8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / common / os / fm.c
blob66fe699366a1294cb1e0607ee23e66e37f1cd53c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Fault Management Architecture (FMA) Resource and Protocol Support
28 * The routines contained herein provide services to support kernel subsystems
29 * in publishing fault management telemetry (see PSARC 2002/412 and 2003/089).
31 * Name-Value Pair Lists
33 * The embodiment of an FMA protocol element (event, fmri or authority) is a
34 * name-value pair list (nvlist_t). FMA-specific nvlist construtor and
35 * destructor functions, fm_nvlist_create() and fm_nvlist_destroy(), are used
36 * to create an nvpair list using custom allocators. Callers may choose to
37 * allocate either from the kernel memory allocator, or from a preallocated
38 * buffer, useful in constrained contexts like high-level interrupt routines.
40 * Protocol Event and FMRI Construction
42 * Convenience routines are provided to construct nvlist events according to
43 * the FMA Event Protocol and Naming Schema specification for ereports and
44 * FMRIs for the dev, cpu, hc, mem, legacy hc and de schemes.
46 * ENA Manipulation
48 * Routines to generate ENA formats 0, 1 and 2 are available as well as
49 * routines to increment formats 1 and 2. Individual fields within the
50 * ENA are extractable via fm_ena_time_get(), fm_ena_id_get(),
51 * fm_ena_format_get() and fm_ena_gen_get().
54 #include <sys/types.h>
55 #include <sys/time.h>
56 #include <sys/sysevent.h>
57 #include <sys/sysevent_impl.h>
58 #include <sys/nvpair.h>
59 #include <sys/cmn_err.h>
60 #include <sys/cpuvar.h>
61 #include <sys/sysmacros.h>
62 #include <sys/systm.h>
63 #include <sys/ddifm.h>
64 #include <sys/ddifm_impl.h>
65 #include <sys/spl.h>
66 #include <sys/dumphdr.h>
67 #include <sys/compress.h>
68 #include <sys/cpuvar.h>
69 #include <sys/console.h>
70 #include <sys/panic.h>
71 #include <sys/kobj.h>
72 #include <sys/sunddi.h>
73 #include <sys/systeminfo.h>
74 #include <sys/sysevent/eventdefs.h>
75 #include <sys/fm/util.h>
76 #include <sys/fm/protocol.h>
79 * URL and SUNW-MSG-ID value to display for fm_panic(), defined below. These
80 * values must be kept in sync with the FMA source code in usr/src/cmd/fm.
82 static const char *fm_url = "http://illumos.org/msg";
83 static const char *fm_msgid = "SUNOS-8000-0G";
84 static char *volatile fm_panicstr = NULL;
86 errorq_t *ereport_errorq;
87 void *ereport_dumpbuf;
88 size_t ereport_dumplen;
90 static uint_t ereport_chanlen = ERPT_EVCH_MAX;
91 static evchan_t *ereport_chan = NULL;
92 static ulong_t ereport_qlen = 0;
93 static size_t ereport_size = 0;
94 static int ereport_cols = 80;
96 extern void fastreboot_disable_highpil(void);
99 * Common fault management kstats to record ereport generation
100 * failures
103 struct erpt_kstat {
104 kstat_named_t erpt_dropped; /* num erpts dropped on post */
105 kstat_named_t erpt_set_failed; /* num erpt set failures */
106 kstat_named_t fmri_set_failed; /* num fmri set failures */
107 kstat_named_t payload_set_failed; /* num payload set failures */
110 static struct erpt_kstat erpt_kstat_data = {
111 { "erpt-dropped", KSTAT_DATA_UINT64 },
112 { "erpt-set-failed", KSTAT_DATA_UINT64 },
113 { "fmri-set-failed", KSTAT_DATA_UINT64 },
114 { "payload-set-failed", KSTAT_DATA_UINT64 }
117 /*ARGSUSED*/
118 static void
119 fm_drain(void *private, void *data, errorq_elem_t *eep)
121 nvlist_t *nvl = errorq_elem_nvl(ereport_errorq, eep);
123 if (!panicstr)
124 (void) fm_ereport_post(nvl, EVCH_TRYHARD);
125 else
126 fm_nvprint(nvl);
129 void
130 fm_init(void)
132 kstat_t *ksp;
134 (void) sysevent_evc_bind(FM_ERROR_CHAN,
135 &ereport_chan, EVCH_CREAT | EVCH_HOLD_PEND);
137 (void) sysevent_evc_control(ereport_chan,
138 EVCH_SET_CHAN_LEN, &ereport_chanlen);
140 if (ereport_qlen == 0)
141 ereport_qlen = ERPT_MAX_ERRS * MAX(max_ncpus, 4);
143 if (ereport_size == 0)
144 ereport_size = ERPT_DATA_SZ;
146 ereport_errorq = errorq_nvcreate("fm_ereport_queue",
147 (errorq_func_t)fm_drain, NULL, ereport_qlen, ereport_size,
148 FM_ERR_PIL, ERRORQ_VITAL);
149 if (ereport_errorq == NULL)
150 panic("failed to create required ereport error queue");
152 ereport_dumpbuf = kmem_alloc(ereport_size, KM_SLEEP);
153 ereport_dumplen = ereport_size;
155 /* Initialize ereport allocation and generation kstats */
156 ksp = kstat_create("unix", 0, "fm", "misc", KSTAT_TYPE_NAMED,
157 sizeof (struct erpt_kstat) / sizeof (kstat_named_t),
158 KSTAT_FLAG_VIRTUAL);
160 if (ksp != NULL) {
161 ksp->ks_data = &erpt_kstat_data;
162 kstat_install(ksp);
163 } else {
164 cmn_err(CE_NOTE, "failed to create fm/misc kstat\n");
170 * Formatting utility function for fm_nvprintr. We attempt to wrap chunks of
171 * output so they aren't split across console lines, and return the end column.
