4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
31 * Kernel task queues: general-purpose asynchronous task scheduling.
33 * A common problem in kernel programming is the need to schedule tasks
34 * to be performed later, by another thread. There are several reasons
35 * you may want or need to do this:
37 * (1) The task isn't time-critical, but your current code path is.
39 * (2) The task may require grabbing locks that you already hold.
41 * (3) The task may need to block (e.g. to wait for memory), but you
42 * cannot block in your current context.
44 * (4) Your code path can't complete because of some condition, but you can't
45 * sleep or fail, so you queue the task for later execution when condition
48 * (5) You just want a simple way to launch multiple tasks in parallel.
50 * Task queues provide such a facility. In its simplest form (used when
51 * performance is not a critical consideration) a task queue consists of a
52 * single list of tasks, together with one or more threads to service the
53 * list. There are some cases when this simple queue is not sufficient:
55 * (1) The task queues are very hot and there is a need to avoid data and lock
56 * contention over global resources.
58 * (2) Some tasks may depend on other tasks to complete, so they can't be put in
59 * the same list managed by the same thread.
61 * (3) Some tasks may block for a long time, and this should not block other
64 * To provide useful service in such cases we define a "dynamic task queue"
65 * which has an individual thread for each of the tasks. These threads are
66 * dynamically created as they are needed and destroyed when they are not in
67 * use. The API for managing task pools is the same as for managing task queues
68 * with the exception of a taskq creation flag TASKQ_DYNAMIC which tells that
69 * dynamic task pool behavior is desired.
71 * Dynamic task queues may also place tasks in the normal queue (called "backing
72 * queue") when task pool runs out of resources. Users of task queues may
73 * disallow such queued scheduling by specifying TQ_NOQUEUE in the dispatch
76 * The backing task queue is also used for scheduling internal tasks needed for
77 * dynamic task queue maintenance.
79 * INTERFACES ==================================================================
81 * taskq_t *taskq_create(name, nthreads, pri, minalloc, maxalloc, flags);
83 * Create a taskq with specified properties.
86 * TASKQ_DYNAMIC: Create task pool for task management. If this flag is
87 * specified, 'nthreads' specifies the maximum number of threads in
88 * the task queue. Task execution order for dynamic task queues is
91 * If this flag is not specified (default case) a
92 * single-list task queue is created with 'nthreads' threads
93 * servicing it. Entries in this queue are managed by
94 * taskq_ent_alloc() and taskq_ent_free() which try to keep the
95 * task population between 'minalloc' and 'maxalloc', but the
96 * latter limit is only advisory for TQ_SLEEP dispatches and the
97 * former limit is only advisory for TQ_NOALLOC dispatches. If
98 * TASKQ_PREPOPULATE is set in 'flags', the taskq will be
99 * prepopulated with 'minalloc' task structures.
101 * Since non-DYNAMIC taskqs are queues, tasks are guaranteed to be
102 * executed in the order they are scheduled if nthreads == 1.
103 * If nthreads > 1, task execution order is not predictable.
105 * TASKQ_PREPOPULATE: Prepopulate task queue with threads.
106 * Also prepopulate the task queue with 'minalloc' task structures.
108 * TASKQ_THREADS_CPU_PCT: This flag specifies that 'nthreads' should be
109 * interpreted as a percentage of the # of online CPUs on the
110 * system. The taskq subsystem will automatically adjust the
111 * number of threads in the taskq in response to CPU online
112 * and offline events, to keep the ratio. nthreads must be in
115 * The calculation used is:
117 * MAX((ncpus_online * percentage)/100, 1)
119 * This flag is not supported for DYNAMIC task queues.
120 * This flag is not compatible with TASKQ_CPR_SAFE.
122 * TASKQ_CPR_SAFE: This flag specifies that users of the task queue will
123 * use their own protocol for handling CPR issues. This flag is not
124 * supported for DYNAMIC task queues. This flag is not compatible
125 * with TASKQ_THREADS_CPU_PCT.
127 * The 'pri' field specifies the default priority for the threads that
128 * service all scheduled tasks.
130 * taskq_t *taskq_create_instance(name, instance, nthreads, pri, minalloc,
133 * Like taskq_create(), but takes an instance number (or -1 to indicate
136 * taskq_t *taskq_create_proc(name, nthreads, pri, minalloc, maxalloc, proc,
139 * Like taskq_create(), but creates the taskq threads in the specified
140 * system process. If proc != &p0, this must be called from a thread
143 * taskq_t *taskq_create_sysdc(name, nthreads, minalloc, maxalloc, proc,
146 * Like taskq_create_proc(), but the taskq threads will use the
147 * System Duty Cycle (SDC) scheduling class with a duty cycle of dc.
149 * void taskq_destroy(tap):
151 * Waits for any scheduled tasks to complete, then destroys the taskq.
152 * Caller should guarantee that no new tasks are scheduled in the closing
155 * taskqid_t taskq_dispatch(tq, func, arg, flags):
157 * Dispatches the task "func(arg)" to taskq. The 'flags' indicates whether
158 * the caller is willing to block for memory. The function returns an
159 * opaque value which is zero iff dispatch fails. If flags is TQ_NOSLEEP
160 * or TQ_NOALLOC and the task can't be dispatched, taskq_dispatch() fails
161 * and returns (taskqid_t)0.
163 * ASSUMES: func != NULL.
166 * TQ_NOSLEEP: Do not wait for resources; may fail.
168 * TQ_NOALLOC: Do not allocate memory; may fail. May only be used with
169 * non-dynamic task queues.
171 * TQ_NOQUEUE: Do not enqueue a task if it can't dispatch it due to
172 * lack of available resources and fail. If this flag is not
173 * set, and the task pool is exhausted, the task may be scheduled
174 * in the backing queue. This flag may ONLY be used with dynamic
177 * NOTE: This flag should always be used when a task queue is used
178 * for tasks that may depend on each other for completion.
179 * Enqueueing dependent tasks may create deadlocks.
181 * TQ_SLEEP: May block waiting for resources. May still fail for
182 * dynamic task queues if TQ_NOQUEUE is also specified, otherwise
185 * TQ_FRONT: Puts the new task at the front of the queue. Be careful.
187 * NOTE: Dynamic task queues are much more likely to fail in
188 * taskq_dispatch() (especially if TQ_NOQUEUE was specified), so it
189 * is important to have backup strategies handling such failures.
191 * void taskq_dispatch_ent(tq, func, arg, flags, tqent)
193 * This is a light-weight form of taskq_dispatch(), that uses a
194 * preallocated taskq_ent_t structure for scheduling. As a
195 * result, it does not perform allocations and cannot ever fail.
196 * Note especially that it cannot be used with TASKQ_DYNAMIC
197 * taskqs. The memory for the tqent must not be modified or used
198 * until the function (func) is called. (However, func itself
199 * may safely modify or free this memory, once it is called.)
200 * Note that the taskq framework will NOT free this memory.
202 * void taskq_wait(tq):
204 * Waits for all previously scheduled tasks to complete.
206 * NOTE: It does not stop any new task dispatches.
207 * Do NOT call taskq_wait() from a task: it will cause deadlock.
209 * void taskq_suspend(tq)
211 * Suspend all task execution. Tasks already scheduled for a dynamic task
212 * queue will still be executed, but all new scheduled tasks will be
213 * suspended until taskq_resume() is called.
215 * int taskq_suspended(tq)
217 * Returns 1 if taskq is suspended and 0 otherwise. It is intended to
218 * ASSERT that the task queue is suspended.
220 * void taskq_resume(tq)
222 * Resume task queue execution.
224 * int taskq_member(tq, thread)
226 * Returns 1 if 'thread' belongs to taskq 'tq' and 0 otherwise. The
227 * intended use is to ASSERT that a given function is called in taskq
232 * Global system-wide dynamic task queue for common uses. It may be used by
233 * any subsystem that needs to schedule tasks and does not need to manage
234 * its own task queues. It is initialized quite early during system boot.
236 * IMPLEMENTATION ==============================================================
238 * This is schematic representation of the task queue structures.
242 * | tq_lock | +---< taskq_ent_free()
244 * |... | | tqent: tqent:
245 * +-------------+ | +------------+ +------------+
246 * | tq_freelist |-->| tqent_next |--> ... ->| tqent_next |
247 * +-------------+ +------------+ +------------+
248 * |... | | ... | | ... |
249 * +-------------+ +------------+ +------------+
251 * | | +-------------->taskq_ent_alloc()
252 * +--------------------------------------------------------------------------+
253 * | | | tqent tqent |
254 * | +---------------------+ +--> +------------+ +--> +------------+ |
255 * | | ... | | | func, arg | | | func, arg | |
256 * +>+---------------------+ <---|-+ +------------+ <---|-+ +------------+ |
257 * | tq_taskq.tqent_next | ----+ | | tqent_next | --->+ | | tqent_next |--+
258 * +---------------------+ | +------------+ ^ | +------------+
259 * +-| tq_task.tqent_prev | +--| tqent_prev | | +--| tqent_prev | ^
260 * | +---------------------+ +------------+ | +------------+ |
261 * | |... | | ... | | | ... | |
262 * | +---------------------+ +------------+ | +------------+ |
265 * +--------------------------------------+--------------+ TQ_APPEND() -+
267 * |... | taskq_thread()-----+
269 * | tq_buckets |--+-------> [ NULL ] (for regular task queues)
271 * | DYNAMIC TASK QUEUES:
273 * +-> taskq_bucket[nCPU] taskq_bucket_dispatch()
274 * +-------------------+ ^
275 * +--->| tqbucket_lock | |
276 * | +-------------------+ +--------+ +--------+
277 * | | tqbucket_freelist |-->| tqent |-->...| tqent | ^
278 * | +-------------------+<--+--------+<--...+--------+ |
279 * | | ... | | thread | | thread | |
280 * | +-------------------+ +--------+ +--------+ |
281 * | +-------------------+ |
282 * taskq_dispatch()--+--->| tqbucket_lock | TQ_APPEND()------+
283 * TQ_HASH() | +-------------------+ +--------+ +--------+
284 * | | tqbucket_freelist |-->| tqent |-->...| tqent |
285 * | +-------------------+<--+--------+<--...+--------+
286 * | | ... | | thread | | thread |
287 * | +-------------------+ +--------+ +--------+
291 * Task queues use tq_task field to link new entry in the queue. The queue is a
292 * circular doubly-linked list. Entries are put in the end of the list with
293 * TQ_APPEND() and processed from the front of the list by taskq_thread() in
294 * FIFO order. Task queue entries are cached in the free list managed by
295 * taskq_ent_alloc() and taskq_ent_free() functions.
297 * All threads used by task queues mark t_taskq field of the thread to
298 * point to the task queue.
300 * Taskq Thread Management -----------------------------------------------------
302 * Taskq's non-dynamic threads are managed with several variables and flags:
304 * * tq_nthreads - The number of threads in taskq_thread() for the
307 * * tq_active - The number of threads not waiting on a CV in
308 * taskq_thread(); includes newly created threads
309 * not yet counted in tq_nthreads.
