
608 dsl_dataset_rele(ds
, FTAG
);
609 return (SET_ERROR(EALREADY
));
612 dsl_dataset_rele(ds
, FTAG
);
617 dsl_dir_actv_fs_ss_limit_sync(void *arg
, dmu_tx_t
*tx
)
619 char *ddname
= (char *)arg
;
620 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
624 VERIFY0(dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
));
626 spa
= dsl_dataset_get_spa(ds
);
628 if (!spa_feature_is_active(spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
630 * Since the feature was not active and we're now setting a
631 * limit, increment the feature-active counter so that the
632 * feature becomes active for the first time.
634 * We are already in a sync task so we can update the MOS.
636 spa_feature_incr(spa
, SPA_FEATURE_FS_SS_LIMIT
, tx
);
640 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
641 * we need to ensure the counts are correct. Descend down the tree from
642 * this point and update all of the counts to be accurate.
644 dsl_dir_init_fs_ss_count(ds
->ds_dir
, tx
);
646 dsl_dataset_rele(ds
, FTAG
);
650 * Make sure the feature is enabled and activate it if necessary.
651 * Since we're setting a limit, ensure the on-disk counts are valid.
652 * This is only called by the ioctl path when setting a limit value.
654 * We do not need to validate the new limit, since users who can change the
655 * limit are also allowed to exceed the limit.
658 dsl_dir_activate_fs_ss_limit(const char *ddname
)
662 error
= dsl_sync_task(ddname
, dsl_dir_actv_fs_ss_limit_check
,
663 dsl_dir_actv_fs_ss_limit_sync
, (void *)ddname
, 0,
664 ZFS_SPACE_CHECK_RESERVED
);
666 if (error
== EALREADY
)
673 * Used to determine if the filesystem_limit or snapshot_limit should be
674 * enforced. We allow the limit to be exceeded if the user has permission to
675 * write the property value. We pass in the creds that we got in the open
676 * context since we will always be the GZ root in syncing context. We also have
677 * to handle the case where we are allowed to change the limit on the current
678 * dataset, but there may be another limit in the tree above.
680 * We can never modify these two properties within a non-global zone. In
681 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
682 * can't use that function since we are already holding the dp_config_rwlock.
683 * In addition, we already have the dd and dealing with snapshots is simplified
694 dsl_enforce_ds_ss_limits(dsl_dir_t
*dd
, zfs_prop_t prop
, cred_t
*cr
)
696 enforce_res_t enforce
= ENFORCE_ALWAYS
;
701 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
702 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
705 if (crgetzoneid(cr
) != GLOBAL_ZONEID
)
706 return (ENFORCE_ALWAYS
);
708 if (secpolicy_zfs(cr
) == 0)
709 return (ENFORCE_NEVER
);
712 if ((obj
= dsl_dir_phys(dd
)->dd_head_dataset_obj
) == 0)
713 return (ENFORCE_ALWAYS
);
715 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
717 if (dsl_dataset_hold_obj(dd
->dd_pool
, obj
, FTAG
, &ds
) != 0)
718 return (ENFORCE_ALWAYS
);
720 if (dsl_prop_get_ds(ds
, "zoned", 8, 1, &zoned
, NULL
) || zoned
) {
721 /* Only root can access zoned fs's from the GZ */
722 enforce
= ENFORCE_ALWAYS
;
724 if (dsl_deleg_access_impl(ds
, zfs_prop_to_name(prop
), cr
) == 0)
725 enforce
= ENFORCE_ABOVE
;
728 dsl_dataset_rele(ds
, FTAG
);
733 * Check if adding additional child filesystem(s) would exceed any filesystem
734 * limits or adding additional snapshot(s) would exceed any snapshot limits.
735 * The prop argument indicates which limit to check.
737 * Note that all filesystem limits up to the root (or the highest
738 * initialized) filesystem or the given ancestor must be satisfied.
741 dsl_fs_ss_limit_check(dsl_dir_t
*dd
, uint64_t delta
, zfs_prop_t prop
,
742 dsl_dir_t
*ancestor
, cred_t
*cr
)
744 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
745 uint64_t limit
, count
;
747 enforce_res_t enforce
;
750 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
751 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
752 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
755 * If we're allowed to change the limit, don't enforce the limit
756 * e.g. this can happen if a snapshot is taken by an administrative
757 * user in the global zone (i.e. a recursive snapshot by root).
758 * However, we must handle the case of delegated permissions where we
759 * are allowed to change the limit on the current dataset, but there
760 * is another limit in the tree above.
762 enforce
= dsl_enforce_ds_ss_limits(dd
, prop
, cr
);
763 if (enforce
== ENFORCE_NEVER
)
767 * e.g. if renaming a dataset with no snapshots, count adjustment
773 if (prop
== ZFS_PROP_SNAPSHOT_LIMIT
) {
775 * We don't enforce the limit for temporary snapshots. This is
776 * indicated by a NULL cred_t argument.
781 count_prop
= DD_FIELD_SNAPSHOT_COUNT
;
783 count_prop
= DD_FIELD_FILESYSTEM_COUNT
;
787 * If an ancestor has been provided, stop checking the limit once we
788 * hit that dir. We need this during rename so that we don't overcount
789 * the check once we recurse up to the common ancestor.
795 * If we hit an uninitialized node while recursing up the tree, we can
796 * stop since we know there is no limit here (or above). The counts are
797 * not valid on this node and we know we won't touch this node's counts.
