8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / i86pc / dboot / dboot_startkern.c
blob396e1aafecd2eb75530b26b923a3c3eb5b744f4f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
26 * Copyright 2013 Joyent, Inc. All rights reserved.
30 #include <sys/types.h>
31 #include <sys/machparam.h>
32 #include <sys/x86_archext.h>
33 #include <sys/systm.h>
34 #include <sys/mach_mmu.h>
35 #include <sys/multiboot.h>
36 #include <sys/multiboot2.h>
37 #include <sys/multiboot2_impl.h>
38 #include <sys/sysmacros.h>
39 #include <sys/sha1.h>
40 #include <util/string.h>
41 #include <util/strtolctype.h>
43 #if defined(__xpv)
45 #include <sys/hypervisor.h>
46 uintptr_t xen_virt_start;
47 pfn_t *mfn_to_pfn_mapping;
49 #else /* !__xpv */
51 extern multiboot_header_t mb_header;
52 extern uint32_t mb2_load_addr;
53 extern int have_cpuid(void);
55 #endif /* !__xpv */
57 #include <sys/inttypes.h>
58 #include <sys/bootinfo.h>
59 #include <sys/mach_mmu.h>
60 #include <sys/boot_console.h>
62 #include "dboot_asm.h"
63 #include "dboot_printf.h"
64 #include "dboot_xboot.h"
65 #include "dboot_elfload.h"
67 #define SHA1_ASCII_LENGTH (SHA1_DIGEST_LENGTH * 2)
70 * This file contains code that runs to transition us from either a multiboot
71 * compliant loader (32 bit non-paging) or a XPV domain loader to
72 * regular kernel execution. Its task is to setup the kernel memory image
73 * and page tables.
75 * The code executes as:
76 * - 32 bits under GRUB (for 32 or 64 bit Solaris)
77 * - a 32 bit program for the 32-bit PV hypervisor
78 * - a 64 bit program for the 64-bit PV hypervisor (at least for now)
80 * Under the PV hypervisor, we must create mappings for any memory beyond the
81 * initial start of day allocation (such as the kernel itself).
83 * When on the metal, the mapping between maddr_t and paddr_t is 1:1.
84 * Since we are running in real mode, so all such memory is accessible.
88 * Standard bits used in PTE (page level) and PTP (internal levels)
90 x86pte_t ptp_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_USER;
91 x86pte_t pte_bits = PT_VALID | PT_REF | PT_WRITABLE | PT_MOD | PT_NOCONSIST;
94 * This is the target addresses (physical) where the kernel text and data
95 * nucleus pages will be unpacked. On the hypervisor this is actually a
96 * virtual address.
98 paddr_t ktext_phys;
99 uint32_t ksize = 2 * FOUR_MEG; /* kernel nucleus is 8Meg */
101 static uint64_t target_kernel_text; /* value to use for KERNEL_TEXT */
104 * The stack is setup in assembler before entering startup_kernel()
106 char stack_space[STACK_SIZE];
109 * Used to track physical memory allocation
111 static paddr_t next_avail_addr = 0;
113 #if defined(__xpv)
115 * Additional information needed for hypervisor memory allocation.
116 * Only memory up to scratch_end is mapped by page tables.
117 * mfn_base is the start of the hypervisor virtual image. It's ONE_GIG, so
118 * to derive a pfn from a pointer, you subtract mfn_base.
121 static paddr_t scratch_end = 0; /* we can't write all of mem here */
122 static paddr_t mfn_base; /* addr corresponding to mfn_list[0] */
123 start_info_t *xen_info;
125 #else /* __xpv */
128 * If on the metal, then we have a multiboot loader.
130 uint32_t mb_magic; /* magic from boot loader */
131 uint32_t mb_addr; /* multiboot info package from loader */
132 int multiboot_version;
133 multiboot_info_t *mb_info;
134 multiboot2_info_header_t *mb2_info;
135 multiboot_tag_mmap_t *mb2_mmap_tagp;
136 int num_entries; /* mmap entry count */
137 boolean_t num_entries_set; /* is mmap entry count set */
138 uintptr_t load_addr;
140 #endif /* __xpv */
143 * This contains information passed to the kernel
145 struct xboot_info boot_info[2]; /* extra space to fix alignement for amd64 */
146 struct xboot_info *bi;
149 * Page table and memory stuff.
151 static paddr_t max_mem; /* maximum memory address */
154 * Information about processor MMU
156 int amd64_support = 0;
157 int largepage_support = 0;
158 int pae_support = 0;
159 int pge_support = 0;
160 int NX_support = 0;
163 * Low 32 bits of kernel entry address passed back to assembler.
164 * When running a 64 bit kernel, the high 32 bits are 0xffffffff.