311 * * tq_nthreads_target
312 * - The number of threads desired for the taskq.
314 * * tq_flags & TASKQ_CHANGING
315 * - Indicates that tq_nthreads != tq_nthreads_target.
317 * * tq_flags & TASKQ_THREAD_CREATED
318 * - Indicates that a thread is being created in the taskq.
320 * During creation, tq_nthreads and tq_active are set to 0, and
321 * tq_nthreads_target is set to the number of threads desired. The
322 * TASKQ_CHANGING flag is set, and taskq_thread_create() is called to
323 * create the first thread. taskq_thread_create() increments tq_active,
324 * sets TASKQ_THREAD_CREATED, and creates the new thread.
326 * Each thread starts in taskq_thread(), clears the TASKQ_THREAD_CREATED
327 * flag, and increments tq_nthreads. It stores the new value of
328 * tq_nthreads as its "thread_id", and stores its thread pointer in the
329 * tq_threadlist at the (thread_id - 1). We keep the thread_id space
330 * densely packed by requiring that only the largest thread_id can exit during
331 * normal adjustment. The exception is during the destruction of the
332 * taskq; once tq_nthreads_target is set to zero, no new threads will be created
333 * for the taskq queue, so every thread can exit without any ordering being
336 * Threads will only process work if their thread id is <= tq_nthreads_target.
338 * When TASKQ_CHANGING is set, threads will check the current thread target
339 * whenever they wake up, and do whatever they can to apply its effects.
341 * TASKQ_THREAD_CPU_PCT --------------------------------------------------------
343 * When a taskq is created with TASKQ_THREAD_CPU_PCT, we store their requested
344 * percentage in tq_threads_ncpus_pct, start them off with the correct thread
345 * target, and add them to the taskq_cpupct_list for later adjustment.
347 * We register taskq_cpu_setup() to be called whenever a CPU changes state. It
348 * walks the list of TASKQ_THREAD_CPU_PCT taskqs, adjusts their nthread_target
349 * if need be, and wakes up all of the threads to process the change.
351 * Dynamic Task Queues Implementation ------------------------------------------
353 * For a dynamic task queues there is a 1-to-1 mapping between a thread and
354 * taskq_ent_structure. Each entry is serviced by its own thread and each thread
355 * is controlled by a single entry.
357 * Entries are distributed over a set of buckets. To avoid using modulo
358 * arithmetics the number of buckets is 2^n and is determined as the nearest
359 * power of two roundown of the number of CPUs in the system. Tunable
360 * variable 'taskq_maxbuckets' limits the maximum number of buckets. Each entry
361 * is attached to a bucket for its lifetime and can't migrate to other buckets.
363 * Entries that have scheduled tasks are not placed in any list. The dispatch
364 * function sets their "func" and "arg" fields and signals the corresponding
365 * thread to execute the task. Once the thread executes the task it clears the
366 * "func" field and places an entry on the bucket cache of free entries pointed
367 * by "tqbucket_freelist" field. ALL entries on the free list should have "func"
368 * field equal to NULL. The free list is a circular doubly-linked list identical
369 * in structure to the tq_task list above, but entries are taken from it in LIFO
370 * order - the last freed entry is the first to be allocated. The
371 * taskq_bucket_dispatch() function gets the most recently used entry from the
372 * free list, sets its "func" and "arg" fields and signals a worker thread.
374 * After executing each task a per-entry thread taskq_d_thread() places its
375 * entry on the bucket free list and goes to a timed sleep. If it wakes up
376 * without getting new task it removes the entry from the free list and destroys
377 * itself. The thread sleep time is controlled by a tunable variable
378 * `taskq_thread_timeout'.
380 * There are various statistics kept in the bucket which allows for later
381 * analysis of taskq usage patterns. Also, a global copy of taskq creation and
382 * death statistics is kept in the global taskq data structure. Since thread
383 * creation and death happen rarely, updating such global data does not present
384 * a performance problem.
386 * NOTE: Threads are not bound to any CPU and there is absolutely no association
387 * between the bucket and actual thread CPU, so buckets are used only to
388 * split resources and reduce resource contention. Having threads attached
389 * to the CPU denoted by a bucket may reduce number of times the job
390 * switches between CPUs.
392 * Current algorithm creates a thread whenever a bucket has no free
393 * entries. It would be nice to know how many threads are in the running
394 * state and don't create threads if all CPUs are busy with existing
395 * tasks, but it is unclear how such strategy can be implemented.
397 * Currently buckets are created statically as an array attached to task
398 * queue. On some system with nCPUs < max_ncpus it may waste system
399 * memory. One solution may be allocation of buckets when they are first
400 * touched, but it is not clear how useful it is.
402 * SUSPEND/RESUME implementation -----------------------------------------------
404 * Before executing a task taskq_thread() (executing non-dynamic task
405 * queues) obtains taskq's thread lock as a reader. The taskq_suspend()
406 * function gets the same lock as a writer blocking all non-dynamic task
407 * execution. The taskq_resume() function releases the lock allowing
408 * taskq_thread to continue execution.
410 * For dynamic task queues, each bucket is marked as TQBUCKET_SUSPEND by
411 * taskq_suspend() function. After that taskq_bucket_dispatch() always
412 * fails, so that taskq_dispatch() will either enqueue tasks for a
413 * suspended backing queue or fail if TQ_NOQUEUE is specified in dispatch
416 * NOTE: taskq_suspend() does not immediately block any tasks already
417 * scheduled for dynamic task queues. It only suspends new tasks
418 * scheduled after taskq_suspend() was called.
420 * taskq_member() function works by comparing a thread t_taskq pointer with
421 * the passed thread pointer.
423 * LOCKS and LOCK Hierarchy ----------------------------------------------------
425 * There are three locks used in task queues:
427 * 1) The taskq_t's tq_lock, protecting global task queue state.
429 * 2) Each per-CPU bucket has a lock for bucket management.
431 * 3) The global taskq_cpupct_lock, which protects the list of
432 * TASKQ_THREADS_CPU_PCT taskqs.
434 * If both (1) and (2) are needed, tq_lock should be taken *after* the bucket
437 * If both (1) and (3) are needed, tq_lock should be taken *after*
440 * DEBUG FACILITIES ------------------------------------------------------------
442 * For DEBUG kernels it is possible to induce random failures to
443 * taskq_dispatch() function when it is given TQ_NOSLEEP argument. The value of
444 * taskq_dmtbf and taskq_smtbf tunables control the mean time between induced
445 * failures for dynamic and static task queues respectively.
447 * Setting TASKQ_STATISTIC to 0 will disable per-bucket statistics.
449 * TUNABLES --------------------------------------------------------------------
451 * system_taskq_size - Size of the global system_taskq.
452 * This value is multiplied by nCPUs to determine
456 * taskq_minimum_nthreads_max
457 * - Minimum size of the thread list for a taskq.
458 * Useful for testing different thread pool
459 * sizes by overwriting tq_nthreads_target.
461 * taskq_thread_timeout - Maximum idle time for taskq_d_thread()
462 * Default value: 5 minutes
464 * taskq_maxbuckets - Maximum number of buckets in any task queue
467 * taskq_search_depth - Maximum # of buckets searched for a free entry
470 * taskq_dmtbf - Mean time between induced dispatch failures
471 * for dynamic task queues.
472 * Default value: UINT_MAX (no induced failures)
474 * taskq_smtbf - Mean time between induced dispatch failures
475 * for static task queues.
476 * Default value: UINT_MAX (no induced failures)
478 * CONDITIONAL compilation -----------------------------------------------------
480 * TASKQ_STATISTIC - If set will enable bucket statistic (default).
484 #include <sys/taskq_impl.h>
485 #include <sys/thread.h>
486 #include <sys/proc.h>
487 #include <sys/kmem.h>
488 #include <sys/vmem.h>
489 #include <sys/callb.h>
490 #include <sys/class.h>
491 #include <sys/systm.h>
492 #include <sys/cmn_err.h>
493 #include <sys/debug.h>
494 #include <sys/vmsystm.h> /* For throttlefree */
495 #include <sys/sysmacros.h>
496 #include <sys/cpuvar.h>
497 #include <sys/cpupart.h>
499 #include <sys/sysdc.h>
500 #include <sys/note.h>
502 static kmem_cache_t
*taskq_ent_cache
, *taskq_cache
;
505 * Pseudo instance numbers for taskqs without explicitly provided instance.
507 static vmem_t
*taskq_id_arena
;
509 /* Global system task queue for common use */
510 taskq_t
*system_taskq
;
513 * Maximum number of entries in global system taskq is
514 * system_taskq_size * max_ncpus
516 #define SYSTEM_TASKQ_SIZE 64
517 int system_taskq_size
= SYSTEM_TASKQ_SIZE
;
520 * Minimum size for tq_nthreads_max; useful for those who want to play around
521 * with increasing a taskq's tq_nthreads_target.
523 int taskq_minimum_nthreads_max
= 1;
526 * We want to ensure that when taskq_create() returns, there is at least
527 * one thread ready to handle requests. To guarantee this, we have to wait
528 * for the second thread, since the first one cannot process requests until
529 * the second thread has been created.
531 #define TASKQ_CREATE_ACTIVE_THREADS 2
533 /* Maximum percentage allowed for TASKQ_THREADS_CPU_PCT */
534 #define TASKQ_CPUPCT_MAX_PERCENT 1000
535 int taskq_cpupct_max_percent
= TASKQ_CPUPCT_MAX_PERCENT
;
538 * Dynamic task queue threads that don't get any work within
539 * taskq_thread_timeout destroy themselves
541 #define TASKQ_THREAD_TIMEOUT (60 * 5)
542 int taskq_thread_timeout
= TASKQ_THREAD_TIMEOUT
;
544 #define TASKQ_MAXBUCKETS 128
545 int taskq_maxbuckets
= TASKQ_MAXBUCKETS
;
548 * When a bucket has no available entries another buckets are tried.
549 * taskq_search_depth parameter limits the amount of buckets that we search
550 * before failing. This is mostly useful in systems with many CPUs where we may
551 * spend too much time scanning busy buckets.
553 #define TASKQ_SEARCH_DEPTH 4
554 int taskq_search_depth
= TASKQ_SEARCH_DEPTH
;
557 * Hashing function: mix various bits of x. May be pretty much anything.
559 #define TQ_HASH(x) ((x) ^ ((x) >> 11) ^ ((x) >> 17) ^ ((x) ^ 27))
562 * We do not create any new threads when the system is low on memory and start
563 * throttling memory allocations. The following macro tries to estimate such
566 #define ENOUGH_MEMORY() (freemem > throttlefree)
571 static taskq_t
*taskq_create_common(const char *, int, int, pri_t
, int,
572 int, proc_t
*, uint_t
, uint_t
);
573 static void taskq_thread(void *);
574 static void taskq_d_thread(taskq_ent_t
*);
575 static void taskq_bucket_extend(void *);
576 static int taskq_constructor(void *, void *, int);
577 static void taskq_destructor(void *, void *);
578 static int taskq_ent_constructor(void *, void *, int);
579 static void taskq_ent_destructor(void *, void *);
580 static taskq_ent_t
*taskq_ent_alloc(taskq_t
*, int);
581 static void taskq_ent_free(taskq_t
*, taskq_ent_t
*);
582 static int taskq_ent_exists(taskq_t
*, task_func_t
, void *);
583 static taskq_ent_t
*taskq_bucket_dispatch(taskq_bucket_t
*, task_func_t
,
587 * Task queues kstats.