173 /*PRINTFLIKE4*/
174 static int
175 fm_printf(int depth, int c, int cols, const char *format, ...)
177 va_list ap;
178 int width;
179 char c1;
181 va_start(ap, format);
182 width = vsnprintf(&c1, sizeof (c1), format, ap);
183 va_end(ap);
185 if (c + width >= cols) {
186 console_printf("\n\r");
187 c = 0;
188 if (format[0] != ' ' && depth > 0) {
189 console_printf(" ");
190 c++;
194 va_start(ap, format);
195 console_vprintf(format, ap);
196 va_end(ap);
198 return ((c + width) % cols);
202 * Recursively print a nvlist in the specified column width and return the
203 * column we end up in. This function is called recursively by fm_nvprint(),
204 * below. We generically format the entire nvpair using hexadecimal
205 * integers and strings, and elide any integer arrays. Arrays are basically
206 * used for cache dumps right now, so we suppress them so as not to overwhelm
207 * the amount of console output we produce at panic time. This can be further
208 * enhanced as FMA technology grows based upon the needs of consumers. All
209 * FMA telemetry is logged using the dump device transport, so the console
210 * output serves only as a fallback in case this procedure is unsuccessful.
212 static int
213 fm_nvprintr(nvlist_t *nvl, int d, int c, int cols)
215 nvpair_t *nvp;
217 for (nvp = nvlist_next_nvpair(nvl, NULL);
218 nvp != NULL; nvp = nvlist_next_nvpair(nvl, nvp)) {
220 data_type_t type = nvpair_type(nvp);
221 const char *name = nvpair_name(nvp);
223 boolean_t b;
224 uint8_t i8;
225 uint16_t i16;
226 uint32_t i32;
227 uint64_t i64;
228 char *str;
229 nvlist_t *cnv;
231 if (strcmp(name, FM_CLASS) == 0)
232 continue; /* already printed by caller */
234 c = fm_printf(d, c, cols, " %s=", name);
236 switch (type) {
237 case DATA_TYPE_BOOLEAN:
238 c = fm_printf(d + 1, c, cols, " 1");
239 break;
241 case DATA_TYPE_BOOLEAN_VALUE:
242 (void) nvpair_value_boolean_value(nvp, &b);
243 c = fm_printf(d + 1, c, cols, b ? "1" : "0");
244 break;
246 case DATA_TYPE_BYTE:
247 (void) nvpair_value_byte(nvp, &i8);
248 c = fm_printf(d + 1, c, cols, "%x", i8);
249 break;
251 case DATA_TYPE_INT8:
252 (void) nvpair_value_int8(nvp, (void *)&i8);
253 c = fm_printf(d + 1, c, cols, "%x", i8);
254 break;
256 case DATA_TYPE_UINT8:
257 (void) nvpair_value_uint8(nvp, &i8);
258 c = fm_printf(d + 1, c, cols, "%x", i8);
259 break;
261 case DATA_TYPE_INT16:
262 (void) nvpair_value_int16(nvp, (void *)&i16);
263 c = fm_printf(d + 1, c, cols, "%x", i16);
264 break;
266 case DATA_TYPE_UINT16:
267 (void) nvpair_value_uint16(nvp, &i16);
268 c = fm_printf(d + 1, c, cols, "%x", i16);
269 break;
271 case DATA_TYPE_INT32:
272 (void) nvpair_value_int32(nvp, (void *)&i32);
273 c = fm_printf(d + 1, c, cols, "%x", i32);
274 break;
276 case DATA_TYPE_UINT32:
277 (void) nvpair_value_uint32(nvp, &i32);
278 c = fm_printf(d + 1, c, cols, "%x", i32);
279 break;
281 case DATA_TYPE_INT64:
282 (void) nvpair_value_int64(nvp, (void *)&i64);
283 c = fm_printf(d + 1, c, cols, "%llx",
284 (u_longlong_t)i64);
285 break;
287 case DATA_TYPE_UINT64:
288 (void) nvpair_value_uint64(nvp, &i64);
289 c = fm_printf(d + 1, c, cols, "%llx",
290 (u_longlong_t)i64);
291 break;
293 case DATA_TYPE_HRTIME:
294 (void) nvpair_value_hrtime(nvp, (void *)&i64);
295 c = fm_printf(d + 1, c, cols, "%llx",
296 (u_longlong_t)i64);
297 break;
299 case DATA_TYPE_STRING:
300 (void) nvpair_value_string(nvp, &str);
301 c = fm_printf(d + 1, c, cols, "\"%s\"",
302 str ? str : "<NULL>");
303 break;
305 case DATA_TYPE_NVLIST:
306 c = fm_printf(d + 1, c, cols, "[");
307 (void) nvpair_value_nvlist(nvp, &cnv);
308 c = fm_nvprintr(cnv, d + 1, c, cols);
309 c = fm_printf(d + 1, c, cols, " ]");
310 break;
312 case DATA_TYPE_NVLIST_ARRAY: {
313 nvlist_t **val;
314 uint_t i, nelem;
316 c = fm_printf(d + 1, c, cols, "[");
317 (void) nvpair_value_nvlist_array(nvp, &val, &nelem);
318 for (i = 0; i < nelem; i++) {
319 c = fm_nvprintr(val[i], d + 1, c, cols);
321 c = fm_printf(d + 1, c, cols, " ]");
323 break;
325 case DATA_TYPE_BOOLEAN_ARRAY:
326 case DATA_TYPE_BYTE_ARRAY:
327 case DATA_TYPE_INT8_ARRAY:
328 case DATA_TYPE_UINT8_ARRAY:
329 case DATA_TYPE_INT16_ARRAY:
330 case DATA_TYPE_UINT16_ARRAY:
331 case DATA_TYPE_INT32_ARRAY:
332 case DATA_TYPE_UINT32_ARRAY:
333 case DATA_TYPE_INT64_ARRAY:
334 case DATA_TYPE_UINT64_ARRAY:
335 case DATA_TYPE_STRING_ARRAY:
336 c = fm_printf(d + 1, c, cols, "[...]");
337 break;
338 case DATA_TYPE_UNKNOWN:
339 c = fm_printf(d + 1, c, cols, "<unknown>");
340 break;
344 return (c);
347 void
348 fm_nvprint(nvlist_t *nvl)
350 char *class;
351 int c = 0;
353 console_printf("\r");
355 if (nvlist_lookup_string(nvl, FM_CLASS, &class) == 0)
356 c = fm_printf(0, c, ereport_cols, "%s", class);
358 if (fm_nvprintr(nvl, 0, c, ereport_cols) != 0)
359 console_printf("\n");
361 console_printf("\n");
365 * Wrapper for panic() that first produces an FMA-style message for admins.