799 if (!dsl_dir_is_zapified(dd
) || zap_lookup(os
, dd
->dd_object
,
800 count_prop
, sizeof (count
), 1, &count
) == ENOENT
)
803 err
= dsl_prop_get_dd(dd
, zfs_prop_to_name(prop
), 8, 1, &limit
, NULL
,
808 /* Is there a limit which we've hit? */
809 if (enforce
== ENFORCE_ALWAYS
&& (count
+ delta
) > limit
)
810 return (SET_ERROR(EDQUOT
));
812 if (dd
->dd_parent
!= NULL
)
813 err
= dsl_fs_ss_limit_check(dd
->dd_parent
, delta
, prop
,
820 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
821 * parents. When a new filesystem/snapshot is created, increment the count on
822 * all parents, and when a filesystem/snapshot is destroyed, decrement the
826 dsl_fs_ss_count_adjust(dsl_dir_t
*dd
, int64_t delta
, const char *prop
,
830 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
833 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
834 ASSERT(dmu_tx_is_syncing(tx
));
835 ASSERT(strcmp(prop
, DD_FIELD_FILESYSTEM_COUNT
) == 0 ||
836 strcmp(prop
, DD_FIELD_SNAPSHOT_COUNT
) == 0);
839 * When we receive an incremental stream into a filesystem that already
840 * exists, a temporary clone is created. We don't count this temporary
841 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
842 * $MOS & $ORIGIN) objsets.
844 if ((dd
->dd_myname
[0] == '%' || dd
->dd_myname
[0] == '$') &&
845 strcmp(prop
, DD_FIELD_FILESYSTEM_COUNT
) == 0)
849 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
855 * If we hit an uninitialized node while recursing up the tree, we can
856 * stop since we know the counts are not valid on this node and we
857 * know we shouldn't touch this node's counts. An uninitialized count
858 * on the node indicates that either the feature has not yet been
859 * activated or there are no limits on this part of the tree.
861 if (!dsl_dir_is_zapified(dd
) || (err
= zap_lookup(os
, dd
->dd_object
,
862 prop
, sizeof (count
), 1, &count
)) == ENOENT
)
867 /* Use a signed verify to make sure we're not neg. */
868 VERIFY3S(count
, >=, 0);
870 VERIFY0(zap_update(os
, dd
->dd_object
, prop
, sizeof (count
), 1, &count
,
873 /* Roll up this additional count into our ancestors */
874 if (dd
->dd_parent
!= NULL
)
875 dsl_fs_ss_count_adjust(dd
->dd_parent
, delta
, prop
, tx
);
879 dsl_dir_create_sync(dsl_pool_t
*dp
, dsl_dir_t
*pds
, const char *name
,
882 objset_t
*mos
= dp
->dp_meta_objset
;
884 dsl_dir_phys_t
*ddphys
;
887 ddobj
= dmu_object_alloc(mos
, DMU_OT_DSL_DIR
, 0,
888 DMU_OT_DSL_DIR
, sizeof (dsl_dir_phys_t
), tx
);
890 VERIFY(0 == zap_add(mos
, dsl_dir_phys(pds
)->dd_child_dir_zapobj
,
891 name
, sizeof (uint64_t), 1, &ddobj
, tx
));
893 /* it's the root dir */
894 VERIFY(0 == zap_add(mos
, DMU_POOL_DIRECTORY_OBJECT
,
895 DMU_POOL_ROOT_DATASET
, sizeof (uint64_t), 1, &ddobj
, tx
));
897 VERIFY(0 == dmu_bonus_hold(mos
, ddobj
, FTAG
, &dbuf
));
898 dmu_buf_will_dirty(dbuf
, tx
);
899 ddphys
= dbuf
->db_data
;
901 ddphys
->dd_creation_time
= gethrestime_sec();
903 ddphys
->dd_parent_obj
= pds
->dd_object
;
905 /* update the filesystem counts */
906 dsl_fs_ss_count_adjust(pds
, 1, DD_FIELD_FILESYSTEM_COUNT
, tx
);
908 ddphys
->dd_props_zapobj
= zap_create(mos
,
909 DMU_OT_DSL_PROPS
, DMU_OT_NONE
, 0, tx
);
910 ddphys
->dd_child_dir_zapobj
= zap_create(mos
,
911 DMU_OT_DSL_DIR_CHILD_MAP
, DMU_OT_NONE
, 0, tx
);
912 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_USED_BREAKDOWN
)
913 ddphys
->dd_flags
|= DD_FLAG_USED_BREAKDOWN
;
914 dmu_buf_rele(dbuf
, FTAG
);
920 dsl_dir_is_clone(dsl_dir_t
*dd
)
922 return (dsl_dir_phys(dd
)->dd_origin_obj
&&
923 (dd
->dd_pool
->dp_origin_snap
== NULL
||
924 dsl_dir_phys(dd
)->dd_origin_obj
!=
925 dd
->dd_pool
->dp_origin_snap
->ds_object
));
929 dsl_dir_stats(dsl_dir_t
*dd
, nvlist_t
*nv
)
931 mutex_enter(&dd
->dd_lock
);
932 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USED
,
933 dsl_dir_phys(dd
)->dd_used_bytes
);
934 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_QUOTA
,
935 dsl_dir_phys(dd
)->dd_quota
);
936 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_RESERVATION
,
937 dsl_dir_phys(dd
)->dd_reserved
);
938 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_COMPRESSRATIO
,
939 dsl_dir_phys(dd
)->dd_compressed_bytes
== 0 ? 100 :
940 (dsl_dir_phys(dd
)->dd_uncompressed_bytes
* 100 /
941 dsl_dir_phys(dd
)->dd_compressed_bytes
));
942 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_LOGICALUSED
,
943 dsl_dir_phys(dd
)->dd_uncompressed_bytes
);
944 if (dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
945 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDSNAP
,
946 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_SNAP
]);
947 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDDS
,
948 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_HEAD
]);
949 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDREFRESERV
,
950 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_REFRSRV
]);
951 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDCHILD
,
952 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD
] +
953 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD_RSRV
]);
955 mutex_exit(&dd
->dd_lock
);
957 if (dsl_dir_is_zapified(dd
)) {
959 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
961 if (zap_lookup(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
962 sizeof (count
), 1, &count
) == 0) {
963 dsl_prop_nvlist_add_uint64(nv
,
964 ZFS_PROP_FILESYSTEM_COUNT
, count
);
966 if (zap_lookup(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
967 sizeof (count
), 1, &count
) == 0) {
968 dsl_prop_nvlist_add_uint64(nv
,
969 ZFS_PROP_SNAPSHOT_COUNT
, count
);
973 if (dsl_dir_is_clone(dd
)) {
975 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
977 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
978 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &ds
));
979 dsl_dataset_name(ds
, buf
);
980 dsl_dataset_rele(ds
, FTAG
);
981 dsl_prop_nvlist_add_string(nv
, ZFS_PROP_ORIGIN
, buf
);
986 dsl_dir_dirty(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
988 dsl_pool_t
*dp
= dd
->dd_pool
;
990 ASSERT(dsl_dir_phys(dd
));
992 if (txg_list_add(&dp
->dp_dirty_dirs
, dd
, tx
->tx_txg
)) {
993 /* up the hold count until we can be written out */
994 dmu_buf_add_ref(dd
->dd_dbuf
, dd
);
999 parent_delta(dsl_dir_t
*dd
, uint64_t used
, int64_t delta
)
1001 uint64_t old_accounted
= MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1002 uint64_t new_accounted
=
1003 MAX(used
+ delta
, dsl_dir_phys(dd
)->dd_reserved
);
1004 return (new_accounted
- old_accounted
);
1008 dsl_dir_sync(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1010 ASSERT(dmu_tx_is_syncing(tx
));
1012 mutex_enter(&dd
->dd_lock
);
1013 ASSERT0(dd
->dd_tempreserved
[tx
->tx_txg
&TXG_MASK
]);
1014 dprintf_dd(dd
, "txg=%llu towrite=%lluK\n", tx
->tx_txg
,
1015 dd
->dd_space_towrite
[tx
->tx_txg
&TXG_MASK
] / 1024);
1016 dd
->dd_space_towrite
[tx
->tx_txg
&TXG_MASK
] = 0;
1017 mutex_exit(&dd
->dd_lock
);
1019 /* release the hold from dsl_dir_dirty */
1020 dmu_buf_rele(dd
->dd_dbuf
, dd
);
1024 dsl_dir_space_towrite(dsl_dir_t
*dd
)
1028 ASSERT(MUTEX_HELD(&dd
->dd_lock
));
1030 for (int i
= 0; i
< TXG_SIZE
; i
++) {
1031 space
+= dd
->dd_space_towrite
[i
& TXG_MASK
];
1032 ASSERT3U(dd
->dd_space_towrite
[i
& TXG_MASK
], >=, 0);
1038 * How much space would dd have available if ancestor had delta applied
1039 * to it? If ondiskonly is set, we're only interested in what's
1040 * on-disk, not estimated pending changes.
1043 dsl_dir_space_available(dsl_dir_t
*dd
,
1044 dsl_dir_t
*ancestor
, int64_t delta
, int ondiskonly
)
1046 uint64_t parentspace
, myspace
, quota
, used
;
1049 * If there are no restrictions otherwise, assume we have
1050 * unlimited space available.
1053 parentspace
= UINT64_MAX
;
1055 if (dd
->dd_parent
!= NULL
) {
1056 parentspace
= dsl_dir_space_available(dd
->dd_parent
,
1057 ancestor
, delta
, ondiskonly
);
1060 mutex_enter(&dd
->dd_lock
);
1061 if (dsl_dir_phys(dd
)->dd_quota
!= 0)
1062 quota
= dsl_dir_phys(dd
)->dd_quota
;
1063 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1065 used
+= dsl_dir_space_towrite(dd
);
1067 if (dd
->dd_parent
== NULL
) {
1068 uint64_t poolsize
= dsl_pool_adjustedsize(dd
->dd_pool
, FALSE
);
1069 quota
= MIN(quota
, poolsize
);
1072 if (dsl_dir_phys(dd
)->dd_reserved
> used
&& parentspace
!= UINT64_MAX
) {
1074 * We have some space reserved, in addition to what our
1077 parentspace
+= dsl_dir_phys(dd
)->dd_reserved
- used
;
1080 if (dd
== ancestor
) {
1082 ASSERT(used
>= -delta
);
1084 if (parentspace
!= UINT64_MAX
)
1085 parentspace
-= delta
;
1093 * the lesser of the space provided by our parent and
1094 * the space left in our quota
1096 myspace
= MIN(parentspace
, quota
- used
);
1099 mutex_exit(&dd
->dd_lock
);
1104 struct tempreserve
{
1105 list_node_t tr_node
;
1111 dsl_dir_tempreserve_impl(dsl_dir_t
*dd
, uint64_t asize
, boolean_t netfree
,
1112 boolean_t ignorequota
, list_t
*tr_list
,
1113 dmu_tx_t
*tx
, boolean_t first
)
1115 uint64_t txg
= tx
->tx_txg
;
1117 struct tempreserve
*tr
;
1118 int retval
= EDQUOT
;
1119 uint64_t ref_rsrv
= 0;
1121 ASSERT3U(txg
, !=, 0);
1122 ASSERT3S(asize
, >, 0);
1124 mutex_enter(&dd
->dd_lock
);
1127 * Check against the dsl_dir's quota. We don't add in the delta
1128 * when checking for over-quota because they get one free hit.