590 kstat_named_t tq_pid
;
591 kstat_named_t tq_tasks
;
592 kstat_named_t tq_executed
;
593 kstat_named_t tq_maxtasks
;
594 kstat_named_t tq_totaltime
;
595 kstat_named_t tq_nalloc
;
596 kstat_named_t tq_nactive
;
597 kstat_named_t tq_pri
;
598 kstat_named_t tq_nthreads
;
600 { "pid", KSTAT_DATA_UINT64
},
601 { "tasks", KSTAT_DATA_UINT64
},
602 { "executed", KSTAT_DATA_UINT64
},
603 { "maxtasks", KSTAT_DATA_UINT64
},
604 { "totaltime", KSTAT_DATA_UINT64
},
605 { "nalloc", KSTAT_DATA_UINT64
},
606 { "nactive", KSTAT_DATA_UINT64
},
607 { "priority", KSTAT_DATA_UINT64
},
608 { "threads", KSTAT_DATA_UINT64
},
611 struct taskq_d_kstat
{
612 kstat_named_t tqd_pri
;
613 kstat_named_t tqd_btasks
;
614 kstat_named_t tqd_bexecuted
;
615 kstat_named_t tqd_bmaxtasks
;
616 kstat_named_t tqd_bnalloc
;
617 kstat_named_t tqd_bnactive
;
618 kstat_named_t tqd_btotaltime
;
619 kstat_named_t tqd_hits
;
620 kstat_named_t tqd_misses
;
621 kstat_named_t tqd_overflows
;
622 kstat_named_t tqd_tcreates
;
623 kstat_named_t tqd_tdeaths
;
624 kstat_named_t tqd_maxthreads
;
625 kstat_named_t tqd_nomem
;
626 kstat_named_t tqd_disptcreates
;
627 kstat_named_t tqd_totaltime
;
628 kstat_named_t tqd_nalloc
;
629 kstat_named_t tqd_nfree
;
631 { "priority", KSTAT_DATA_UINT64
},
632 { "btasks", KSTAT_DATA_UINT64
},
633 { "bexecuted", KSTAT_DATA_UINT64
},
634 { "bmaxtasks", KSTAT_DATA_UINT64
},
635 { "bnalloc", KSTAT_DATA_UINT64
},
636 { "bnactive", KSTAT_DATA_UINT64
},
637 { "btotaltime", KSTAT_DATA_UINT64
},
638 { "hits", KSTAT_DATA_UINT64
},
639 { "misses", KSTAT_DATA_UINT64
},
640 { "overflows", KSTAT_DATA_UINT64
},
641 { "tcreates", KSTAT_DATA_UINT64
},
642 { "tdeaths", KSTAT_DATA_UINT64
},
643 { "maxthreads", KSTAT_DATA_UINT64
},
644 { "nomem", KSTAT_DATA_UINT64
},
645 { "disptcreates", KSTAT_DATA_UINT64
},
646 { "totaltime", KSTAT_DATA_UINT64
},
647 { "nalloc", KSTAT_DATA_UINT64
},
648 { "nfree", KSTAT_DATA_UINT64
},
651 static kmutex_t taskq_kstat_lock
;
652 static kmutex_t taskq_d_kstat_lock
;
653 static int taskq_kstat_update(kstat_t
*, int);
654 static int taskq_d_kstat_update(kstat_t
*, int);
657 * List of all TASKQ_THREADS_CPU_PCT taskqs.
659 static list_t taskq_cpupct_list
; /* protected by cpu_lock */
662 * Collect per-bucket statistic when TASKQ_STATISTIC is defined.
664 #define TASKQ_STATISTIC 1
667 #define TQ_STAT(b, x) b->tqbucket_stat.x++
669 #define TQ_STAT(b, x)
673 * Random fault injection.
676 uint_t taskq_dmtbf
= UINT_MAX
; /* mean time between injected failures */
677 uint_t taskq_smtbf
= UINT_MAX
; /* mean time between injected failures */
680 * TQ_NOSLEEP dispatches on dynamic task queues are always allowed to fail.
682 * TQ_NOSLEEP dispatches on static task queues can't arbitrarily fail because
683 * they could prepopulate the cache and make sure that they do not use more
684 * then minalloc entries. So, fault injection in this case insures that
685 * either TASKQ_PREPOPULATE is not set or there are more entries allocated
686 * than is specified by minalloc. TQ_NOALLOC dispatches are always allowed
687 * to fail, but for simplicity we treat them identically to TQ_NOSLEEP
691 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag) \
692 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
693 if ((flag & TQ_NOSLEEP) && \
694 taskq_random < 1771875 / taskq_dmtbf) { \
698 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag) \
699 taskq_random = (taskq_random * 2416 + 374441) % 1771875;\
700 if ((flag & (TQ_NOSLEEP | TQ_NOALLOC)) && \
701 (!(tq->tq_flags & TASKQ_PREPOPULATE) || \
702 (tq->tq_nalloc > tq->tq_minalloc)) && \
703 (taskq_random < (1771875 / taskq_smtbf))) { \
704 mutex_exit(&tq->tq_lock); \
708 #define TASKQ_S_RANDOM_DISPATCH_FAILURE(tq, flag)
709 #define TASKQ_D_RANDOM_DISPATCH_FAILURE(tq, flag)
712 #define IS_EMPTY(l) (((l).tqent_prev == (l).tqent_next) && \
713 ((l).tqent_prev == &(l)))
716 * Append `tqe' in the end of the doubly-linked list denoted by l.
718 #define TQ_APPEND(l, tqe) { \
719 tqe->tqent_next = &l; \
720 tqe->tqent_prev = l.tqent_prev; \
721 tqe->tqent_next->tqent_prev = tqe; \
722 tqe->tqent_prev->tqent_next = tqe; \
725 * Prepend 'tqe' to the beginning of l
727 #define TQ_PREPEND(l, tqe) { \
728 tqe->tqent_next = l.tqent_next; \
729 tqe->tqent_prev = &l; \
730 tqe->tqent_next->tqent_prev = tqe; \
731 tqe->tqent_prev->tqent_next = tqe; \
735 * Schedule a task specified by func and arg into the task queue entry tqe.
737 #define TQ_DO_ENQUEUE(tq, tqe, func, arg, front) { \
738 ASSERT(MUTEX_HELD(&tq->tq_lock)); \
741 TQ_PREPEND(tq->tq_task, tqe); \
743 TQ_APPEND(tq->tq_task, tqe); \
745 tqe->tqent_func = (func); \
746 tqe->tqent_arg = (arg); \
748 if (tq->tq_tasks - tq->tq_executed > tq->tq_maxtasks) \
749 tq->tq_maxtasks = tq->tq_tasks - tq->tq_executed; \
750 cv_signal(&tq->tq_dispatch_cv); \
751 DTRACE_PROBE2(taskq__enqueue, taskq_t *, tq, taskq_ent_t *, tqe); \
754 #define TQ_ENQUEUE(tq, tqe, func, arg) \
755 TQ_DO_ENQUEUE(tq, tqe, func, arg, 0)
757 #define TQ_ENQUEUE_FRONT(tq, tqe, func, arg) \
758 TQ_DO_ENQUEUE(tq, tqe, func, arg, 1)
761 * Do-nothing task which may be used to prepopulate thread caches.
765 nulltask(void *unused
)
771 taskq_constructor(void *buf
, void *cdrarg
, int kmflags
)
775 bzero(tq
, sizeof (taskq_t
));
777 mutex_init(&tq
->tq_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
778 rw_init(&tq
->tq_threadlock
, NULL
, RW_DEFAULT
, NULL
);
779 cv_init(&tq
->tq_dispatch_cv
, NULL
, CV_DEFAULT
, NULL
);
780 cv_init(&tq
->tq_exit_cv
, NULL
, CV_DEFAULT
, NULL
);
781 cv_init(&tq
->tq_wait_cv
, NULL
, CV_DEFAULT
, NULL
);
782 cv_init(&tq
->tq_maxalloc_cv
, NULL
, CV_DEFAULT
, NULL
);
784 tq
->tq_task
.tqent_next
= &tq
->tq_task
;
785 tq
->tq_task
.tqent_prev
= &tq
->tq_task
;
792 taskq_destructor(void *buf
, void *cdrarg
)
796 ASSERT(tq
->tq_nthreads
== 0);
797 ASSERT(tq
->tq_buckets
== NULL
);
798 ASSERT(tq
->tq_tcreates
== 0);
799 ASSERT(tq
->tq_tdeaths
== 0);
801 mutex_destroy(&tq
->tq_lock
);
802 rw_destroy(&tq
->tq_threadlock
);
803 cv_destroy(&tq
->tq_dispatch_cv
);
804 cv_destroy(&tq
->tq_exit_cv
);
805 cv_destroy(&tq
->tq_wait_cv
);
806 cv_destroy(&tq
->tq_maxalloc_cv
);
811 taskq_ent_constructor(void *buf
, void *cdrarg
, int kmflags
)
813 taskq_ent_t
*tqe
= buf
;
815 tqe
->tqent_thread
= NULL
;
816 cv_init(&tqe
->tqent_cv
, NULL
, CV_DEFAULT
, NULL
);
823 taskq_ent_destructor(void *buf
, void *cdrarg
)
825 taskq_ent_t
*tqe
= buf
;
827 ASSERT(tqe
->tqent_thread
== NULL
);
828 cv_destroy(&tqe
->tqent_cv
);
834 taskq_ent_cache
= kmem_cache_create("taskq_ent_cache",
835 sizeof (taskq_ent_t
), 0, taskq_ent_constructor
,
836 taskq_ent_destructor
, NULL
, NULL
, NULL
, 0);
837 taskq_cache
= kmem_cache_create("taskq_cache", sizeof (taskq_t
),
838 0, taskq_constructor
, taskq_destructor
, NULL
, NULL
, NULL
, 0);
839 taskq_id_arena
= vmem_create("taskq_id_arena",
840 (void *)1, INT32_MAX
, 1, NULL
, NULL
, NULL
, 0,
841 VM_SLEEP
| VMC_IDENTIFIER
);
843 list_create(&taskq_cpupct_list
, sizeof (taskq_t
),
844 offsetof(taskq_t
, tq_cpupct_link
));
848 taskq_update_nthreads(taskq_t
*tq
, uint_t ncpus
)
850 uint_t newtarget
= TASKQ_THREADS_PCT(ncpus
, tq
->tq_threads_ncpus_pct
);
852 ASSERT(MUTEX_HELD(&cpu_lock
));
853 ASSERT(MUTEX_HELD(&tq
->tq_lock
));
855 /* We must be going from non-zero to non-zero; no exiting. */
856 ASSERT3U(tq
->tq_nthreads_target
, !=, 0);
857 ASSERT3U(newtarget
, !=, 0);
859 ASSERT3U(newtarget
, <=, tq
->tq_nthreads_max
);
860 if (newtarget
!= tq
->tq_nthreads_target
) {
861 tq
->tq_flags
|= TASKQ_CHANGING
;
862 tq
->tq_nthreads_target
= newtarget
;
863 cv_broadcast(&tq
->tq_dispatch_cv
);
864 cv_broadcast(&tq
->tq_exit_cv
);
868 /* called during task queue creation */
870 taskq_cpupct_install(taskq_t
*tq
, cpupart_t
*cpup
)
872 ASSERT(tq
->tq_flags
& TASKQ_THREADS_CPU_PCT
);
874 mutex_enter(&cpu_lock
);
875 mutex_enter(&tq
->tq_lock
);
876 tq
->tq_cpupart
= cpup
->cp_id
;
877 taskq_update_nthreads(tq
, cpup
->cp_ncpus
);
878 mutex_exit(&tq
->tq_lock
);
880 list_insert_tail(&taskq_cpupct_list
, tq
);
881 mutex_exit(&cpu_lock
);
885 taskq_cpupct_remove(taskq_t
*tq
)
887 ASSERT(tq
->tq_flags
& TASKQ_THREADS_CPU_PCT
);
889 mutex_enter(&cpu_lock
);
890 list_remove(&taskq_cpupct_list
, tq
);
891 mutex_exit(&cpu_lock
);
896 taskq_cpu_setup(cpu_setup_t what
, int id
, void *arg
)
899 cpupart_t
*cp
= cpu
[id
]->cpu_part
;
900 uint_t ncpus
= cp
->cp_ncpus
;
902 ASSERT(MUTEX_HELD(&cpu_lock
));
907 case CPU_CPUPART_OUT
:
908 /* offlines are called *before* the cpu is offlined. */
918 return (0); /* doesn't affect cpu count */
921 for (tq
= list_head(&taskq_cpupct_list
); tq
!= NULL
;
922 tq
= list_next(&taskq_cpupct_list
, tq
)) {
924 mutex_enter(&tq
->tq_lock
);
926 * If the taskq is part of the cpuset which is changing,
927 * update its nthreads_target.
