8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / common / fs / zfs / metaslab.c
bloba68dd0daa8357c1c5aca347eb27d1b4f315fd566
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
38 #define GANG_ALLOCATION(flags) \
39 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
41 uint64_t metaslab_aliquot = 512ULL << 10;
42 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
45 * The in-core space map representation is more compact than its on-disk form.
46 * The zfs_condense_pct determines how much more compact the in-core
47 * space map representation must be before we compact it on-disk.
48 * Values should be greater than or equal to 100.
50 int zfs_condense_pct = 200;
53 * Condensing a metaslab is not guaranteed to actually reduce the amount of
54 * space used on disk. In particular, a space map uses data in increments of
55 * MAX(1 << ashift, space_map_blksize), so a metaslab might use the
56 * same number of blocks after condensing. Since the goal of condensing is to
57 * reduce the number of IOPs required to read the space map, we only want to
58 * condense when we can be sure we will reduce the number of blocks used by the
59 * space map. Unfortunately, we cannot precisely compute whether or not this is
60 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
61 * we apply the following heuristic: do not condense a spacemap unless the
62 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
63 * blocks.
65 int zfs_metaslab_condense_block_threshold = 4;
68 * The zfs_mg_noalloc_threshold defines which metaslab groups should
69 * be eligible for allocation. The value is defined as a percentage of
70 * free space. Metaslab groups that have more free space than
71 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
72 * a metaslab group's free space is less than or equal to the
73 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
74 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
75 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
76 * groups are allowed to accept allocations. Gang blocks are always
77 * eligible to allocate on any metaslab group. The default value of 0 means
78 * no metaslab group will be excluded based on this criterion.
80 int zfs_mg_noalloc_threshold = 0;
83 * Metaslab groups are considered eligible for allocations if their
84 * fragmenation metric (measured as a percentage) is less than or equal to
85 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
86 * then it will be skipped unless all metaslab groups within the metaslab
87 * class have also crossed this threshold.
89 int zfs_mg_fragmentation_threshold = 85;
92 * Allow metaslabs to keep their active state as long as their fragmentation
93 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
94 * active metaslab that exceeds this threshold will no longer keep its active
95 * status allowing better metaslabs to be selected.
97 int zfs_metaslab_fragmentation_threshold = 70;
100 * When set will load all metaslabs when pool is first opened.
102 int metaslab_debug_load = 0;
105 * When set will prevent metaslabs from being unloaded.
107 int metaslab_debug_unload = 0;
110 * Minimum size which forces the dynamic allocator to change
111 * it's allocation strategy. Once the space map cannot satisfy
112 * an allocation of this size then it switches to using more
113 * aggressive strategy (i.e search by size rather than offset).
115 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
118 * The minimum free space, in percent, which must be available
119 * in a space map to continue allocations in a first-fit fashion.
120 * Once the space map's free space drops below this level we dynamically
121 * switch to using best-fit allocations.
123 int metaslab_df_free_pct = 4;
126 * A metaslab is considered "free" if it contains a contiguous
127 * segment which is greater than metaslab_min_alloc_size.
129 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
132 * Percentage of all cpus that can be used by the metaslab taskq.
134 int metaslab_load_pct = 50;
137 * Determines how many txgs a metaslab may remain loaded without having any
138 * allocations from it. As long as a metaslab continues to be used we will
139 * keep it loaded.
141 int metaslab_unload_delay = TXG_SIZE * 2;
144 * Max number of metaslabs per group to preload.
146 int metaslab_preload_limit = SPA_DVAS_PER_BP;
149 * Enable/disable preloading of metaslab.
151 boolean_t metaslab_preload_enabled = B_TRUE;
154 * Enable/disable fragmentation weighting on metaslabs.
156 boolean_t metaslab_fragmentation_factor_enabled = B_TRUE;
159 * Enable/disable lba weighting (i.e. outer tracks are given preference).
161 boolean_t metaslab_lba_weighting_enabled = B_TRUE;
164 * Enable/disable metaslab group biasing.
166 boolean_t metaslab_bias_enabled = B_TRUE;
169 * Enable/disable segment-based metaslab selection.
171 boolean_t zfs_metaslab_segment_weight_enabled = B_TRUE;
174 * When using segment-based metaslab selection, we will continue
175 * allocating from the active metaslab until we have exhausted
176 * zfs_metaslab_switch_threshold of its buckets.
178 int zfs_metaslab_switch_threshold = 2;
181 * Internal switch to enable/disable the metaslab allocation tracing
182 * facility.
184 boolean_t metaslab_trace_enabled = B_TRUE;
187 * Maximum entries that the metaslab allocation tracing facility will keep
188 * in a given list when running in non-debug mode. We limit the number
189 * of entries in non-debug mode to prevent us from using up too much memory.
190 * The limit should be sufficiently large that we don't expect any allocation
191 * to every exceed this value. In debug mode, the system will panic if this
192 * limit is ever reached allowing for further investigation.
194 uint64_t metaslab_trace_max_entries = 5000;
196 static uint64_t metaslab_weight(metaslab_t *);
197 static void metaslab_set_fragmentation(metaslab_t *);
199 kmem_cache_t *metaslab_alloc_trace_cache;
202 * ==========================================================================
203 * Metaslab classes
204 * ==========================================================================
206 metaslab_class_t *
207 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
209 metaslab_class_t *mc;
211 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
213 mc->mc_spa = spa;
214 mc->mc_rotor = NULL;
215 mc->mc_ops = ops;
216 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
217 refcount_create_tracked(&mc->mc_alloc_slots);
219 return (mc);
222 void
223 metaslab_class_destroy(metaslab_class_t *mc)
225 ASSERT(mc->mc_rotor == NULL);
226 ASSERT(mc->mc_alloc == 0);
227 ASSERT(mc->mc_deferred == 0);
228 ASSERT(mc->mc_space == 0);
229 ASSERT(mc->mc_dspace == 0);
231 refcount_destroy(&mc->mc_alloc_slots);
232 mutex_destroy(&mc->mc_lock);
233 kmem_free(mc, sizeof (metaslab_class_t));
237 metaslab_class_validate(metaslab_class_t *mc)
239 metaslab_group_t *mg;
240 vdev_t *vd;
243 * Must hold one of the spa_config locks.
245 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
246 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
248 if ((mg = mc->mc_rotor) == NULL)
249 return (0);
251 do {
252 vd = mg->mg_vd;
253 ASSERT(vd->vdev_mg != NULL);
254 ASSERT3P(vd->vdev_top, ==, vd);
255 ASSERT3P(mg->mg_class, ==, mc);
256 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
257 } while ((mg = mg->mg_next) != mc->mc_rotor);
259 return (0);
262 void
263 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
264 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
266 atomic_add_64(&mc->mc_alloc, alloc_delta);
267 atomic_add_64(&mc->mc_deferred, defer_delta);
268 atomic_add_64(&mc->mc_space, space_delta);
269 atomic_add_64(&mc->mc_dspace, dspace_delta);
272 uint64_t
273 metaslab_class_get_alloc(metaslab_class_t *mc)
275 return (mc->mc_alloc);
278 uint64_t
279 metaslab_class_get_deferred(metaslab_class_t *mc)
281 return (mc->mc_deferred);
284 uint64_t
285 metaslab_class_get_space(metaslab_class_t *mc)
287 return (mc->mc_space);
290 uint64_t
291 metaslab_class_get_dspace(metaslab_class_t *mc)
293 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
296 void
297 metaslab_class_histogram_verify(metaslab_class_t *mc)
299 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
300 uint64_t *mc_hist;
301 int i;
303 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
304 return;
306 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
307 KM_SLEEP);
309 for (int c = 0; c < rvd->vdev_children; c++) {
310 vdev_t *tvd = rvd->vdev_child[c];
311 metaslab_group_t *mg = tvd->vdev_mg;
314 * Skip any holes, uninitialized top-levels, or
315 * vdevs that are not in this metalab class.
317 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
318 mg->mg_class != mc) {
319 continue;
322 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
323 mc_hist[i] += mg->mg_histogram[i];
326 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
327 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
329 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
333 * Calculate the metaslab class's fragmentation metric. The metric
334 * is weighted based on the space contribution of each metaslab group.
335 * The return value will be a number between 0 and 100 (inclusive), or
336 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
337 * zfs_frag_table for more information about the metric.
339 uint64_t
340 metaslab_class_fragmentation(metaslab_class_t *mc)
342 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
343 uint64_t fragmentation = 0;
345 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
347 for (int c = 0; c < rvd->vdev_children; c++) {
348 vdev_t *tvd = rvd->vdev_child[c];
349 metaslab_group_t *mg = tvd->vdev_mg;
352 * Skip any holes, uninitialized top-levels, or
353 * vdevs that are not in this metalab class.
355 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
356 mg->mg_class != mc) {
357 continue;
361 * If a metaslab group does not contain a fragmentation
362 * metric then just bail out.
364 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
365 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
366 return (ZFS_FRAG_INVALID);
370 * Determine how much this metaslab_group is contributing
371 * to the overall pool fragmentation metric.
373 fragmentation += mg->mg_fragmentation *
374 metaslab_group_get_space(mg);
376 fragmentation /= metaslab_class_get_space(mc);
378 ASSERT3U(fragmentation, <=, 100);
379 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
380 return (fragmentation);
384 * Calculate the amount of expandable space that is available in
385 * this metaslab class. If a device is expanded then its expandable
386 * space will be the amount of allocatable space that is currently not
387 * part of this metaslab class.
389 uint64_t
390 metaslab_class_expandable_space(metaslab_class_t *mc)
392 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
393 uint64_t space = 0;
395 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
396 for (int c = 0; c < rvd->vdev_children; c++) {
397 uint64_t tspace;
398 vdev_t *tvd = rvd->vdev_child[c];
399 metaslab_group_t *mg = tvd->vdev_mg;
401 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
402 mg->mg_class != mc) {
403 continue;
407 * Calculate if we have enough space to add additional
408 * metaslabs. We report the expandable space in terms
409 * of the metaslab size since that's the unit of expansion.
410 * Adjust by efi system partition size.
412 tspace = tvd->vdev_max_asize - tvd->vdev_asize;
413 if (tspace > mc->mc_spa->spa_bootsize) {
414 tspace -= mc->mc_spa->spa_bootsize;
416 space += P2ALIGN(tspace, 1ULL << tvd->vdev_ms_shift);
418 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
419 return (space);
422 static int
423 metaslab_compare(const void *x1, const void *x2)
425 const metaslab_t *m1 = x1;
426 const metaslab_t *m2 = x2;
428 if (m1->ms_weight < m2->ms_weight)
429 return (1);
430 if (m1->ms_weight > m2->ms_weight)
431 return (-1);
434 * If the weights are identical, use the offset to force uniqueness.
436 if (m1->ms_start < m2->ms_start)
437 return (-1);
438 if (m1->ms_start > m2->ms_start)
439 return (1);
441 ASSERT3P(m1, ==, m2);
443 return (0);
447 * Verify that the space accounting on disk matches the in-core range_trees.
449 void
450 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
452 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
453 uint64_t allocated = 0;
454 uint64_t sm_free_space, msp_free_space;
456 ASSERT(MUTEX_HELD(&msp->ms_lock));
458 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
459 return;
462 * We can only verify the metaslab space when we're called
463 * from syncing context with a loaded metaslab that has an allocated
464 * space map. Calling this in non-syncing context does not
465 * provide a consistent view of the metaslab since we're performing
466 * allocations in the future.
468 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
469 !msp->ms_loaded)
470 return;
472 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
473 space_map_alloc_delta(msp->ms_sm);
476 * Account for future allocations since we would have already
477 * deducted that space from the ms_freetree.