1130 uint64_t est_inflight
= dsl_dir_space_towrite(dd
);
1131 for (int i
= 0; i
< TXG_SIZE
; i
++)
1132 est_inflight
+= dd
->dd_tempreserved
[i
];
1133 uint64_t used_on_disk
= dsl_dir_phys(dd
)->dd_used_bytes
;
1136 * On the first iteration, fetch the dataset's used-on-disk and
1137 * refreservation values. Also, if checkrefquota is set, test if
1138 * allocating this space would exceed the dataset's refquota.
1140 if (first
&& tx
->tx_objset
) {
1142 dsl_dataset_t
*ds
= tx
->tx_objset
->os_dsl_dataset
;
1144 error
= dsl_dataset_check_quota(ds
, !netfree
,
1145 asize
, est_inflight
, &used_on_disk
, &ref_rsrv
);
1147 mutex_exit(&dd
->dd_lock
);
1153 * If this transaction will result in a net free of space,
1154 * we want to let it through.
1156 if (ignorequota
|| netfree
|| dsl_dir_phys(dd
)->dd_quota
== 0)
1159 quota
= dsl_dir_phys(dd
)->dd_quota
;
1162 * Adjust the quota against the actual pool size at the root
1163 * minus any outstanding deferred frees.
1164 * To ensure that it's possible to remove files from a full
1165 * pool without inducing transient overcommits, we throttle
1166 * netfree transactions against a quota that is slightly larger,
1167 * but still within the pool's allocation slop. In cases where
1168 * we're very close to full, this will allow a steady trickle of
1169 * removes to get through.
1171 uint64_t deferred
= 0;
1172 if (dd
->dd_parent
== NULL
) {
1173 spa_t
*spa
= dd
->dd_pool
->dp_spa
;
1174 uint64_t poolsize
= dsl_pool_adjustedsize(dd
->dd_pool
, netfree
);
1175 deferred
= metaslab_class_get_deferred(spa_normal_class(spa
));
1176 if (poolsize
- deferred
< quota
) {
1177 quota
= poolsize
- deferred
;
1183 * If they are requesting more space, and our current estimate
1184 * is over quota, they get to try again unless the actual
1185 * on-disk is over quota and there are no pending changes (which
1186 * may free up space for us).
1188 if (used_on_disk
+ est_inflight
>= quota
) {
1189 if (est_inflight
> 0 || used_on_disk
< quota
||
1190 (retval
== ENOSPC
&& used_on_disk
< quota
+ deferred
))
1192 dprintf_dd(dd
, "failing: used=%lluK inflight = %lluK "
1193 "quota=%lluK tr=%lluK err=%d\n",
1194 used_on_disk
>>10, est_inflight
>>10,
1195 quota
>>10, asize
>>10, retval
);
1196 mutex_exit(&dd
->dd_lock
);
1197 return (SET_ERROR(retval
));
1200 /* We need to up our estimated delta before dropping dd_lock */
1201 dd
->dd_tempreserved
[txg
& TXG_MASK
] += asize
;
1203 uint64_t parent_rsrv
= parent_delta(dd
, used_on_disk
+ est_inflight
,
1205 mutex_exit(&dd
->dd_lock
);
1207 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1209 tr
->tr_size
= asize
;
1210 list_insert_tail(tr_list
, tr
);
1212 /* see if it's OK with our parent */
1213 if (dd
->dd_parent
!= NULL
&& parent_rsrv
!= 0) {
1214 boolean_t ismos
= (dsl_dir_phys(dd
)->dd_head_dataset_obj
== 0);
1216 return (dsl_dir_tempreserve_impl(dd
->dd_parent
,
1217 parent_rsrv
, netfree
, ismos
, tr_list
, tx
, B_FALSE
));
1224 * Reserve space in this dsl_dir, to be used in this tx's txg.
1225 * After the space has been dirtied (and dsl_dir_willuse_space()
1226 * has been called), the reservation should be canceled, using
1227 * dsl_dir_tempreserve_clear().
1230 dsl_dir_tempreserve_space(dsl_dir_t
*dd
, uint64_t lsize
, uint64_t asize
,
1231 boolean_t netfree
, void **tr_cookiep
, dmu_tx_t
*tx
)
1241 tr_list
= kmem_alloc(sizeof (list_t
), KM_SLEEP
);
1242 list_create(tr_list
, sizeof (struct tempreserve
),
1243 offsetof(struct tempreserve
, tr_node
));
1244 ASSERT3S(asize
, >, 0);
1246 err
= arc_tempreserve_space(lsize
, tx
->tx_txg
);
1248 struct tempreserve
*tr
;
1250 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1251 tr
->tr_size
= lsize
;
1252 list_insert_tail(tr_list
, tr
);
1254 if (err
== EAGAIN
) {
1256 * If arc_memory_throttle() detected that pageout
1257 * is running and we are low on memory, we delay new
1258 * non-pageout transactions to give pageout an
1261 * It is unfortunate to be delaying while the caller's
1264 txg_delay(dd
->dd_pool
, tx
->tx_txg
,
1265 MSEC2NSEC(10), MSEC2NSEC(10));
1266 err
= SET_ERROR(ERESTART
);
1271 err
= dsl_dir_tempreserve_impl(dd
, asize
, netfree
,
1272 B_FALSE
, tr_list
, tx
, B_TRUE
);
1276 dsl_dir_tempreserve_clear(tr_list
, tx
);
1278 *tr_cookiep
= tr_list
;
1284 * Clear a temporary reservation that we previously made with
1285 * dsl_dir_tempreserve_space().