929 if (tq
->tq_cpupart
== cp
->cp_id
) {
930 taskq_update_nthreads(tq
, ncpus
);
932 mutex_exit(&tq
->tq_lock
);
940 mutex_enter(&cpu_lock
);
941 register_cpu_setup_func(taskq_cpu_setup
, NULL
);
943 * Make sure we're up to date. At this point in boot, there is only
944 * one processor set, so we only have to update the current CPU.
946 (void) taskq_cpu_setup(CPU_ON
, CPU
->cpu_id
, NULL
);
947 mutex_exit(&cpu_lock
);
951 * Create global system dynamic task queue.
954 system_taskq_init(void)
956 system_taskq
= taskq_create_common("system_taskq", 0,
957 system_taskq_size
* max_ncpus
, minclsyspri
, 4, 512, &p0
, 0,
958 TASKQ_DYNAMIC
| TASKQ_PREPOPULATE
);
964 * Allocates a new taskq_ent_t structure either from the free list or from the
965 * cache. Returns NULL if it can't be allocated.
967 * Assumes: tq->tq_lock is held.
970 taskq_ent_alloc(taskq_t
*tq
, int flags
)
972 int kmflags
= (flags
& TQ_NOSLEEP
) ? KM_NOSLEEP
: KM_SLEEP
;
977 ASSERT(MUTEX_HELD(&tq
->tq_lock
));
980 * TQ_NOALLOC allocations are allowed to use the freelist, even if
981 * we are below tq_minalloc.
983 again
: if ((tqe
= tq
->tq_freelist
) != NULL
&&
984 ((flags
& TQ_NOALLOC
) || tq
->tq_nalloc
>= tq
->tq_minalloc
)) {
985 tq
->tq_freelist
= tqe
->tqent_next
;
987 if (flags
& TQ_NOALLOC
)
990 if (tq
->tq_nalloc
>= tq
->tq_maxalloc
) {
991 if (kmflags
& KM_NOSLEEP
)
995 * We don't want to exceed tq_maxalloc, but we can't
996 * wait for other tasks to complete (and thus free up
997 * task structures) without risking deadlock with
998 * the caller. So, we just delay for one second
999 * to throttle the allocation rate. If we have tasks
1000 * complete before one second timeout expires then
1001 * taskq_ent_free will signal us and we will
1002 * immediately retry the allocation (reap free).
1004 wait_time
= ddi_get_lbolt() + hz
;
1005 while (tq
->tq_freelist
== NULL
) {
1006 tq
->tq_maxalloc_wait
++;
1007 wait_rv
= cv_timedwait(&tq
->tq_maxalloc_cv
,
1008 &tq
->tq_lock
, wait_time
);
1009 tq
->tq_maxalloc_wait
--;
1013 if (tq
->tq_freelist
)
1014 goto again
; /* reap freelist */
1017 mutex_exit(&tq
->tq_lock
);
1019 tqe
= kmem_cache_alloc(taskq_ent_cache
, kmflags
);
1021 mutex_enter(&tq
->tq_lock
);
1031 * Free taskq_ent_t structure by either putting it on the free list or freeing
1034 * Assumes: tq->tq_lock is held.
1037 taskq_ent_free(taskq_t
*tq
, taskq_ent_t
*tqe
)
1039 ASSERT(MUTEX_HELD(&tq
->tq_lock
));
1041 if (tq
->tq_nalloc
<= tq
->tq_minalloc
) {
1042 tqe
->tqent_next
= tq
->tq_freelist
;
1043 tq
->tq_freelist
= tqe
;
1046 mutex_exit(&tq
->tq_lock
);
1047 kmem_cache_free(taskq_ent_cache
, tqe
);
1048 mutex_enter(&tq
->tq_lock
);
1051 if (tq
->tq_maxalloc_wait
)
1052 cv_signal(&tq
->tq_maxalloc_cv
);
1056 * taskq_ent_exists()
1058 * Return 1 if taskq already has entry for calling 'func(arg)'.
1060 * Assumes: tq->tq_lock is held.
1063 taskq_ent_exists(taskq_t
*tq
, task_func_t func
, void *arg
)
1067 ASSERT(MUTEX_HELD(&tq
->tq_lock
));
1069 for (tqe
= tq
->tq_task
.tqent_next
; tqe
!= &tq
->tq_task
;
1070 tqe
= tqe
->tqent_next
)
1071 if ((tqe
->tqent_func
== func
) && (tqe
->tqent_arg
== arg
))
1077 * Dispatch a task "func(arg)" to a free entry of bucket b.
1079 * Assumes: no bucket locks is held.
1081 * Returns: a pointer to an entry if dispatch was successful.
1082 * NULL if there are no free entries or if the bucket is suspended.
1084 static taskq_ent_t
*
1085 taskq_bucket_dispatch(taskq_bucket_t
*b
, task_func_t func
, void *arg
)
1089 ASSERT(MUTEX_NOT_HELD(&b
->tqbucket_lock
));
1090 ASSERT(func
!= NULL
);
1092 mutex_enter(&b
->tqbucket_lock
);
1094 ASSERT(b
->tqbucket_nfree
!= 0 || IS_EMPTY(b
->tqbucket_freelist
));
1095 ASSERT(b
->tqbucket_nfree
== 0 || !IS_EMPTY(b
->tqbucket_freelist
));
1098 * Get en entry from the freelist if there is one.
1099 * Schedule task into the entry.
1101 if ((b
->tqbucket_nfree
!= 0) &&
1102 !(b
->tqbucket_flags
& TQBUCKET_SUSPEND
)) {
1103 tqe
= b
->tqbucket_freelist
.tqent_prev
;
1105 ASSERT(tqe
!= &b
->tqbucket_freelist
);
1106 ASSERT(tqe
->tqent_thread
!= NULL
);
1108 tqe
->tqent_prev
->tqent_next
= tqe
->tqent_next
;
1109 tqe
->tqent_next
->tqent_prev
= tqe
->tqent_prev
;
1110 b
->tqbucket_nalloc
++;
1111 b
->tqbucket_nfree
--;
1112 tqe
->tqent_func
= func
;
1113 tqe
->tqent_arg
= arg
;
1114 TQ_STAT(b
, tqs_hits
);
1115 cv_signal(&tqe
->tqent_cv
);
1116 DTRACE_PROBE2(taskq__d__enqueue
, taskq_bucket_t
*, b
,
1117 taskq_ent_t
*, tqe
);
1120 TQ_STAT(b
, tqs_misses
);
1122 mutex_exit(&b
->tqbucket_lock
);
1129 * Assumes: func != NULL
1131 * Returns: NULL if dispatch failed.
1132 * non-NULL if task dispatched successfully.
1133 * Actual return value is the pointer to taskq entry that was used to
1134 * dispatch a task. This is useful for debugging.
1137 taskq_dispatch(taskq_t
*tq
, task_func_t func
, void *arg
, uint_t flags
)
1139 taskq_bucket_t
*bucket
= NULL
; /* Which bucket needs extension */
1140 taskq_ent_t
*tqe
= NULL
;
1145 ASSERT(func
!= NULL
);
1147 if (!(tq
->tq_flags
& TASKQ_DYNAMIC
)) {
1149 * TQ_NOQUEUE flag can't be used with non-dynamic task queues.
1151 ASSERT(!(flags
& TQ_NOQUEUE
));
1153 * Enqueue the task to the underlying queue.
1155 mutex_enter(&tq
->tq_lock
);
1157 TASKQ_S_RANDOM_DISPATCH_FAILURE(tq
, flags
);
1159 if ((tqe
= taskq_ent_alloc(tq
, flags
)) == NULL
) {
1160 mutex_exit(&tq
->tq_lock
);
1163 /* Make sure we start without any flags */
1164 tqe
->tqent_un
.tqent_flags
= 0;
1166 if (flags
& TQ_FRONT
) {
1167 TQ_ENQUEUE_FRONT(tq
, tqe
, func
, arg
);
1169 TQ_ENQUEUE(tq
, tqe
, func
, arg
);
1171 mutex_exit(&tq
->tq_lock
);
1172 return ((taskqid_t
)tqe
);
1176 * Dynamic taskq dispatching.
1178 ASSERT(!(flags
& (TQ_NOALLOC
| TQ_FRONT
)));
1179 TASKQ_D_RANDOM_DISPATCH_FAILURE(tq
, flags
);
1181 bsize
= tq
->tq_nbuckets
;
1185 * In a single-CPU case there is only one bucket, so get
1186 * entry directly from there.
1188 if ((tqe
= taskq_bucket_dispatch(tq
->tq_buckets
, func
, arg
))
1190 return ((taskqid_t
)tqe
); /* Fastpath */
1191 bucket
= tq
->tq_buckets
;
1195 uintptr_t h
= ((uintptr_t)CPU
+ (uintptr_t)arg
) >> 3;
1200 * The 'bucket' points to the original bucket that we hit. If we
1201 * can't allocate from it, we search other buckets, but only
1204 b
= &tq
->tq_buckets
[h
& (bsize
- 1)];
1205 ASSERT(b
->tqbucket_taskq
== tq
); /* Sanity check */
1208 * Do a quick check before grabbing the lock. If the bucket does
1209 * not have free entries now, chances are very small that it
1210 * will after we take the lock, so we just skip it.