479 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
480 allocated +=
481 range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]);
484 msp_free_space = range_tree_space(msp->ms_tree) + allocated +
485 msp->ms_deferspace + range_tree_space(msp->ms_freedtree);
487 VERIFY3U(sm_free_space, ==, msp_free_space);
491 * ==========================================================================
492 * Metaslab groups
493 * ==========================================================================
496 * Update the allocatable flag and the metaslab group's capacity.
497 * The allocatable flag is set to true if the capacity is below
498 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
499 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
500 * transitions from allocatable to non-allocatable or vice versa then the
501 * metaslab group's class is updated to reflect the transition.
503 static void
504 metaslab_group_alloc_update(metaslab_group_t *mg)
506 vdev_t *vd = mg->mg_vd;
507 metaslab_class_t *mc = mg->mg_class;
508 vdev_stat_t *vs = &vd->vdev_stat;
509 boolean_t was_allocatable;
510 boolean_t was_initialized;
512 ASSERT(vd == vd->vdev_top);
514 mutex_enter(&mg->mg_lock);
515 was_allocatable = mg->mg_allocatable;
516 was_initialized = mg->mg_initialized;
518 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
519 (vs->vs_space + 1);
521 mutex_enter(&mc->mc_lock);
524 * If the metaslab group was just added then it won't
525 * have any space until we finish syncing out this txg.
526 * At that point we will consider it initialized and available
527 * for allocations. We also don't consider non-activated
528 * metaslab groups (e.g. vdevs that are in the middle of being removed)
529 * to be initialized, because they can't be used for allocation.
531 mg->mg_initialized = metaslab_group_initialized(mg);
532 if (!was_initialized && mg->mg_initialized) {
533 mc->mc_groups++;
534 } else if (was_initialized && !mg->mg_initialized) {
535 ASSERT3U(mc->mc_groups, >, 0);
536 mc->mc_groups--;
538 if (mg->mg_initialized)
539 mg->mg_no_free_space = B_FALSE;
542 * A metaslab group is considered allocatable if it has plenty
543 * of free space or is not heavily fragmented. We only take
544 * fragmentation into account if the metaslab group has a valid
545 * fragmentation metric (i.e. a value between 0 and 100).
547 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
548 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
549 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
550 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
553 * The mc_alloc_groups maintains a count of the number of
554 * groups in this metaslab class that are still above the
555 * zfs_mg_noalloc_threshold. This is used by the allocating
556 * threads to determine if they should avoid allocations to
557 * a given group. The allocator will avoid allocations to a group
558 * if that group has reached or is below the zfs_mg_noalloc_threshold
559 * and there are still other groups that are above the threshold.
560 * When a group transitions from allocatable to non-allocatable or
561 * vice versa we update the metaslab class to reflect that change.
562 * When the mc_alloc_groups value drops to 0 that means that all
563 * groups have reached the zfs_mg_noalloc_threshold making all groups
564 * eligible for allocations. This effectively means that all devices
565 * are balanced again.
567 if (was_allocatable && !mg->mg_allocatable)
568 mc->mc_alloc_groups--;
569 else if (!was_allocatable && mg->mg_allocatable)
570 mc->mc_alloc_groups++;
571 mutex_exit(&mc->mc_lock);
573 mutex_exit(&mg->mg_lock);
576 metaslab_group_t *
577 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
579 metaslab_group_t *mg;
581 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
582 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
583 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
584 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
585 mg->mg_vd = vd;
586 mg->mg_class = mc;
587 mg->mg_activation_count = 0;
588 mg->mg_initialized = B_FALSE;
589 mg->mg_no_free_space = B_TRUE;
590 refcount_create_tracked(&mg->mg_alloc_queue_depth);
592 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
593 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
595 return (mg);
598 void
599 metaslab_group_destroy(metaslab_group_t *mg)
601 ASSERT(mg->mg_prev == NULL);
602 ASSERT(mg->mg_next == NULL);
604 * We may have gone below zero with the activation count
605 * either because we never activated in the first place or
606 * because we're done, and possibly removing the vdev.
608 ASSERT(mg->mg_activation_count <= 0);
610 taskq_destroy(mg->mg_taskq);
611 avl_destroy(&mg->mg_metaslab_tree);
612 mutex_destroy(&mg->mg_lock);
613 refcount_destroy(&mg->mg_alloc_queue_depth);
614 kmem_free(mg, sizeof (metaslab_group_t));
617 void
618 metaslab_group_activate(metaslab_group_t *mg)
620 metaslab_class_t *mc = mg->mg_class;
621 metaslab_group_t *mgprev, *mgnext;
623 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
625 ASSERT(mc->mc_rotor != mg);
626 ASSERT(mg->mg_prev == NULL);
627 ASSERT(mg->mg_next == NULL);
628 ASSERT(mg->mg_activation_count <= 0);
630 if (++mg->mg_activation_count <= 0)
631 return;
633 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
634 metaslab_group_alloc_update(mg);
636 if ((mgprev = mc->mc_rotor) == NULL) {
637 mg->mg_prev = mg;
638 mg->mg_next = mg;
639 } else {
640 mgnext = mgprev->mg_next;
641 mg->mg_prev = mgprev;
642 mg->mg_next = mgnext;
643 mgprev->mg_next = mg;
644 mgnext->mg_prev = mg;
646 mc->mc_rotor = mg;
649 void
650 metaslab_group_passivate(metaslab_group_t *mg)
652 metaslab_class_t *mc = mg->mg_class;
653 metaslab_group_t *mgprev, *mgnext;
655 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
657 if (--mg->mg_activation_count != 0) {
658 ASSERT(mc->mc_rotor != mg);
659 ASSERT(mg->mg_prev == NULL);
660 ASSERT(mg->mg_next == NULL);
661 ASSERT(mg->mg_activation_count < 0);
662 return;
665 taskq_wait(mg->mg_taskq);
666 metaslab_group_alloc_update(mg);
668 mgprev = mg->mg_prev;
669 mgnext = mg->mg_next;
671 if (mg == mgnext) {
672 mc->mc_rotor = NULL;
673 } else {
674 mc->mc_rotor = mgnext;
675 mgprev->mg_next = mgnext;
676 mgnext->mg_prev = mgprev;
679 mg->mg_prev = NULL;
680 mg->mg_next = NULL;
683 boolean_t
684 metaslab_group_initialized(metaslab_group_t *mg)
686 vdev_t *vd = mg->mg_vd;
687 vdev_stat_t *vs = &vd->vdev_stat;
689 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
692 uint64_t
693 metaslab_group_get_space(metaslab_group_t *mg)
695 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
698 void
699 metaslab_group_histogram_verify(metaslab_group_t *mg)
701 uint64_t *mg_hist;
702 vdev_t *vd = mg->mg_vd;
703 uint64_t ashift = vd->vdev_ashift;
704 int i;
706 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
707 return;
709 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
710 KM_SLEEP);
712 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
713 SPACE_MAP_HISTOGRAM_SIZE + ashift);
715 for (int m = 0; m < vd->vdev_ms_count; m++) {
716 metaslab_t *msp = vd->vdev_ms[m];
718 if (msp->ms_sm == NULL)
719 continue;
721 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
722 mg_hist[i + ashift] +=
723 msp->ms_sm->sm_phys->smp_histogram[i];
726 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
727 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
729 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
732 static void
733 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
735 metaslab_class_t *mc = mg->mg_class;
736 uint64_t ashift = mg->mg_vd->vdev_ashift;
738 ASSERT(MUTEX_HELD(&msp->ms_lock));
739 if (msp->ms_sm == NULL)
740 return;
742 mutex_enter(&mg->mg_lock);
743 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
744 mg->mg_histogram[i + ashift] +=
745 msp->ms_sm->sm_phys->smp_histogram[i];
746 mc->mc_histogram[i + ashift] +=
747 msp->ms_sm->sm_phys->smp_histogram[i];
749 mutex_exit(&mg->mg_lock);
752 void
753 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
755 metaslab_class_t *mc = mg->mg_class;
756 uint64_t ashift = mg->mg_vd->vdev_ashift;
758 ASSERT(MUTEX_HELD(&msp->ms_lock));
759 if (msp->ms_sm == NULL)
760 return;
762 mutex_enter(&mg->mg_lock);
763 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
764 ASSERT3U(mg->mg_histogram[i + ashift], >=,
765 msp->ms_sm->sm_phys->smp_histogram[i]);
766 ASSERT3U(mc->mc_histogram[i + ashift], >=,
767 msp->ms_sm->sm_phys->smp_histogram[i]);
769 mg->mg_histogram[i + ashift] -=
770 msp->ms_sm->sm_phys->smp_histogram[i];
771 mc->mc_histogram[i + ashift] -=
772 msp->ms_sm->sm_phys->smp_histogram[i];
774 mutex_exit(&mg->mg_lock);
777 static void
778 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
780 ASSERT(msp->ms_group == NULL);
781 mutex_enter(&mg->mg_lock);
782 msp->ms_group = mg;
783 msp->ms_weight = 0;
784 avl_add(&mg->mg_metaslab_tree, msp);
785 mutex_exit(&mg->mg_lock);
787 mutex_enter(&msp->ms_lock);
788 metaslab_group_histogram_add(mg, msp);
789 mutex_exit(&msp->ms_lock);
792 static void
793 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
795 mutex_enter(&msp->ms_lock);
796 metaslab_group_histogram_remove(mg, msp);
797 mutex_exit(&msp->ms_lock);
799 mutex_enter(&mg->mg_lock);
800 ASSERT(msp->ms_group == mg);
801 avl_remove(&mg->mg_metaslab_tree, msp);
802 msp->ms_group = NULL;
803 mutex_exit(&mg->mg_lock);
806 static void
807 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
810 * Although in principle the weight can be any value, in
811 * practice we do not use values in the range [1, 511].
813 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
814 ASSERT(MUTEX_HELD(&msp->ms_lock));
816 mutex_enter(&mg->mg_lock);
817 ASSERT(msp->ms_group == mg);
818 avl_remove(&mg->mg_metaslab_tree, msp);
819 msp->ms_weight = weight;
820 avl_add(&mg->mg_metaslab_tree, msp);
821 mutex_exit(&mg->mg_lock);
825 * Calculate the fragmentation for a given metaslab group. We can use
826 * a simple average here since all metaslabs within the group must have
827 * the same size. The return value will be a value between 0 and 100
828 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
829 * group have a fragmentation metric.
831 uint64_t
832 metaslab_group_fragmentation(metaslab_group_t *mg)
834 vdev_t *vd = mg->mg_vd;
835 uint64_t fragmentation = 0;
836 uint64_t valid_ms = 0;
838 for (int m = 0; m < vd->vdev_ms_count; m++) {
839 metaslab_t *msp = vd->vdev_ms[m];
841 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
842 continue;
844 valid_ms++;
845 fragmentation += msp->ms_fragmentation;
848 if (valid_ms <= vd->vdev_ms_count / 2)
849 return (ZFS_FRAG_INVALID);
851 fragmentation /= valid_ms;
852 ASSERT3U(fragmentation, <=, 100);
853 return (fragmentation);
857 * Determine if a given metaslab group should skip allocations. A metaslab
858 * group should avoid allocations if its free capacity is less than the
859 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
860 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
861 * that can still handle allocations. If the allocation throttle is enabled
862 * then we skip allocations to devices that have reached their maximum
863 * allocation queue depth unless the selected metaslab group is the only
864 * eligible group remaining.
866 static boolean_t
867 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
868 uint64_t psize)
870 spa_t *spa = mg->mg_vd->vdev_spa;
871 metaslab_class_t *mc = mg->mg_class;
874 * We can only consider skipping this metaslab group if it's
875 * in the normal metaslab class and there are other metaslab
876 * groups to select from. Otherwise, we always consider it eligible
877 * for allocations.