166 uint32_t entry_addr_low;
169 * Memlists for the kernel. We shouldn't need a lot of these.
171 #define MAX_MEMLIST (50)
172 struct boot_memlist memlists[MAX_MEMLIST];
173 uint_t memlists_used = 0;
174 struct boot_memlist pcimemlists[MAX_MEMLIST];
175 uint_t pcimemlists_used = 0;
176 struct boot_memlist rsvdmemlists[MAX_MEMLIST];
177 uint_t rsvdmemlists_used = 0;
180 * This should match what's in the bootloader. It's arbitrary, but GRUB
181 * in particular has limitations on how much space it can use before it
182 * stops working properly. This should be enough.
184 struct boot_modules modules[MAX_BOOT_MODULES];
185 uint_t modules_used = 0;
187 #ifdef __xpv
189 * Xen strips the size field out of the mb_memory_map_t, see struct e820entry
190 * definition in Xen source.
192 typedef struct {
193 uint32_t base_addr_low;
194 uint32_t base_addr_high;
195 uint32_t length_low;
196 uint32_t length_high;
197 uint32_t type;
198 } mmap_t;
201 * There is 512KB of scratch area after the boot stack page.
202 * We'll use that for everything except the kernel nucleus pages which are too
203 * big to fit there and are allocated last anyway.
205 #define MAXMAPS 100
206 static mmap_t map_buffer[MAXMAPS];
207 #else
208 typedef mb_memory_map_t mmap_t;
209 #endif
212 * Debugging macros
214 uint_t prom_debug = 0;
215 uint_t map_debug = 0;
217 static char noname[2] = "-";
220 * Either hypervisor-specific or grub-specific code builds the initial
221 * memlists. This code does the sort/merge/link for final use.
223 static void
224 sort_physinstall(void)
226 int i;
227 #if !defined(__xpv)
228 int j;
229 struct boot_memlist tmp;
232 * Now sort the memlists, in case they weren't in order.
233 * Yeah, this is a bubble sort; small, simple and easy to get right.
235 DBG_MSG("Sorting phys-installed list\n");
236 for (j = memlists_used - 1; j > 0; --j) {
237 for (i = 0; i < j; ++i) {
238 if (memlists[i].addr < memlists[i + 1].addr)
239 continue;
240 tmp = memlists[i];
241 memlists[i] = memlists[i + 1];
242 memlists[i + 1] = tmp;
247 * Merge any memlists that don't have holes between them.
249 for (i = 0; i <= memlists_used - 1; ++i) {
250 if (memlists[i].addr + memlists[i].size != memlists[i + 1].addr)
251 continue;
253 if (prom_debug)
254 dboot_printf(
255 "merging mem segs %" PRIx64 "...%" PRIx64
256 " w/ %" PRIx64 "...%" PRIx64 "\n",
257 memlists[i].addr,
258 memlists[i].addr + memlists[i].size,
259 memlists[i + 1].addr,
260 memlists[i + 1].addr + memlists[i + 1].size);
262 memlists[i].size += memlists[i + 1].size;
263 for (j = i + 1; j < memlists_used - 1; ++j)
264 memlists[j] = memlists[j + 1];
265 --memlists_used;
266 DBG(memlists_used);
267 --i; /* after merging we need to reexamine, so do this */
269 #endif /* __xpv */
271 if (prom_debug) {
272 dboot_printf("\nFinal memlists:\n");
273 for (i = 0; i < memlists_used; ++i) {
274 dboot_printf("\t%d: addr=%" PRIx64 " size=%"
275 PRIx64 "\n", i, memlists[i].addr, memlists[i].size);
280 * link together the memlists with native size pointers
282 memlists[0].next = 0;
283 memlists[0].prev = 0;
284 for (i = 1; i < memlists_used; ++i) {
285 memlists[i].prev = (native_ptr_t)(uintptr_t)(memlists + i - 1);
286 memlists[i].next = 0;
287 memlists[i - 1].next = (native_ptr_t)(uintptr_t)(memlists + i);
289 bi->bi_phys_install = (native_ptr_t)(uintptr_t)memlists;
290 DBG(bi->bi_phys_install);
294 * build bios reserved memlists
296 static void
297 build_rsvdmemlists(void)
299 int i;
301 rsvdmemlists[0].next = 0;
302 rsvdmemlists[0].prev = 0;
303 for (i = 1; i < rsvdmemlists_used; ++i) {
304 rsvdmemlists[i].prev =
305 (native_ptr_t)(uintptr_t)(rsvdmemlists + i - 1);
306 rsvdmemlists[i].next = 0;
307 rsvdmemlists[i - 1].next =
308 (native_ptr_t)(uintptr_t)(rsvdmemlists + i);
310 bi->bi_rsvdmem = (native_ptr_t)(uintptr_t)rsvdmemlists;
311 DBG(bi->bi_rsvdmem);
314 #if defined(__xpv)
317 * halt on the hypervisor after a delay to drain console output
319 void
320 dboot_halt(void)
322 uint_t i = 10000;
324 while (--i)
325 (void) HYPERVISOR_yield();
326 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
330 * From a machine address, find the corresponding pseudo-physical address.
