8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / common / fs / zfs / spa_misc.c
blob6555d4eee542fcd5e7937492823a5c33e0308d25
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/spa_boot.h>
33 #include <sys/zio.h>
34 #include <sys/zio_checksum.h>
35 #include <sys/zio_compress.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/zap.h>
39 #include <sys/zil.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/uberblock_impl.h>
43 #include <sys/txg.h>
44 #include <sys/avl.h>
45 #include <sys/unique.h>
46 #include <sys/dsl_pool.h>
47 #include <sys/dsl_dir.h>
48 #include <sys/dsl_prop.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/arc.h>
53 #include <sys/ddt.h>
54 #include "zfs_prop.h"
55 #include <sys/zfeature.h>
58 * SPA locking
60 * There are four basic locks for managing spa_t structures:
62 * spa_namespace_lock (global mutex)
64 * This lock must be acquired to do any of the following:
66 * - Lookup a spa_t by name
67 * - Add or remove a spa_t from the namespace
68 * - Increase spa_refcount from non-zero
69 * - Check if spa_refcount is zero
70 * - Rename a spa_t
71 * - add/remove/attach/detach devices
72 * - Held for the duration of create/destroy/import/export
74 * It does not need to handle recursion. A create or destroy may
75 * reference objects (files or zvols) in other pools, but by
76 * definition they must have an existing reference, and will never need
77 * to lookup a spa_t by name.
79 * spa_refcount (per-spa refcount_t protected by mutex)
81 * This reference count keep track of any active users of the spa_t. The
82 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
83 * the refcount is never really 'zero' - opening a pool implicitly keeps
84 * some references in the DMU. Internally we check against spa_minref, but
85 * present the image of a zero/non-zero value to consumers.
87 * spa_config_lock[] (per-spa array of rwlocks)
89 * This protects the spa_t from config changes, and must be held in
90 * the following circumstances:
92 * - RW_READER to perform I/O to the spa
93 * - RW_WRITER to change the vdev config
95 * The locking order is fairly straightforward:
97 * spa_namespace_lock -> spa_refcount
99 * The namespace lock must be acquired to increase the refcount from 0
100 * or to check if it is zero.
102 * spa_refcount -> spa_config_lock[]
104 * There must be at least one valid reference on the spa_t to acquire
105 * the config lock.
107 * spa_namespace_lock -> spa_config_lock[]
109 * The namespace lock must always be taken before the config lock.
112 * The spa_namespace_lock can be acquired directly and is globally visible.
114 * The namespace is manipulated using the following functions, all of which
115 * require the spa_namespace_lock to be held.
117 * spa_lookup() Lookup a spa_t by name.
119 * spa_add() Create a new spa_t in the namespace.
121 * spa_remove() Remove a spa_t from the namespace. This also
122 * frees up any memory associated with the spa_t.
124 * spa_next() Returns the next spa_t in the system, or the
125 * first if NULL is passed.
127 * spa_evict_all() Shutdown and remove all spa_t structures in
128 * the system.
130 * spa_guid_exists() Determine whether a pool/device guid exists.
132 * The spa_refcount is manipulated using the following functions:
134 * spa_open_ref() Adds a reference to the given spa_t. Must be
135 * called with spa_namespace_lock held if the
136 * refcount is currently zero.
138 * spa_close() Remove a reference from the spa_t. This will
139 * not free the spa_t or remove it from the
140 * namespace. No locking is required.
142 * spa_refcount_zero() Returns true if the refcount is currently
143 * zero. Must be called with spa_namespace_lock
144 * held.
146 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
147 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
148 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
150 * To read the configuration, it suffices to hold one of these locks as reader.
151 * To modify the configuration, you must hold all locks as writer. To modify
152 * vdev state without altering the vdev tree's topology (e.g. online/offline),
153 * you must hold SCL_STATE and SCL_ZIO as writer.
155 * We use these distinct config locks to avoid recursive lock entry.
156 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
157 * block allocations (SCL_ALLOC), which may require reading space maps
158 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
160 * The spa config locks cannot be normal rwlocks because we need the
161 * ability to hand off ownership. For example, SCL_ZIO is acquired
162 * by the issuing thread and later released by an interrupt thread.
163 * They do, however, obey the usual write-wanted semantics to prevent
164 * writer (i.e. system administrator) starvation.
166 * The lock acquisition rules are as follows:
168 * SCL_CONFIG
169 * Protects changes to the vdev tree topology, such as vdev
170 * add/remove/attach/detach. Protects the dirty config list
171 * (spa_config_dirty_list) and the set of spares and l2arc devices.
173 * SCL_STATE
174 * Protects changes to pool state and vdev state, such as vdev
175 * online/offline/fault/degrade/clear. Protects the dirty state list
176 * (spa_state_dirty_list) and global pool state (spa_state).
178 * SCL_ALLOC
179 * Protects changes to metaslab groups and classes.
180 * Held as reader by metaslab_alloc() and metaslab_claim().
182 * SCL_ZIO
183 * Held by bp-level zios (those which have no io_vd upon entry)
184 * to prevent changes to the vdev tree. The bp-level zio implicitly
185 * protects all of its vdev child zios, which do not hold SCL_ZIO.
187 * SCL_FREE
188 * Protects changes to metaslab groups and classes.
189 * Held as reader by metaslab_free(). SCL_FREE is distinct from
190 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
191 * blocks in zio_done() while another i/o that holds either
192 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
194 * SCL_VDEV
195 * Held as reader to prevent changes to the vdev tree during trivial
196 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
197 * other locks, and lower than all of them, to ensure that it's safe
198 * to acquire regardless of caller context.
200 * In addition, the following rules apply:
202 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
203 * The lock ordering is SCL_CONFIG > spa_props_lock.
205 * (b) I/O operations on leaf vdevs. For any zio operation that takes
206 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
207 * or zio_write_phys() -- the caller must ensure that the config cannot
208 * cannot change in the interim, and that the vdev cannot be reopened.
209 * SCL_STATE as reader suffices for both.
211 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
213 * spa_vdev_enter() Acquire the namespace lock and the config lock
214 * for writing.
216 * spa_vdev_exit() Release the config lock, wait for all I/O
217 * to complete, sync the updated configs to the
218 * cache, and release the namespace lock.
220 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
221 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
222 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
224 * spa_rename() is also implemented within this file since it requires
225 * manipulation of the namespace.