1212 if (b
->tqbucket_nfree
!= 0) {
1213 if ((tqe
= taskq_bucket_dispatch(b
, func
, arg
)) != NULL
)
1214 return ((taskqid_t
)tqe
); /* Fastpath */
1216 TQ_STAT(b
, tqs_misses
);
1220 loopcount
= MIN(taskq_search_depth
, bsize
);
1222 * If bucket dispatch failed, search loopcount number of buckets
1223 * before we give up and fail.
1226 b
= &tq
->tq_buckets
[++h
& (bsize
- 1)];
1227 ASSERT(b
->tqbucket_taskq
== tq
); /* Sanity check */
1230 if (b
->tqbucket_nfree
!= 0) {
1231 tqe
= taskq_bucket_dispatch(b
, func
, arg
);
1233 TQ_STAT(b
, tqs_misses
);
1235 } while ((tqe
== NULL
) && (loopcount
> 0));
1239 * At this point we either scheduled a task and (tqe != NULL) or failed
1240 * (tqe == NULL). Try to recover from fails.
1244 * For KM_SLEEP dispatches, try to extend the bucket and retry dispatch.
1246 if ((tqe
== NULL
) && !(flags
& TQ_NOSLEEP
)) {
1248 * taskq_bucket_extend() may fail to do anything, but this is
1249 * fine - we deal with it later. If the bucket was successfully
1250 * extended, there is a good chance that taskq_bucket_dispatch()
1251 * will get this new entry, unless someone is racing with us and
1252 * stealing the new entry from under our nose.
1253 * taskq_bucket_extend() may sleep.
1255 taskq_bucket_extend(bucket
);
1256 TQ_STAT(bucket
, tqs_disptcreates
);
1257 if ((tqe
= taskq_bucket_dispatch(bucket
, func
, arg
)) != NULL
)
1258 return ((taskqid_t
)tqe
);
1261 ASSERT(bucket
!= NULL
);
1264 * Since there are not enough free entries in the bucket, add a
1265 * taskq entry to extend it in the background using backing queue
1266 * (unless we already have a taskq entry to perform that extension).
1268 mutex_enter(&tq
->tq_lock
);
1269 if (!taskq_ent_exists(tq
, taskq_bucket_extend
, bucket
)) {
1270 if ((tqe1
= taskq_ent_alloc(tq
, TQ_NOSLEEP
)) != NULL
) {
1271 TQ_ENQUEUE_FRONT(tq
, tqe1
, taskq_bucket_extend
, bucket
);
1273 TQ_STAT(bucket
, tqs_nomem
);
1278 * Dispatch failed and we can't find an entry to schedule a task.
1279 * Revert to the backing queue unless TQ_NOQUEUE was asked.
1281 if ((tqe
== NULL
) && !(flags
& TQ_NOQUEUE
)) {
1282 if ((tqe
= taskq_ent_alloc(tq
, flags
)) != NULL
) {
1283 TQ_ENQUEUE(tq
, tqe
, func
, arg
);
1285 TQ_STAT(bucket
, tqs_nomem
);
1288 mutex_exit(&tq
->tq_lock
);
1290 return ((taskqid_t
)tqe
);
1294 taskq_dispatch_ent(taskq_t
*tq
, task_func_t func
, void *arg
, uint_t flags
,
1297 ASSERT(func
!= NULL
);
1298 ASSERT(!(tq
->tq_flags
& TASKQ_DYNAMIC
));
1301 * Mark it as a prealloc'd task. This is important
1302 * to ensure that we don't free it later.
1304 tqe
->tqent_un
.tqent_flags
|= TQENT_FLAG_PREALLOC
;
1306 * Enqueue the task to the underlying queue.
1308 mutex_enter(&tq
->tq_lock
);
1310 if (flags
& TQ_FRONT
) {
1311 TQ_ENQUEUE_FRONT(tq
, tqe
, func
, arg
);
1313 TQ_ENQUEUE(tq
, tqe
, func
, arg
);
1315 mutex_exit(&tq
->tq_lock
);
1319 * Wait for all pending tasks to complete.
1320 * Calling taskq_wait from a task will cause deadlock.
1323 taskq_wait(taskq_t
*tq
)
1325 ASSERT(tq
!= curthread
->t_taskq
);
1327 mutex_enter(&tq
->tq_lock
);
1328 while (tq
->tq_task
.tqent_next
!= &tq
->tq_task
|| tq
->tq_active
!= 0)
1329 cv_wait(&tq
->tq_wait_cv
, &tq
->tq_lock
);
1330 mutex_exit(&tq
->tq_lock
);
1332 if (tq
->tq_flags
& TASKQ_DYNAMIC
) {
1333 taskq_bucket_t
*b
= tq
->tq_buckets
;
1335 for (; (b
!= NULL
) && (bid
< tq
->tq_nbuckets
); b
++, bid
++) {
1336 mutex_enter(&b
->tqbucket_lock
);
1337 while (b
->tqbucket_nalloc
> 0)
1338 cv_wait(&b
->tqbucket_cv
, &b
->tqbucket_lock
);
1339 mutex_exit(&b
->tqbucket_lock
);
1345 * Suspend execution of tasks.
1347 * Tasks in the queue part will be suspended immediately upon return from this
1348 * function. Pending tasks in the dynamic part will continue to execute, but all
1349 * new tasks will be suspended.
1352 taskq_suspend(taskq_t
*tq
)
1354 rw_enter(&tq
->tq_threadlock
, RW_WRITER
);
1356 if (tq
->tq_flags
& TASKQ_DYNAMIC
) {
1357 taskq_bucket_t
*b
= tq
->tq_buckets
;
1359 for (; (b
!= NULL
) && (bid
< tq
->tq_nbuckets
); b
++, bid
++) {
1360 mutex_enter(&b
->tqbucket_lock
);
1361 b
->tqbucket_flags
|= TQBUCKET_SUSPEND
;
1362 mutex_exit(&b
->tqbucket_lock
);
1366 * Mark task queue as being suspended. Needed for taskq_suspended().
1368 mutex_enter(&tq
->tq_lock
);
1369 ASSERT(!(tq
->tq_flags
& TASKQ_SUSPENDED
));
1370 tq
->tq_flags
|= TASKQ_SUSPENDED
;
1371 mutex_exit(&tq
->tq_lock
);
1375 * returns: 1 if tq is suspended, 0 otherwise.
1378 taskq_suspended(taskq_t
*tq
)
1380 return ((tq
->tq_flags
& TASKQ_SUSPENDED
) != 0);
1384 * Resume taskq execution.
1387 taskq_resume(taskq_t
*tq
)
1389 ASSERT(RW_WRITE_HELD(&tq
->tq_threadlock
));
1391 if (tq
->tq_flags
& TASKQ_DYNAMIC
) {
1392 taskq_bucket_t
*b
= tq
->tq_buckets
;
1394 for (; (b
!= NULL
) && (bid
< tq
->tq_nbuckets
); b
++, bid
++) {
1395 mutex_enter(&b
->tqbucket_lock
);
1396 b
->tqbucket_flags
&= ~TQBUCKET_SUSPEND
;
1397 mutex_exit(&b
->tqbucket_lock
);
1400 mutex_enter(&tq
->tq_lock
);
1401 ASSERT(tq
->tq_flags
& TASKQ_SUSPENDED
);
1402 tq
->tq_flags
&= ~TASKQ_SUSPENDED
;
1403 mutex_exit(&tq
->tq_lock
);
1405 rw_exit(&tq
->tq_threadlock
);
1409 taskq_member(taskq_t
*tq
, kthread_t
*thread
)
1411 return (thread
->t_taskq
== tq
);
1415 * Creates a thread in the taskq. We only allow one outstanding create at
1416 * a time. We drop and reacquire the tq_lock in order to avoid blocking other
1417 * taskq activity while thread_create() or lwp_kernel_create() run.
1419 * The first time we're called, we do some additional setup, and do not
1420 * return until there are enough threads to start servicing requests.
1423 taskq_thread_create(taskq_t
*tq
)
1426 const boolean_t first
= (tq
->tq_nthreads
== 0);
1428 ASSERT(MUTEX_HELD(&tq
->tq_lock
));
1429 ASSERT(tq
->tq_flags
& TASKQ_CHANGING
);
1430 ASSERT(tq
->tq_nthreads
< tq
->tq_nthreads_target
);
1431 ASSERT(!(tq
->tq_flags
& TASKQ_THREAD_CREATED
));
1434 tq
->tq_flags
|= TASKQ_THREAD_CREATED
;
1436 mutex_exit(&tq
->tq_lock
);
1439 * With TASKQ_DUTY_CYCLE the new thread must have an LWP
1440 * as explained in ../disp/sysdc.c (for the msacct data).
1441 * Otherwise simple kthreads are preferred.
1443 if ((tq
->tq_flags
& TASKQ_DUTY_CYCLE
) != 0) {
1444 /* Enforced in taskq_create_common */
1445 ASSERT3P(tq
->tq_proc
, !=, &p0
);
1446 t
= lwp_kernel_create(tq
->tq_proc
, taskq_thread
, tq
, TS_RUN
,
1449 t
= thread_create(NULL
, 0, taskq_thread
, tq
, 0, tq
->tq_proc
,
1450 TS_RUN
, tq
->tq_pri
);
1454 mutex_enter(&tq
->tq_lock
);
1459 * We know the thread cannot go away, since tq cannot be
1460 * destroyed until creation has completed. We can therefore
1461 * safely dereference t.
1463 if (tq
->tq_flags
& TASKQ_THREADS_CPU_PCT
) {
1464 taskq_cpupct_install(tq
, t
->t_cpupart
);
1466 mutex_enter(&tq
->tq_lock
);
1468 /* Wait until we can service requests. */
1469 while (tq
->tq_nthreads
!= tq
->tq_nthreads_target
&&
1470 tq
->tq_nthreads
< TASKQ_CREATE_ACTIVE_THREADS
) {
1471 cv_wait(&tq
->tq_wait_cv
, &tq
->tq_lock
);
1476 * Common "sleep taskq thread" function, which handles CPR stuff, as well
1477 * as giving a nice common point for debuggers to find inactive threads.
1480 taskq_thread_wait(taskq_t
*tq
, kmutex_t
*mx
, kcondvar_t
*cv
,
1481 callb_cpr_t
*cprinfo
, clock_t timeout
)
1485 if (!(tq
->tq_flags
& TASKQ_CPR_SAFE
)) {
1486 CALLB_CPR_SAFE_BEGIN(cprinfo
);
1491 ret
= cv_reltimedwait(cv
, mx
, timeout
, TR_CLOCK_TICK
);
1493 if (!(tq
->tq_flags
& TASKQ_CPR_SAFE
)) {
1494 CALLB_CPR_SAFE_END(cprinfo
, mx
);
1501 * Worker thread for processing task queue.