331 * Pseudo-physical address are contiguous and run from mfn_base in each VM.
332 * Machine addresses are the real underlying hardware addresses.
333 * These are needed for page table entries. Note that this routine is
334 * poorly protected. A bad value of "ma" will cause a page fault.
336 paddr_t
337 ma_to_pa(maddr_t ma)
339 ulong_t pgoff = ma & MMU_PAGEOFFSET;
340 ulong_t pfn = mfn_to_pfn_mapping[mmu_btop(ma)];
341 paddr_t pa;
343 if (pfn >= xen_info->nr_pages)
344 return (-(paddr_t)1);
345 pa = mfn_base + mmu_ptob((paddr_t)pfn) + pgoff;
346 #ifdef DEBUG
347 if (ma != pa_to_ma(pa))
348 dboot_printf("ma_to_pa(%" PRIx64 ") got %" PRIx64 ", "
349 "pa_to_ma() says %" PRIx64 "\n", ma, pa, pa_to_ma(pa));
350 #endif
351 return (pa);
355 * From a pseudo-physical address, find the corresponding machine address.
357 maddr_t
358 pa_to_ma(paddr_t pa)
360 pfn_t pfn;
361 ulong_t mfn;
363 pfn = mmu_btop(pa - mfn_base);
364 if (pa < mfn_base || pfn >= xen_info->nr_pages)
365 dboot_panic("pa_to_ma(): illegal address 0x%lx", (ulong_t)pa);
366 mfn = ((ulong_t *)xen_info->mfn_list)[pfn];
367 #ifdef DEBUG
368 if (mfn_to_pfn_mapping[mfn] != pfn)
369 dboot_printf("pa_to_ma(pfn=%lx) got %lx ma_to_pa() says %lx\n",
370 pfn, mfn, mfn_to_pfn_mapping[mfn]);
371 #endif
372 return (mfn_to_ma(mfn) | (pa & MMU_PAGEOFFSET));
375 #endif /* __xpv */
377 x86pte_t
378 get_pteval(paddr_t table, uint_t index)
380 if (pae_support)
381 return (((x86pte_t *)(uintptr_t)table)[index]);
382 return (((x86pte32_t *)(uintptr_t)table)[index]);
385 /*ARGSUSED*/
386 void
387 set_pteval(paddr_t table, uint_t index, uint_t level, x86pte_t pteval)
389 #ifdef __xpv
390 mmu_update_t t;
391 maddr_t mtable = pa_to_ma(table);
392 int retcnt;
394 t.ptr = (mtable + index * pte_size) | MMU_NORMAL_PT_UPDATE;
395 t.val = pteval;
396 if (HYPERVISOR_mmu_update(&t, 1, &retcnt, DOMID_SELF) || retcnt != 1)
397 dboot_panic("HYPERVISOR_mmu_update() failed");
398 #else /* __xpv */
399 uintptr_t tab_addr = (uintptr_t)table;
401 if (pae_support)
402 ((x86pte_t *)tab_addr)[index] = pteval;
403 else
404 ((x86pte32_t *)tab_addr)[index] = (x86pte32_t)pteval;
405 if (level == top_level && level == 2)
406 reload_cr3();
407 #endif /* __xpv */
410 paddr_t
411 make_ptable(x86pte_t *pteval, uint_t level)
413 paddr_t new_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
415 if (level == top_level && level == 2)
416 *pteval = pa_to_ma((uintptr_t)new_table) | PT_VALID;
417 else
418 *pteval = pa_to_ma((uintptr_t)new_table) | ptp_bits;
420 #ifdef __xpv
421 /* Remove write permission to the new page table. */
422 if (HYPERVISOR_update_va_mapping(new_table,
423 *pteval & ~(x86pte_t)PT_WRITABLE, UVMF_INVLPG | UVMF_LOCAL))
424 dboot_panic("HYP_update_va_mapping error");
425 #endif
427 if (map_debug)
428 dboot_printf("new page table lvl=%d paddr=0x%lx ptp=0x%"
429 PRIx64 "\n", level, (ulong_t)new_table, *pteval);
430 return (new_table);
433 x86pte_t *
434 map_pte(paddr_t table, uint_t index)
436 return ((x86pte_t *)(uintptr_t)(table + index * pte_size));
440 * dump out the contents of page tables...