879 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
880 return (B_TRUE);
883 * If the metaslab group's mg_allocatable flag is set (see comments
884 * in metaslab_group_alloc_update() for more information) and
885 * the allocation throttle is disabled then allow allocations to this
886 * device. However, if the allocation throttle is enabled then
887 * check if we have reached our allocation limit (mg_alloc_queue_depth)
888 * to determine if we should allow allocations to this metaslab group.
889 * If all metaslab groups are no longer considered allocatable
890 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
891 * gang block size then we allow allocations on this metaslab group
892 * regardless of the mg_allocatable or throttle settings.
894 if (mg->mg_allocatable) {
895 metaslab_group_t *mgp;
896 int64_t qdepth;
897 uint64_t qmax = mg->mg_max_alloc_queue_depth;
899 if (!mc->mc_alloc_throttle_enabled)
900 return (B_TRUE);
903 * If this metaslab group does not have any free space, then
904 * there is no point in looking further.
906 if (mg->mg_no_free_space)
907 return (B_FALSE);
909 qdepth = refcount_count(&mg->mg_alloc_queue_depth);
912 * If this metaslab group is below its qmax or it's
913 * the only allocatable metasable group, then attempt
914 * to allocate from it.
916 if (qdepth < qmax || mc->mc_alloc_groups == 1)
917 return (B_TRUE);
918 ASSERT3U(mc->mc_alloc_groups, >, 1);
921 * Since this metaslab group is at or over its qmax, we
922 * need to determine if there are metaslab groups after this
923 * one that might be able to handle this allocation. This is
924 * racy since we can't hold the locks for all metaslab
925 * groups at the same time when we make this check.
927 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
928 qmax = mgp->mg_max_alloc_queue_depth;
930 qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
933 * If there is another metaslab group that
934 * might be able to handle the allocation, then
935 * we return false so that we skip this group.
937 if (qdepth < qmax && !mgp->mg_no_free_space)
938 return (B_FALSE);
942 * We didn't find another group to handle the allocation
943 * so we can't skip this metaslab group even though
944 * we are at or over our qmax.
946 return (B_TRUE);
948 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
949 return (B_TRUE);
951 return (B_FALSE);
955 * ==========================================================================
956 * Range tree callbacks
957 * ==========================================================================
961 * Comparison function for the private size-ordered tree. Tree is sorted
962 * by size, larger sizes at the end of the tree.
964 static int
965 metaslab_rangesize_compare(const void *x1, const void *x2)
967 const range_seg_t *r1 = x1;
968 const range_seg_t *r2 = x2;
969 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
970 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
972 if (rs_size1 < rs_size2)
973 return (-1);
974 if (rs_size1 > rs_size2)
975 return (1);
977 if (r1->rs_start < r2->rs_start)
978 return (-1);
980 if (r1->rs_start > r2->rs_start)
981 return (1);
983 return (0);
987 * Create any block allocator specific components. The current allocators
988 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
990 static void
991 metaslab_rt_create(range_tree_t *rt, void *arg)
993 metaslab_t *msp = arg;
995 ASSERT3P(rt->rt_arg, ==, msp);
996 ASSERT(msp->ms_tree == NULL);
998 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
999 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1003 * Destroy the block allocator specific components.
1005 static void
1006 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1008 metaslab_t *msp = arg;
1010 ASSERT3P(rt->rt_arg, ==, msp);
1011 ASSERT3P(msp->ms_tree, ==, rt);
1012 ASSERT0(avl_numnodes(&msp->ms_size_tree));
1014 avl_destroy(&msp->ms_size_tree);
1017 static void
1018 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1020 metaslab_t *msp = arg;
1022 ASSERT3P(rt->rt_arg, ==, msp);
1023 ASSERT3P(msp->ms_tree, ==, rt);
1024 VERIFY(!msp->ms_condensing);
1025 avl_add(&msp->ms_size_tree, rs);
1028 static void
1029 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1031 metaslab_t *msp = arg;
1033 ASSERT3P(rt->rt_arg, ==, msp);
1034 ASSERT3P(msp->ms_tree, ==, rt);
1035 VERIFY(!msp->ms_condensing);
1036 avl_remove(&msp->ms_size_tree, rs);
1039 static void
1040 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1042 metaslab_t *msp = arg;
1044 ASSERT3P(rt->rt_arg, ==, msp);
1045 ASSERT3P(msp->ms_tree, ==, rt);
1048 * Normally one would walk the tree freeing nodes along the way.
1049 * Since the nodes are shared with the range trees we can avoid
1050 * walking all nodes and just reinitialize the avl tree. The nodes
1051 * will be freed by the range tree, so we don't want to free them here.
1053 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
1054 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1057 static range_tree_ops_t metaslab_rt_ops = {
1058 metaslab_rt_create,
1059 metaslab_rt_destroy,
1060 metaslab_rt_add,
1061 metaslab_rt_remove,
1062 metaslab_rt_vacate
1066 * ==========================================================================
1067 * Common allocator routines
1068 * ==========================================================================
1072 * Return the maximum contiguous segment within the metaslab.
1074 uint64_t
1075 metaslab_block_maxsize(metaslab_t *msp)
1077 avl_tree_t *t = &msp->ms_size_tree;
1078 range_seg_t *rs;
1080 if (t == NULL || (rs = avl_last(t)) == NULL)
1081 return (0ULL);
1083 return (rs->rs_end - rs->rs_start);
1086 static range_seg_t *
1087 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1089 range_seg_t *rs, rsearch;
1090 avl_index_t where;
1092 rsearch.rs_start = start;
1093 rsearch.rs_end = start + size;
1095 rs = avl_find(t, &rsearch, &where);
1096 if (rs == NULL) {
1097 rs = avl_nearest(t, where, AVL_AFTER);
1100 return (rs);
1104 * This is a helper function that can be used by the allocator to find
1105 * a suitable block to allocate. This will search the specified AVL
1106 * tree looking for a block that matches the specified criteria.
1108 static uint64_t
1109 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1110 uint64_t align)
1112 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1114 while (rs != NULL) {
1115 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1117 if (offset + size <= rs->rs_end) {
1118 *cursor = offset + size;
1119 return (offset);
1121 rs = AVL_NEXT(t, rs);
1125 * If we know we've searched the whole map (*cursor == 0), give up.
1126 * Otherwise, reset the cursor to the beginning and try again.
1128 if (*cursor == 0)
1129 return (-1ULL);
1131 *cursor = 0;
1132 return (metaslab_block_picker(t, cursor, size, align));
1136 * ==========================================================================
1137 * The first-fit block allocator
1138 * ==========================================================================
1140 static uint64_t
1141 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1144 * Find the largest power of 2 block size that evenly divides the
1145 * requested size. This is used to try to allocate blocks with similar
1146 * alignment from the same area of the metaslab (i.e. same cursor
1147 * bucket) but it does not guarantee that other allocations sizes
1148 * may exist in the same region.
1150 uint64_t align = size & -size;
1151 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1152 avl_tree_t *t = &msp->ms_tree->rt_root;
1154 return (metaslab_block_picker(t, cursor, size, align));
1157 static metaslab_ops_t metaslab_ff_ops = {
1158 metaslab_ff_alloc
1162 * ==========================================================================
1163 * Dynamic block allocator -
1164 * Uses the first fit allocation scheme until space get low and then
1165 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1166 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1167 * ==========================================================================
1169 static uint64_t
1170 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1173 * Find the largest power of 2 block size that evenly divides the
1174 * requested size. This is used to try to allocate blocks with similar
1175 * alignment from the same area of the metaslab (i.e. same cursor
1176 * bucket) but it does not guarantee that other allocations sizes
1177 * may exist in the same region.
1179 uint64_t align = size & -size;
1180 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1181 range_tree_t *rt = msp->ms_tree;
1182 avl_tree_t *t = &rt->rt_root;
1183 uint64_t max_size = metaslab_block_maxsize(msp);
1184 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1186 ASSERT(MUTEX_HELD(&msp->ms_lock));
1187 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1189 if (max_size < size)
1190 return (-1ULL);
1193 * If we're running low on space switch to using the size
1194 * sorted AVL tree (best-fit).
1196 if (max_size < metaslab_df_alloc_threshold ||
1197 free_pct < metaslab_df_free_pct) {
1198 t = &msp->ms_size_tree;
1199 *cursor = 0;
1202 return (metaslab_block_picker(t, cursor, size, 1ULL));
1205 static metaslab_ops_t metaslab_df_ops = {
1206 metaslab_df_alloc
1210 * ==========================================================================
1211 * Cursor fit block allocator -
1212 * Select the largest region in the metaslab, set the cursor to the beginning
1213 * of the range and the cursor_end to the end of the range. As allocations
1214 * are made advance the cursor. Continue allocating from the cursor until
1215 * the range is exhausted and then find a new range.
1216 * ==========================================================================
1218 static uint64_t
1219 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1221 range_tree_t *rt = msp->ms_tree;
1222 avl_tree_t *t = &msp->ms_size_tree;
1223 uint64_t *cursor = &msp->ms_lbas[0];
1224 uint64_t *cursor_end = &msp->ms_lbas[1];
1225 uint64_t offset = 0;
1227 ASSERT(MUTEX_HELD(&msp->ms_lock));
1228 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1230 ASSERT3U(*cursor_end, >=, *cursor);
1232 if ((*cursor + size) > *cursor_end) {
1233 range_seg_t *rs;
1235 rs = avl_last(&msp->ms_size_tree);
1236 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1237 return (-1ULL);
1239 *cursor = rs->rs_start;
1240 *cursor_end = rs->rs_end;
1243 offset = *cursor;
1244 *cursor += size;
1246 return (offset);
1249 static metaslab_ops_t metaslab_cf_ops = {
1250 metaslab_cf_alloc
1254 * ==========================================================================
1255 * New dynamic fit allocator -
1256 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1257 * contiguous blocks. If no region is found then just use the largest segment
1258 * that remains.
1259 * ==========================================================================
1263 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1264 * to request from the allocator.
1266 uint64_t metaslab_ndf_clump_shift = 4;
1268 static uint64_t
1269 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1271 avl_tree_t *t = &msp->ms_tree->rt_root;
1272 avl_index_t where;
1273 range_seg_t *rs, rsearch;
1274 uint64_t hbit = highbit64(size);
1275 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1276 uint64_t max_size = metaslab_block_maxsize(msp);
1278 ASSERT(MUTEX_HELD(&msp->ms_lock));
1279 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1281 if (max_size < size)
1282 return (-1ULL);
1284 rsearch.rs_start = *cursor;
1285 rsearch.rs_end = *cursor + size;
1287 rs = avl_find(t, &rsearch, &where);
1288 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1289 t = &msp->ms_size_tree;
1291 rsearch.rs_start = 0;
1292 rsearch.rs_end = MIN(max_size,
1293 1ULL << (hbit + metaslab_ndf_clump_shift));
1294 rs = avl_find(t, &rsearch, &where);
1295 if (rs == NULL)
1296 rs = avl_nearest(t, where, AVL_AFTER);
1297 ASSERT(rs != NULL);
1300 if ((rs->rs_end - rs->rs_start) >= size) {
1301 *cursor = rs->rs_start + size;
1302 return (rs->rs_start);
1304 return (-1ULL);
1307 static metaslab_ops_t metaslab_ndf_ops = {
1308 metaslab_ndf_alloc
1311 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1314 * ==========================================================================
1315 * Metaslabs
1316 * ==========================================================================
1320 * Wait for any in-progress metaslab loads to complete.