366 * Normally such messages are generated by fmd(1M)'s syslog-msgs agent: this
367 * is the one exception to that rule and the only error that gets messaged.
368 * This function is intended for use by subsystems that have detected a fatal
369 * error and enqueued appropriate ereports and wish to then force a panic.
371 /*PRINTFLIKE1*/
372 void
373 fm_panic(const char *format, ...)
375 va_list ap;
377 (void) atomic_cas_ptr((void *)&fm_panicstr, NULL, (void *)format);
378 #if defined(__i386) || defined(__amd64)
379 fastreboot_disable_highpil();
380 #endif /* __i386 || __amd64 */
381 va_start(ap, format);
382 vpanic(format, ap);
383 va_end(ap);
387 * Simply tell the caller if fm_panicstr is set, ie. an fma event has
388 * caused the panic. If so, something other than the default panic
389 * diagnosis method will diagnose the cause of the panic.
392 is_fm_panic()
394 if (fm_panicstr)
395 return (1);
396 else
397 return (0);
401 * Print any appropriate FMA banner message before the panic message. This
402 * function is called by panicsys() and prints the message for fm_panic().
403 * We print the message here so that it comes after the system is quiesced.
404 * A one-line summary is recorded in the log only (cmn_err(9F) with "!" prefix).
405 * The rest of the message is for the console only and not needed in the log,
406 * so it is printed using console_printf(). We break it up into multiple
407 * chunks so as to avoid overflowing any small legacy prom_printf() buffers.
409 void
410 fm_banner(void)
412 timespec_t tod;
413 hrtime_t now;
415 if (!fm_panicstr)
416 return; /* panic was not initiated by fm_panic(); do nothing */
418 if (panicstr) {
419 tod = panic_hrestime;
420 now = panic_hrtime;
421 } else {
422 gethrestime(&tod);
423 now = gethrtime_waitfree();
426 cmn_err(CE_NOTE, "!SUNW-MSG-ID: %s, "
427 "TYPE: Error, VER: 1, SEVERITY: Major\n", fm_msgid);
429 console_printf(
430 "\n\rSUNW-MSG-ID: %s, TYPE: Error, VER: 1, SEVERITY: Major\n"
431 "EVENT-TIME: 0x%lx.0x%lx (0x%llx)\n",
432 fm_msgid, tod.tv_sec, tod.tv_nsec, (u_longlong_t)now);
434 console_printf(
435 "PLATFORM: %s, CSN: -, HOSTNAME: %s\n"
436 "SOURCE: %s, REV: %s %s\n",
437 platform, utsname.nodename, utsname.sysname,
438 utsname.release, utsname.version);
440 console_printf(
441 "DESC: Errors have been detected that require a reboot to ensure system\n"
442 "integrity. See %s/%s for more information.\n",
443 fm_url, fm_msgid);
445 console_printf(
446 "AUTO-RESPONSE: Solaris will attempt to save and diagnose the error telemetry\n"
447 "IMPACT: The system will sync files, save a crash dump if needed, and reboot\n"
448 "REC-ACTION: Save the error summary below in case telemetry cannot be saved\n");
450 console_printf("\n");
454 * Utility function to write all of the pending ereports to the dump device.
455 * This function is called at either normal reboot or panic time, and simply
456 * iterates over the in-transit messages in the ereport sysevent channel.
458 void
459 fm_ereport_dump(void)
461 evchanq_t *chq;
462 sysevent_t *sep;
463 erpt_dump_t ed;
465 timespec_t tod;
466 hrtime_t now;
467 char *buf;
468 size_t len;
470 if (panicstr) {
471 tod = panic_hrestime;
472 now = panic_hrtime;
473 } else {
474 if (ereport_errorq != NULL)
475 errorq_drain(ereport_errorq);
476 gethrestime(&tod);
477 now = gethrtime_waitfree();
481 * In the panic case, sysevent_evc_walk_init() will return NULL.
483 if ((chq = sysevent_evc_walk_init(ereport_chan, NULL)) == NULL &&
484 !panicstr)
485 return; /* event channel isn't initialized yet */
487 while ((sep = sysevent_evc_walk_step(chq)) != NULL) {
488 if ((buf = sysevent_evc_event_attr(sep, &len)) == NULL)
489 break;
491 ed.ed_magic = ERPT_MAGIC;
492 ed.ed_chksum = checksum32(buf, len);
493 ed.ed_size = (uint32_t)len;
494 ed.ed_pad = 0;
495 ed.ed_hrt_nsec = SE_TIME(sep);
496 ed.ed_hrt_base = now;
497 ed.ed_tod_base.sec = tod.tv_sec;
498 ed.ed_tod_base.nsec = tod.tv_nsec;
500 dumpvp_write(&ed, sizeof (ed));
501 dumpvp_write(buf, len);
504 sysevent_evc_walk_fini(chq);
508 * Post an error report (ereport) to the sysevent error channel. The error
509 * channel must be established with a prior call to sysevent_evc_create()
510 * before publication may occur.