442 static void
443 dump_tables(void)
445 uint_t save_index[4]; /* for recursion */
446 char *save_table[4]; /* for recursion */
447 uint_t l;
448 uint64_t va;
449 uint64_t pgsize;
450 int index;
451 int i;
452 x86pte_t pteval;
453 char *table;
454 static char *tablist = "\t\t\t";
455 char *tabs = tablist + 3 - top_level;
456 uint_t pa, pa1;
457 #if !defined(__xpv)
458 #define maddr_t paddr_t
459 #endif /* !__xpv */
461 dboot_printf("Finished pagetables:\n");
462 table = (char *)(uintptr_t)top_page_table;
463 l = top_level;
464 va = 0;
465 for (index = 0; index < ptes_per_table; ++index) {
466 pgsize = 1ull << shift_amt[l];
467 if (pae_support)
468 pteval = ((x86pte_t *)table)[index];
469 else
470 pteval = ((x86pte32_t *)table)[index];
471 if (pteval == 0)
472 goto next_entry;
474 dboot_printf("%s %p[0x%x] = %" PRIx64 ", va=%" PRIx64,
475 tabs + l, (void *)table, index, (uint64_t)pteval, va);
476 pa = ma_to_pa(pteval & MMU_PAGEMASK);
477 dboot_printf(" physaddr=%x\n", pa);
480 * Don't try to walk hypervisor private pagetables
482 if ((l > 1 || (l == 1 && (pteval & PT_PAGESIZE) == 0))) {
483 save_table[l] = table;
484 save_index[l] = index;
485 --l;
486 index = -1;
487 table = (char *)(uintptr_t)
488 ma_to_pa(pteval & MMU_PAGEMASK);
489 goto recursion;
493 * shorten dump for consecutive mappings
495 for (i = 1; index + i < ptes_per_table; ++i) {
496 if (pae_support)
497 pteval = ((x86pte_t *)table)[index + i];
498 else
499 pteval = ((x86pte32_t *)table)[index + i];
500 if (pteval == 0)
501 break;
502 pa1 = ma_to_pa(pteval & MMU_PAGEMASK);
503 if (pa1 != pa + i * pgsize)
504 break;
506 if (i > 2) {
507 dboot_printf("%s...\n", tabs + l);
508 va += pgsize * (i - 2);
509 index += i - 2;
511 next_entry:
512 va += pgsize;
513 if (l == 3 && index == 256) /* VA hole */
514 va = 0xffff800000000000ull;
515 recursion:
518 if (l < top_level) {
519 ++l;
520 index = save_index[l];
521 table = save_table[l];
522 goto recursion;
527 * Add a mapping for the machine page at the given virtual address.
529 static void
530 map_ma_at_va(maddr_t ma, native_ptr_t va, uint_t level)
532 x86pte_t *ptep;
533 x86pte_t pteval;
535 pteval = ma | pte_bits;
536 if (level > 0)
537 pteval |= PT_PAGESIZE;
538 if (va >= target_kernel_text && pge_support)
539 pteval |= PT_GLOBAL;
541 if (map_debug && ma != va)
542 dboot_printf("mapping ma=0x%" PRIx64 " va=0x%" PRIx64
543 " pte=0x%" PRIx64 " l=%d\n",
544 (uint64_t)ma, (uint64_t)va, pteval, level);
546 #if defined(__xpv)
548 * see if we can avoid find_pte() on the hypervisor
550 if (HYPERVISOR_update_va_mapping(va, pteval,
551 UVMF_INVLPG | UVMF_LOCAL) == 0)
552 return;
553 #endif
556 * Find the pte that will map this address. This creates any
557 * missing intermediate level page tables
559 ptep = find_pte(va, NULL, level, 0);
562 * When paravirtualized, we must use hypervisor calls to modify the
563 * PTE, since paging is active. On real hardware we just write to
564 * the pagetables which aren't in use yet.
566 #if defined(__xpv)
567 ptep = ptep; /* shut lint up */
568 if (HYPERVISOR_update_va_mapping(va, pteval, UVMF_INVLPG | UVMF_LOCAL))
569 dboot_panic("mmu_update failed-map_pa_at_va va=0x%" PRIx64
570 " l=%d ma=0x%" PRIx64 ", pte=0x%" PRIx64 "",
571 (uint64_t)va, level, (uint64_t)ma, pteval);
572 #else
573 if (va < 1024 * 1024)
574 pteval |= PT_NOCACHE; /* for video RAM */
575 if (pae_support)
576 *ptep = pteval;
577 else
578 *((x86pte32_t *)ptep) = (x86pte32_t)pteval;
579 #endif
583 * Add a mapping for the physical page at the given virtual address.