1288 dsl_dir_tempreserve_clear(void *tr_cookie
, dmu_tx_t
*tx
)
1290 int txgidx
= tx
->tx_txg
& TXG_MASK
;
1291 list_t
*tr_list
= tr_cookie
;
1292 struct tempreserve
*tr
;
1294 ASSERT3U(tx
->tx_txg
, !=, 0);
1296 if (tr_cookie
== NULL
)
1299 while ((tr
= list_head(tr_list
)) != NULL
) {
1301 mutex_enter(&tr
->tr_ds
->dd_lock
);
1302 ASSERT3U(tr
->tr_ds
->dd_tempreserved
[txgidx
], >=,
1304 tr
->tr_ds
->dd_tempreserved
[txgidx
] -= tr
->tr_size
;
1305 mutex_exit(&tr
->tr_ds
->dd_lock
);
1307 arc_tempreserve_clear(tr
->tr_size
);
1309 list_remove(tr_list
, tr
);
1310 kmem_free(tr
, sizeof (struct tempreserve
));
1313 kmem_free(tr_list
, sizeof (list_t
));
1317 * This should be called from open context when we think we're going to write
1318 * or free space, for example when dirtying data. Be conservative; it's okay
1319 * to write less space or free more, but we don't want to write more or free
1320 * less than the amount specified.
1323 dsl_dir_willuse_space(dsl_dir_t
*dd
, int64_t space
, dmu_tx_t
*tx
)
1325 int64_t parent_space
;
1328 mutex_enter(&dd
->dd_lock
);
1330 dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] += space
;
1332 est_used
= dsl_dir_space_towrite(dd
) + dsl_dir_phys(dd
)->dd_used_bytes
;
1333 parent_space
= parent_delta(dd
, est_used
, space
);
1334 mutex_exit(&dd
->dd_lock
);
1336 /* Make sure that we clean up dd_space_to* */
1337 dsl_dir_dirty(dd
, tx
);
1339 /* XXX this is potentially expensive and unnecessary... */
1340 if (parent_space
&& dd
->dd_parent
)
1341 dsl_dir_willuse_space(dd
->dd_parent
, parent_space
, tx
);
1344 /* call from syncing context when we actually write/free space for this dd */
1346 dsl_dir_diduse_space(dsl_dir_t
*dd
, dd_used_t type
,
1347 int64_t used
, int64_t compressed
, int64_t uncompressed
, dmu_tx_t
*tx
)
1349 int64_t accounted_delta
;
1352 * dsl_dataset_set_refreservation_sync_impl() calls this with
1353 * dd_lock held, so that it can atomically update
1354 * ds->ds_reserved and the dsl_dir accounting, so that
1355 * dsl_dataset_check_quota() can see dataset and dir accounting
1358 boolean_t needlock
= !MUTEX_HELD(&dd
->dd_lock
);
1360 ASSERT(dmu_tx_is_syncing(tx
));
1361 ASSERT(type
< DD_USED_NUM
);
1363 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1366 mutex_enter(&dd
->dd_lock
);
1368 parent_delta(dd
, dsl_dir_phys(dd
)->dd_used_bytes
, used
);
1369 ASSERT(used
>= 0 || dsl_dir_phys(dd
)->dd_used_bytes
>= -used
);
1370 ASSERT(compressed
>= 0 ||
1371 dsl_dir_phys(dd
)->dd_compressed_bytes
>= -compressed
);
1372 ASSERT(uncompressed
>= 0 ||
1373 dsl_dir_phys(dd
)->dd_uncompressed_bytes
>= -uncompressed
);
1374 dsl_dir_phys(dd
)->dd_used_bytes
+= used
;
1375 dsl_dir_phys(dd
)->dd_uncompressed_bytes
+= uncompressed
;
1376 dsl_dir_phys(dd
)->dd_compressed_bytes
+= compressed
;
1378 if (dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1380 dsl_dir_phys(dd
)->dd_used_breakdown
[type
] >= -used
);
1381 dsl_dir_phys(dd
)->dd_used_breakdown
[type
] += used
;
1385 for (t
= 0; t
< DD_USED_NUM
; t
++)
1386 u
+= dsl_dir_phys(dd
)->dd_used_breakdown
[t
];
1387 ASSERT3U(u
, ==, dsl_dir_phys(dd
)->dd_used_bytes
);
1391 mutex_exit(&dd
->dd_lock
);
1393 if (dd
->dd_parent
!= NULL
) {
1394 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD
,
1395 accounted_delta
, compressed
, uncompressed
, tx
);
1396 dsl_dir_transfer_space(dd
->dd_parent
,
1397 used
- accounted_delta
,
1398 DD_USED_CHILD_RSRV
, DD_USED_CHILD
, tx
);
1403 dsl_dir_transfer_space(dsl_dir_t
*dd
, int64_t delta
,
1404 dd_used_t oldtype
, dd_used_t newtype
, dmu_tx_t
*tx
)
1406 ASSERT(dmu_tx_is_syncing(tx
));
1407 ASSERT(oldtype
< DD_USED_NUM
);
1408 ASSERT(newtype
< DD_USED_NUM
);
1411 !(dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
))
1414 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1415 mutex_enter(&dd
->dd_lock
);
1417 dsl_dir_phys(dd
)->dd_used_breakdown
[oldtype
] >= delta
:
1418 dsl_dir_phys(dd
)->dd_used_breakdown
[newtype
] >= -delta
);
1419 ASSERT(dsl_dir_phys(dd
)->dd_used_bytes
>= ABS(delta
));
1420 dsl_dir_phys(dd
)->dd_used_breakdown
[oldtype
] -= delta
;
1421 dsl_dir_phys(dd
)->dd_used_breakdown
[newtype
] += delta
;
1422 mutex_exit(&dd
->dd_lock
);
1425 typedef struct dsl_dir_set_qr_arg
{
1426 const char *ddsqra_name
;
1427 zprop_source_t ddsqra_source
;
1428 uint64_t ddsqra_value
;
1429 } dsl_dir_set_qr_arg_t
;
1432 dsl_dir_set_quota_check(void *arg
, dmu_tx_t
*tx
)
1434 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1435 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1438 uint64_t towrite
, newval
;
1440 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1444 error
= dsl_prop_predict(ds
->ds_dir
, "quota",
1445 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1447 dsl_dataset_rele(ds
, FTAG
);
1452 dsl_dataset_rele(ds
, FTAG
);
1456 mutex_enter(&ds
->ds_dir
->dd_lock
);
1458 * If we are doing the preliminary check in open context, and
1459 * there are pending changes, then don't fail it, since the
1460 * pending changes could under-estimate the amount of space to be