512 void
513 fm_ereport_post(nvlist_t *ereport, int evc_flag)
515 size_t nvl_size = 0;
516 evchan_t *error_chan;
518 (void) nvlist_size(ereport, &nvl_size, NV_ENCODE_NATIVE);
519 if (nvl_size > ERPT_DATA_SZ || nvl_size == 0) {
520 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
521 return;
524 if (sysevent_evc_bind(FM_ERROR_CHAN, &error_chan,
525 EVCH_CREAT|EVCH_HOLD_PEND) != 0) {
526 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
527 return;
530 if (sysevent_evc_publish(error_chan, EC_FM, ESC_FM_ERROR,
531 SUNW_VENDOR, FM_PUB, ereport, evc_flag) != 0) {
532 atomic_inc_64(&erpt_kstat_data.erpt_dropped.value.ui64);
533 (void) sysevent_evc_unbind(error_chan);
534 return;
536 (void) sysevent_evc_unbind(error_chan);
540 * Wrapppers for FM nvlist allocators
542 /* ARGSUSED */
543 static void *
544 i_fm_alloc(nv_alloc_t *nva, size_t size)
546 return (kmem_zalloc(size, KM_SLEEP));
549 /* ARGSUSED */
550 static void
551 i_fm_free(nv_alloc_t *nva, void *buf, size_t size)
553 kmem_free(buf, size);
556 const nv_alloc_ops_t fm_mem_alloc_ops = {
557 NULL,
558 NULL,
559 i_fm_alloc,
560 i_fm_free,
561 NULL
565 * Create and initialize a new nv_alloc_t for a fixed buffer, buf. A pointer
566 * to the newly allocated nv_alloc_t structure is returned upon success or NULL
567 * is returned to indicate that the nv_alloc structure could not be created.
569 nv_alloc_t *
570 fm_nva_xcreate(char *buf, size_t bufsz)
572 nv_alloc_t *nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
574 if (bufsz == 0 || nv_alloc_init(nvhdl, nv_fixed_ops, buf, bufsz) != 0) {
575 kmem_free(nvhdl, sizeof (nv_alloc_t));
576 return (NULL);
579 return (nvhdl);
583 * Destroy a previously allocated nv_alloc structure. The fixed buffer
584 * associated with nva must be freed by the caller.
586 void
587 fm_nva_xdestroy(nv_alloc_t *nva)
589 nv_alloc_fini(nva);
590 kmem_free(nva, sizeof (nv_alloc_t));
594 * Create a new nv list. A pointer to a new nv list structure is returned
595 * upon success or NULL is returned to indicate that the structure could
596 * not be created. The newly created nv list is created and managed by the
597 * operations installed in nva. If nva is NULL, the default FMA nva
598 * operations are installed and used.
600 * When called from the kernel and nva == NULL, this function must be called
601 * from passive kernel context with no locks held that can prevent a
602 * sleeping memory allocation from occurring. Otherwise, this function may
603 * be called from other kernel contexts as long a valid nva created via
604 * fm_nva_create() is supplied.
606 nvlist_t *
607 fm_nvlist_create(nv_alloc_t *nva)
609 int hdl_alloced = 0;
610 nvlist_t *nvl;
611 nv_alloc_t *nvhdl;
613 if (nva == NULL) {
614 nvhdl = kmem_zalloc(sizeof (nv_alloc_t), KM_SLEEP);
616 if (nv_alloc_init(nvhdl, &fm_mem_alloc_ops, NULL, 0) != 0) {
617 kmem_free(nvhdl, sizeof (nv_alloc_t));
618 return (NULL);
620 hdl_alloced = 1;
621 } else {
622 nvhdl = nva;
625 if (nvlist_xalloc(&nvl, NV_UNIQUE_NAME, nvhdl) != 0) {
626 if (hdl_alloced) {
627 nv_alloc_fini(nvhdl);
628 kmem_free(nvhdl, sizeof (nv_alloc_t));
630 return (NULL);
633 return (nvl);
637 * Destroy a previously allocated nvlist structure. flag indicates whether
638 * or not the associated nva structure should be freed (FM_NVA_FREE) or
639 * retained (FM_NVA_RETAIN). Retaining the nv alloc structure allows
640 * it to be re-used for future nvlist creation operations.