585 static void
586 map_pa_at_va(paddr_t pa, native_ptr_t va, uint_t level)
588 map_ma_at_va(pa_to_ma(pa), va, level);
592 * This is called to remove start..end from the
593 * possible range of PCI addresses.
595 const uint64_t pci_lo_limit = 0x00100000ul;
596 const uint64_t pci_hi_limit = 0xfff00000ul;
597 static void
598 exclude_from_pci(uint64_t start, uint64_t end)
600 int i;
601 int j;
602 struct boot_memlist *ml;
604 for (i = 0; i < pcimemlists_used; ++i) {
605 ml = &pcimemlists[i];
607 /* delete the entire range? */
608 if (start <= ml->addr && ml->addr + ml->size <= end) {
609 --pcimemlists_used;
610 for (j = i; j < pcimemlists_used; ++j)
611 pcimemlists[j] = pcimemlists[j + 1];
612 --i; /* to revisit the new one at this index */
615 /* split a range? */
616 else if (ml->addr < start && end < ml->addr + ml->size) {
618 ++pcimemlists_used;
619 if (pcimemlists_used > MAX_MEMLIST)
620 dboot_panic("too many pcimemlists");
622 for (j = pcimemlists_used - 1; j > i; --j)
623 pcimemlists[j] = pcimemlists[j - 1];
624 ml->size = start - ml->addr;
626 ++ml;
627 ml->size = (ml->addr + ml->size) - end;
628 ml->addr = end;
629 ++i; /* skip on to next one */
632 /* cut memory off the start? */
633 else if (ml->addr < end && end < ml->addr + ml->size) {
634 ml->size -= end - ml->addr;
635 ml->addr = end;
638 /* cut memory off the end? */
639 else if (ml->addr <= start && start < ml->addr + ml->size) {
640 ml->size = start - ml->addr;
646 * During memory allocation, find the highest address not used yet.
648 static void
649 check_higher(paddr_t a)
651 if (a < next_avail_addr)
652 return;
653 next_avail_addr = RNDUP(a + 1, MMU_PAGESIZE);
654 DBG(next_avail_addr);
657 static int
658 dboot_loader_mmap_entries(void)
660 #if !defined(__xpv)
661 if (num_entries_set == B_TRUE)
662 return (num_entries);
664 switch (multiboot_version) {
665 case 1:
666 DBG(mb_info->flags);
667 if (mb_info->flags & 0x40) {
668 mb_memory_map_t *mmap;
670 DBG(mb_info->mmap_addr);
671 DBG(mb_info->mmap_length);
672 check_higher(mb_info->mmap_addr + mb_info->mmap_length);
674 for (mmap = (mb_memory_map_t *)mb_info->mmap_addr;
675 (uint32_t)mmap < mb_info->mmap_addr +
676 mb_info->mmap_length;
677 mmap = (mb_memory_map_t *)((uint32_t)mmap +
678 mmap->size + sizeof (mmap->size)))
679 ++num_entries;
681 num_entries_set = B_TRUE;
683 break;
684 case 2:
685 num_entries_set = B_TRUE;
686 num_entries = dboot_multiboot2_mmap_nentries(mb2_info,
687 mb2_mmap_tagp);
688 break;
689 default:
690 dboot_panic("Unknown multiboot version: %d\n",
691 multiboot_version);
692 break;
694 return (num_entries);
695 #else
696 return (MAXMAPS);
697 #endif
700 static uint32_t
701 dboot_loader_mmap_get_type(int index)
703 #if !defined(__xpv)
704 mb_memory_map_t *mp, *mpend;
705 int i;
707 switch (multiboot_version) {
708 case 1:
709 mp = (mb_memory_map_t *)mb_info->mmap_addr;
710 mpend = (mb_memory_map_t *)
711 (mb_info->mmap_addr + mb_info->mmap_length);
713 for (i = 0; mp < mpend && i != index; i++)
714 mp = (mb_memory_map_t *)((uint32_t)mp + mp->size +
715 sizeof (mp->size));
716 if (mp >= mpend) {
717 dboot_panic("dboot_loader_mmap_get_type(): index "
718 "out of bounds: %d\n", index);
720 return (mp->type);
722 case 2:
723 return (dboot_multiboot2_mmap_get_type(mb2_info,
724 mb2_mmap_tagp, index));
726 default:
727 dboot_panic("Unknown multiboot version: %d\n",
728 multiboot_version);
729 break;
731 return (0);
732 #else
733 return (map_buffer[index].type);
734 #endif
737 static uint64_t
738 dboot_loader_mmap_get_base(int index)
740 #if !defined(__xpv)
741 mb_memory_map_t *mp, *mpend;
742 int i;
744 switch (multiboot_version) {
745 case 1:
746 mp = (mb_memory_map_t *)mb_info->mmap_addr;
747 mpend = (mb_memory_map_t *)
748 (mb_info->mmap_addr + mb_info->mmap_length);
750 for (i = 0; mp < mpend && i != index; i++)
751 mp = (mb_memory_map_t *)((uint32_t)mp + mp->size +