228 static avl_tree_t spa_namespace_avl;
229 kmutex_t spa_namespace_lock;
230 static kcondvar_t spa_namespace_cv;
231 static int spa_active_count;
232 int spa_max_replication_override = SPA_DVAS_PER_BP;
234 static kmutex_t spa_spare_lock;
235 static avl_tree_t spa_spare_avl;
236 static kmutex_t spa_l2cache_lock;
237 static avl_tree_t spa_l2cache_avl;
239 kmem_cache_t *spa_buffer_pool;
240 int spa_mode_global;
242 #ifdef ZFS_DEBUG
243 /* Everything except dprintf and spa is on by default in debug builds */
244 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
245 #else
246 int zfs_flags = 0;
247 #endif
250 * zfs_recover can be set to nonzero to attempt to recover from
251 * otherwise-fatal errors, typically caused by on-disk corruption. When
252 * set, calls to zfs_panic_recover() will turn into warning messages.
253 * This should only be used as a last resort, as it typically results
254 * in leaked space, or worse.
256 boolean_t zfs_recover = B_FALSE;
259 * If destroy encounters an EIO while reading metadata (e.g. indirect
260 * blocks), space referenced by the missing metadata can not be freed.
261 * Normally this causes the background destroy to become "stalled", as
262 * it is unable to make forward progress. While in this stalled state,
263 * all remaining space to free from the error-encountering filesystem is
264 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
265 * permanently leak the space from indirect blocks that can not be read,
266 * and continue to free everything else that it can.
268 * The default, "stalling" behavior is useful if the storage partially
269 * fails (i.e. some but not all i/os fail), and then later recovers. In
270 * this case, we will be able to continue pool operations while it is
271 * partially failed, and when it recovers, we can continue to free the
272 * space, with no leaks. However, note that this case is actually
273 * fairly rare.
275 * Typically pools either (a) fail completely (but perhaps temporarily,
276 * e.g. a top-level vdev going offline), or (b) have localized,
277 * permanent errors (e.g. disk returns the wrong data due to bit flip or
278 * firmware bug). In case (a), this setting does not matter because the
279 * pool will be suspended and the sync thread will not be able to make
280 * forward progress regardless. In case (b), because the error is
281 * permanent, the best we can do is leak the minimum amount of space,
282 * which is what setting this flag will do. Therefore, it is reasonable
283 * for this flag to normally be set, but we chose the more conservative
284 * approach of not setting it, so that there is no possibility of
285 * leaking space in the "partial temporary" failure case.
287 boolean_t zfs_free_leak_on_eio = B_FALSE;
290 * Expiration time in milliseconds. This value has two meanings. First it is
291 * used to determine when the spa_deadman() logic should fire. By default the
292 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
293 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
294 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
295 * in a system panic.
297 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
300 * Check time in milliseconds. This defines the frequency at which we check
301 * for hung I/O.
303 uint64_t zfs_deadman_checktime_ms = 5000ULL;
306 * Override the zfs deadman behavior via /etc/system. By default the
307 * deadman is enabled except on VMware and sparc deployments.
309 int zfs_deadman_enabled = -1;
312 * The worst case is single-sector max-parity RAID-Z blocks, in which
313 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
314 * times the size; so just assume that. Add to this the fact that
315 * we can have up to 3 DVAs per bp, and one more factor of 2 because
316 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
317 * the worst case is:
318 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
320 int spa_asize_inflation = 24;
323 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
324 * the pool to be consumed. This ensures that we don't run the pool
325 * completely out of space, due to unaccounted changes (e.g. to the MOS).
326 * It also limits the worst-case time to allocate space. If we have
327 * less than this amount of free space, most ZPL operations (e.g. write,
328 * create) will return ENOSPC.
330 * Certain operations (e.g. file removal, most administrative actions) can
331 * use half the slop space. They will only return ENOSPC if less than half
332 * the slop space is free. Typically, once the pool has less than the slop
333 * space free, the user will use these operations to free up space in the pool.
334 * These are the operations that call dsl_pool_adjustedsize() with the netfree
335 * argument set to TRUE.
337 * A very restricted set of operations are always permitted, regardless of
338 * the amount of free space. These are the operations that call
339 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
340 * operations result in a net increase in the amount of space used,
341 * it is possible to run the pool completely out of space, causing it to
342 * be permanently read-only.
344 * Note that on very small pools, the slop space will be larger than
345 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
346 * but we never allow it to be more than half the pool size.
348 * See also the comments in zfs_space_check_t.
350 int spa_slop_shift = 5;
351 uint64_t spa_min_slop = 128 * 1024 * 1024;
354 * ==========================================================================
355 * SPA config locking
356 * ==========================================================================
358 static void
359 spa_config_lock_init(spa_t *spa)
361 for (int i = 0; i < SCL_LOCKS; i++) {
362 spa_config_lock_t *scl = &spa->spa_config_lock[i];
363 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
364 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
365 refcount_create_untracked(&scl->scl_count);
366 scl->scl_writer = NULL;
367 scl->scl_write_wanted = 0;
371 static void
372 spa_config_lock_destroy(spa_t *spa)
374 for (int i = 0; i < SCL_LOCKS; i++) {
375 spa_config_lock_t *scl = &spa->spa_config_lock[i];
376 mutex_destroy(&scl->scl_lock);
377 cv_destroy(&scl->scl_cv);
378 refcount_destroy(&scl->scl_count);
379 ASSERT(scl->scl_writer == NULL);
380 ASSERT(scl->scl_write_wanted == 0);
385 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
387 for (int i = 0; i < SCL_LOCKS; i++) {
388 spa_config_lock_t *scl = &spa->spa_config_lock[i];
389 if (!(locks & (1 << i)))
390 continue;
391 mutex_enter(&scl->scl_lock);
392 if (rw == RW_READER) {
393 if (scl->scl_writer || scl->scl_write_wanted) {
394 mutex_exit(&scl->scl_lock);
395 spa_config_exit(spa, locks & ((1 << i) - 1),
396 tag);
397 return (0);
399 } else {
400 ASSERT(scl->scl_writer != curthread);
401 if (!refcount_is_zero(&scl->scl_count)) {
402 mutex_exit(&scl->scl_lock);
403 spa_config_exit(spa, locks & ((1 << i) - 1),
404 tag);
405 return (0);
407 scl->scl_writer = curthread;
409 (void) refcount_add(&scl->scl_count, tag);
410 mutex_exit(&scl->scl_lock);
412 return (1);
415 void
416 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
418 int wlocks_held = 0;
420 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
422 for (int i = 0; i < SCL_LOCKS; i++) {
423 spa_config_lock_t *scl = &spa->spa_config_lock[i];