642 void
643 fm_nvlist_destroy(nvlist_t *nvl, int flag)
645 nv_alloc_t *nva = nvlist_lookup_nv_alloc(nvl);
647 nvlist_free(nvl);
649 if (nva != NULL) {
650 if (flag == FM_NVA_FREE)
651 fm_nva_xdestroy(nva);
656 i_fm_payload_set(nvlist_t *payload, const char *name, va_list ap)
658 int nelem, ret = 0;
659 data_type_t type;
661 while (ret == 0 && name != NULL) {
662 type = va_arg(ap, data_type_t);
663 switch (type) {
664 case DATA_TYPE_BYTE:
665 ret = nvlist_add_byte(payload, name,
666 va_arg(ap, uint_t));
667 break;
668 case DATA_TYPE_BYTE_ARRAY:
669 nelem = va_arg(ap, int);
670 ret = nvlist_add_byte_array(payload, name,
671 va_arg(ap, uchar_t *), nelem);
672 break;
673 case DATA_TYPE_BOOLEAN_VALUE:
674 ret = nvlist_add_boolean_value(payload, name,
675 va_arg(ap, boolean_t));
676 break;
677 case DATA_TYPE_BOOLEAN_ARRAY:
678 nelem = va_arg(ap, int);
679 ret = nvlist_add_boolean_array(payload, name,
680 va_arg(ap, boolean_t *), nelem);
681 break;
682 case DATA_TYPE_INT8:
683 ret = nvlist_add_int8(payload, name,
684 va_arg(ap, int));
685 break;
686 case DATA_TYPE_INT8_ARRAY:
687 nelem = va_arg(ap, int);
688 ret = nvlist_add_int8_array(payload, name,
689 va_arg(ap, int8_t *), nelem);
690 break;
691 case DATA_TYPE_UINT8:
692 ret = nvlist_add_uint8(payload, name,
693 va_arg(ap, uint_t));
694 break;
695 case DATA_TYPE_UINT8_ARRAY:
696 nelem = va_arg(ap, int);
697 ret = nvlist_add_uint8_array(payload, name,
698 va_arg(ap, uint8_t *), nelem);
699 break;
700 case DATA_TYPE_INT16:
701 ret = nvlist_add_int16(payload, name,
702 va_arg(ap, int));
703 break;
704 case DATA_TYPE_INT16_ARRAY:
705 nelem = va_arg(ap, int);
706 ret = nvlist_add_int16_array(payload, name,
707 va_arg(ap, int16_t *), nelem);
708 break;
709 case DATA_TYPE_UINT16:
710 ret = nvlist_add_uint16(payload, name,
711 va_arg(ap, uint_t));
712 break;
713 case DATA_TYPE_UINT16_ARRAY:
714 nelem = va_arg(ap, int);
715 ret = nvlist_add_uint16_array(payload, name,
716 va_arg(ap, uint16_t *), nelem);
717 break;
718 case DATA_TYPE_INT32:
719 ret = nvlist_add_int32(payload, name,
720 va_arg(ap, int32_t));
721 break;
722 case DATA_TYPE_INT32_ARRAY:
723 nelem = va_arg(ap, int);
724 ret = nvlist_add_int32_array(payload, name,
725 va_arg(ap, int32_t *), nelem);
726 break;
727 case DATA_TYPE_UINT32:
728 ret = nvlist_add_uint32(payload, name,
729 va_arg(ap, uint32_t));
730 break;
731 case DATA_TYPE_UINT32_ARRAY:
732 nelem = va_arg(ap, int);
733 ret = nvlist_add_uint32_array(payload, name,
734 va_arg(ap, uint32_t *), nelem);
735 break;
736 case DATA_TYPE_INT64:
737 ret = nvlist_add_int64(payload, name,
738 va_arg(ap, int64_t));
739 break;
740 case DATA_TYPE_INT64_ARRAY:
741 nelem = va_arg(ap, int);
742 ret = nvlist_add_int64_array(payload, name,
743 va_arg(ap, int64_t *), nelem);
744 break;
745 case DATA_TYPE_UINT64:
746 ret = nvlist_add_uint64(payload, name,
747 va_arg(ap, uint64_t));
748 break;
749 case DATA_TYPE_UINT64_ARRAY:
750 nelem = va_arg(ap, int);
751 ret = nvlist_add_uint64_array(payload, name,
752 va_arg(ap, uint64_t *), nelem);
753 break;
754 case DATA_TYPE_STRING:
755 ret = nvlist_add_string(payload, name,
756 va_arg(ap, char *));
757 break;
758 case DATA_TYPE_STRING_ARRAY:
759 nelem = va_arg(ap, int);
760 ret = nvlist_add_string_array(payload, name,
761 va_arg(ap, char **), nelem);
762 break;
763 case DATA_TYPE_NVLIST:
764 ret = nvlist_add_nvlist(payload, name,
765 va_arg(ap, nvlist_t *));
766 break;
767 case DATA_TYPE_NVLIST_ARRAY:
768 nelem = va_arg(ap, int);
769 ret = nvlist_add_nvlist_array(payload, name,
770 va_arg(ap, nvlist_t **), nelem);
771 break;
772 default:
773 ret = EINVAL;
776 name = va_arg(ap, char *);
778 return (ret);
781 void
782 fm_payload_set(nvlist_t *payload, ...)
784 int ret;
785 const char *name;
786 va_list ap;
788 va_start(ap, payload);
789 name = va_arg(ap, char *);
790 ret = i_fm_payload_set(payload, name, ap);
791 va_end(ap);
793 if (ret)
794 atomic_inc_64(&erpt_kstat_data.payload_set_failed.value.ui64);
798 * Set-up and validate the members of an ereport event according to:
800 * Member name Type Value
801 * ====================================================
802 * class string ereport
803 * version uint8_t 0
804 * ena uint64_t <ena>
805 * detector nvlist_t <detector>
806 * ereport-payload nvlist_t <var args>
808 * We don't actually add a 'version' member to the payload. Really,
809 * the version quoted to us by our caller is that of the category 1
810 * "ereport" event class (and we require FM_EREPORT_VERS0) but
811 * the payload version of the actual leaf class event under construction
812 * may be something else. Callers should supply a version in the varargs,
813 * or (better) we could take two version arguments - one for the
814 * ereport category 1 classification (expect FM_EREPORT_VERS0) and one
815 * for the leaf class.
817 void
818 fm_ereport_set(nvlist_t *ereport, int version, const char *erpt_class,
819 uint64_t ena, const nvlist_t *detector, ...)