752 sizeof (mp->size));
753 if (mp >= mpend) {
754 dboot_panic("dboot_loader_mmap_get_base(): index "
755 "out of bounds: %d\n", index);
757 return (((uint64_t)mp->base_addr_high << 32) +
758 (uint64_t)mp->base_addr_low);
760 case 2:
761 return (dboot_multiboot2_mmap_get_base(mb2_info,
762 mb2_mmap_tagp, index));
764 default:
765 dboot_panic("Unknown multiboot version: %d\n",
766 multiboot_version);
767 break;
769 return (0);
770 #else
771 return (((uint64_t)map_buffer[index].base_addr_high << 32) +
772 (uint64_t)map_buffer[index].base_addr_low);
773 #endif
776 static uint64_t
777 dboot_loader_mmap_get_length(int index)
779 #if !defined(__xpv)
780 mb_memory_map_t *mp, *mpend;
781 int i;
783 switch (multiboot_version) {
784 case 1:
785 mp = (mb_memory_map_t *)mb_info->mmap_addr;
786 mpend = (mb_memory_map_t *)
787 (mb_info->mmap_addr + mb_info->mmap_length);
789 for (i = 0; mp < mpend && i != index; i++)
790 mp = (mb_memory_map_t *)((uint32_t)mp + mp->size +
791 sizeof (mp->size));
792 if (mp >= mpend) {
793 dboot_panic("dboot_loader_mmap_get_length(): index "
794 "out of bounds: %d\n", index);
796 return (((uint64_t)mp->length_high << 32) +
797 (uint64_t)mp->length_low);
799 case 2:
800 return (dboot_multiboot2_mmap_get_length(mb2_info,
801 mb2_mmap_tagp, index));
803 default:
804 dboot_panic("Unknown multiboot version: %d\n",
805 multiboot_version);
806 break;
808 return (0);
809 #else
810 return (((uint64_t)map_buffer[index].length_high << 32) +
811 (uint64_t)map_buffer[index].length_low);
812 #endif
815 static void
816 build_pcimemlists(void)
818 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
819 uint64_t start;
820 uint64_t end;
821 int i, num;
824 * initialize
826 pcimemlists[0].addr = pci_lo_limit;
827 pcimemlists[0].size = pci_hi_limit - pci_lo_limit;
828 pcimemlists_used = 1;
830 num = dboot_loader_mmap_entries();
832 * Fill in PCI memlists.
834 for (i = 0; i < num; ++i) {
835 start = dboot_loader_mmap_get_base(i);
836 end = start + dboot_loader_mmap_get_length(i);
838 if (prom_debug)
839 dboot_printf("\ttype: %d %" PRIx64 "..%"
840 PRIx64 "\n", dboot_loader_mmap_get_type(i),
841 start, end);
844 * page align start and end
846 start = (start + page_offset) & ~page_offset;
847 end &= ~page_offset;
848 if (end <= start)
849 continue;
851 exclude_from_pci(start, end);
855 * Finish off the pcimemlist
857 if (prom_debug) {
858 for (i = 0; i < pcimemlists_used; ++i) {
859 dboot_printf("pcimemlist entry 0x%" PRIx64 "..0x%"
860 PRIx64 "\n", pcimemlists[i].addr,
861 pcimemlists[i].addr + pcimemlists[i].size);
864 pcimemlists[0].next = 0;
865 pcimemlists[0].prev = 0;
866 for (i = 1; i < pcimemlists_used; ++i) {
867 pcimemlists[i].prev =
868 (native_ptr_t)(uintptr_t)(pcimemlists + i - 1);
869 pcimemlists[i].next = 0;
870 pcimemlists[i - 1].next =
871 (native_ptr_t)(uintptr_t)(pcimemlists + i);
873 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
874 DBG(bi->bi_pcimem);
877 #if defined(__xpv)
879 * Initialize memory allocator stuff from hypervisor-supplied start info.
881 static void
882 init_mem_alloc(void)
884 int local; /* variables needed to find start region */
885 paddr_t scratch_start;
886 xen_memory_map_t map;
888 DBG_MSG("Entered init_mem_alloc()\n");
891 * Free memory follows the stack. There's at least 512KB of scratch
892 * space, rounded up to at least 2Mb alignment. That should be enough
893 * for the page tables we'll need to build. The nucleus memory is
894 * allocated last and will be outside the addressible range. We'll
895 * switch to new page tables before we unpack the kernel
897 scratch_start = RNDUP((paddr_t)(uintptr_t)&local, MMU_PAGESIZE);
898 DBG(scratch_start);
899 scratch_end = RNDUP((paddr_t)scratch_start + 512 * 1024, TWO_MEG);
900 DBG(scratch_end);
903 * For paranoia, leave some space between hypervisor data and ours.