1504 taskq_thread(void *arg
)
1510 callb_cpr_t cprinfo
;
1511 hrtime_t start
, end
;
1514 curthread
->t_taskq
= tq
; /* mark ourselves for taskq_member() */
1516 if (curproc
!= &p0
&& (tq
->tq_flags
& TASKQ_DUTY_CYCLE
)) {
1517 sysdc_thread_enter(curthread
, tq
->tq_DC
,
1518 (tq
->tq_flags
& TASKQ_DC_BATCH
) ? SYSDC_THREAD_BATCH
: 0);
1521 if (tq
->tq_flags
& TASKQ_CPR_SAFE
) {
1522 CALLB_CPR_INIT_SAFE(curthread
, tq
->tq_name
);
1524 CALLB_CPR_INIT(&cprinfo
, &tq
->tq_lock
, callb_generic_cpr
,
1527 mutex_enter(&tq
->tq_lock
);
1528 thread_id
= ++tq
->tq_nthreads
;
1529 ASSERT(tq
->tq_flags
& TASKQ_THREAD_CREATED
);
1530 ASSERT(tq
->tq_flags
& TASKQ_CHANGING
);
1531 tq
->tq_flags
&= ~TASKQ_THREAD_CREATED
;
1533 VERIFY3S(thread_id
, <=, tq
->tq_nthreads_max
);
1535 if (tq
->tq_nthreads_max
== 1)
1536 tq
->tq_thread
= curthread
;
1538 tq
->tq_threadlist
[thread_id
- 1] = curthread
;
1540 /* Allow taskq_create_common()'s taskq_thread_create() to return. */
1541 if (tq
->tq_nthreads
== TASKQ_CREATE_ACTIVE_THREADS
)
1542 cv_broadcast(&tq
->tq_wait_cv
);
1545 if (tq
->tq_flags
& TASKQ_CHANGING
) {
1546 /* See if we're no longer needed */
1547 if (thread_id
> tq
->tq_nthreads_target
) {
1549 * To preserve the one-to-one mapping between
1550 * thread_id and thread, we must exit from
1551 * highest thread ID to least.
1553 * However, if everyone is exiting, the order
1554 * doesn't matter, so just exit immediately.
1555 * (this is safe, since you must wait for
1556 * nthreads to reach 0 after setting
1557 * tq_nthreads_target to 0)
1559 if (thread_id
== tq
->tq_nthreads
||
1560 tq
->tq_nthreads_target
== 0)
1563 /* Wait for higher thread_ids to exit */
1564 (void) taskq_thread_wait(tq
, &tq
->tq_lock
,
1565 &tq
->tq_exit_cv
, &cprinfo
, -1);
1570 * If no thread is starting taskq_thread(), we can
1571 * do some bookkeeping.
1573 if (!(tq
->tq_flags
& TASKQ_THREAD_CREATED
)) {
1574 /* Check if we've reached our target */
1575 if (tq
->tq_nthreads
== tq
->tq_nthreads_target
) {
1576 tq
->tq_flags
&= ~TASKQ_CHANGING
;
1577 cv_broadcast(&tq
->tq_wait_cv
);
1579 /* Check if we need to create a thread */
1580 if (tq
->tq_nthreads
< tq
->tq_nthreads_target
) {
1581 taskq_thread_create(tq
);
1582 continue; /* tq_lock was dropped */
1586 if ((tqe
= tq
->tq_task
.tqent_next
) == &tq
->tq_task
) {
1587 if (--tq
->tq_active
== 0)
1588 cv_broadcast(&tq
->tq_wait_cv
);
1589 (void) taskq_thread_wait(tq
, &tq
->tq_lock
,
1590 &tq
->tq_dispatch_cv
, &cprinfo
, -1);
1595 tqe
->tqent_prev
->tqent_next
= tqe
->tqent_next
;
1596 tqe
->tqent_next
->tqent_prev
= tqe
->tqent_prev
;
1597 mutex_exit(&tq
->tq_lock
);
1600 * For prealloc'd tasks, we don't free anything. We
1601 * have to check this now, because once we call the
1602 * function for a prealloc'd taskq, we can't touch the
1603 * tqent any longer (calling the function returns the
1604 * ownershp of the tqent back to caller of
1607 if ((!(tq
->tq_flags
& TASKQ_DYNAMIC
)) &&
1608 (tqe
->tqent_un
.tqent_flags
& TQENT_FLAG_PREALLOC
)) {
1609 /* clear pointers to assist assertion checks */
1610 tqe
->tqent_next
= tqe
->tqent_prev
= NULL
;
1616 rw_enter(&tq
->tq_threadlock
, RW_READER
);
1617 start
= gethrtime();
1618 DTRACE_PROBE2(taskq__exec__start
, taskq_t
*, tq
,
1619 taskq_ent_t
*, tqe
);
1620 tqe
->tqent_func(tqe
->tqent_arg
);
1621 DTRACE_PROBE2(taskq__exec__end
, taskq_t
*, tq
,
1622 taskq_ent_t
*, tqe
);
1624 rw_exit(&tq
->tq_threadlock
);
1626 mutex_enter(&tq
->tq_lock
);
1627 tq
->tq_totaltime
+= end
- start
;
1631 taskq_ent_free(tq
, tqe
);
1634 if (tq
->tq_nthreads_max
== 1)
1635 tq
->tq_thread
= NULL
;
1637 tq
->tq_threadlist
[thread_id
- 1] = NULL
;
1639 /* We're exiting, and therefore no longer active */
1640 ASSERT(tq
->tq_active
> 0);
1643 ASSERT(tq
->tq_nthreads
> 0);
1646 /* Wake up anyone waiting for us to exit */
1647 cv_broadcast(&tq
->tq_exit_cv
);
1648 if (tq
->tq_nthreads
== tq
->tq_nthreads_target
) {
1649 if (!(tq
->tq_flags
& TASKQ_THREAD_CREATED
))
1650 tq
->tq_flags
&= ~TASKQ_CHANGING
;
1652 cv_broadcast(&tq
->tq_wait_cv
);
1655 ASSERT(!(tq
->tq_flags
& TASKQ_CPR_SAFE
));
1656 CALLB_CPR_EXIT(&cprinfo
); /* drops tq->tq_lock */
1657 if (curthread
->t_lwp
!= NULL
) {
1658 mutex_enter(&curproc
->p_lock
);
1666 * Worker per-entry thread for dynamic dispatches.
1669 taskq_d_thread(taskq_ent_t
*tqe
)
1671 taskq_bucket_t
*bucket
= tqe
->tqent_un
.tqent_bucket
;
1672 taskq_t
*tq
= bucket
->tqbucket_taskq
;
1673 kmutex_t
*lock
= &bucket
->tqbucket_lock
;
1674 kcondvar_t
*cv
= &tqe
->tqent_cv
;
1675 callb_cpr_t cprinfo
;
1678 CALLB_CPR_INIT(&cprinfo
, lock
, callb_generic_cpr
, tq
->tq_name
);
1684 * If a task is scheduled (func != NULL), execute it, otherwise
1685 * sleep, waiting for a job.
1687 if (tqe
->tqent_func
!= NULL
) {
1691 ASSERT(bucket
->tqbucket_nalloc
> 0);
1694 * It is possible to free the entry right away before
1695 * actually executing the task so that subsequent
1696 * dispatches may immediately reuse it. But this,
1697 * effectively, creates a two-length queue in the entry
1698 * and may lead to a deadlock if the execution of the
1699 * current task depends on the execution of the next
1700 * scheduled task. So, we keep the entry busy until the
1701 * task is processed.
1705 start
= gethrtime();
1706 DTRACE_PROBE3(taskq__d__exec__start
, taskq_t
*, tq
,
1707 taskq_bucket_t
*, bucket
, taskq_ent_t
*, tqe
);
1708 tqe
->tqent_func(tqe
->tqent_arg
);
1709 DTRACE_PROBE3(taskq__d__exec__end
, taskq_t
*, tq
,
1710 taskq_bucket_t
*, bucket
, taskq_ent_t
*, tqe
);
1713 bucket
->tqbucket_totaltime
+= end
- start
;
1716 * Return the entry to the bucket free list.
1718 tqe
->tqent_func
= NULL
;
1719 TQ_APPEND(bucket
->tqbucket_freelist
, tqe
);
1720 bucket
->tqbucket_nalloc
--;
1721 bucket
->tqbucket_nfree
++;
1722 ASSERT(!IS_EMPTY(bucket
->tqbucket_freelist
));
1724 * taskq_wait() waits for nalloc to drop to zero on
1727 cv_signal(&bucket
->tqbucket_cv
);
1731 * At this point the entry must be in the bucket free list -
1732 * either because it was there initially or because it just
1733 * finished executing a task and put itself on the free list.
1735 ASSERT(bucket
->tqbucket_nfree
> 0);
1737 * Go to sleep unless we are closing.
1738 * If a thread is sleeping too long, it dies.
1740 if (! (bucket
->tqbucket_flags
& TQBUCKET_CLOSE
)) {
1741 w
= taskq_thread_wait(tq
, lock
, cv
,
1742 &cprinfo
, taskq_thread_timeout
* hz
);
1746 * At this point we may be in two different states:
1748 * (1) tqent_func is set which means that a new task is
1749 * dispatched and we need to execute it.
1751 * (2) Thread is sleeping for too long or we are closing. In
1752 * both cases destroy the thread and the entry.
1755 /* If func is NULL we should be on the freelist. */
1756 ASSERT((tqe
->tqent_func
!= NULL
) ||
1757 (bucket
->tqbucket_nfree
> 0));
1758 /* If func is non-NULL we should be allocated */
1759 ASSERT((tqe
->tqent_func
== NULL
) ||
1760 (bucket
->tqbucket_nalloc
> 0));
1762 /* Check freelist consistency */
1763 ASSERT((bucket
->tqbucket_nfree
> 0) ||
1764 IS_EMPTY(bucket
->tqbucket_freelist
));
1765 ASSERT((bucket
->tqbucket_nfree
== 0) ||
1766 !IS_EMPTY(bucket
->tqbucket_freelist
));
1768 if ((tqe
->tqent_func
== NULL
) &&
1769 ((w
== -1) || (bucket
->tqbucket_flags
& TQBUCKET_CLOSE
))) {
1771 * This thread is sleeping for too long or we are
1772 * closing - time to die.
1773 * Thread creation/destruction happens rarely,
1774 * so grabbing the lock is not a big performance issue.
1775 * The bucket lock is dropped by CALLB_CPR_EXIT().
1778 /* Remove the entry from the free list. */
1779 tqe
->tqent_prev
->tqent_next
= tqe
->tqent_next
;
1780 tqe
->tqent_next
->tqent_prev
= tqe
->tqent_prev
;
1781 ASSERT(bucket
->tqbucket_nfree
> 0);
1782 bucket
->tqbucket_nfree
--;
1784 TQ_STAT(bucket
, tqs_tdeaths
);
1785 cv_signal(&bucket
->tqbucket_cv
);
1786 tqe
->tqent_thread
= NULL
;
1787 mutex_enter(&tq
->tq_lock
);
1789 mutex_exit(&tq
->tq_lock
);
1790 CALLB_CPR_EXIT(&cprinfo
);
1791 kmem_cache_free(taskq_ent_cache
, tqe
);
1799 * Taskq creation. May sleep for memory.