821 char ereport_class[FM_MAX_CLASS];
822 const char *name;
823 va_list ap;
824 int ret;
826 if (version != FM_EREPORT_VERS0) {
827 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
828 return;
831 (void) snprintf(ereport_class, FM_MAX_CLASS, "%s.%s",
832 FM_EREPORT_CLASS, erpt_class);
833 if (nvlist_add_string(ereport, FM_CLASS, ereport_class) != 0) {
834 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
835 return;
838 if (nvlist_add_uint64(ereport, FM_EREPORT_ENA, ena)) {
839 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
842 if (nvlist_add_nvlist(ereport, FM_EREPORT_DETECTOR,
843 (nvlist_t *)detector) != 0) {
844 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
847 va_start(ap, detector);
848 name = va_arg(ap, const char *);
849 ret = i_fm_payload_set(ereport, name, ap);
850 va_end(ap);
852 if (ret)
853 atomic_inc_64(&erpt_kstat_data.erpt_set_failed.value.ui64);
857 * Set-up and validate the members of an hc fmri according to;
859 * Member name Type Value
860 * ===================================================
861 * version uint8_t 0
862 * auth nvlist_t <auth>
863 * hc-name string <name>
864 * hc-id string <id>
866 * Note that auth and hc-id are optional members.
869 #define HC_MAXPAIRS 20
870 #define HC_MAXNAMELEN 50
872 static int
873 fm_fmri_hc_set_common(nvlist_t *fmri, int version, const nvlist_t *auth)
875 if (version != FM_HC_SCHEME_VERSION) {
876 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
877 return (0);
880 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0 ||
881 nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_HC) != 0) {
882 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
883 return (0);
886 if (auth != NULL && nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
887 (nvlist_t *)auth) != 0) {
888 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
889 return (0);
892 return (1);
895 void
896 fm_fmri_hc_set(nvlist_t *fmri, int version, const nvlist_t *auth,
897 nvlist_t *snvl, int npairs, ...)
899 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
900 nvlist_t *pairs[HC_MAXPAIRS];
901 va_list ap;
902 int i;
904 if (!fm_fmri_hc_set_common(fmri, version, auth))
905 return;
907 npairs = MIN(npairs, HC_MAXPAIRS);
909 va_start(ap, npairs);
910 for (i = 0; i < npairs; i++) {
911 const char *name = va_arg(ap, const char *);
912 uint32_t id = va_arg(ap, uint32_t);
913 char idstr[11];
915 (void) snprintf(idstr, sizeof (idstr), "%u", id);
917 pairs[i] = fm_nvlist_create(nva);
918 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
919 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
920 atomic_inc_64(
921 &erpt_kstat_data.fmri_set_failed.value.ui64);
924 va_end(ap);
926 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs, npairs) != 0)
927 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
929 for (i = 0; i < npairs; i++)
930 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
932 if (snvl != NULL) {
933 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
934 atomic_inc_64(
935 &erpt_kstat_data.fmri_set_failed.value.ui64);
941 * Set-up and validate the members of an dev fmri according to:
943 * Member name Type Value
944 * ====================================================
945 * version uint8_t 0
946 * auth nvlist_t <auth>
947 * devpath string <devpath>
948 * [devid] string <devid>
949 * [target-port-l0id] string <target-port-lun0-id>
951 * Note that auth and devid are optional members.
953 void
954 fm_fmri_dev_set(nvlist_t *fmri_dev, int version, const nvlist_t *auth,
955 const char *devpath, const char *devid, const char *tpl0)
957 int err = 0;
959 if (version != DEV_SCHEME_VERSION0) {
960 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
961 return;
964 err |= nvlist_add_uint8(fmri_dev, FM_VERSION, version);
965 err |= nvlist_add_string(fmri_dev, FM_FMRI_SCHEME, FM_FMRI_SCHEME_DEV);
967 if (auth != NULL) {
968 err |= nvlist_add_nvlist(fmri_dev, FM_FMRI_AUTHORITY,
969 (nvlist_t *)auth);
972 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_PATH, devpath);
974 if (devid != NULL)
975 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_ID, devid);
977 if (tpl0 != NULL)
978 err |= nvlist_add_string(fmri_dev, FM_FMRI_DEV_TGTPTLUN0, tpl0);
980 if (err)
981 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
986 * Set-up and validate the members of an cpu fmri according to:
988 * Member name Type Value
989 * ====================================================
990 * version uint8_t 0
991 * auth nvlist_t <auth>
992 * cpuid uint32_t <cpu_id>
993 * cpumask uint8_t <cpu_mask>
994 * serial uint64_t <serial_id>
996 * Note that auth, cpumask, serial are optional members.