1322 void
1323 metaslab_load_wait(metaslab_t *msp)
1325 ASSERT(MUTEX_HELD(&msp->ms_lock));
1327 while (msp->ms_loading) {
1328 ASSERT(!msp->ms_loaded);
1329 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1334 metaslab_load(metaslab_t *msp)
1336 int error = 0;
1337 boolean_t success = B_FALSE;
1339 ASSERT(MUTEX_HELD(&msp->ms_lock));
1340 ASSERT(!msp->ms_loaded);
1341 ASSERT(!msp->ms_loading);
1343 msp->ms_loading = B_TRUE;
1346 * If the space map has not been allocated yet, then treat
1347 * all the space in the metaslab as free and add it to the
1348 * ms_tree.
1350 if (msp->ms_sm != NULL)
1351 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1352 else
1353 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1355 success = (error == 0);
1356 msp->ms_loading = B_FALSE;
1358 if (success) {
1359 ASSERT3P(msp->ms_group, !=, NULL);
1360 msp->ms_loaded = B_TRUE;
1362 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1363 range_tree_walk(msp->ms_defertree[t],
1364 range_tree_remove, msp->ms_tree);
1366 msp->ms_max_size = metaslab_block_maxsize(msp);
1368 cv_broadcast(&msp->ms_load_cv);
1369 return (error);
1372 void
1373 metaslab_unload(metaslab_t *msp)
1375 ASSERT(MUTEX_HELD(&msp->ms_lock));
1376 range_tree_vacate(msp->ms_tree, NULL, NULL);
1377 msp->ms_loaded = B_FALSE;
1378 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1379 msp->ms_max_size = 0;
1383 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1384 metaslab_t **msp)
1386 vdev_t *vd = mg->mg_vd;
1387 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1388 metaslab_t *ms;
1389 int error;
1391 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1392 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1393 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1394 ms->ms_id = id;
1395 ms->ms_start = id << vd->vdev_ms_shift;
1396 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1399 * We only open space map objects that already exist. All others
1400 * will be opened when we finally allocate an object for it.
1402 if (object != 0) {
1403 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1404 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1406 if (error != 0) {
1407 kmem_free(ms, sizeof (metaslab_t));
1408 return (error);
1411 ASSERT(ms->ms_sm != NULL);
1415 * We create the main range tree here, but we don't create the
1416 * other range trees until metaslab_sync_done(). This serves
1417 * two purposes: it allows metaslab_sync_done() to detect the
1418 * addition of new space; and for debugging, it ensures that we'd
1419 * data fault on any attempt to use this metaslab before it's ready.
1421 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1422 metaslab_group_add(mg, ms);
1424 metaslab_set_fragmentation(ms);
1427 * If we're opening an existing pool (txg == 0) or creating
1428 * a new one (txg == TXG_INITIAL), all space is available now.
1429 * If we're adding space to an existing pool, the new space
1430 * does not become available until after this txg has synced.
1431 * The metaslab's weight will also be initialized when we sync
1432 * out this txg. This ensures that we don't attempt to allocate
1433 * from it before we have initialized it completely.
1435 if (txg <= TXG_INITIAL)
1436 metaslab_sync_done(ms, 0);
1439 * If metaslab_debug_load is set and we're initializing a metaslab
1440 * that has an allocated space map object then load the its space
1441 * map so that can verify frees.
1443 if (metaslab_debug_load && ms->ms_sm != NULL) {
1444 mutex_enter(&ms->ms_lock);
1445 VERIFY0(metaslab_load(ms));
1446 mutex_exit(&ms->ms_lock);
1449 if (txg != 0) {
1450 vdev_dirty(vd, 0, NULL, txg);
1451 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1454 *msp = ms;
1456 return (0);
1459 void
1460 metaslab_fini(metaslab_t *msp)
1462 metaslab_group_t *mg = msp->ms_group;
1464 metaslab_group_remove(mg, msp);
1466 mutex_enter(&msp->ms_lock);
1467 VERIFY(msp->ms_group == NULL);
1468 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1469 0, -msp->ms_size);
1470 space_map_close(msp->ms_sm);
1472 metaslab_unload(msp);
1473 range_tree_destroy(msp->ms_tree);
1474 range_tree_destroy(msp->ms_freeingtree);
1475 range_tree_destroy(msp->ms_freedtree);
1477 for (int t = 0; t < TXG_SIZE; t++) {
1478 range_tree_destroy(msp->ms_alloctree[t]);
1481 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1482 range_tree_destroy(msp->ms_defertree[t]);
1485 ASSERT0(msp->ms_deferspace);
1487 mutex_exit(&msp->ms_lock);
1488 cv_destroy(&msp->ms_load_cv);
1489 mutex_destroy(&msp->ms_lock);
1491 kmem_free(msp, sizeof (metaslab_t));
1494 #define FRAGMENTATION_TABLE_SIZE 17
1497 * This table defines a segment size based fragmentation metric that will
1498 * allow each metaslab to derive its own fragmentation value. This is done
1499 * by calculating the space in each bucket of the spacemap histogram and
1500 * multiplying that by the fragmetation metric in this table. Doing
1501 * this for all buckets and dividing it by the total amount of free
1502 * space in this metaslab (i.e. the total free space in all buckets) gives
1503 * us the fragmentation metric. This means that a high fragmentation metric
1504 * equates to most of the free space being comprised of small segments.
1505 * Conversely, if the metric is low, then most of the free space is in
1506 * large segments. A 10% change in fragmentation equates to approximately
1507 * double the number of segments.
1509 * This table defines 0% fragmented space using 16MB segments. Testing has
1510 * shown that segments that are greater than or equal to 16MB do not suffer
1511 * from drastic performance problems. Using this value, we derive the rest
1512 * of the table. Since the fragmentation value is never stored on disk, it
1513 * is possible to change these calculations in the future.
1515 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1516 100, /* 512B */
1517 100, /* 1K */
1518 98, /* 2K */
1519 95, /* 4K */
1520 90, /* 8K */
1521 80, /* 16K */
1522 70, /* 32K */
1523 60, /* 64K */
1524 50, /* 128K */
1525 40, /* 256K */
1526 30, /* 512K */
1527 20, /* 1M */
1528 15, /* 2M */
1529 10, /* 4M */
1530 5, /* 8M */
1531 0 /* 16M */
1535 * Calclate the metaslab's fragmentation metric. A return value
1536 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1537 * not support this metric. Otherwise, the return value should be in the
1538 * range [0, 100].
1540 static void
1541 metaslab_set_fragmentation(metaslab_t *msp)
1543 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1544 uint64_t fragmentation = 0;
1545 uint64_t total = 0;
1546 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1547 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1549 if (!feature_enabled) {
1550 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1551 return;
1555 * A null space map means that the entire metaslab is free
1556 * and thus is not fragmented.
1558 if (msp->ms_sm == NULL) {
1559 msp->ms_fragmentation = 0;
1560 return;
1564 * If this metaslab's space map has not been upgraded, flag it
1565 * so that we upgrade next time we encounter it.
1567 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1568 uint64_t txg = spa_syncing_txg(spa);
1569 vdev_t *vd = msp->ms_group->mg_vd;
1572 * If we've reached the final dirty txg, then we must
1573 * be shutting down the pool. We don't want to dirty
1574 * any data past this point so skip setting the condense
1575 * flag. We can retry this action the next time the pool
1576 * is imported.
1578 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1579 msp->ms_condense_wanted = B_TRUE;
1580 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1581 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1582 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1583 vd->vdev_id);
1585 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1586 return;
1589 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1590 uint64_t space = 0;
1591 uint8_t shift = msp->ms_sm->sm_shift;
1593 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1594 FRAGMENTATION_TABLE_SIZE - 1);
1596 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1597 continue;
1599 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1600 total += space;
1602 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1603 fragmentation += space * zfs_frag_table[idx];
1606 if (total > 0)
1607 fragmentation /= total;
1608 ASSERT3U(fragmentation, <=, 100);
1610 msp->ms_fragmentation = fragmentation;
1614 * Compute a weight -- a selection preference value -- for the given metaslab.
1615 * This is based on the amount of free space, the level of fragmentation,
1616 * the LBA range, and whether the metaslab is loaded.
1618 static uint64_t
1619 metaslab_space_weight(metaslab_t *msp)
1621 metaslab_group_t *mg = msp->ms_group;
1622 vdev_t *vd = mg->mg_vd;
1623 uint64_t weight, space;
1625 ASSERT(MUTEX_HELD(&msp->ms_lock));
1626 ASSERT(!vd->vdev_removing);
1629 * The baseline weight is the metaslab's free space.
1631 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1633 if (metaslab_fragmentation_factor_enabled &&
1634 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1636 * Use the fragmentation information to inversely scale
1637 * down the baseline weight. We need to ensure that we
1638 * don't exclude this metaslab completely when it's 100%
1639 * fragmented. To avoid this we reduce the fragmented value
1640 * by 1.
1642 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1645 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1646 * this metaslab again. The fragmentation metric may have
1647 * decreased the space to something smaller than
1648 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1649 * so that we can consume any remaining space.
1651 if (space > 0 && space < SPA_MINBLOCKSIZE)
1652 space = SPA_MINBLOCKSIZE;
1654 weight = space;
1657 * Modern disks have uniform bit density and constant angular velocity.
1658 * Therefore, the outer recording zones are faster (higher bandwidth)
1659 * than the inner zones by the ratio of outer to inner track diameter,
1660 * which is typically around 2:1. We account for this by assigning
1661 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1662 * In effect, this means that we'll select the metaslab with the most
1663 * free bandwidth rather than simply the one with the most free space.
1665 if (metaslab_lba_weighting_enabled) {
1666 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1667 ASSERT(weight >= space && weight <= 2 * space);
1671 * If this metaslab is one we're actively using, adjust its
1672 * weight to make it preferable to any inactive metaslab so
1673 * we'll polish it off. If the fragmentation on this metaslab
1674 * has exceed our threshold, then don't mark it active.
1676 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1677 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1678 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1681 WEIGHT_SET_SPACEBASED(weight);
1682 return (weight);
1686 * Return the weight of the specified metaslab, according to the segment-based
1687 * weighting algorithm. The metaslab must be loaded. This function can
1688 * be called within a sync pass since it relies only on the metaslab's
1689 * range tree which is always accurate when the metaslab is loaded.
1691 static uint64_t
1692 metaslab_weight_from_range_tree(metaslab_t *msp)
1694 uint64_t weight = 0;
1695 uint32_t segments = 0;
1697 ASSERT(msp->ms_loaded);
1699 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1700 i--) {
1701 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1702 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1704 segments <<= 1;
1705 segments += msp->ms_tree->rt_histogram[i];
1708 * The range tree provides more precision than the space map
1709 * and must be downgraded so that all values fit within the
1710 * space map's histogram. This allows us to compare loaded
1711 * vs. unloaded metaslabs to determine which metaslab is
1712 * considered "best".
1714 if (i > max_idx)
1715 continue;
1717 if (segments != 0) {
1718 WEIGHT_SET_COUNT(weight, segments);
1719 WEIGHT_SET_INDEX(weight, i);
1720 WEIGHT_SET_ACTIVE(weight, 0);
1721 break;
1724 return (weight);
1728 * Calculate the weight based on the on-disk histogram. This should only
1729 * be called after a sync pass has completely finished since the on-disk
1730 * information is updated in metaslab_sync().
1732 static uint64_t
1733 metaslab_weight_from_spacemap(metaslab_t *msp)
1735 uint64_t weight = 0;
1737 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1738 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1739 WEIGHT_SET_COUNT(weight,
1740 msp->ms_sm->sm_phys->smp_histogram[i]);
1741 WEIGHT_SET_INDEX(weight, i +
1742 msp->ms_sm->sm_shift);
1743 WEIGHT_SET_ACTIVE(weight, 0);
1744 break;
1747 return (weight);
1751 * Compute a segment-based weight for the specified metaslab. The weight
1752 * is determined by highest bucket in the histogram. The information
1753 * for the highest bucket is encoded into the weight value.