1800 * Always use automatically generated instances to avoid kstat name space
1805 taskq_create(const char *name
, int nthreads
, pri_t pri
, int minalloc
,
1806 int maxalloc
, uint_t flags
)
1808 ASSERT((flags
& ~TASKQ_INTERFACE_FLAGS
) == 0);
1810 return (taskq_create_common(name
, 0, nthreads
, pri
, minalloc
,
1811 maxalloc
, &p0
, 0, flags
| TASKQ_NOINSTANCE
));
1815 * Create an instance of task queue. It is legal to create task queues with the
1816 * same name and different instances.
1818 * taskq_create_instance is used by ddi_taskq_create() where it gets the
1819 * instance from ddi_get_instance(). In some cases the instance is not
1820 * initialized and is set to -1. This case is handled as if no instance was
1824 taskq_create_instance(const char *name
, int instance
, int nthreads
, pri_t pri
,
1825 int minalloc
, int maxalloc
, uint_t flags
)
1827 ASSERT((flags
& ~TASKQ_INTERFACE_FLAGS
) == 0);
1828 ASSERT((instance
>= 0) || (instance
== -1));
1831 flags
|= TASKQ_NOINSTANCE
;
1834 return (taskq_create_common(name
, instance
, nthreads
,
1835 pri
, minalloc
, maxalloc
, &p0
, 0, flags
));
1839 taskq_create_proc(const char *name
, int nthreads
, pri_t pri
, int minalloc
,
1840 int maxalloc
, proc_t
*proc
, uint_t flags
)
1842 ASSERT((flags
& ~TASKQ_INTERFACE_FLAGS
) == 0);
1843 ASSERT(proc
->p_flag
& SSYS
);
1845 return (taskq_create_common(name
, 0, nthreads
, pri
, minalloc
,
1846 maxalloc
, proc
, 0, flags
| TASKQ_NOINSTANCE
));
1850 taskq_create_sysdc(const char *name
, int nthreads
, int minalloc
,
1851 int maxalloc
, proc_t
*proc
, uint_t dc
, uint_t flags
)
1853 ASSERT((flags
& ~TASKQ_INTERFACE_FLAGS
) == 0);
1854 ASSERT(proc
->p_flag
& SSYS
);
1856 return (taskq_create_common(name
, 0, nthreads
, minclsyspri
, minalloc
,
1857 maxalloc
, proc
, dc
, flags
| TASKQ_NOINSTANCE
| TASKQ_DUTY_CYCLE
));
1861 taskq_create_common(const char *name
, int instance
, int nthreads
, pri_t pri
,
1862 int minalloc
, int maxalloc
, proc_t
*proc
, uint_t dc
, uint_t flags
)
1864 taskq_t
*tq
= kmem_cache_alloc(taskq_cache
, KM_SLEEP
);
1865 uint_t ncpus
= ((boot_max_ncpus
== -1) ? max_ncpus
: boot_max_ncpus
);
1866 uint_t bsize
; /* # of buckets - always power of 2 */
1870 * TASKQ_DYNAMIC, TASKQ_CPR_SAFE and TASKQ_THREADS_CPU_PCT are all
1871 * mutually incompatible.
1873 IMPLY((flags
& TASKQ_DYNAMIC
), !(flags
& TASKQ_CPR_SAFE
));
1874 IMPLY((flags
& TASKQ_DYNAMIC
), !(flags
& TASKQ_THREADS_CPU_PCT
));
1875 IMPLY((flags
& TASKQ_CPR_SAFE
), !(flags
& TASKQ_THREADS_CPU_PCT
));
1877 /* Cannot have DYNAMIC with DUTY_CYCLE */
1878 IMPLY((flags
& TASKQ_DYNAMIC
), !(flags
& TASKQ_DUTY_CYCLE
));
1880 /* Cannot have DUTY_CYCLE with a p0 kernel process */
1881 IMPLY((flags
& TASKQ_DUTY_CYCLE
), proc
!= &p0
);
1883 /* Cannot have DC_BATCH without DUTY_CYCLE */
1884 ASSERT((flags
& (TASKQ_DUTY_CYCLE
|TASKQ_DC_BATCH
)) != TASKQ_DC_BATCH
);
1886 ASSERT(proc
!= NULL
);
1888 bsize
= 1 << (highbit(ncpus
) - 1);
1890 bsize
= MIN(bsize
, taskq_maxbuckets
);
1892 if (flags
& TASKQ_DYNAMIC
) {
1893 ASSERT3S(nthreads
, >=, 1);
1894 tq
->tq_maxsize
= nthreads
;
1896 /* For dynamic task queues use just one backup thread */
1897 nthreads
= max_nthreads
= 1;
1899 } else if (flags
& TASKQ_THREADS_CPU_PCT
) {
1901 ASSERT3S(nthreads
, >=, 0);
1904 if (pct
> taskq_cpupct_max_percent
)
1905 pct
= taskq_cpupct_max_percent
;
1908 * If you're using THREADS_CPU_PCT, the process for the
1909 * taskq threads must be curproc. This allows any pset
1910 * binding to be inherited correctly. If proc is &p0,
1911 * we won't be creating LWPs, so new threads will be assigned
1912 * to the default processor set.
1914 ASSERT(curproc
== proc
|| proc
== &p0
);
1915 tq
->tq_threads_ncpus_pct
= pct
;
1916 nthreads
= 1; /* corrected in taskq_thread_create() */
1917 max_nthreads
= TASKQ_THREADS_PCT(max_ncpus
, pct
);
1920 ASSERT3S(nthreads
, >=, 1);
1921 max_nthreads
= nthreads
;
1924 if (max_nthreads
< taskq_minimum_nthreads_max
)
1925 max_nthreads
= taskq_minimum_nthreads_max
;
1928 * Make sure the name is 0-terminated, and conforms to the rules for
1931 (void) strncpy(tq
->tq_name
, name
, TASKQ_NAMELEN
+ 1);
1932 strident_canon(tq
->tq_name
, TASKQ_NAMELEN
+ 1);
1934 tq
->tq_flags
= flags
| TASKQ_CHANGING
;
1936 tq
->tq_instance
= instance
;
1937 tq
->tq_nthreads_target
= nthreads
;
1938 tq
->tq_nthreads_max
= max_nthreads
;
1939 tq
->tq_minalloc
= minalloc
;
1940 tq
->tq_maxalloc
= maxalloc
;
1941 tq
->tq_nbuckets
= bsize
;
1945 list_link_init(&tq
->tq_cpupct_link
);
1947 if (max_nthreads
> 1)
1948 tq
->tq_threadlist
= kmem_alloc(
1949 sizeof (kthread_t
*) * max_nthreads
, KM_SLEEP
);
1951 mutex_enter(&tq
->tq_lock
);
1952 if (flags
& TASKQ_PREPOPULATE
) {
1953 while (minalloc
-- > 0)
1954 taskq_ent_free(tq
, taskq_ent_alloc(tq
, TQ_SLEEP
));
1958 * Before we start creating threads for this taskq, take a
1959 * zone hold so the zone can't go away before taskq_destroy
1960 * makes sure all the taskq threads are gone. This hold is
1961 * similar in purpose to those taken by zthread_create().
1963 zone_hold(tq
->tq_proc
->p_zone
);
1966 * Create the first thread, which will create any other threads
1967 * necessary. taskq_thread_create will not return until we have
1968 * enough threads to be able to process requests.
1970 taskq_thread_create(tq
);
1971 mutex_exit(&tq
->tq_lock
);
1973 if (flags
& TASKQ_DYNAMIC
) {
1974 taskq_bucket_t
*bucket
= kmem_zalloc(sizeof (taskq_bucket_t
) *
1978 tq
->tq_buckets
= bucket
;
1980 /* Initialize each bucket */
1981 for (b_id
= 0; b_id
< bsize
; b_id
++, bucket
++) {
1982 mutex_init(&bucket
->tqbucket_lock
, NULL
, MUTEX_DEFAULT
,
1984 cv_init(&bucket
->tqbucket_cv
, NULL
, CV_DEFAULT
, NULL
);
1985 bucket
->tqbucket_taskq
= tq
;
1986 bucket
->tqbucket_freelist
.tqent_next
=
1987 bucket
->tqbucket_freelist
.tqent_prev
=
1988 &bucket
->tqbucket_freelist
;
1989 if (flags
& TASKQ_PREPOPULATE
)
1990 taskq_bucket_extend(bucket
);
1996 * We have two cases:
1997 * 1) Instance is provided to taskq_create_instance(). In this case it
1998 * should be >= 0 and we use it.
2000 * 2) Instance is not provided and is automatically generated
2002 if (flags
& TASKQ_NOINSTANCE
) {
2003 instance
= tq
->tq_instance
=
2004 (int)(uintptr_t)vmem_alloc(taskq_id_arena
, 1, VM_SLEEP
);
2007 if (flags
& TASKQ_DYNAMIC
) {
2008 if ((tq
->tq_kstat
= kstat_create("unix", instance
,
2009 tq
->tq_name
, "taskq_d", KSTAT_TYPE_NAMED
,
2010 sizeof (taskq_d_kstat
) / sizeof (kstat_named_t
),
2011 KSTAT_FLAG_VIRTUAL
)) != NULL
) {
2012 tq
->tq_kstat
->ks_lock
= &taskq_d_kstat_lock
;
2013 tq
->tq_kstat
->ks_data
= &taskq_d_kstat
;
2014 tq
->tq_kstat
->ks_update
= taskq_d_kstat_update
;
2015 tq
->tq_kstat
->ks_private
= tq
;
2016 kstat_install(tq
->tq_kstat
);
2019 if ((tq
->tq_kstat
= kstat_create("unix", instance
, tq
->tq_name
,
2020 "taskq", KSTAT_TYPE_NAMED
,
2021 sizeof (taskq_kstat
) / sizeof (kstat_named_t
),
2022 KSTAT_FLAG_VIRTUAL
)) != NULL
) {
2023 tq
->tq_kstat
->ks_lock
= &taskq_kstat_lock
;
2024 tq
->tq_kstat
->ks_data
= &taskq_kstat
;
2025 tq
->tq_kstat
->ks_update
= taskq_kstat_update
;
2026 tq
->tq_kstat
->ks_private
= tq
;
2027 kstat_install(tq
->tq_kstat
);
2037 * Assumes: by the time taskq_destroy is called no one will use this task queue
2038 * in any way and no one will try to dispatch entries in it.
2041 taskq_destroy(taskq_t
*tq
)
2043 taskq_bucket_t
*b
= tq
->tq_buckets
;
2046 ASSERT(! (tq
->tq_flags
& TASKQ_CPR_SAFE
));
2051 if (tq
->tq_kstat
!= NULL
) {
2052 kstat_delete(tq
->tq_kstat
);
2053 tq
->tq_kstat
= NULL
;
2057 * Destroy instance if needed.