999 void
1000 fm_fmri_cpu_set(nvlist_t *fmri_cpu, int version, const nvlist_t *auth,
1001 uint32_t cpu_id, uint8_t *cpu_maskp, const char *serial_idp)
1003 uint64_t *failedp = &erpt_kstat_data.fmri_set_failed.value.ui64;
1005 if (version < CPU_SCHEME_VERSION1) {
1006 atomic_inc_64(failedp);
1007 return;
1010 if (nvlist_add_uint8(fmri_cpu, FM_VERSION, version) != 0) {
1011 atomic_inc_64(failedp);
1012 return;
1015 if (nvlist_add_string(fmri_cpu, FM_FMRI_SCHEME,
1016 FM_FMRI_SCHEME_CPU) != 0) {
1017 atomic_inc_64(failedp);
1018 return;
1021 if (auth != NULL && nvlist_add_nvlist(fmri_cpu, FM_FMRI_AUTHORITY,
1022 (nvlist_t *)auth) != 0)
1023 atomic_inc_64(failedp);
1025 if (nvlist_add_uint32(fmri_cpu, FM_FMRI_CPU_ID, cpu_id) != 0)
1026 atomic_inc_64(failedp);
1028 if (cpu_maskp != NULL && nvlist_add_uint8(fmri_cpu, FM_FMRI_CPU_MASK,
1029 *cpu_maskp) != 0)
1030 atomic_inc_64(failedp);
1032 if (serial_idp == NULL || nvlist_add_string(fmri_cpu,
1033 FM_FMRI_CPU_SERIAL_ID, (char *)serial_idp) != 0)
1034 atomic_inc_64(failedp);
1038 * Set-up and validate the members of a mem according to:
1040 * Member name Type Value
1041 * ====================================================
1042 * version uint8_t 0
1043 * auth nvlist_t <auth> [optional]
1044 * unum string <unum>
1045 * serial string <serial> [optional*]
1046 * offset uint64_t <offset> [optional]
1048 * * serial is required if offset is present
1050 void
1051 fm_fmri_mem_set(nvlist_t *fmri, int version, const nvlist_t *auth,
1052 const char *unum, const char *serial, uint64_t offset)
1054 if (version != MEM_SCHEME_VERSION0) {
1055 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1056 return;
1059 if (!serial && (offset != (uint64_t)-1)) {
1060 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1061 return;
1064 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
1065 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1066 return;
1069 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_MEM) != 0) {
1070 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1071 return;
1074 if (auth != NULL) {
1075 if (nvlist_add_nvlist(fmri, FM_FMRI_AUTHORITY,
1076 (nvlist_t *)auth) != 0) {
1077 atomic_inc_64(
1078 &erpt_kstat_data.fmri_set_failed.value.ui64);
1082 if (nvlist_add_string(fmri, FM_FMRI_MEM_UNUM, unum) != 0) {
1083 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1086 if (serial != NULL) {
1087 if (nvlist_add_string_array(fmri, FM_FMRI_MEM_SERIAL_ID,
1088 (char **)&serial, 1) != 0) {
1089 atomic_inc_64(
1090 &erpt_kstat_data.fmri_set_failed.value.ui64);
1092 if (offset != (uint64_t)-1 && nvlist_add_uint64(fmri,
1093 FM_FMRI_MEM_OFFSET, offset) != 0) {
1094 atomic_inc_64(
1095 &erpt_kstat_data.fmri_set_failed.value.ui64);
1100 void
1101 fm_fmri_zfs_set(nvlist_t *fmri, int version, uint64_t pool_guid,
1102 uint64_t vdev_guid)
1104 if (version != ZFS_SCHEME_VERSION0) {
1105 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1106 return;
1109 if (nvlist_add_uint8(fmri, FM_VERSION, version) != 0) {
1110 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1111 return;
1114 if (nvlist_add_string(fmri, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS) != 0) {
1115 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1116 return;
1119 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_POOL, pool_guid) != 0) {
1120 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1123 if (vdev_guid != 0) {
1124 if (nvlist_add_uint64(fmri, FM_FMRI_ZFS_VDEV, vdev_guid) != 0) {
1125 atomic_inc_64(
1126 &erpt_kstat_data.fmri_set_failed.value.ui64);
1131 uint64_t
1132 fm_ena_increment(uint64_t ena)
1134 uint64_t new_ena;
1136 switch (ENA_FORMAT(ena)) {
1137 case FM_ENA_FMT1:
1138 new_ena = ena + (1 << ENA_FMT1_GEN_SHFT);
1139 break;
1140 case FM_ENA_FMT2:
1141 new_ena = ena + (1 << ENA_FMT2_GEN_SHFT);
1142 break;
1143 default:
1144 new_ena = 0;
1147 return (new_ena);
1150 uint64_t
1151 fm_ena_generate_cpu(uint64_t timestamp, processorid_t cpuid, uchar_t format)
1153 uint64_t ena = 0;
1155 switch (format) {
1156 case FM_ENA_FMT1:
1157 if (timestamp) {
1158 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1159 ((cpuid << ENA_FMT1_CPUID_SHFT) &
1160 ENA_FMT1_CPUID_MASK) |
1161 ((timestamp << ENA_FMT1_TIME_SHFT) &
1162 ENA_FMT1_TIME_MASK));
1163 } else {
1164 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1165 ((cpuid << ENA_FMT1_CPUID_SHFT) &
1166 ENA_FMT1_CPUID_MASK) |
1167 ((gethrtime_waitfree() << ENA_FMT1_TIME_SHFT) &
1168 ENA_FMT1_TIME_MASK));
1170 break;
1171 case FM_ENA_FMT2:
1172 ena = (uint64_t)((format & ENA_FORMAT_MASK) |
1173 ((timestamp << ENA_FMT2_TIME_SHFT) & ENA_FMT2_TIME_MASK));
1174 break;
1175 default:
1176 break;
1179 return (ena);
1182 uint64_t
1183 fm_ena_generate(uint64_t timestamp, uchar_t format)
1185 return (fm_ena_generate_cpu(timestamp, CPU->cpu_id, format));
1188 uint64_t
1189 fm_ena_generation_get(uint64_t ena)
1191 uint64_t gen;
1193 switch (ENA_FORMAT(ena)) {
1194 case FM_ENA_FMT1:
1195 gen = (ena & ENA_FMT1_GEN_MASK) >> ENA_FMT1_GEN_SHFT;
1196 break;
1197 case FM_ENA_FMT2:
1198 gen = (ena & ENA_FMT2_GEN_MASK) >> ENA_FMT2_GEN_SHFT;
1199 break;
1200 default:
1201 gen = 0;
1202 break;
1205 return (gen);
1208 uchar_t
1209 fm_ena_format_get(uint64_t ena)
1212 return (ENA_FORMAT(ena));
1215 uint64_t
1216 fm_ena_id_get(uint64_t ena)
1218 uint64_t id;
1220 switch (ENA_FORMAT(ena)) {
1221 case FM_ENA_FMT1:
1222 id = (ena & ENA_FMT1_ID_MASK) >> ENA_FMT1_ID_SHFT;
1223 break;
1224 case FM_ENA_FMT2:
1225 id = (ena & ENA_FMT2_ID_MASK) >> ENA_FMT2_ID_SHFT;
1226 break;
1227 default:
1228 id = 0;
1231 return (id);
1234 uint64_t
1235 fm_ena_time_get(uint64_t ena)
1237 uint64_t time;
1239 switch (ENA_FORMAT(ena)) {
1240 case FM_ENA_FMT1:
1241 time = (ena & ENA_FMT1_TIME_MASK) >> ENA_FMT1_TIME_SHFT;
1242 break;
1243 case FM_ENA_FMT2:
1244 time = (ena & ENA_FMT2_TIME_MASK) >> ENA_FMT2_TIME_SHFT;
1245 break;
1246 default:
1247 time = 0;
1250 return (time);
1254 * Convert a getpcstack() trace to symbolic name+offset, and add the resulting
1255 * string array to a Fault Management ereport as FM_EREPORT_PAYLOAD_NAME_STACK.