1755 static uint64_t
1756 metaslab_segment_weight(metaslab_t *msp)
1758 metaslab_group_t *mg = msp->ms_group;
1759 uint64_t weight = 0;
1760 uint8_t shift = mg->mg_vd->vdev_ashift;
1762 ASSERT(MUTEX_HELD(&msp->ms_lock));
1765 * The metaslab is completely free.
1767 if (space_map_allocated(msp->ms_sm) == 0) {
1768 int idx = highbit64(msp->ms_size) - 1;
1769 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1771 if (idx < max_idx) {
1772 WEIGHT_SET_COUNT(weight, 1ULL);
1773 WEIGHT_SET_INDEX(weight, idx);
1774 } else {
1775 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1776 WEIGHT_SET_INDEX(weight, max_idx);
1778 WEIGHT_SET_ACTIVE(weight, 0);
1779 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1781 return (weight);
1784 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1787 * If the metaslab is fully allocated then just make the weight 0.
1789 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1790 return (0);
1792 * If the metaslab is already loaded, then use the range tree to
1793 * determine the weight. Otherwise, we rely on the space map information
1794 * to generate the weight.
1796 if (msp->ms_loaded) {
1797 weight = metaslab_weight_from_range_tree(msp);
1798 } else {
1799 weight = metaslab_weight_from_spacemap(msp);
1803 * If the metaslab was active the last time we calculated its weight
1804 * then keep it active. We want to consume the entire region that
1805 * is associated with this weight.
1807 if (msp->ms_activation_weight != 0 && weight != 0)
1808 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1809 return (weight);
1813 * Determine if we should attempt to allocate from this metaslab. If the
1814 * metaslab has a maximum size then we can quickly determine if the desired
1815 * allocation size can be satisfied. Otherwise, if we're using segment-based
1816 * weighting then we can determine the maximum allocation that this metaslab
1817 * can accommodate based on the index encoded in the weight. If we're using
1818 * space-based weights then rely on the entire weight (excluding the weight
1819 * type bit).
1821 boolean_t
1822 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1824 boolean_t should_allocate;
1826 if (msp->ms_max_size != 0)
1827 return (msp->ms_max_size >= asize);
1829 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1831 * The metaslab segment weight indicates segments in the
1832 * range [2^i, 2^(i+1)), where i is the index in the weight.
1833 * Since the asize might be in the middle of the range, we
1834 * should attempt the allocation if asize < 2^(i+1).
1836 should_allocate = (asize <
1837 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1838 } else {
1839 should_allocate = (asize <=
1840 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1842 return (should_allocate);
1845 static uint64_t
1846 metaslab_weight(metaslab_t *msp)
1848 vdev_t *vd = msp->ms_group->mg_vd;
1849 spa_t *spa = vd->vdev_spa;
1850 uint64_t weight;
1852 ASSERT(MUTEX_HELD(&msp->ms_lock));
1855 * This vdev is in the process of being removed so there is nothing
1856 * for us to do here.
1858 if (vd->vdev_removing) {
1859 ASSERT0(space_map_allocated(msp->ms_sm));
1860 ASSERT0(vd->vdev_ms_shift);
1861 return (0);
1864 metaslab_set_fragmentation(msp);
1867 * Update the maximum size if the metaslab is loaded. This will
1868 * ensure that we get an accurate maximum size if newly freed space
1869 * has been added back into the free tree.
1871 if (msp->ms_loaded)
1872 msp->ms_max_size = metaslab_block_maxsize(msp);
1875 * Segment-based weighting requires space map histogram support.
1877 if (zfs_metaslab_segment_weight_enabled &&
1878 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1879 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1880 sizeof (space_map_phys_t))) {
1881 weight = metaslab_segment_weight(msp);
1882 } else {
1883 weight = metaslab_space_weight(msp);
1885 return (weight);
1888 static int
1889 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1891 ASSERT(MUTEX_HELD(&msp->ms_lock));
1893 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1894 metaslab_load_wait(msp);
1895 if (!msp->ms_loaded) {
1896 int error = metaslab_load(msp);
1897 if (error) {
1898 metaslab_group_sort(msp->ms_group, msp, 0);
1899 return (error);
1903 msp->ms_activation_weight = msp->ms_weight;
1904 metaslab_group_sort(msp->ms_group, msp,
1905 msp->ms_weight | activation_weight);
1907 ASSERT(msp->ms_loaded);
1908 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1910 return (0);
1913 static void
1914 metaslab_passivate(metaslab_t *msp, uint64_t weight)
1916 uint64_t size = weight & ~METASLAB_WEIGHT_TYPE;
1919 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1920 * this metaslab again. In that case, it had better be empty,
1921 * or we would be leaving space on the table.
1923 ASSERT(size >= SPA_MINBLOCKSIZE ||
1924 range_tree_space(msp->ms_tree) == 0);
1925 ASSERT0(weight & METASLAB_ACTIVE_MASK);
1927 msp->ms_activation_weight = 0;
1928 metaslab_group_sort(msp->ms_group, msp, weight);
1929 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1933 * Segment-based metaslabs are activated once and remain active until
1934 * we either fail an allocation attempt (similar to space-based metaslabs)
1935 * or have exhausted the free space in zfs_metaslab_switch_threshold
1936 * buckets since the metaslab was activated. This function checks to see
1937 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
1938 * metaslab and passivates it proactively. This will allow us to select a
1939 * metaslabs with larger contiguous region if any remaining within this
1940 * metaslab group. If we're in sync pass > 1, then we continue using this
1941 * metaslab so that we don't dirty more block and cause more sync passes.
1943 void
1944 metaslab_segment_may_passivate(metaslab_t *msp)
1946 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1948 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
1949 return;
1952 * Since we are in the middle of a sync pass, the most accurate
1953 * information that is accessible to us is the in-core range tree
1954 * histogram; calculate the new weight based on that information.
1956 uint64_t weight = metaslab_weight_from_range_tree(msp);
1957 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
1958 int current_idx = WEIGHT_GET_INDEX(weight);
1960 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
1961 metaslab_passivate(msp, weight);
1964 static void
1965 metaslab_preload(void *arg)
1967 metaslab_t *msp = arg;
1968 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1970 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1972 mutex_enter(&msp->ms_lock);
1973 metaslab_load_wait(msp);
1974 if (!msp->ms_loaded)
1975 (void) metaslab_load(msp);
1976 msp->ms_selected_txg = spa_syncing_txg(spa);
1977 mutex_exit(&msp->ms_lock);
1980 static void
1981 metaslab_group_preload(metaslab_group_t *mg)
1983 spa_t *spa = mg->mg_vd->vdev_spa;
1984 metaslab_t *msp;
1985 avl_tree_t *t = &mg->mg_metaslab_tree;
1986 int m = 0;
1988 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1989 taskq_wait(mg->mg_taskq);
1990 return;
1993 mutex_enter(&mg->mg_lock);
1995 * Load the next potential metaslabs
1997 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
1999 * We preload only the maximum number of metaslabs specified
2000 * by metaslab_preload_limit. If a metaslab is being forced
2001 * to condense then we preload it too. This will ensure
2002 * that force condensing happens in the next txg.
2004 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2005 continue;
2008 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2009 msp, TQ_SLEEP) != NULL);
2011 mutex_exit(&mg->mg_lock);
2015 * Determine if the space map's on-disk footprint is past our tolerance
2016 * for inefficiency. We would like to use the following criteria to make
2017 * our decision:
2019 * 1. The size of the space map object should not dramatically increase as a
2020 * result of writing out the free space range tree.
2022 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2023 * times the size than the free space range tree representation
2024 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
2026 * 3. The on-disk size of the space map should actually decrease.
2028 * Checking the first condition is tricky since we don't want to walk
2029 * the entire AVL tree calculating the estimated on-disk size. Instead we
2030 * use the size-ordered range tree in the metaslab and calculate the
2031 * size required to write out the largest segment in our free tree. If the
2032 * size required to represent that segment on disk is larger than the space
2033 * map object then we avoid condensing this map.
2035 * To determine the second criterion we use a best-case estimate and assume
2036 * each segment can be represented on-disk as a single 64-bit entry. We refer
2037 * to this best-case estimate as the space map's minimal form.
2039 * Unfortunately, we cannot compute the on-disk size of the space map in this
2040 * context because we cannot accurately compute the effects of compression, etc.
2041 * Instead, we apply the heuristic described in the block comment for
2042 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2043 * is greater than a threshold number of blocks.
2045 static boolean_t
2046 metaslab_should_condense(metaslab_t *msp)
2048 space_map_t *sm = msp->ms_sm;
2049 range_seg_t *rs;
2050 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
2051 dmu_object_info_t doi;
2052 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
2054 ASSERT(MUTEX_HELD(&msp->ms_lock));
2055 ASSERT(msp->ms_loaded);
2058 * Use the ms_size_tree range tree, which is ordered by size, to
2059 * obtain the largest segment in the free tree. We always condense
2060 * metaslabs that are empty and metaslabs for which a condense
2061 * request has been made.
2063 rs = avl_last(&msp->ms_size_tree);
2064 if (rs == NULL || msp->ms_condense_wanted)
2065 return (B_TRUE);
2068 * Calculate the number of 64-bit entries this segment would
2069 * require when written to disk. If this single segment would be
2070 * larger on-disk than the entire current on-disk structure, then
2071 * clearly condensing will increase the on-disk structure size.
2073 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
2074 entries = size / (MIN(size, SM_RUN_MAX));
2075 segsz = entries * sizeof (uint64_t);
2077 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
2078 object_size = space_map_length(msp->ms_sm);
2080 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2081 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2083 return (segsz <= object_size &&
2084 object_size >= (optimal_size * zfs_condense_pct / 100) &&
2085 object_size > zfs_metaslab_condense_block_threshold * record_size);
2089 * Condense the on-disk space map representation to its minimized form.
2090 * The minimized form consists of a small number of allocations followed by
2091 * the entries of the free range tree.
2093 static void
2094 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2096 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2097 range_tree_t *condense_tree;
2098 space_map_t *sm = msp->ms_sm;
2100 ASSERT(MUTEX_HELD(&msp->ms_lock));
2101 ASSERT3U(spa_sync_pass(spa), ==, 1);
2102 ASSERT(msp->ms_loaded);
2105 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2106 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2107 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2108 msp->ms_group->mg_vd->vdev_spa->spa_name,
2109 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
2110 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2112 msp->ms_condense_wanted = B_FALSE;
2115 * Create an range tree that is 100% allocated. We remove segments
2116 * that have been freed in this txg, any deferred frees that exist,
2117 * and any allocation in the future. Removing segments should be
2118 * a relatively inexpensive operation since we expect these trees to
2119 * have a small number of nodes.
2121 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
2122 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2125 * Remove what's been freed in this txg from the condense_tree.
2126 * Since we're in sync_pass 1, we know that all the frees from
2127 * this txg are in the freeingtree.
2129 range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree);
2131 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2132 range_tree_walk(msp->ms_defertree[t],
2133 range_tree_remove, condense_tree);
2136 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2137 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
2138 range_tree_remove, condense_tree);
2142 * We're about to drop the metaslab's lock thus allowing
2143 * other consumers to change it's content. Set the
2144 * metaslab's ms_condensing flag to ensure that
2145 * allocations on this metaslab do not occur while we're
2146 * in the middle of committing it to disk. This is only critical
2147 * for the ms_tree as all other range trees use per txg
2148 * views of their content.