424 if (scl->scl_writer == curthread)
425 wlocks_held |= (1 << i);
426 if (!(locks & (1 << i)))
427 continue;
428 mutex_enter(&scl->scl_lock);
429 if (rw == RW_READER) {
430 while (scl->scl_writer || scl->scl_write_wanted) {
431 cv_wait(&scl->scl_cv, &scl->scl_lock);
433 } else {
434 ASSERT(scl->scl_writer != curthread);
435 while (!refcount_is_zero(&scl->scl_count)) {
436 scl->scl_write_wanted++;
437 cv_wait(&scl->scl_cv, &scl->scl_lock);
438 scl->scl_write_wanted--;
440 scl->scl_writer = curthread;
442 (void) refcount_add(&scl->scl_count, tag);
443 mutex_exit(&scl->scl_lock);
445 ASSERT(wlocks_held <= locks);
448 void
449 spa_config_exit(spa_t *spa, int locks, void *tag)
451 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
452 spa_config_lock_t *scl = &spa->spa_config_lock[i];
453 if (!(locks & (1 << i)))
454 continue;
455 mutex_enter(&scl->scl_lock);
456 ASSERT(!refcount_is_zero(&scl->scl_count));
457 if (refcount_remove(&scl->scl_count, tag) == 0) {
458 ASSERT(scl->scl_writer == NULL ||
459 scl->scl_writer == curthread);
460 scl->scl_writer = NULL; /* OK in either case */
461 cv_broadcast(&scl->scl_cv);
463 mutex_exit(&scl->scl_lock);
468 spa_config_held(spa_t *spa, int locks, krw_t rw)
470 int locks_held = 0;
472 for (int i = 0; i < SCL_LOCKS; i++) {
473 spa_config_lock_t *scl = &spa->spa_config_lock[i];
474 if (!(locks & (1 << i)))
475 continue;
476 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
477 (rw == RW_WRITER && scl->scl_writer == curthread))
478 locks_held |= 1 << i;
481 return (locks_held);
485 * ==========================================================================
486 * SPA namespace functions
487 * ==========================================================================
491 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
492 * Returns NULL if no matching spa_t is found.
494 spa_t *
495 spa_lookup(const char *name)
497 static spa_t search; /* spa_t is large; don't allocate on stack */
498 spa_t *spa;
499 avl_index_t where;
500 char *cp;
502 ASSERT(MUTEX_HELD(&spa_namespace_lock));
504 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
507 * If it's a full dataset name, figure out the pool name and
508 * just use that.
510 cp = strpbrk(search.spa_name, "/@#");
511 if (cp != NULL)
512 *cp = '\0';
514 spa = avl_find(&spa_namespace_avl, &search, &where);
516 return (spa);
520 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
521 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
522 * looking for potentially hung I/Os.
524 void
525 spa_deadman(void *arg)
527 spa_t *spa = arg;
530 * Disable the deadman timer if the pool is suspended.
532 if (spa_suspended(spa)) {
533 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
534 return;
537 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
538 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
539 ++spa->spa_deadman_calls);
540 if (zfs_deadman_enabled)
541 vdev_deadman(spa->spa_root_vdev);
545 * Create an uninitialized spa_t with the given name. Requires
546 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
547 * exist by calling spa_lookup() first.
549 spa_t *
550 spa_add(const char *name, nvlist_t *config, const char *altroot)
552 spa_t *spa;
553 spa_config_dirent_t *dp;
554 cyc_handler_t hdlr;
555 cyc_time_t when;
557 ASSERT(MUTEX_HELD(&spa_namespace_lock));
559 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
561 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
562 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
563 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
564 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
565 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
566 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
567 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
568 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
569 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
570 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
571 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
572 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
573 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
575 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
576 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
577 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
578 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
579 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
581 for (int t = 0; t < TXG_SIZE; t++)
582 bplist_create(&spa->spa_free_bplist[t]);
584 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
585 spa->spa_state = POOL_STATE_UNINITIALIZED;
586 spa->spa_freeze_txg = UINT64_MAX;
587 spa->spa_final_txg = UINT64_MAX;
588 spa->spa_load_max_txg = UINT64_MAX;
589 spa->spa_proc = &p0;
590 spa->spa_proc_state = SPA_PROC_NONE;
592 hdlr.cyh_func = spa_deadman;
593 hdlr.cyh_arg = spa;
594 hdlr.cyh_level = CY_LOW_LEVEL;
596 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
599 * This determines how often we need to check for hung I/Os after
600 * the cyclic has already fired. Since checking for hung I/Os is
601 * an expensive operation we don't want to check too frequently.
602 * Instead wait for 5 seconds before checking again.
604 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
605 when.cyt_when = CY_INFINITY;
606 mutex_enter(&cpu_lock);
607 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
608 mutex_exit(&cpu_lock);
610 refcount_create(&spa->spa_refcount);
611 spa_config_lock_init(spa);
613 avl_add(&spa_namespace_avl, spa);
616 * Set the alternate root, if there is one.
618 if (altroot) {
619 spa->spa_root = spa_strdup(altroot);
620 spa_active_count++;
623 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
624 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
627 * Every pool starts with the default cachefile
629 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
630 offsetof(spa_config_dirent_t, scd_link));
632 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
633 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
634 list_insert_head(&spa->spa_config_list, dp);
636 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
637 KM_SLEEP) == 0);
639 if (config != NULL) {
640 nvlist_t *features;
642 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
643 &features) == 0) {
644 VERIFY(nvlist_dup(features, &spa->spa_label_features,
645 0) == 0);
648 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
651 if (spa->spa_label_features == NULL) {
652 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
653 KM_SLEEP) == 0);
656 spa->spa_iokstat = kstat_create("zfs", 0, name,
657 "disk", KSTAT_TYPE_IO, 1, 0);
658 if (spa->spa_iokstat) {
659 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
660 kstat_install(spa->spa_iokstat);
663 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
665 spa->spa_min_ashift = INT_MAX;
666 spa->spa_max_ashift = 0;
669 * As a pool is being created, treat all features as disabled by
670 * setting SPA_FEATURE_DISABLED for all entries in the feature
671 * refcount cache.
673 for (int i = 0; i < SPA_FEATURES; i++) {
674 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
677 return (spa);
681 * Removes a spa_t from the namespace, freeing up any memory used. Requires
682 * spa_namespace_lock. This is called only after the spa_t has been closed and
683 * deactivated.