1257 void
1258 fm_payload_stack_add(nvlist_t *payload, const pc_t *stack, int depth)
1260 int i;
1261 char *sym;
1262 ulong_t off;
1263 char *stkpp[FM_STK_DEPTH];
1264 char buf[FM_STK_DEPTH * FM_SYM_SZ];
1265 char *stkp = buf;
1267 for (i = 0; i < depth && i != FM_STK_DEPTH; i++, stkp += FM_SYM_SZ) {
1268 if ((sym = kobj_getsymname(stack[i], &off)) != NULL)
1269 (void) snprintf(stkp, FM_SYM_SZ, "%s+%lx", sym, off);
1270 else
1271 (void) snprintf(stkp, FM_SYM_SZ, "%lx", (long)stack[i]);
1272 stkpp[i] = stkp;
1275 fm_payload_set(payload, FM_EREPORT_PAYLOAD_NAME_STACK,
1276 DATA_TYPE_STRING_ARRAY, depth, stkpp, NULL);
1279 void
1280 print_msg_hwerr(ctid_t ct_id, proc_t *p)
1282 uprintf("Killed process %d (%s) in contract id %d "
1283 "due to hardware error\n", p->p_pid, p->p_user.u_comm, ct_id);
1286 void
1287 fm_fmri_hc_create(nvlist_t *fmri, int version, const nvlist_t *auth,
1288 nvlist_t *snvl, nvlist_t *bboard, int npairs, ...)
1290 nv_alloc_t *nva = nvlist_lookup_nv_alloc(fmri);
1291 nvlist_t *pairs[HC_MAXPAIRS];
1292 nvlist_t **hcl;
1293 uint_t n;
1294 int i, j;
1295 va_list ap;
1296 char *hcname, *hcid;
1298 if (!fm_fmri_hc_set_common(fmri, version, auth))
1299 return;
1302 * copy the bboard nvpairs to the pairs array
1304 if (nvlist_lookup_nvlist_array(bboard, FM_FMRI_HC_LIST, &hcl, &n)
1305 != 0) {
1306 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1307 return;
1310 for (i = 0; i < n; i++) {
1311 if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_NAME,
1312 &hcname) != 0) {
1313 atomic_inc_64(
1314 &erpt_kstat_data.fmri_set_failed.value.ui64);
1315 return;
1317 if (nvlist_lookup_string(hcl[i], FM_FMRI_HC_ID, &hcid) != 0) {
1318 atomic_inc_64(
1319 &erpt_kstat_data.fmri_set_failed.value.ui64);
1320 return;
1323 pairs[i] = fm_nvlist_create(nva);
1324 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, hcname) != 0 ||
1325 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, hcid) != 0) {
1326 for (j = 0; j <= i; j++) {
1327 if (pairs[j] != NULL)
1328 fm_nvlist_destroy(pairs[j],
1329 FM_NVA_RETAIN);
1331 atomic_inc_64(
1332 &erpt_kstat_data.fmri_set_failed.value.ui64);
1333 return;
1338 * create the pairs from passed in pairs
1340 npairs = MIN(npairs, HC_MAXPAIRS);
1342 va_start(ap, npairs);
1343 for (i = n; i < npairs + n; i++) {
1344 const char *name = va_arg(ap, const char *);
1345 uint32_t id = va_arg(ap, uint32_t);
1346 char idstr[11];
1347 (void) snprintf(idstr, sizeof (idstr), "%u", id);
1348 pairs[i] = fm_nvlist_create(nva);
1349 if (nvlist_add_string(pairs[i], FM_FMRI_HC_NAME, name) != 0 ||
1350 nvlist_add_string(pairs[i], FM_FMRI_HC_ID, idstr) != 0) {
1351 for (j = 0; j <= i; j++) {
1352 if (pairs[j] != NULL)
1353 fm_nvlist_destroy(pairs[j],
1354 FM_NVA_RETAIN);
1356 atomic_inc_64(
1357 &erpt_kstat_data.fmri_set_failed.value.ui64);
1358 return;
1361 va_end(ap);
1364 * Create the fmri hc list
1366 if (nvlist_add_nvlist_array(fmri, FM_FMRI_HC_LIST, pairs,
1367 npairs + n) != 0) {
1368 atomic_inc_64(&erpt_kstat_data.fmri_set_failed.value.ui64);
1369 return;
1372 for (i = 0; i < npairs + n; i++) {
1373 fm_nvlist_destroy(pairs[i], FM_NVA_RETAIN);
1376 if (snvl != NULL) {
1377 if (nvlist_add_nvlist(fmri, FM_FMRI_HC_SPECIFIC, snvl) != 0) {
1378 atomic_inc_64(
1379 &erpt_kstat_data.fmri_set_failed.value.ui64);
1380 return;