1463 towrite
= dsl_dir_space_towrite(ds
->ds_dir
);
1464 if ((dmu_tx_is_syncing(tx
) || towrite
== 0) &&
1465 (newval
< dsl_dir_phys(ds
->ds_dir
)->dd_reserved
||
1466 newval
< dsl_dir_phys(ds
->ds_dir
)->dd_used_bytes
+ towrite
)) {
1467 error
= SET_ERROR(ENOSPC
);
1469 mutex_exit(&ds
->ds_dir
->dd_lock
);
1470 dsl_dataset_rele(ds
, FTAG
);
1475 dsl_dir_set_quota_sync(void *arg
, dmu_tx_t
*tx
)
1477 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1478 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1482 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1484 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1485 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_QUOTA
),
1486 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1487 &ddsqra
->ddsqra_value
, tx
);
1489 VERIFY0(dsl_prop_get_int_ds(ds
,
1490 zfs_prop_to_name(ZFS_PROP_QUOTA
), &newval
));
1492 newval
= ddsqra
->ddsqra_value
;
1493 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1494 zfs_prop_to_name(ZFS_PROP_QUOTA
), (longlong_t
)newval
);
1497 dmu_buf_will_dirty(ds
->ds_dir
->dd_dbuf
, tx
);
1498 mutex_enter(&ds
->ds_dir
->dd_lock
);
1499 dsl_dir_phys(ds
->ds_dir
)->dd_quota
= newval
;
1500 mutex_exit(&ds
->ds_dir
->dd_lock
);
1501 dsl_dataset_rele(ds
, FTAG
);
1505 dsl_dir_set_quota(const char *ddname
, zprop_source_t source
, uint64_t quota
)
1507 dsl_dir_set_qr_arg_t ddsqra
;
1509 ddsqra
.ddsqra_name
= ddname
;
1510 ddsqra
.ddsqra_source
= source
;
1511 ddsqra
.ddsqra_value
= quota
;
1513 return (dsl_sync_task(ddname
, dsl_dir_set_quota_check
,
1514 dsl_dir_set_quota_sync
, &ddsqra
, 0, ZFS_SPACE_CHECK_NONE
));
1518 dsl_dir_set_reservation_check(void *arg
, dmu_tx_t
*tx
)
1520 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1521 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1524 uint64_t newval
, used
, avail
;
1527 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1533 * If we are doing the preliminary check in open context, the
1534 * space estimates may be inaccurate.
1536 if (!dmu_tx_is_syncing(tx
)) {
1537 dsl_dataset_rele(ds
, FTAG
);
1541 error
= dsl_prop_predict(ds
->ds_dir
,
1542 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1543 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1545 dsl_dataset_rele(ds
, FTAG
);
1549 mutex_enter(&dd
->dd_lock
);
1550 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1551 mutex_exit(&dd
->dd_lock
);
1553 if (dd
->dd_parent
) {
1554 avail
= dsl_dir_space_available(dd
->dd_parent
,
1557 avail
= dsl_pool_adjustedsize(dd
->dd_pool
, B_FALSE
) - used
;
1560 if (MAX(used
, newval
) > MAX(used
, dsl_dir_phys(dd
)->dd_reserved
)) {
1561 uint64_t delta
= MAX(used
, newval
) -
1562 MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1564 if (delta
> avail
||
1565 (dsl_dir_phys(dd
)->dd_quota
> 0 &&
1566 newval
> dsl_dir_phys(dd
)->dd_quota
))
1567 error
= SET_ERROR(ENOSPC
);
1570 dsl_dataset_rele(ds
, FTAG
);
1575 dsl_dir_set_reservation_sync_impl(dsl_dir_t
*dd
, uint64_t value
, dmu_tx_t
*tx
)
1580 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1582 mutex_enter(&dd
->dd_lock
);
1583 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1584 delta
= MAX(used
, value
) - MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1585 dsl_dir_phys(dd
)->dd_reserved
= value
;
1587 if (dd
->dd_parent
!= NULL
) {
1588 /* Roll up this additional usage into our ancestors */
1589 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
1592 mutex_exit(&dd
->dd_lock
);
1597 dsl_dir_set_reservation_sync(void *arg
, dmu_tx_t
*tx
)
1599 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1600 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1604 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1606 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1607 dsl_prop_set_sync_impl(ds
,
1608 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1609 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1610 &ddsqra
->ddsqra_value
, tx
);
1612 VERIFY0(dsl_prop_get_int_ds(ds
,
1613 zfs_prop_to_name(ZFS_PROP_RESERVATION
), &newval
));
1615 newval
= ddsqra
->ddsqra_value
;
1616 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1617 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1618 (longlong_t
)newval
);
1621 dsl_dir_set_reservation_sync_impl(ds
->ds_dir
, newval
, tx
);
1622 dsl_dataset_rele(ds
, FTAG
);
1626 dsl_dir_set_reservation(const char *ddname
, zprop_source_t source
,
1627 uint64_t reservation
)
1629 dsl_dir_set_qr_arg_t ddsqra
;
1631 ddsqra
.ddsqra_name
= ddname
;
1632 ddsqra
.ddsqra_source
= source
;
1633 ddsqra
.ddsqra_value
= reservation
;
1635 return (dsl_sync_task(ddname
, dsl_dir_set_reservation_check
,
1636 dsl_dir_set_reservation_sync
, &ddsqra
, 0, ZFS_SPACE_CHECK_NONE
));
1640 closest_common_ancestor(dsl_dir_t
*ds1
, dsl_dir_t
*ds2
)
1642 for (; ds1
; ds1
= ds1
->dd_parent
) {
1644 for (dd
= ds2
; dd
; dd
= dd
->dd_parent
) {
1653 * If delta is applied to dd, how much of that delta would be applied to
1654 * ancestor? Syncing context only.