685 void
686 spa_remove(spa_t *spa)
688 spa_config_dirent_t *dp;
690 ASSERT(MUTEX_HELD(&spa_namespace_lock));
691 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
692 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
694 nvlist_free(spa->spa_config_splitting);
696 avl_remove(&spa_namespace_avl, spa);
697 cv_broadcast(&spa_namespace_cv);
699 if (spa->spa_root) {
700 spa_strfree(spa->spa_root);
701 spa_active_count--;
704 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
705 list_remove(&spa->spa_config_list, dp);
706 if (dp->scd_path != NULL)
707 spa_strfree(dp->scd_path);
708 kmem_free(dp, sizeof (spa_config_dirent_t));
711 avl_destroy(&spa->spa_alloc_tree);
712 list_destroy(&spa->spa_config_list);
714 nvlist_free(spa->spa_label_features);
715 nvlist_free(spa->spa_load_info);
716 spa_config_set(spa, NULL);
718 mutex_enter(&cpu_lock);
719 if (spa->spa_deadman_cycid != CYCLIC_NONE)
720 cyclic_remove(spa->spa_deadman_cycid);
721 mutex_exit(&cpu_lock);
722 spa->spa_deadman_cycid = CYCLIC_NONE;
724 refcount_destroy(&spa->spa_refcount);
726 spa_config_lock_destroy(spa);
728 kstat_delete(spa->spa_iokstat);
729 spa->spa_iokstat = NULL;
731 for (int t = 0; t < TXG_SIZE; t++)
732 bplist_destroy(&spa->spa_free_bplist[t]);
734 zio_checksum_templates_free(spa);
736 cv_destroy(&spa->spa_async_cv);
737 cv_destroy(&spa->spa_evicting_os_cv);
738 cv_destroy(&spa->spa_proc_cv);
739 cv_destroy(&spa->spa_scrub_io_cv);
740 cv_destroy(&spa->spa_suspend_cv);
742 mutex_destroy(&spa->spa_alloc_lock);
743 mutex_destroy(&spa->spa_async_lock);
744 mutex_destroy(&spa->spa_errlist_lock);
745 mutex_destroy(&spa->spa_errlog_lock);
746 mutex_destroy(&spa->spa_evicting_os_lock);
747 mutex_destroy(&spa->spa_history_lock);
748 mutex_destroy(&spa->spa_proc_lock);
749 mutex_destroy(&spa->spa_props_lock);
750 mutex_destroy(&spa->spa_cksum_tmpls_lock);
751 mutex_destroy(&spa->spa_scrub_lock);
752 mutex_destroy(&spa->spa_suspend_lock);
753 mutex_destroy(&spa->spa_vdev_top_lock);
754 mutex_destroy(&spa->spa_iokstat_lock);
756 kmem_free(spa, sizeof (spa_t));
760 * Given a pool, return the next pool in the namespace, or NULL if there is
761 * none. If 'prev' is NULL, return the first pool.
763 spa_t *
764 spa_next(spa_t *prev)
766 ASSERT(MUTEX_HELD(&spa_namespace_lock));
768 if (prev)
769 return (AVL_NEXT(&spa_namespace_avl, prev));
770 else
771 return (avl_first(&spa_namespace_avl));
775 * ==========================================================================
776 * SPA refcount functions
777 * ==========================================================================
781 * Add a reference to the given spa_t. Must have at least one reference, or
782 * have the namespace lock held.
784 void
785 spa_open_ref(spa_t *spa, void *tag)
787 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
788 MUTEX_HELD(&spa_namespace_lock));
789 (void) refcount_add(&spa->spa_refcount, tag);
793 * Remove a reference to the given spa_t. Must have at least one reference, or
794 * have the namespace lock held.
796 void
797 spa_close(spa_t *spa, void *tag)
799 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
800 MUTEX_HELD(&spa_namespace_lock));
801 (void) refcount_remove(&spa->spa_refcount, tag);
805 * Remove a reference to the given spa_t held by a dsl dir that is
806 * being asynchronously released. Async releases occur from a taskq
807 * performing eviction of dsl datasets and dirs. The namespace lock
808 * isn't held and the hold by the object being evicted may contribute to
809 * spa_minref (e.g. dataset or directory released during pool export),
810 * so the asserts in spa_close() do not apply.
812 void
813 spa_async_close(spa_t *spa, void *tag)
815 (void) refcount_remove(&spa->spa_refcount, tag);
819 * Check to see if the spa refcount is zero. Must be called with
820 * spa_namespace_lock held. We really compare against spa_minref, which is the
821 * number of references acquired when opening a pool
823 boolean_t
824 spa_refcount_zero(spa_t *spa)
826 ASSERT(MUTEX_HELD(&spa_namespace_lock));
828 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
832 * ==========================================================================
833 * SPA spare and l2cache tracking
834 * ==========================================================================
838 * Hot spares and cache devices are tracked using the same code below,
839 * for 'auxiliary' devices.
842 typedef struct spa_aux {
843 uint64_t aux_guid;
844 uint64_t aux_pool;
845 avl_node_t aux_avl;
846 int aux_count;
847 } spa_aux_t;
849 static int
850 spa_aux_compare(const void *a, const void *b)
852 const spa_aux_t *sa = a;
853 const spa_aux_t *sb = b;
855 if (sa->aux_guid < sb->aux_guid)
856 return (-1);
857 else if (sa->aux_guid > sb->aux_guid)
858 return (1);
859 else
860 return (0);
863 void
864 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
866 avl_index_t where;
867 spa_aux_t search;
868 spa_aux_t *aux;
870 search.aux_guid = vd->vdev_guid;
871 if ((aux = avl_find(avl, &search, &where)) != NULL) {
872 aux->aux_count++;
873 } else {
874 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
875 aux->aux_guid = vd->vdev_guid;
876 aux->aux_count = 1;
877 avl_insert(avl, aux, where);
881 void
882 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
884 spa_aux_t search;
885 spa_aux_t *aux;
886 avl_index_t where;
888 search.aux_guid = vd->vdev_guid;
889 aux = avl_find(avl, &search, &where);
891 ASSERT(aux != NULL);
893 if (--aux->aux_count == 0) {
894 avl_remove(avl, aux);
895 kmem_free(aux, sizeof (spa_aux_t));
896 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
897 aux->aux_pool = 0ULL;
901 boolean_t
902 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
904 spa_aux_t search, *found;
906 search.aux_guid = guid;
907 found = avl_find(avl, &search, NULL);
909 if (pool) {
910 if (found)
911 *pool = found->aux_pool;
912 else
913 *pool = 0ULL;
916 if (refcnt) {
917 if (found)
918 *refcnt = found->aux_count;
919 else
920 *refcnt = 0;
923 return (found != NULL);
926 void
927 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
929 spa_aux_t search, *found;
930 avl_index_t where;
932 search.aux_guid = vd->vdev_guid;
933 found = avl_find(avl, &search, &where);
934 ASSERT(found != NULL);
935 ASSERT(found->aux_pool == 0ULL);
937 found->aux_pool = spa_guid(vd->vdev_spa);
941 * Spares are tracked globally due to the following constraints:
943 * - A spare may be part of multiple pools.