2150 msp->ms_condensing = B_TRUE;
2152 mutex_exit(&msp->ms_lock);
2153 space_map_truncate(sm, tx);
2154 mutex_enter(&msp->ms_lock);
2157 * While we would ideally like to create a space map representation
2158 * that consists only of allocation records, doing so can be
2159 * prohibitively expensive because the in-core free tree can be
2160 * large, and therefore computationally expensive to subtract
2161 * from the condense_tree. Instead we sync out two trees, a cheap
2162 * allocation only tree followed by the in-core free tree. While not
2163 * optimal, this is typically close to optimal, and much cheaper to
2164 * compute.
2166 space_map_write(sm, condense_tree, SM_ALLOC, tx);
2167 range_tree_vacate(condense_tree, NULL, NULL);
2168 range_tree_destroy(condense_tree);
2170 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
2171 msp->ms_condensing = B_FALSE;
2175 * Write a metaslab to disk in the context of the specified transaction group.
2177 void
2178 metaslab_sync(metaslab_t *msp, uint64_t txg)
2180 metaslab_group_t *mg = msp->ms_group;
2181 vdev_t *vd = mg->mg_vd;
2182 spa_t *spa = vd->vdev_spa;
2183 objset_t *mos = spa_meta_objset(spa);
2184 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
2185 dmu_tx_t *tx;
2186 uint64_t object = space_map_object(msp->ms_sm);
2188 ASSERT(!vd->vdev_ishole);
2191 * This metaslab has just been added so there's no work to do now.
2193 if (msp->ms_freeingtree == NULL) {
2194 ASSERT3P(alloctree, ==, NULL);
2195 return;
2198 ASSERT3P(alloctree, !=, NULL);
2199 ASSERT3P(msp->ms_freeingtree, !=, NULL);
2200 ASSERT3P(msp->ms_freedtree, !=, NULL);
2203 * Normally, we don't want to process a metaslab if there
2204 * are no allocations or frees to perform. However, if the metaslab
2205 * is being forced to condense and it's loaded, we need to let it
2206 * through.
2208 if (range_tree_space(alloctree) == 0 &&
2209 range_tree_space(msp->ms_freeingtree) == 0 &&
2210 !(msp->ms_loaded && msp->ms_condense_wanted))
2211 return;
2214 VERIFY(txg <= spa_final_dirty_txg(spa));
2217 * The only state that can actually be changing concurrently with
2218 * metaslab_sync() is the metaslab's ms_tree. No other thread can
2219 * be modifying this txg's alloctree, freeingtree, freedtree, or
2220 * space_map_phys_t. Therefore, we only hold ms_lock to satify
2221 * space map ASSERTs. We drop it whenever we call into the DMU,
2222 * because the DMU can call down to us (e.g. via zio_free()) at
2223 * any time.
2226 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2228 if (msp->ms_sm == NULL) {
2229 uint64_t new_object;
2231 new_object = space_map_alloc(mos, tx);
2232 VERIFY3U(new_object, !=, 0);
2234 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2235 msp->ms_start, msp->ms_size, vd->vdev_ashift,
2236 &msp->ms_lock));
2237 ASSERT(msp->ms_sm != NULL);
2240 mutex_enter(&msp->ms_lock);
2243 * Note: metaslab_condense() clears the space map's histogram.
2244 * Therefore we must verify and remove this histogram before
2245 * condensing.
2247 metaslab_group_histogram_verify(mg);
2248 metaslab_class_histogram_verify(mg->mg_class);
2249 metaslab_group_histogram_remove(mg, msp);
2251 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
2252 metaslab_should_condense(msp)) {
2253 metaslab_condense(msp, txg, tx);
2254 } else {
2255 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
2256 space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
2259 if (msp->ms_loaded) {
2261 * When the space map is loaded, we have an accruate
2262 * histogram in the range tree. This gives us an opportunity
2263 * to bring the space map's histogram up-to-date so we clear
2264 * it first before updating it.
2266 space_map_histogram_clear(msp->ms_sm);
2267 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
2270 * Since we've cleared the histogram we need to add back
2271 * any free space that has already been processed, plus
2272 * any deferred space. This allows the on-disk histogram
2273 * to accurately reflect all free space even if some space
2274 * is not yet available for allocation (i.e. deferred).
2276 space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx);
2279 * Add back any deferred free space that has not been
2280 * added back into the in-core free tree yet. This will
2281 * ensure that we don't end up with a space map histogram
2282 * that is completely empty unless the metaslab is fully
2283 * allocated.
2285 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2286 space_map_histogram_add(msp->ms_sm,
2287 msp->ms_defertree[t], tx);
2292 * Always add the free space from this sync pass to the space
2293 * map histogram. We want to make sure that the on-disk histogram
2294 * accounts for all free space. If the space map is not loaded,
2295 * then we will lose some accuracy but will correct it the next
2296 * time we load the space map.
2298 space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx);
2300 metaslab_group_histogram_add(mg, msp);
2301 metaslab_group_histogram_verify(mg);
2302 metaslab_class_histogram_verify(mg->mg_class);
2305 * For sync pass 1, we avoid traversing this txg's free range tree
2306 * and instead will just swap the pointers for freeingtree and
2307 * freedtree. We can safely do this since the freed_tree is
2308 * guaranteed to be empty on the initial pass.
2310 if (spa_sync_pass(spa) == 1) {
2311 range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree);
2312 } else {
2313 range_tree_vacate(msp->ms_freeingtree,
2314 range_tree_add, msp->ms_freedtree);
2316 range_tree_vacate(alloctree, NULL, NULL);
2318 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2319 ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK]));
2320 ASSERT0(range_tree_space(msp->ms_freeingtree));
2322 mutex_exit(&msp->ms_lock);
2324 if (object != space_map_object(msp->ms_sm)) {
2325 object = space_map_object(msp->ms_sm);
2326 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2327 msp->ms_id, sizeof (uint64_t), &object, tx);
2329 dmu_tx_commit(tx);
2333 * Called after a transaction group has completely synced to mark
2334 * all of the metaslab's free space as usable.
2336 void
2337 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2339 metaslab_group_t *mg = msp->ms_group;
2340 vdev_t *vd = mg->mg_vd;
2341 spa_t *spa = vd->vdev_spa;
2342 range_tree_t **defer_tree;
2343 int64_t alloc_delta, defer_delta;
2344 boolean_t defer_allowed = B_TRUE;
2346 ASSERT(!vd->vdev_ishole);
2348 mutex_enter(&msp->ms_lock);
2351 * If this metaslab is just becoming available, initialize its
2352 * range trees and add its capacity to the vdev.
2354 if (msp->ms_freedtree == NULL) {
2355 for (int t = 0; t < TXG_SIZE; t++) {
2356 ASSERT(msp->ms_alloctree[t] == NULL);
2358 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2359 &msp->ms_lock);
2362 ASSERT3P(msp->ms_freeingtree, ==, NULL);
2363 msp->ms_freeingtree = range_tree_create(NULL, msp,
2364 &msp->ms_lock);
2366 ASSERT3P(msp->ms_freedtree, ==, NULL);
2367 msp->ms_freedtree = range_tree_create(NULL, msp,
2368 &msp->ms_lock);
2370 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2371 ASSERT(msp->ms_defertree[t] == NULL);
2373 msp->ms_defertree[t] = range_tree_create(NULL, msp,
2374 &msp->ms_lock);
2377 vdev_space_update(vd, 0, 0, msp->ms_size);
2380 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2382 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2383 metaslab_class_get_alloc(spa_normal_class(spa));
2384 if (free_space <= spa_get_slop_space(spa)) {
2385 defer_allowed = B_FALSE;
2388 defer_delta = 0;
2389 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2390 if (defer_allowed) {
2391 defer_delta = range_tree_space(msp->ms_freedtree) -
2392 range_tree_space(*defer_tree);
2393 } else {
2394 defer_delta -= range_tree_space(*defer_tree);
2397 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2400 * If there's a metaslab_load() in progress, wait for it to complete
2401 * so that we have a consistent view of the in-core space map.
2403 metaslab_load_wait(msp);
2406 * Move the frees from the defer_tree back to the free
2407 * range tree (if it's loaded). Swap the freed_tree and the
2408 * defer_tree -- this is safe to do because we've just emptied out
2409 * the defer_tree.
2411 range_tree_vacate(*defer_tree,
2412 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2413 if (defer_allowed) {
2414 range_tree_swap(&msp->ms_freedtree, defer_tree);
2415 } else {
2416 range_tree_vacate(msp->ms_freedtree,
2417 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2420 space_map_update(msp->ms_sm);
2422 msp->ms_deferspace += defer_delta;
2423 ASSERT3S(msp->ms_deferspace, >=, 0);
2424 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2425 if (msp->ms_deferspace != 0) {
2427 * Keep syncing this metaslab until all deferred frees
2428 * are back in circulation.
2430 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2434 * Calculate the new weights before unloading any metaslabs.
2435 * This will give us the most accurate weighting.
2437 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2440 * If the metaslab is loaded and we've not tried to load or allocate
2441 * from it in 'metaslab_unload_delay' txgs, then unload it.
2443 if (msp->ms_loaded &&
2444 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2445 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2446 VERIFY0(range_tree_space(
2447 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2450 if (!metaslab_debug_unload)
2451 metaslab_unload(msp);
2454 mutex_exit(&msp->ms_lock);
2457 void
2458 metaslab_sync_reassess(metaslab_group_t *mg)
2460 metaslab_group_alloc_update(mg);
2461 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2464 * Preload the next potential metaslabs
2466 metaslab_group_preload(mg);
2469 static uint64_t
2470 metaslab_distance(metaslab_t *msp, dva_t *dva)
2472 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2473 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2474 uint64_t start = msp->ms_id;
2476 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2477 return (1ULL << 63);
2479 if (offset < start)
2480 return ((start - offset) << ms_shift);
2481 if (offset > start)
2482 return ((offset - start) << ms_shift);
2483 return (0);
2487 * ==========================================================================
2488 * Metaslab allocation tracing facility
2489 * ==========================================================================
2491 kstat_t *metaslab_trace_ksp;
2492 kstat_named_t metaslab_trace_over_limit;
2494 void
2495 metaslab_alloc_trace_init(void)
2497 ASSERT(metaslab_alloc_trace_cache == NULL);
2498 metaslab_alloc_trace_cache = kmem_cache_create(
2499 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2500 0, NULL, NULL, NULL, NULL, NULL, 0);
2501 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2502 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2503 if (metaslab_trace_ksp != NULL) {
2504 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2505 kstat_named_init(&metaslab_trace_over_limit,
2506 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2507 kstat_install(metaslab_trace_ksp);
2511 void
2512 metaslab_alloc_trace_fini(void)
2514 if (metaslab_trace_ksp != NULL) {
2515 kstat_delete(metaslab_trace_ksp);
2516 metaslab_trace_ksp = NULL;
2518 kmem_cache_destroy(metaslab_alloc_trace_cache);
2519 metaslab_alloc_trace_cache = NULL;
2523 * Add an allocation trace element to the allocation tracing list.
2525 static void
2526 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2527 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
2529 if (!metaslab_trace_enabled)
2530 return;
2533 * When the tracing list reaches its maximum we remove
2534 * the second element in the list before adding a new one.
2535 * By removing the second element we preserve the original
2536 * entry as a clue to what allocations steps have already been
2537 * performed.