1657 would_change(dsl_dir_t
*dd
, int64_t delta
, dsl_dir_t
*ancestor
)
1662 mutex_enter(&dd
->dd_lock
);
1663 delta
= parent_delta(dd
, dsl_dir_phys(dd
)->dd_used_bytes
, delta
);
1664 mutex_exit(&dd
->dd_lock
);
1665 return (would_change(dd
->dd_parent
, delta
, ancestor
));
1668 typedef struct dsl_dir_rename_arg
{
1669 const char *ddra_oldname
;
1670 const char *ddra_newname
;
1672 } dsl_dir_rename_arg_t
;
1676 dsl_valid_rename(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
1679 char namebuf
[ZFS_MAX_DATASET_NAME_LEN
];
1681 dsl_dataset_name(ds
, namebuf
);
1683 if (strlen(namebuf
) + *deltap
>= ZFS_MAX_DATASET_NAME_LEN
)
1684 return (SET_ERROR(ENAMETOOLONG
));
1689 dsl_dir_rename_check(void *arg
, dmu_tx_t
*tx
)
1691 dsl_dir_rename_arg_t
*ddra
= arg
;
1692 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1693 dsl_dir_t
*dd
, *newparent
;
1694 const char *mynewname
;
1696 int delta
= strlen(ddra
->ddra_newname
) - strlen(ddra
->ddra_oldname
);
1698 /* target dir should exist */
1699 error
= dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
);
1703 /* new parent should exist */
1704 error
= dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
,
1705 &newparent
, &mynewname
);
1707 dsl_dir_rele(dd
, FTAG
);
1711 /* can't rename to different pool */
1712 if (dd
->dd_pool
!= newparent
->dd_pool
) {
1713 dsl_dir_rele(newparent
, FTAG
);
1714 dsl_dir_rele(dd
, FTAG
);
1715 return (SET_ERROR(ENXIO
));
1718 /* new name should not already exist */
1719 if (mynewname
== NULL
) {
1720 dsl_dir_rele(newparent
, FTAG
);
1721 dsl_dir_rele(dd
, FTAG
);
1722 return (SET_ERROR(EEXIST
));
1725 /* if the name length is growing, validate child name lengths */
1727 error
= dmu_objset_find_dp(dp
, dd
->dd_object
, dsl_valid_rename
,
1728 &delta
, DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
1730 dsl_dir_rele(newparent
, FTAG
);
1731 dsl_dir_rele(dd
, FTAG
);
1736 if (dmu_tx_is_syncing(tx
)) {
1737 if (spa_feature_is_active(dp
->dp_spa
,
1738 SPA_FEATURE_FS_SS_LIMIT
)) {
1740 * Although this is the check function and we don't
1741 * normally make on-disk changes in check functions,
1742 * we need to do that here.
1744 * Ensure this portion of the tree's counts have been
1745 * initialized in case the new parent has limits set.
1747 dsl_dir_init_fs_ss_count(dd
, tx
);
1751 if (newparent
!= dd
->dd_parent
) {
1752 /* is there enough space? */
1754 MAX(dsl_dir_phys(dd
)->dd_used_bytes
,
1755 dsl_dir_phys(dd
)->dd_reserved
);
1756 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1757 uint64_t fs_cnt
= 0;
1758 uint64_t ss_cnt
= 0;
1760 if (dsl_dir_is_zapified(dd
)) {
1763 err
= zap_lookup(os
, dd
->dd_object
,
1764 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
1766 if (err
!= ENOENT
&& err
!= 0) {
1767 dsl_dir_rele(newparent
, FTAG
);
1768 dsl_dir_rele(dd
, FTAG
);
1773 * have to add 1 for the filesystem itself that we're
1778 err
= zap_lookup(os
, dd
->dd_object
,
1779 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
1781 if (err
!= ENOENT
&& err
!= 0) {
1782 dsl_dir_rele(newparent
, FTAG
);
1783 dsl_dir_rele(dd
, FTAG
);
1788 /* no rename into our descendant */
1789 if (closest_common_ancestor(dd
, newparent
) == dd
) {
1790 dsl_dir_rele(newparent
, FTAG
);
1791 dsl_dir_rele(dd
, FTAG
);
1792 return (SET_ERROR(EINVAL
));
1795 error
= dsl_dir_transfer_possible(dd
->dd_parent
,
1796 newparent
, fs_cnt
, ss_cnt
, myspace
, ddra
->ddra_cred
);
1798 dsl_dir_rele(newparent
, FTAG
);
1799 dsl_dir_rele(dd
, FTAG
);
1804 dsl_dir_rele(newparent
, FTAG
);
1805 dsl_dir_rele(dd
, FTAG
);
1810 dsl_dir_rename_sync(void *arg
, dmu_tx_t
*tx
)
1812 dsl_dir_rename_arg_t
*ddra
= arg
;
1813 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1814 dsl_dir_t
*dd
, *newparent
;
1815 const char *mynewname
;
1817 objset_t
*mos
= dp
->dp_meta_objset
;
1819 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
));
1820 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
, &newparent
,
1823 /* Log this before we change the name. */