944 * - A spare may be added to a pool even if it's actively in use within
945 * another pool.
946 * - A spare in use in any pool can only be the source of a replacement if
947 * the target is a spare in the same pool.
949 * We keep track of all spares on the system through the use of a reference
950 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
951 * spare, then we bump the reference count in the AVL tree. In addition, we set
952 * the 'vdev_isspare' member to indicate that the device is a spare (active or
953 * inactive). When a spare is made active (used to replace a device in the
954 * pool), we also keep track of which pool its been made a part of.
956 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
957 * called under the spa_namespace lock as part of vdev reconfiguration. The
958 * separate spare lock exists for the status query path, which does not need to
959 * be completely consistent with respect to other vdev configuration changes.
962 static int
963 spa_spare_compare(const void *a, const void *b)
965 return (spa_aux_compare(a, b));
968 void
969 spa_spare_add(vdev_t *vd)
971 mutex_enter(&spa_spare_lock);
972 ASSERT(!vd->vdev_isspare);
973 spa_aux_add(vd, &spa_spare_avl);
974 vd->vdev_isspare = B_TRUE;
975 mutex_exit(&spa_spare_lock);
978 void
979 spa_spare_remove(vdev_t *vd)
981 mutex_enter(&spa_spare_lock);
982 ASSERT(vd->vdev_isspare);
983 spa_aux_remove(vd, &spa_spare_avl);
984 vd->vdev_isspare = B_FALSE;
985 mutex_exit(&spa_spare_lock);
988 boolean_t
989 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
991 boolean_t found;
993 mutex_enter(&spa_spare_lock);
994 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
995 mutex_exit(&spa_spare_lock);
997 return (found);
1000 void
1001 spa_spare_activate(vdev_t *vd)
1003 mutex_enter(&spa_spare_lock);
1004 ASSERT(vd->vdev_isspare);
1005 spa_aux_activate(vd, &spa_spare_avl);
1006 mutex_exit(&spa_spare_lock);
1010 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1011 * Cache devices currently only support one pool per cache device, and so
1012 * for these devices the aux reference count is currently unused beyond 1.
1015 static int
1016 spa_l2cache_compare(const void *a, const void *b)
1018 return (spa_aux_compare(a, b));
1021 void
1022 spa_l2cache_add(vdev_t *vd)
1024 mutex_enter(&spa_l2cache_lock);
1025 ASSERT(!vd->vdev_isl2cache);
1026 spa_aux_add(vd, &spa_l2cache_avl);
1027 vd->vdev_isl2cache = B_TRUE;
1028 mutex_exit(&spa_l2cache_lock);
1031 void
1032 spa_l2cache_remove(vdev_t *vd)
1034 mutex_enter(&spa_l2cache_lock);
1035 ASSERT(vd->vdev_isl2cache);
1036 spa_aux_remove(vd, &spa_l2cache_avl);
1037 vd->vdev_isl2cache = B_FALSE;
1038 mutex_exit(&spa_l2cache_lock);
1041 boolean_t
1042 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1044 boolean_t found;
1046 mutex_enter(&spa_l2cache_lock);
1047 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1048 mutex_exit(&spa_l2cache_lock);
1050 return (found);
1053 void
1054 spa_l2cache_activate(vdev_t *vd)
1056 mutex_enter(&spa_l2cache_lock);
1057 ASSERT(vd->vdev_isl2cache);
1058 spa_aux_activate(vd, &spa_l2cache_avl);
1059 mutex_exit(&spa_l2cache_lock);
1063 * ==========================================================================
1064 * SPA vdev locking
1065 * ==========================================================================
1069 * Lock the given spa_t for the purpose of adding or removing a vdev.
1070 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1071 * It returns the next transaction group for the spa_t.
1073 uint64_t
1074 spa_vdev_enter(spa_t *spa)
1076 mutex_enter(&spa->spa_vdev_top_lock);
1077 mutex_enter(&spa_namespace_lock);
1078 return (spa_vdev_config_enter(spa));
1082 * Internal implementation for spa_vdev_enter(). Used when a vdev
1083 * operation requires multiple syncs (i.e. removing a device) while
1084 * keeping the spa_namespace_lock held.
1086 uint64_t
1087 spa_vdev_config_enter(spa_t *spa)
1089 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1091 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1093 return (spa_last_synced_txg(spa) + 1);
1097 * Used in combination with spa_vdev_config_enter() to allow the syncing
1098 * of multiple transactions without releasing the spa_namespace_lock.
1100 void
1101 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1103 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1105 int config_changed = B_FALSE;
1107 ASSERT(txg > spa_last_synced_txg(spa));
1109 spa->spa_pending_vdev = NULL;
1112 * Reassess the DTLs.
1114 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1116 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1117 config_changed = B_TRUE;
1118 spa->spa_config_generation++;
1122 * Verify the metaslab classes.
1124 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1125 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1127 spa_config_exit(spa, SCL_ALL, spa);
1130 * Panic the system if the specified tag requires it. This
1131 * is useful for ensuring that configurations are updated
1132 * transactionally.
1134 if (zio_injection_enabled)
1135 zio_handle_panic_injection(spa, tag, 0);
1138 * Note: this txg_wait_synced() is important because it ensures
1139 * that there won't be more than one config change per txg.
1140 * This allows us to use the txg as the generation number.
1142 if (error == 0)
1143 txg_wait_synced(spa->spa_dsl_pool, txg);
1145 if (vd != NULL) {
1146 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1147 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1148 vdev_free(vd);
1149 spa_config_exit(spa, SCL_ALL, spa);
1153 * If the config changed, update the config cache.
1155 if (config_changed)
1156 spa_config_sync(spa, B_FALSE, B_TRUE);
1160 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1161 * locking of spa_vdev_enter(), we also want make sure the transactions have
1162 * synced to disk, and then update the global configuration cache with the new
1163 * information.
1166 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1168 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1169 mutex_exit(&spa_namespace_lock);
1170 mutex_exit(&spa->spa_vdev_top_lock);
1172 return (error);
1176 * Lock the given spa_t for the purpose of changing vdev state.