2539 if (zal->zal_size == metaslab_trace_max_entries) {
2540 metaslab_alloc_trace_t *mat_next;
2541 #ifdef DEBUG
2542 panic("too many entries in allocation list");
2543 #endif
2544 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2545 zal->zal_size--;
2546 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2547 list_remove(&zal->zal_list, mat_next);
2548 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2551 metaslab_alloc_trace_t *mat =
2552 kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2553 list_link_init(&mat->mat_list_node);
2554 mat->mat_mg = mg;
2555 mat->mat_msp = msp;
2556 mat->mat_size = psize;
2557 mat->mat_dva_id = dva_id;
2558 mat->mat_offset = offset;
2559 mat->mat_weight = 0;
2561 if (msp != NULL)
2562 mat->mat_weight = msp->ms_weight;
2565 * The list is part of the zio so locking is not required. Only
2566 * a single thread will perform allocations for a given zio.
2568 list_insert_tail(&zal->zal_list, mat);
2569 zal->zal_size++;
2571 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2574 void
2575 metaslab_trace_init(zio_alloc_list_t *zal)
2577 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2578 offsetof(metaslab_alloc_trace_t, mat_list_node));
2579 zal->zal_size = 0;
2582 void
2583 metaslab_trace_fini(zio_alloc_list_t *zal)
2585 metaslab_alloc_trace_t *mat;
2587 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2588 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2589 list_destroy(&zal->zal_list);
2590 zal->zal_size = 0;
2594 * ==========================================================================
2595 * Metaslab block operations
2596 * ==========================================================================
2599 static void
2600 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
2602 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2603 flags & METASLAB_DONT_THROTTLE)
2604 return;
2606 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2607 if (!mg->mg_class->mc_alloc_throttle_enabled)
2608 return;
2610 (void) refcount_add(&mg->mg_alloc_queue_depth, tag);
2613 void
2614 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
2616 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2617 flags & METASLAB_DONT_THROTTLE)
2618 return;
2620 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2621 if (!mg->mg_class->mc_alloc_throttle_enabled)
2622 return;
2624 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
2627 void
2628 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
2630 #ifdef ZFS_DEBUG
2631 const dva_t *dva = bp->blk_dva;
2632 int ndvas = BP_GET_NDVAS(bp);
2634 for (int d = 0; d < ndvas; d++) {
2635 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2636 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2637 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
2639 #endif
2642 static uint64_t
2643 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2645 uint64_t start;
2646 range_tree_t *rt = msp->ms_tree;
2647 metaslab_class_t *mc = msp->ms_group->mg_class;
2649 VERIFY(!msp->ms_condensing);
2651 start = mc->mc_ops->msop_alloc(msp, size);
2652 if (start != -1ULL) {
2653 metaslab_group_t *mg = msp->ms_group;
2654 vdev_t *vd = mg->mg_vd;
2656 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2657 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2658 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2659 range_tree_remove(rt, start, size);
2661 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2662 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2664 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size);
2666 /* Track the last successful allocation */
2667 msp->ms_alloc_txg = txg;
2668 metaslab_verify_space(msp, txg);
2672 * Now that we've attempted the allocation we need to update the
2673 * metaslab's maximum block size since it may have changed.
2675 msp->ms_max_size = metaslab_block_maxsize(msp);
2676 return (start);
2679 static uint64_t
2680 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
2681 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2683 metaslab_t *msp = NULL;
2684 uint64_t offset = -1ULL;
2685 uint64_t activation_weight;
2686 uint64_t target_distance;
2687 int i;
2689 activation_weight = METASLAB_WEIGHT_PRIMARY;
2690 for (i = 0; i < d; i++) {
2691 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2692 activation_weight = METASLAB_WEIGHT_SECONDARY;
2693 break;
2697 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
2698 search->ms_weight = UINT64_MAX;
2699 search->ms_start = 0;
2700 for (;;) {
2701 boolean_t was_active;
2702 avl_tree_t *t = &mg->mg_metaslab_tree;
2703 avl_index_t idx;
2705 mutex_enter(&mg->mg_lock);
2708 * Find the metaslab with the highest weight that is less
2709 * than what we've already tried. In the common case, this
2710 * means that we will examine each metaslab at most once.
2711 * Note that concurrent callers could reorder metaslabs
2712 * by activation/passivation once we have dropped the mg_lock.
2713 * If a metaslab is activated by another thread, and we fail
2714 * to allocate from the metaslab we have selected, we may
2715 * not try the newly-activated metaslab, and instead activate
2716 * another metaslab. This is not optimal, but generally
2717 * does not cause any problems (a possible exception being
2718 * if every metaslab is completely full except for the
2719 * the newly-activated metaslab which we fail to examine).
2721 msp = avl_find(t, search, &idx);
2722 if (msp == NULL)
2723 msp = avl_nearest(t, idx, AVL_AFTER);
2724 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2726 if (!metaslab_should_allocate(msp, asize)) {
2727 metaslab_trace_add(zal, mg, msp, asize, d,
2728 TRACE_TOO_SMALL);
2729 continue;
2733 * If the selected metaslab is condensing, skip it.
2735 if (msp->ms_condensing)
2736 continue;
2738 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2739 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2740 break;
2742 target_distance = min_distance +
2743 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2744 min_distance >> 1);
2746 for (i = 0; i < d; i++) {
2747 if (metaslab_distance(msp, &dva[i]) <
2748 target_distance)
2749 break;
2751 if (i == d)
2752 break;
2754 mutex_exit(&mg->mg_lock);
2755 if (msp == NULL) {
2756 kmem_free(search, sizeof (*search));
2757 return (-1ULL);
2759 search->ms_weight = msp->ms_weight;
2760 search->ms_start = msp->ms_start + 1;
2762 mutex_enter(&msp->ms_lock);
2765 * Ensure that the metaslab we have selected is still
2766 * capable of handling our request. It's possible that
2767 * another thread may have changed the weight while we
2768 * were blocked on the metaslab lock. We check the
2769 * active status first to see if we need to reselect
2770 * a new metaslab.
2772 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
2773 mutex_exit(&msp->ms_lock);
2774 continue;
2777 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2778 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2779 metaslab_passivate(msp,
2780 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2781 mutex_exit(&msp->ms_lock);
2782 continue;
2785 if (metaslab_activate(msp, activation_weight) != 0) {
2786 mutex_exit(&msp->ms_lock);
2787 continue;
2789 msp->ms_selected_txg = txg;
2792 * Now that we have the lock, recheck to see if we should
2793 * continue to use this metaslab for this allocation. The
2794 * the metaslab is now loaded so metaslab_should_allocate() can
2795 * accurately determine if the allocation attempt should
2796 * proceed.
2798 if (!metaslab_should_allocate(msp, asize)) {
2799 /* Passivate this metaslab and select a new one. */
2800 metaslab_trace_add(zal, mg, msp, asize, d,
2801 TRACE_TOO_SMALL);
2802 goto next;
2806 * If this metaslab is currently condensing then pick again as
2807 * we can't manipulate this metaslab until it's committed
2808 * to disk.
2810 if (msp->ms_condensing) {
2811 metaslab_trace_add(zal, mg, msp, asize, d,
2812 TRACE_CONDENSING);
2813 mutex_exit(&msp->ms_lock);
2814 continue;
2817 offset = metaslab_block_alloc(msp, asize, txg);
2818 metaslab_trace_add(zal, mg, msp, asize, d, offset);
2820 if (offset != -1ULL) {
2821 /* Proactively passivate the metaslab, if needed */
2822 metaslab_segment_may_passivate(msp);
2823 break;
2825 next:
2826 ASSERT(msp->ms_loaded);
2829 * We were unable to allocate from this metaslab so determine
2830 * a new weight for this metaslab. Now that we have loaded
2831 * the metaslab we can provide a better hint to the metaslab
2832 * selector.
2834 * For space-based metaslabs, we use the maximum block size.
2835 * This information is only available when the metaslab
2836 * is loaded and is more accurate than the generic free
2837 * space weight that was calculated by metaslab_weight().
2838 * This information allows us to quickly compare the maximum
2839 * available allocation in the metaslab to the allocation
2840 * size being requested.
2842 * For segment-based metaslabs, determine the new weight
2843 * based on the highest bucket in the range tree. We
2844 * explicitly use the loaded segment weight (i.e. the range
2845 * tree histogram) since it contains the space that is
2846 * currently available for allocation and is accurate
2847 * even within a sync pass.
2849 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2850 uint64_t weight = metaslab_block_maxsize(msp);
2851 WEIGHT_SET_SPACEBASED(weight);
2852 metaslab_passivate(msp, weight);
2853 } else {
2854 metaslab_passivate(msp,
2855 metaslab_weight_from_range_tree(msp));
2859 * We have just failed an allocation attempt, check
2860 * that metaslab_should_allocate() agrees. Otherwise,
2861 * we may end up in an infinite loop retrying the same
2862 * metaslab.
2864 ASSERT(!metaslab_should_allocate(msp, asize));
2865 mutex_exit(&msp->ms_lock);
2867 mutex_exit(&msp->ms_lock);
2868 kmem_free(search, sizeof (*search));
2869 return (offset);
2872 static uint64_t
2873 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
2874 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2876 uint64_t offset;
2877 ASSERT(mg->mg_initialized);
2879 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
2880 min_distance, dva, d);
2882 mutex_enter(&mg->mg_lock);
2883 if (offset == -1ULL) {
2884 mg->mg_failed_allocations++;
2885 metaslab_trace_add(zal, mg, NULL, asize, d,
2886 TRACE_GROUP_FAILURE);
2887 if (asize == SPA_GANGBLOCKSIZE) {
2889 * This metaslab group was unable to allocate
2890 * the minimum gang block size so it must be out of
2891 * space. We must notify the allocation throttle
2892 * to start skipping allocation attempts to this
2893 * metaslab group until more space becomes available.
2894 * Note: this failure cannot be caused by the
2895 * allocation throttle since the allocation throttle
2896 * is only responsible for skipping devices and
2897 * not failing block allocations.
2899 mg->mg_no_free_space = B_TRUE;
2902 mg->mg_allocations++;
2903 mutex_exit(&mg->mg_lock);
2904 return (offset);
2908 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
2909 * on the same vdev as an existing DVA of this BP, then try to allocate it
2910 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
2911 * existing DVAs.
2913 int ditto_same_vdev_distance_shift = 3;
2916 * Allocate a block for the specified i/o.
2918 static int
2919 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2920 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
2921 zio_alloc_list_t *zal)
2923 metaslab_group_t *mg, *rotor;
2924 vdev_t *vd;
2925 boolean_t try_hard = B_FALSE;
2927 ASSERT(!DVA_IS_VALID(&dva[d]));
2930 * For testing, make some blocks above a certain size be gang blocks.
2932 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) {
2933 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
2934 return (SET_ERROR(ENOSPC));
2938 * Start at the rotor and loop through all mgs until we find something.
2939 * Note that there's no locking on mc_rotor or mc_aliquot because
2940 * nothing actually breaks if we miss a few updates -- we just won't
2941 * allocate quite as evenly. It all balances out over time.
2943 * If we are doing ditto or log blocks, try to spread them across
2944 * consecutive vdevs. If we're forced to reuse a vdev before we've
2945 * allocated all of our ditto blocks, then try and spread them out on
2946 * that vdev as much as possible. If it turns out to not be possible,
2947 * gradually lower our standards until anything becomes acceptable.
2948 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2949 * gives us hope of containing our fault domains to something we're
2950 * able to reason about. Otherwise, any two top-level vdev failures
2951 * will guarantee the loss of data. With consecutive allocation,
2952 * only two adjacent top-level vdev failures will result in data loss.
2954 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2955 * ourselves on the same vdev as our gang block header. That
2956 * way, we can hope for locality in vdev_cache, plus it makes our
2957 * fault domains something tractable.
2959 if (hintdva) {
2960 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2963 * It's possible the vdev we're using as the hint no
2964 * longer exists (i.e. removed). Consult the rotor when
2965 * all else fails.