1824 spa_history_log_internal_dd(dd
, "rename", tx
,
1825 "-> %s", ddra
->ddra_newname
);
1827 if (newparent
!= dd
->dd_parent
) {
1828 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1829 uint64_t fs_cnt
= 0;
1830 uint64_t ss_cnt
= 0;
1833 * We already made sure the dd counts were initialized in the
1836 if (spa_feature_is_active(dp
->dp_spa
,
1837 SPA_FEATURE_FS_SS_LIMIT
)) {
1838 VERIFY0(zap_lookup(os
, dd
->dd_object
,
1839 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
1841 /* add 1 for the filesystem itself that we're moving */
1844 VERIFY0(zap_lookup(os
, dd
->dd_object
,
1845 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
1849 dsl_fs_ss_count_adjust(dd
->dd_parent
, -fs_cnt
,
1850 DD_FIELD_FILESYSTEM_COUNT
, tx
);
1851 dsl_fs_ss_count_adjust(newparent
, fs_cnt
,
1852 DD_FIELD_FILESYSTEM_COUNT
, tx
);
1854 dsl_fs_ss_count_adjust(dd
->dd_parent
, -ss_cnt
,
1855 DD_FIELD_SNAPSHOT_COUNT
, tx
);
1856 dsl_fs_ss_count_adjust(newparent
, ss_cnt
,
1857 DD_FIELD_SNAPSHOT_COUNT
, tx
);
1859 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD
,
1860 -dsl_dir_phys(dd
)->dd_used_bytes
,
1861 -dsl_dir_phys(dd
)->dd_compressed_bytes
,
1862 -dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
1863 dsl_dir_diduse_space(newparent
, DD_USED_CHILD
,
1864 dsl_dir_phys(dd
)->dd_used_bytes
,
1865 dsl_dir_phys(dd
)->dd_compressed_bytes
,
1866 dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
1868 if (dsl_dir_phys(dd
)->dd_reserved
>
1869 dsl_dir_phys(dd
)->dd_used_bytes
) {
1870 uint64_t unused_rsrv
= dsl_dir_phys(dd
)->dd_reserved
-
1871 dsl_dir_phys(dd
)->dd_used_bytes
;
1873 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
1874 -unused_rsrv
, 0, 0, tx
);
1875 dsl_dir_diduse_space(newparent
, DD_USED_CHILD_RSRV
,
1876 unused_rsrv
, 0, 0, tx
);
1880 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1882 /* remove from old parent zapobj */
1883 error
= zap_remove(mos
,
1884 dsl_dir_phys(dd
->dd_parent
)->dd_child_dir_zapobj
,
1888 (void) strcpy(dd
->dd_myname
, mynewname
);
1889 dsl_dir_rele(dd
->dd_parent
, dd
);
1890 dsl_dir_phys(dd
)->dd_parent_obj
= newparent
->dd_object
;
1891 VERIFY0(dsl_dir_hold_obj(dp
,
1892 newparent
->dd_object
, NULL
, dd
, &dd
->dd_parent
));
1894 /* add to new parent zapobj */
1895 VERIFY0(zap_add(mos
, dsl_dir_phys(newparent
)->dd_child_dir_zapobj
,
1896 dd
->dd_myname
, 8, 1, &dd
->dd_object
, tx
));
1898 dsl_prop_notify_all(dd
);
1900 dsl_dir_rele(newparent
, FTAG
);
1901 dsl_dir_rele(dd
, FTAG
);
1905 dsl_dir_rename(const char *oldname
, const char *newname
)
1907 dsl_dir_rename_arg_t ddra
;
1909 ddra
.ddra_oldname
= oldname
;
1910 ddra
.ddra_newname
= newname
;
1911 ddra
.ddra_cred
= CRED();
1913 return (dsl_sync_task(oldname
,
1914 dsl_dir_rename_check
, dsl_dir_rename_sync
, &ddra
,
1915 3, ZFS_SPACE_CHECK_RESERVED
));
1919 dsl_dir_transfer_possible(dsl_dir_t
*sdd
, dsl_dir_t
*tdd
,
1920 uint64_t fs_cnt
, uint64_t ss_cnt
, uint64_t space
, cred_t
*cr
)
1922 dsl_dir_t
*ancestor
;
1927 ancestor
= closest_common_ancestor(sdd
, tdd
);
1928 adelta
= would_change(sdd
, -space
, ancestor
);
1929 avail
= dsl_dir_space_available(tdd
, ancestor
, adelta
, FALSE
);
1931 return (SET_ERROR(ENOSPC
));
1933 err
= dsl_fs_ss_limit_check(tdd
, fs_cnt
, ZFS_PROP_FILESYSTEM_LIMIT
,
1937 err
= dsl_fs_ss_limit_check(tdd
, ss_cnt
, ZFS_PROP_SNAPSHOT_LIMIT
,
1946 dsl_dir_snap_cmtime(dsl_dir_t
*dd
)
1950 mutex_enter(&dd
->dd_lock
);
1951 t
= dd
->dd_snap_cmtime
;
1952 mutex_exit(&dd
->dd_lock
);
1958 dsl_dir_snap_cmtime_update(dsl_dir_t
*dd
)
1963 mutex_enter(&dd
->dd_lock
);
1964 dd
->dd_snap_cmtime
= t
;
1965 mutex_exit(&dd
->dd_lock
);
1969 dsl_dir_zapify(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1971 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
1972 dmu_object_zapify(mos
, dd
->dd_object
, DMU_OT_DSL_DIR
, tx
);
1976 dsl_dir_is_zapified(dsl_dir_t
*dd
)
1978 dmu_object_info_t doi
;
1980 dmu_object_info_from_db(dd
->dd_dbuf
, &doi
);
1981 return (doi
.doi_type
== DMU_OTN_ZAP_METADATA
);