1178 void
1179 spa_vdev_state_enter(spa_t *spa, int oplocks)
1181 int locks = SCL_STATE_ALL | oplocks;
1184 * Root pools may need to read of the underlying devfs filesystem
1185 * when opening up a vdev. Unfortunately if we're holding the
1186 * SCL_ZIO lock it will result in a deadlock when we try to issue
1187 * the read from the root filesystem. Instead we "prefetch"
1188 * the associated vnodes that we need prior to opening the
1189 * underlying devices and cache them so that we can prevent
1190 * any I/O when we are doing the actual open.
1192 if (spa_is_root(spa)) {
1193 int low = locks & ~(SCL_ZIO - 1);
1194 int high = locks & ~low;
1196 spa_config_enter(spa, high, spa, RW_WRITER);
1197 vdev_hold(spa->spa_root_vdev);
1198 spa_config_enter(spa, low, spa, RW_WRITER);
1199 } else {
1200 spa_config_enter(spa, locks, spa, RW_WRITER);
1202 spa->spa_vdev_locks = locks;
1206 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1208 boolean_t config_changed = B_FALSE;
1210 if (vd != NULL || error == 0)
1211 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1212 0, 0, B_FALSE);
1214 if (vd != NULL) {
1215 vdev_state_dirty(vd->vdev_top);
1216 config_changed = B_TRUE;
1217 spa->spa_config_generation++;
1220 if (spa_is_root(spa))
1221 vdev_rele(spa->spa_root_vdev);
1223 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1224 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1227 * If anything changed, wait for it to sync. This ensures that,
1228 * from the system administrator's perspective, zpool(1M) commands
1229 * are synchronous. This is important for things like zpool offline:
1230 * when the command completes, you expect no further I/O from ZFS.
1232 if (vd != NULL)
1233 txg_wait_synced(spa->spa_dsl_pool, 0);
1236 * If the config changed, update the config cache.
1238 if (config_changed) {
1239 mutex_enter(&spa_namespace_lock);
1240 spa_config_sync(spa, B_FALSE, B_TRUE);
1241 mutex_exit(&spa_namespace_lock);
1244 return (error);
1248 * ==========================================================================
1249 * Miscellaneous functions
1250 * ==========================================================================
1253 void
1254 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1256 if (!nvlist_exists(spa->spa_label_features, feature)) {
1257 fnvlist_add_boolean(spa->spa_label_features, feature);
1259 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1260 * dirty the vdev config because lock SCL_CONFIG is not held.
1261 * Thankfully, in this case we don't need to dirty the config
1262 * because it will be written out anyway when we finish
1263 * creating the pool.
1265 if (tx->tx_txg != TXG_INITIAL)
1266 vdev_config_dirty(spa->spa_root_vdev);
1270 void
1271 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1273 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1274 vdev_config_dirty(spa->spa_root_vdev);
1278 * Rename a spa_t.
1281 spa_rename(const char *name, const char *newname)
1283 spa_t *spa;
1284 int err;
1287 * Lookup the spa_t and grab the config lock for writing. We need to
1288 * actually open the pool so that we can sync out the necessary labels.
1289 * It's OK to call spa_open() with the namespace lock held because we
1290 * allow recursive calls for other reasons.
1292 mutex_enter(&spa_namespace_lock);
1293 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1294 mutex_exit(&spa_namespace_lock);
1295 return (err);
1298 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1300 avl_remove(&spa_namespace_avl, spa);
1301 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1302 avl_add(&spa_namespace_avl, spa);
1305 * Sync all labels to disk with the new names by marking the root vdev
1306 * dirty and waiting for it to sync. It will pick up the new pool name
1307 * during the sync.
1309 vdev_config_dirty(spa->spa_root_vdev);
1311 spa_config_exit(spa, SCL_ALL, FTAG);
1313 txg_wait_synced(spa->spa_dsl_pool, 0);
1316 * Sync the updated config cache.
1318 spa_config_sync(spa, B_FALSE, B_TRUE);
1320 spa_close(spa, FTAG);
1322 mutex_exit(&spa_namespace_lock);
1324 return (0);
1328 * Return the spa_t associated with given pool_guid, if it exists. If
1329 * device_guid is non-zero, determine whether the pool exists *and* contains
1330 * a device with the specified device_guid.
1332 spa_t *
1333 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1335 spa_t *spa;
1336 avl_tree_t *t = &spa_namespace_avl;
1338 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1340 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1341 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1342 continue;
1343 if (spa->spa_root_vdev == NULL)
1344 continue;
1345 if (spa_guid(spa) == pool_guid) {
1346 if (device_guid == 0)
1347 break;
1349 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1350 device_guid) != NULL)
1351 break;
1354 * Check any devices we may be in the process of adding.
1356 if (spa->spa_pending_vdev) {
1357 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1358 device_guid) != NULL)
1359 break;
1364 return (spa);
1368 * Determine whether a pool with the given pool_guid exists.
1370 boolean_t
1371 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1373 return (spa_by_guid(pool_guid, device_guid) != NULL);
1376 char *
1377 spa_strdup(const char *s)
1379 size_t len;
1380 char *new;
1382 len = strlen(s);
1383 new = kmem_alloc(len + 1, KM_SLEEP);
1384 bcopy(s, new, len);
1385 new[len] = '\0';
1387 return (new);
1390 void
1391 spa_strfree(char *s)
1393 kmem_free(s, strlen(s) + 1);
1396 uint64_t
1397 spa_get_random(uint64_t range)
1399 uint64_t r;
1401 ASSERT(range != 0);
1403 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1405 return (r % range);
1408 uint64_t
1409 spa_generate_guid(spa_t *spa)
1411 uint64_t guid = spa_get_random(-1ULL);
1413 if (spa != NULL) {
1414 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1415 guid = spa_get_random(-1ULL);
1416 } else {
1417 while (guid == 0 || spa_guid_exists(guid, 0))
1418 guid = spa_get_random(-1ULL);
1421 return (guid);
1424 void
1425 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1427 char type[256];
1428 char *checksum = NULL;
1429 char *compress = NULL;
1431 if (bp != NULL) {
1432 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1433 dmu_object_byteswap_t bswap =
1434 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1435 (void) snprintf(type, sizeof (type), "bswap %s %s",
1436 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1437 "metadata" : "data",
1438 dmu_ot_byteswap[bswap].ob_name);
1439 } else {
1440 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1441 sizeof (type));
1443 if (!BP_IS_EMBEDDED(bp)) {
1444 checksum =
1445 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1447 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1450 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1451 compress);
1454 void
1455 spa_freeze(spa_t *spa)
1457 uint64_t freeze_txg = 0;
1459 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1460 if (spa->spa_freeze_txg == UINT64_MAX) {
1461 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1462 spa->spa_freeze_txg = freeze_txg;
1464 spa_config_exit(spa, SCL_ALL, FTAG);
1465 if (freeze_txg != 0)
1466 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1469 void
1470 zfs_panic_recover(const char *fmt, ...)