2967 if (vd != NULL) {
2968 mg = vd->vdev_mg;
2970 if (flags & METASLAB_HINTBP_AVOID &&
2971 mg->mg_next != NULL)
2972 mg = mg->mg_next;
2973 } else {
2974 mg = mc->mc_rotor;
2976 } else if (d != 0) {
2977 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2978 mg = vd->vdev_mg->mg_next;
2979 } else {
2980 mg = mc->mc_rotor;
2984 * If the hint put us into the wrong metaslab class, or into a
2985 * metaslab group that has been passivated, just follow the rotor.
2987 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2988 mg = mc->mc_rotor;
2990 rotor = mg;
2991 top:
2992 do {
2993 boolean_t allocatable;
2995 ASSERT(mg->mg_activation_count == 1);
2996 vd = mg->mg_vd;
2999 * Don't allocate from faulted devices.
3001 if (try_hard) {
3002 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3003 allocatable = vdev_allocatable(vd);
3004 spa_config_exit(spa, SCL_ZIO, FTAG);
3005 } else {
3006 allocatable = vdev_allocatable(vd);
3010 * Determine if the selected metaslab group is eligible
3011 * for allocations. If we're ganging then don't allow
3012 * this metaslab group to skip allocations since that would
3013 * inadvertently return ENOSPC and suspend the pool
3014 * even though space is still available.
3016 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3017 allocatable = metaslab_group_allocatable(mg, rotor,
3018 psize);
3021 if (!allocatable) {
3022 metaslab_trace_add(zal, mg, NULL, psize, d,
3023 TRACE_NOT_ALLOCATABLE);
3024 goto next;
3027 ASSERT(mg->mg_initialized);
3030 * Avoid writing single-copy data to a failing,
3031 * non-redundant vdev, unless we've already tried all
3032 * other vdevs.
3034 if ((vd->vdev_stat.vs_write_errors > 0 ||
3035 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3036 d == 0 && !try_hard && vd->vdev_children == 0) {
3037 metaslab_trace_add(zal, mg, NULL, psize, d,
3038 TRACE_VDEV_ERROR);
3039 goto next;
3042 ASSERT(mg->mg_class == mc);
3045 * If we don't need to try hard, then require that the
3046 * block be 1/8th of the device away from any other DVAs
3047 * in this BP. If we are trying hard, allow any offset
3048 * to be used (distance=0).
3050 uint64_t distance = 0;
3051 if (!try_hard) {
3052 distance = vd->vdev_asize >>
3053 ditto_same_vdev_distance_shift;
3054 if (distance <= (1ULL << vd->vdev_ms_shift))
3055 distance = 0;
3058 uint64_t asize = vdev_psize_to_asize(vd, psize);
3059 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3061 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3062 distance, dva, d);
3064 if (offset != -1ULL) {
3066 * If we've just selected this metaslab group,
3067 * figure out whether the corresponding vdev is
3068 * over- or under-used relative to the pool,
3069 * and set an allocation bias to even it out.
3071 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3072 vdev_stat_t *vs = &vd->vdev_stat;
3073 int64_t vu, cu;
3075 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
3076 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
3079 * Calculate how much more or less we should
3080 * try to allocate from this device during
3081 * this iteration around the rotor.
3082 * For example, if a device is 80% full
3083 * and the pool is 20% full then we should
3084 * reduce allocations by 60% on this device.
3086 * mg_bias = (20 - 80) * 512K / 100 = -307K
3088 * This reduces allocations by 307K for this
3089 * iteration.
3091 mg->mg_bias = ((cu - vu) *
3092 (int64_t)mg->mg_aliquot) / 100;
3093 } else if (!metaslab_bias_enabled) {
3094 mg->mg_bias = 0;
3097 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3098 mg->mg_aliquot + mg->mg_bias) {
3099 mc->mc_rotor = mg->mg_next;
3100 mc->mc_aliquot = 0;
3103 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3104 DVA_SET_OFFSET(&dva[d], offset);
3105 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
3106 DVA_SET_ASIZE(&dva[d], asize);
3108 return (0);
3110 next:
3111 mc->mc_rotor = mg->mg_next;
3112 mc->mc_aliquot = 0;
3113 } while ((mg = mg->mg_next) != rotor);
3116 * If we haven't tried hard, do so now.
3118 if (!try_hard) {
3119 try_hard = B_TRUE;
3120 goto top;
3123 bzero(&dva[d], sizeof (dva_t));
3125 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
3126 return (SET_ERROR(ENOSPC));
3130 * Free the block represented by DVA in the context of the specified
3131 * transaction group.
3133 static void
3134 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
3136 uint64_t vdev = DVA_GET_VDEV(dva);
3137 uint64_t offset = DVA_GET_OFFSET(dva);
3138 uint64_t size = DVA_GET_ASIZE(dva);
3139 vdev_t *vd;
3140 metaslab_t *msp;
3142 ASSERT(DVA_IS_VALID(dva));
3144 if (txg > spa_freeze_txg(spa))
3145 return;
3147 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3148 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3149 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
3150 (u_longlong_t)vdev, (u_longlong_t)offset);
3151 ASSERT(0);
3152 return;
3155 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3157 if (DVA_GET_GANG(dva))
3158 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3160 mutex_enter(&msp->ms_lock);
3162 if (now) {
3163 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
3164 offset, size);
3166 VERIFY(!msp->ms_condensing);
3167 VERIFY3U(offset, >=, msp->ms_start);
3168 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3169 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
3170 msp->ms_size);
3171 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3172 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3173 range_tree_add(msp->ms_tree, offset, size);
3174 msp->ms_max_size = metaslab_block_maxsize(msp);
3175 } else {
3176 VERIFY3U(txg, ==, spa->spa_syncing_txg);
3177 if (range_tree_space(msp->ms_freeingtree) == 0)
3178 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3179 range_tree_add(msp->ms_freeingtree, offset, size);
3182 mutex_exit(&msp->ms_lock);
3186 * Intent log support: upon opening the pool after a crash, notify the SPA
3187 * of blocks that the intent log has allocated for immediate write, but
3188 * which are still considered free by the SPA because the last transaction
3189 * group didn't commit yet.
3191 static int
3192 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3194 uint64_t vdev = DVA_GET_VDEV(dva);
3195 uint64_t offset = DVA_GET_OFFSET(dva);
3196 uint64_t size = DVA_GET_ASIZE(dva);
3197 vdev_t *vd;
3198 metaslab_t *msp;
3199 int error = 0;
3201 ASSERT(DVA_IS_VALID(dva));
3203 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3204 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
3205 return (SET_ERROR(ENXIO));
3207 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3209 if (DVA_GET_GANG(dva))
3210 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3212 mutex_enter(&msp->ms_lock);
3214 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3215 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
3217 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
3218 error = SET_ERROR(ENOENT);
3220 if (error || txg == 0) { /* txg == 0 indicates dry run */
3221 mutex_exit(&msp->ms_lock);
3222 return (error);
3225 VERIFY(!msp->ms_condensing);
3226 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3227 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3228 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
3229 range_tree_remove(msp->ms_tree, offset, size);
3231 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
3232 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
3233 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3234 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
3237 mutex_exit(&msp->ms_lock);
3239 return (0);
3243 * Reserve some allocation slots. The reservation system must be called
3244 * before we call into the allocator. If there aren't any available slots
3245 * then the I/O will be throttled until an I/O completes and its slots are
3246 * freed up. The function returns true if it was successful in placing
3247 * the reservation.
3249 boolean_t
3250 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
3251 int flags)
3253 uint64_t available_slots = 0;
3254 boolean_t slot_reserved = B_FALSE;
3256 ASSERT(mc->mc_alloc_throttle_enabled);
3257 mutex_enter(&mc->mc_lock);
3259 uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots);
3260 if (reserved_slots < mc->mc_alloc_max_slots)
3261 available_slots = mc->mc_alloc_max_slots - reserved_slots;
3263 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3265 * We reserve the slots individually so that we can unreserve
3266 * them individually when an I/O completes.
3268 for (int d = 0; d < slots; d++) {
3269 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
3271 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3272 slot_reserved = B_TRUE;
3275 mutex_exit(&mc->mc_lock);
3276 return (slot_reserved);
3279 void
3280 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
3282 ASSERT(mc->mc_alloc_throttle_enabled);
3283 mutex_enter(&mc->mc_lock);
3284 for (int d = 0; d < slots; d++) {
3285 (void) refcount_remove(&mc->mc_alloc_slots, zio);
3287 mutex_exit(&mc->mc_lock);
3291 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
3292 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3293 zio_alloc_list_t *zal, zio_t *zio)
3295 dva_t *dva = bp->blk_dva;
3296 dva_t *hintdva = hintbp->blk_dva;
3297 int error = 0;
3299 ASSERT(bp->blk_birth == 0);
3300 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
3302 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3304 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
3305 spa_config_exit(spa, SCL_ALLOC, FTAG);
3306 return (SET_ERROR(ENOSPC));
3309 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
3310 ASSERT(BP_GET_NDVAS(bp) == 0);
3311 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
3312 ASSERT3P(zal, !=, NULL);
3314 for (int d = 0; d < ndvas; d++) {
3315 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
3316 txg, flags, zal);
3317 if (error != 0) {
3318 for (d--; d >= 0; d--) {
3319 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
3320 metaslab_group_alloc_decrement(spa,
3321 DVA_GET_VDEV(&dva[d]), zio, flags);
3322 bzero(&dva[d], sizeof (dva_t));
3324 spa_config_exit(spa, SCL_ALLOC, FTAG);
3325 return (error);
3326 } else {
3328 * Update the metaslab group's queue depth
3329 * based on the newly allocated dva.
3331 metaslab_group_alloc_increment(spa,
3332 DVA_GET_VDEV(&dva[d]), zio, flags);
3336 ASSERT(error == 0);
3337 ASSERT(BP_GET_NDVAS(bp) == ndvas);
3339 spa_config_exit(spa, SCL_ALLOC, FTAG);
3341 BP_SET_BIRTH(bp, txg, txg);
3343 return (0);
3346 void
3347 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
3349 const dva_t *dva = bp->blk_dva;
3350 int ndvas = BP_GET_NDVAS(bp);
3352 ASSERT(!BP_IS_HOLE(bp));
3353 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
3355 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
3357 for (int d = 0; d < ndvas; d++)
3358 metaslab_free_dva(spa, &dva[d], txg, now);
3360 spa_config_exit(spa, SCL_FREE, FTAG);
3364 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
3366 const dva_t *dva = bp->blk_dva;
3367 int ndvas = BP_GET_NDVAS(bp);
3368 int error = 0;
3370 ASSERT(!BP_IS_HOLE(bp));
3372 if (txg != 0) {
3374 * First do a dry run to make sure all DVAs are claimable,
3375 * so we don't have to unwind from partial failures below.
3377 if ((error = metaslab_claim(spa, bp, 0)) != 0)
3378 return (error);
3381 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3383 for (int d = 0; d < ndvas; d++)
3384 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
3385 break;
3387 spa_config_exit(spa, SCL_ALLOC, FTAG);
3389 ASSERT(error == 0 || txg == 0);
3391 return (error);
3394 void
3395 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
3397 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
3398 return;
3400 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3401 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3402 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
3403 vdev_t *vd = vdev_lookup_top(spa, vdev);
3404 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
3405 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
3406 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3408 if (msp->ms_loaded)
3409 range_tree_verify(msp->ms_tree, offset, size);
3411 range_tree_verify(msp->ms_freeingtree, offset, size);
3412 range_tree_verify(msp->ms_freedtree, offset, size);
3413 for (int j = 0; j < TXG_DEFER_SIZE; j++)
3414 range_tree_verify(msp->ms_defertree[j], offset, size);
3416 spa_config_exit(spa, SCL_VDEV, FTAG);