904 * Use 500 instead of 512.
906 next_avail_addr = scratch_end - 500 * 1024;
907 DBG(next_avail_addr);
910 * The domain builder gives us at most 1 module
912 DBG(xen_info->mod_len);
913 if (xen_info->mod_len > 0) {
914 DBG(xen_info->mod_start);
915 modules[0].bm_addr = xen_info->mod_start;
916 modules[0].bm_size = xen_info->mod_len;
917 bi->bi_module_cnt = 1;
918 bi->bi_modules = (native_ptr_t)modules;
919 } else {
920 bi->bi_module_cnt = 0;
921 bi->bi_modules = NULL;
923 DBG(bi->bi_module_cnt);
924 DBG(bi->bi_modules);
926 DBG(xen_info->mfn_list);
927 DBG(xen_info->nr_pages);
928 max_mem = (paddr_t)xen_info->nr_pages << MMU_PAGESHIFT;
929 DBG(max_mem);
932 * Using pseudo-physical addresses, so only 1 memlist element
934 memlists[0].addr = 0;
935 DBG(memlists[0].addr);
936 memlists[0].size = max_mem;
937 DBG(memlists[0].size);
938 memlists_used = 1;
939 DBG(memlists_used);
942 * finish building physinstall list
944 sort_physinstall();
947 * build bios reserved memlists
949 build_rsvdmemlists();
951 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
953 * build PCI Memory list
955 map.nr_entries = MAXMAPS;
956 /*LINTED: constant in conditional context*/
957 set_xen_guest_handle(map.buffer, map_buffer);
958 if (HYPERVISOR_memory_op(XENMEM_machine_memory_map, &map) != 0)
959 dboot_panic("getting XENMEM_machine_memory_map failed");
960 build_pcimemlists();
964 #else /* !__xpv */
966 static void
967 dboot_multiboot1_xboot_consinfo(void)
971 static void
972 dboot_multiboot2_xboot_consinfo(void)
976 static int
977 dboot_multiboot_modcount(void)
979 switch (multiboot_version) {
980 case 1:
981 return (mb_info->mods_count);
983 case 2:
984 return (dboot_multiboot2_modcount(mb2_info));
986 default:
987 dboot_panic("Unknown multiboot version: %d\n",
988 multiboot_version);
989 break;
991 return (0);
994 static uint32_t
995 dboot_multiboot_modstart(int index)
997 switch (multiboot_version) {
998 case 1:
999 return (((mb_module_t *)mb_info->mods_addr)[index].mod_start);
1001 case 2:
1002 return (dboot_multiboot2_modstart(mb2_info, index));
1004 default:
1005 dboot_panic("Unknown multiboot version: %d\n",
1006 multiboot_version);
1007 break;
1009 return (0);
1012 static uint32_t
1013 dboot_multiboot_modend(int index)
1015 switch (multiboot_version) {
1016 case 1:
1017 return (((mb_module_t *)mb_info->mods_addr)[index].mod_end);
1019 case 2:
1020 return (dboot_multiboot2_modend(mb2_info, index));
1022 default:
1023 dboot_panic("Unknown multiboot version: %d\n",
1024 multiboot_version);
1025 break;
1027 return (0);
1030 static char *
1031 dboot_multiboot_modcmdline(int index)
1033 switch (multiboot_version) {
1034 case 1:
1035 return ((char *)((mb_module_t *)
1036 mb_info->mods_addr)[index].mod_name);
1038 case 2:
1039 return (dboot_multiboot2_modcmdline(mb2_info, index));
1041 default:
1042 dboot_panic("Unknown multiboot version: %d\n",
1043 multiboot_version);
1044 break;
1046 return (0);
1050 * Find the environment module for console setup.
1051 * Since we need the console to print early boot messages, the console is set up
1052 * before anything else and therefore we need to pick up the environment module
1053 * early too.
1055 * Note, we just will search for and if found, will pass the env
1056 * module to console setup, the proper module list processing will happen later.