2059 if (tq
->tq_flags
& TASKQ_NOINSTANCE
) {
2060 vmem_free(taskq_id_arena
, (void *)(uintptr_t)(tq
->tq_instance
),
2062 tq
->tq_instance
= 0;
2066 * Unregister from the cpupct list.
2068 if (tq
->tq_flags
& TASKQ_THREADS_CPU_PCT
) {
2069 taskq_cpupct_remove(tq
);
2073 * Wait for any pending entries to complete.
2077 mutex_enter(&tq
->tq_lock
);
2078 ASSERT((tq
->tq_task
.tqent_next
== &tq
->tq_task
) &&
2079 (tq
->tq_active
== 0));
2081 /* notify all the threads that they need to exit */
2082 tq
->tq_nthreads_target
= 0;
2084 tq
->tq_flags
|= TASKQ_CHANGING
;
2085 cv_broadcast(&tq
->tq_dispatch_cv
);
2086 cv_broadcast(&tq
->tq_exit_cv
);
2088 while (tq
->tq_nthreads
!= 0)
2089 cv_wait(&tq
->tq_wait_cv
, &tq
->tq_lock
);
2091 if (tq
->tq_nthreads_max
!= 1)
2092 kmem_free(tq
->tq_threadlist
, sizeof (kthread_t
*) *
2093 tq
->tq_nthreads_max
);
2095 tq
->tq_minalloc
= 0;
2096 while (tq
->tq_nalloc
!= 0)
2097 taskq_ent_free(tq
, taskq_ent_alloc(tq
, TQ_SLEEP
));
2099 mutex_exit(&tq
->tq_lock
);
2102 * Mark each bucket as closing and wakeup all sleeping threads.
2104 for (; (b
!= NULL
) && (bid
< tq
->tq_nbuckets
); b
++, bid
++) {
2107 mutex_enter(&b
->tqbucket_lock
);
2109 b
->tqbucket_flags
|= TQBUCKET_CLOSE
;
2110 /* Wakeup all sleeping threads */
2112 for (tqe
= b
->tqbucket_freelist
.tqent_next
;
2113 tqe
!= &b
->tqbucket_freelist
; tqe
= tqe
->tqent_next
)
2114 cv_signal(&tqe
->tqent_cv
);
2116 ASSERT(b
->tqbucket_nalloc
== 0);
2119 * At this point we waited for all pending jobs to complete (in
2120 * both the task queue and the bucket and no new jobs should
2121 * arrive. Wait for all threads to die.
2123 while (b
->tqbucket_nfree
> 0)
2124 cv_wait(&b
->tqbucket_cv
, &b
->tqbucket_lock
);
2125 mutex_exit(&b
->tqbucket_lock
);
2126 mutex_destroy(&b
->tqbucket_lock
);
2127 cv_destroy(&b
->tqbucket_cv
);
2130 if (tq
->tq_buckets
!= NULL
) {
2131 ASSERT(tq
->tq_flags
& TASKQ_DYNAMIC
);
2132 kmem_free(tq
->tq_buckets
,
2133 sizeof (taskq_bucket_t
) * tq
->tq_nbuckets
);
2135 /* Cleanup fields before returning tq to the cache */
2136 tq
->tq_buckets
= NULL
;
2137 tq
->tq_tcreates
= 0;
2140 ASSERT(!(tq
->tq_flags
& TASKQ_DYNAMIC
));
2144 * Now that all the taskq threads are gone, we can
2145 * drop the zone hold taken in taskq_create_common
2147 zone_rele(tq
->tq_proc
->p_zone
);
2149 tq
->tq_threads_ncpus_pct
= 0;
2150 tq
->tq_totaltime
= 0;
2152 tq
->tq_maxtasks
= 0;
2153 tq
->tq_executed
= 0;
2154 kmem_cache_free(taskq_cache
, tq
);
2158 * Extend a bucket with a new entry on the free list and attach a worker thread
2161 * Argument: pointer to the bucket.
2163 * This function may quietly fail. It is only used by taskq_dispatch() which
2164 * handles such failures properly.
2167 taskq_bucket_extend(void *arg
)
2170 taskq_bucket_t
*b
= (taskq_bucket_t
*)arg
;
2171 taskq_t
*tq
= b
->tqbucket_taskq
;
2174 if (! ENOUGH_MEMORY()) {
2175 TQ_STAT(b
, tqs_nomem
);
2179 mutex_enter(&tq
->tq_lock
);
2182 * Observe global taskq limits on the number of threads.
2184 if (tq
->tq_tcreates
++ - tq
->tq_tdeaths
> tq
->tq_maxsize
) {
2186 mutex_exit(&tq
->tq_lock
);
2189 mutex_exit(&tq
->tq_lock
);
2191 tqe
= kmem_cache_alloc(taskq_ent_cache
, KM_NOSLEEP
);
2194 mutex_enter(&tq
->tq_lock
);
2195 TQ_STAT(b
, tqs_nomem
);
2197 mutex_exit(&tq
->tq_lock
);
2201 ASSERT(tqe
->tqent_thread
== NULL
);
2203 tqe
->tqent_un
.tqent_bucket
= b
;
2206 * Create a thread in a TS_STOPPED state first. If it is successfully
2207 * created, place the entry on the free list and start the thread.
2209 tqe
->tqent_thread
= thread_create(NULL
, 0, taskq_d_thread
, tqe
,
2210 0, tq
->tq_proc
, TS_STOPPED
, tq
->tq_pri
);
2213 * Once the entry is ready, link it to the the bucket free list.
2215 mutex_enter(&b
->tqbucket_lock
);
2216 tqe
->tqent_func
= NULL
;
2217 TQ_APPEND(b
->tqbucket_freelist
, tqe
);
2218 b
->tqbucket_nfree
++;
2219 TQ_STAT(b
, tqs_tcreates
);
2222 nthreads
= b
->tqbucket_stat
.tqs_tcreates
-
2223 b
->tqbucket_stat
.tqs_tdeaths
;
2224 b
->tqbucket_stat
.tqs_maxthreads
= MAX(nthreads
,
2225 b
->tqbucket_stat
.tqs_maxthreads
);
2228 mutex_exit(&b
->tqbucket_lock
);
2230 * Start the stopped thread.
2232 thread_lock(tqe
->tqent_thread
);
2233 tqe
->tqent_thread
->t_taskq
= tq
;
2234 tqe
->tqent_thread
->t_schedflag
|= TS_ALLSTART
;
2235 setrun_locked(tqe
->tqent_thread
);
2236 thread_unlock(tqe
->tqent_thread
);
2240 taskq_kstat_update(kstat_t
*ksp
, int rw
)
2242 struct taskq_kstat
*tqsp
= &taskq_kstat
;
2243 taskq_t
*tq
= ksp
->ks_private
;
2245 if (rw
== KSTAT_WRITE
)
2248 tqsp
->tq_pid
.value
.ui64
= tq
->tq_proc
->p_pid
;
2249 tqsp
->tq_tasks
.value
.ui64
= tq
->tq_tasks
;
2250 tqsp
->tq_executed
.value
.ui64
= tq
->tq_executed
;
2251 tqsp
->tq_maxtasks
.value
.ui64
= tq
->tq_maxtasks
;
2252 tqsp
->tq_totaltime
.value
.ui64
= tq
->tq_totaltime
;
2253 tqsp
->tq_nactive
.value
.ui64
= tq
->tq_active
;
2254 tqsp
->tq_nalloc
.value
.ui64
= tq
->tq_nalloc
;
2255 tqsp
->tq_pri
.value
.ui64
= tq
->tq_pri
;
2256 tqsp
->tq_nthreads
.value
.ui64
= tq
->tq_nthreads
;
2261 taskq_d_kstat_update(kstat_t
*ksp
, int rw
)
2263 struct taskq_d_kstat
*tqsp
= &taskq_d_kstat
;
2264 taskq_t
*tq
= ksp
->ks_private
;
2265 taskq_bucket_t
*b
= tq
->tq_buckets
;
2268 if (rw
== KSTAT_WRITE
)
2271 ASSERT(tq
->tq_flags
& TASKQ_DYNAMIC
);
2273 tqsp
->tqd_btasks
.value
.ui64
= tq
->tq_tasks
;
2274 tqsp
->tqd_bexecuted
.value
.ui64
= tq
->tq_executed
;
2275 tqsp
->tqd_bmaxtasks
.value
.ui64
= tq
->tq_maxtasks
;
2276 tqsp
->tqd_bnalloc
.value
.ui64
= tq
->tq_nalloc
;
2277 tqsp
->tqd_bnactive
.value
.ui64
= tq
->tq_active
;
2278 tqsp
->tqd_btotaltime
.value
.ui64
= tq
->tq_totaltime
;
2279 tqsp
->tqd_pri
.value
.ui64
= tq
->tq_pri
;
2281 tqsp
->tqd_hits
.value
.ui64
= 0;
2282 tqsp
->tqd_misses
.value
.ui64
= 0;
2283 tqsp
->tqd_overflows
.value
.ui64
= 0;
2284 tqsp
->tqd_tcreates
.value
.ui64
= 0;
2285 tqsp
->tqd_tdeaths
.value
.ui64
= 0;
2286 tqsp
->tqd_maxthreads
.value
.ui64
= 0;
2287 tqsp
->tqd_nomem
.value
.ui64
= 0;
2288 tqsp
->tqd_disptcreates
.value
.ui64
= 0;
2289 tqsp
->tqd_totaltime
.value
.ui64
= 0;
2290 tqsp
->tqd_nalloc
.value
.ui64
= 0;
2291 tqsp
->tqd_nfree
.value
.ui64
= 0;
2293 for (; (b
!= NULL
) && (bid
< tq
->tq_nbuckets
); b
++, bid
++) {
2294 tqsp
->tqd_hits
.value
.ui64
+= b
->tqbucket_stat
.tqs_hits
;
2295 tqsp
->tqd_misses
.value
.ui64
+= b
->tqbucket_stat
.tqs_misses
;
2296 tqsp
->tqd_overflows
.value
.ui64
+= b
->tqbucket_stat
.tqs_overflow
;
2297 tqsp
->tqd_tcreates
.value
.ui64
+= b
->tqbucket_stat
.tqs_tcreates
;
2298 tqsp
->tqd_tdeaths
.value
.ui64
+= b
->tqbucket_stat
.tqs_tdeaths
;
2299 tqsp
->tqd_maxthreads
.value
.ui64
+=
2300 b
->tqbucket_stat
.tqs_maxthreads
;
2301 tqsp
->tqd_nomem
.value
.ui64
+= b
->tqbucket_stat
.tqs_nomem
;
2302 tqsp
->tqd_disptcreates
.value
.ui64
+=
2303 b
->tqbucket_stat
.tqs_disptcreates
;
2304 tqsp
->tqd_totaltime
.value
.ui64
+= b
->tqbucket_totaltime
;
2305 tqsp
->tqd_nalloc
.value
.ui64
+= b
->tqbucket_nalloc
;
2306 tqsp
->tqd_nfree
.value
.ui64
+= b
->tqbucket_nfree
;