1472 va_list adx;
1474 va_start(adx, fmt);
1475 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1476 va_end(adx);
1480 * This is a stripped-down version of strtoull, suitable only for converting
1481 * lowercase hexadecimal numbers that don't overflow.
1483 uint64_t
1484 zfs_strtonum(const char *str, char **nptr)
1486 uint64_t val = 0;
1487 char c;
1488 int digit;
1490 while ((c = *str) != '\0') {
1491 if (c >= '0' && c <= '9')
1492 digit = c - '0';
1493 else if (c >= 'a' && c <= 'f')
1494 digit = 10 + c - 'a';
1495 else
1496 break;
1498 val *= 16;
1499 val += digit;
1501 str++;
1504 if (nptr)
1505 *nptr = (char *)str;
1507 return (val);
1511 * ==========================================================================
1512 * Accessor functions
1513 * ==========================================================================
1516 boolean_t
1517 spa_shutting_down(spa_t *spa)
1519 return (spa->spa_async_suspended);
1522 dsl_pool_t *
1523 spa_get_dsl(spa_t *spa)
1525 return (spa->spa_dsl_pool);
1528 boolean_t
1529 spa_is_initializing(spa_t *spa)
1531 return (spa->spa_is_initializing);
1534 blkptr_t *
1535 spa_get_rootblkptr(spa_t *spa)
1537 return (&spa->spa_ubsync.ub_rootbp);
1540 void
1541 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1543 spa->spa_uberblock.ub_rootbp = *bp;
1546 void
1547 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1549 if (spa->spa_root == NULL)
1550 buf[0] = '\0';
1551 else
1552 (void) strncpy(buf, spa->spa_root, buflen);
1556 spa_sync_pass(spa_t *spa)
1558 return (spa->spa_sync_pass);
1561 char *
1562 spa_name(spa_t *spa)
1564 return (spa->spa_name);
1567 uint64_t
1568 spa_guid(spa_t *spa)
1570 dsl_pool_t *dp = spa_get_dsl(spa);
1571 uint64_t guid;
1574 * If we fail to parse the config during spa_load(), we can go through
1575 * the error path (which posts an ereport) and end up here with no root
1576 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1577 * this case.
1579 if (spa->spa_root_vdev == NULL)
1580 return (spa->spa_config_guid);
1582 guid = spa->spa_last_synced_guid != 0 ?
1583 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1586 * Return the most recently synced out guid unless we're
1587 * in syncing context.
1589 if (dp && dsl_pool_sync_context(dp))
1590 return (spa->spa_root_vdev->vdev_guid);
1591 else
1592 return (guid);
1595 uint64_t
1596 spa_load_guid(spa_t *spa)
1599 * This is a GUID that exists solely as a reference for the
1600 * purposes of the arc. It is generated at load time, and
1601 * is never written to persistent storage.
1603 return (spa->spa_load_guid);
1606 uint64_t
1607 spa_last_synced_txg(spa_t *spa)
1609 return (spa->spa_ubsync.ub_txg);
1612 uint64_t
1613 spa_first_txg(spa_t *spa)
1615 return (spa->spa_first_txg);
1618 uint64_t
1619 spa_syncing_txg(spa_t *spa)
1621 return (spa->spa_syncing_txg);
1625 * Return the last txg where data can be dirtied. The final txgs
1626 * will be used to just clear out any deferred frees that remain.
1628 uint64_t
1629 spa_final_dirty_txg(spa_t *spa)
1631 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1634 pool_state_t
1635 spa_state(spa_t *spa)
1637 return (spa->spa_state);
1640 spa_load_state_t
1641 spa_load_state(spa_t *spa)
1643 return (spa->spa_load_state);
1646 uint64_t
1647 spa_freeze_txg(spa_t *spa)
1649 return (spa->spa_freeze_txg);
1652 /* ARGSUSED */
1653 uint64_t
1654 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1656 return (lsize * spa_asize_inflation);
1660 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1661 * or at least 128MB, unless that would cause it to be more than half the
1662 * pool size.
1664 * See the comment above spa_slop_shift for details.
1666 uint64_t
1667 spa_get_slop_space(spa_t *spa)
1669 uint64_t space = spa_get_dspace(spa);
1670 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1673 uint64_t
1674 spa_get_dspace(spa_t *spa)
1676 return (spa->spa_dspace);
1679 void
1680 spa_update_dspace(spa_t *spa)
1682 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1683 ddt_get_dedup_dspace(spa);
1687 * Return the failure mode that has been set to this pool. The default
1688 * behavior will be to block all I/Os when a complete failure occurs.
1690 uint8_t
1691 spa_get_failmode(spa_t *spa)
1693 return (spa->spa_failmode);
1696 boolean_t
1697 spa_suspended(spa_t *spa)
1699 return (spa->spa_suspended);
1702 uint64_t
1703 spa_version(spa_t *spa)
1705 return (spa->spa_ubsync.ub_version);
1708 boolean_t
1709 spa_deflate(spa_t *spa)
1711 return (spa->spa_deflate);
1714 metaslab_class_t *
1715 spa_normal_class(spa_t *spa)
1717 return (spa->spa_normal_class);
1720 metaslab_class_t *
1721 spa_log_class(spa_t *spa)
1723 return (spa->spa_log_class);
1726 void
1727 spa_evicting_os_register(spa_t *spa, objset_t *os)
1729 mutex_enter(&spa->spa_evicting_os_lock);
1730 list_insert_head(&spa->spa_evicting_os_list, os);
1731 mutex_exit(&spa->spa_evicting_os_lock);
1734 void
1735 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1737 mutex_enter(&spa->spa_evicting_os_lock);
1738 list_remove(&spa->spa_evicting_os_list, os);
1739 cv_broadcast(&spa->spa_evicting_os_cv);
1740 mutex_exit(&spa->spa_evicting_os_lock);
1743 void
1744 spa_evicting_os_wait(spa_t *spa)
1746 mutex_enter(&spa->spa_evicting_os_lock);
1747 while (!list_is_empty(&spa->spa_evicting_os_list))
1748 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1749 mutex_exit(&spa->spa_evicting_os_lock);
1751 dmu_buf_user_evict_wait();
1755 spa_max_replication(spa_t *spa)
1758 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1759 * handle BPs with more than one DVA allocated. Set our max
1760 * replication level accordingly.
1762 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1763 return (1);
1764 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1768 spa_prev_software_version(spa_t *spa)
1770 return (spa->spa_prev_software_version);
1773 uint64_t
1774 spa_deadman_synctime(spa_t *spa)
1776 return (spa->spa_deadman_synctime);
1779 uint64_t
1780 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1782 uint64_t asize = DVA_GET_ASIZE(dva);
1783 uint64_t dsize = asize;
1785 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1787 if (asize != 0 && spa->spa_deflate) {
1788 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1789 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1792 return (dsize);
1795 uint64_t
1796 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1798 uint64_t dsize = 0;
1800 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1801 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1803 return (dsize);
1806 uint64_t
1807 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1809 uint64_t dsize = 0;
1811 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1813 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1814 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1816 spa_config_exit(spa, SCL_VDEV, FTAG);
1818 return (dsize);
1822 * ==========================================================================
1823 * Initialization and Termination
1824 * ==========================================================================
1827 static int
1828 spa_name_compare(const void *a1, const void *a2)
1830 const spa_t *s1 = a1;
1831 const spa_t *s2 = a2;
1832 int s;
1834 s = strcmp(s1->spa_name, s2->spa_name);
1835 if (s > 0)
1836 return (1);
1837 if (s < 0)
1838 return (-1);
1839 return (0);
1843 spa_busy(void)
1845 return (spa_active_count);
1848 void
1849 spa_boot_init()
1851 spa_config_load();
1854 void
1855 spa_init(int mode)
1857 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1858 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1859 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1860 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1862 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1863 offsetof(spa_t, spa_avl));
1865 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1866 offsetof(spa_aux_t, aux_avl));
1868 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1869 offsetof(spa_aux_t, aux_avl));
1871 spa_mode_global = mode;
1873 #ifdef _KERNEL
1874 spa_arch_init();
1875 #else
1876 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1877 arc_procfd = open("/proc/self/ctl", O_WRONLY);
1878 if (arc_procfd == -1) {
1879 perror("could not enable watchpoints: "
1880 "opening /proc/self/ctl failed: ");
1881 } else {
1882 arc_watch = B_TRUE;
1885 #endif
1887 refcount_init();
1888 unique_init();
1889 range_tree_init();
1890 metaslab_alloc_trace_init();
1891 zio_init();
1892 dmu_init();
1893 zil_init();
1894 vdev_cache_stat_init();
1895 zfs_prop_init();
1896 zpool_prop_init();
1897 zpool_feature_init();
1898 spa_config_load();
1899 l2arc_start();
1902 void
1903 spa_fini(void)
1905 l2arc_stop();
1907 spa_evict_all();
1909 vdev_cache_stat_fini();
1910 zil_fini();
1911 dmu_fini();
1912 zio_fini();
1913 metaslab_alloc_trace_fini();
1914 range_tree_fini();
1915 unique_fini();
1916 refcount_fini();
1918 avl_destroy(&spa_namespace_avl);
1919 avl_destroy(&spa_spare_avl);
1920 avl_destroy(&spa_l2cache_avl);
1922 cv_destroy(&spa_namespace_cv);
1923 mutex_destroy(&spa_namespace_lock);
1924 mutex_destroy(&spa_spare_lock);
1925 mutex_destroy(&spa_l2cache_lock);
1929 * Return whether this pool has slogs. No locking needed.
1930 * It's not a problem if the wrong answer is returned as it's only for
1931 * performance and not correctness
1933 boolean_t
1934 spa_has_slogs(spa_t *spa)
1936 return (spa->spa_log_class->mc_rotor != NULL);
1939 spa_log_state_t
1940 spa_get_log_state(spa_t *spa)
1942 return (spa->spa_log_state);
1945 void
1946 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1948 spa->spa_log_state = state;
1951 boolean_t
1952 spa_is_root(spa_t *spa)
1954 return (spa->spa_is_root);
1957 boolean_t
1958 spa_writeable(spa_t *spa)
1960 return (!!(spa->spa_mode & FWRITE));
1964 * Returns true if there is a pending sync task in any of the current
1965 * syncing txg, the current quiescing txg, or the current open txg.
1967 boolean_t
1968 spa_has_pending_synctask(spa_t *spa)
1970 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1974 spa_mode(spa_t *spa)
1976 return (spa->spa_mode);
1979 uint64_t
1980 spa_bootfs(spa_t *spa)
1982 return (spa->spa_bootfs);
1985 uint64_t
1986 spa_delegation(spa_t *spa)
1988 return (spa->spa_delegation);
1991 objset_t *
1992 spa_meta_objset(spa_t *spa)
1994 return (spa->spa_meta_objset);
1997 enum zio_checksum
1998 spa_dedup_checksum(spa_t *spa)
2000 return (spa->spa_dedup_checksum);
2004 * Reset pool scan stat per scan pass (or reboot).
2006 void
2007 spa_scan_stat_init(spa_t *spa)
2009 /* data not stored on disk */
2010 spa->spa_scan_pass_start = gethrestime_sec();
2011 spa->spa_scan_pass_exam = 0;
2012 vdev_scan_stat_init(spa->spa_root_vdev);
2016 * Get scan stats for zpool status reports
2019 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2021 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2023 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2024 return (SET_ERROR(ENOENT));
2025 bzero(ps, sizeof (pool_scan_stat_t));
2027 /* data stored on disk */
2028 ps->pss_func = scn->scn_phys.scn_func;
2029 ps->pss_start_time = scn->scn_phys.scn_start_time;
2030 ps->pss_end_time = scn->scn_phys.scn_end_time;
2031 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2032 ps->pss_examined = scn->scn_phys.scn_examined;
2033 ps->pss_to_process = scn->scn_phys.scn_to_process;
2034 ps->pss_processed = scn->scn_phys.scn_processed;
2035 ps->pss_errors = scn->scn_phys.scn_errors;
2036 ps->pss_state = scn->scn_phys.scn_state;
2038 /* data not stored on disk */
2039 ps->pss_pass_start = spa->spa_scan_pass_start;
2040 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2042 return (0);
2045 boolean_t
2046 spa_debug_enabled(spa_t *spa)
2048 return (spa->spa_debug);
2052 spa_maxblocksize(spa_t *spa)
2054 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2055 return (SPA_MAXBLOCKSIZE);
2056 else
2057 return (SPA_OLD_MAXBLOCKSIZE);