1058 static void
1059 dboot_find_env(void)
1061 int i, modcount;
1062 uint32_t mod_start, mod_end;
1063 char *cmdline;
1065 modcount = dboot_multiboot_modcount();
1067 for (i = 0; i < modcount; ++i) {
1068 cmdline = dboot_multiboot_modcmdline(i);
1069 if (cmdline == NULL)
1070 continue;
1072 if (strstr(cmdline, "type=environment") == NULL)
1073 continue;
1075 mod_start = dboot_multiboot_modstart(i);
1076 mod_end = dboot_multiboot_modend(i);
1077 modules[0].bm_addr = mod_start;
1078 modules[0].bm_size = mod_end - mod_start;
1079 modules[0].bm_name = NULL;
1080 modules[0].bm_hash = NULL;
1081 modules[0].bm_type = BMT_ENV;
1082 bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1083 bi->bi_module_cnt = 1;
1084 return;
1088 static boolean_t
1089 dboot_multiboot_basicmeminfo(uint32_t *lower, uint32_t *upper)
1091 boolean_t rv = B_FALSE;
1093 switch (multiboot_version) {
1094 case 1:
1095 if (mb_info->flags & 0x01) {
1096 *lower = mb_info->mem_lower;
1097 *upper = mb_info->mem_upper;
1098 rv = B_TRUE;
1100 break;
1102 case 2:
1103 return (dboot_multiboot2_basicmeminfo(mb2_info, lower, upper));
1105 default:
1106 dboot_panic("Unknown multiboot version: %d\n",
1107 multiboot_version);
1108 break;
1110 return (rv);
1113 static uint8_t
1114 dboot_a2h(char v)
1116 if (v >= 'a')
1117 return (v - 'a' + 0xa);
1118 else if (v >= 'A')
1119 return (v - 'A' + 0xa);
1120 else if (v >= '0')
1121 return (v - '0');
1122 else
1123 dboot_panic("bad ASCII hex character %c\n", v);
1125 return (0);
1128 static void
1129 digest_a2h(const char *ascii, uint8_t *digest)
1131 unsigned int i;
1133 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1134 digest[i] = dboot_a2h(ascii[i * 2]) << 4;
1135 digest[i] |= dboot_a2h(ascii[i * 2 + 1]);
1140 * Generate a SHA-1 hash of the first len bytes of image, and compare it with
1141 * the ASCII-format hash found in the 40-byte buffer at ascii. If they
1142 * match, return 0, otherwise -1. This works only for images smaller than
1143 * 4 GB, which should not be a problem.
1145 static int
1146 check_image_hash(uint_t midx)
1148 const char *ascii;
1149 const void *image;
1150 size_t len;
1151 SHA1_CTX ctx;
1152 uint8_t digest[SHA1_DIGEST_LENGTH];
1153 uint8_t baseline[SHA1_DIGEST_LENGTH];
1154 unsigned int i;
1156 ascii = (const char *)(uintptr_t)modules[midx].bm_hash;
1157 image = (const void *)(uintptr_t)modules[midx].bm_addr;
1158 len = (size_t)modules[midx].bm_size;
1160 digest_a2h(ascii, baseline);
1162 SHA1Init(&ctx);
1163 SHA1Update(&ctx, image, len);
1164 SHA1Final(digest, &ctx);
1166 for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
1167 if (digest[i] != baseline[i])
1168 return (-1);
1171 return (0);
1174 static const char *
1175 type_to_str(boot_module_type_t type)
1177 switch (type) {
1178 case BMT_ROOTFS:
1179 return ("rootfs");
1180 case BMT_FILE:
1181 return ("file");
1182 case BMT_HASH:
1183 return ("hash");
1184 case BMT_ENV:
1185 return ("environment");
1186 default:
1187 return ("unknown");
1191 static void
1192 check_images(void)
1194 uint_t i;
1195 char displayhash[SHA1_ASCII_LENGTH + 1];
1197 for (i = 0; i < modules_used; i++) {
1198 if (prom_debug) {
1199 dboot_printf("module #%d: name %s type %s "
1200 "addr %lx size %lx\n",
1201 i, (char *)(uintptr_t)modules[i].bm_name,
1202 type_to_str(modules[i].bm_type),
1203 (ulong_t)modules[i].bm_addr,
1204 (ulong_t)modules[i].bm_size);
1207 if (modules[i].bm_type == BMT_HASH ||
1208 modules[i].bm_hash == NULL) {
1209 DBG_MSG("module has no hash; skipping check\n");
1210 continue;
1212 (void) memcpy(displayhash,
1213 (void *)(uintptr_t)modules[i].bm_hash,
1214 SHA1_ASCII_LENGTH);
1215 displayhash[SHA1_ASCII_LENGTH] = '\0';
1216 if (prom_debug) {
1217 dboot_printf("checking expected hash [%s]: ",
1218 displayhash);
1221 if (check_image_hash(i) != 0)
1222 dboot_panic("hash mismatch!\n");
1223 else
1224 DBG_MSG("OK\n");
1229 * Determine the module's starting address, size, name, and type, and fill the
1230 * boot_modules structure. This structure is used by the bop code, except for
1231 * hashes which are checked prior to transferring control to the kernel.
1233 static void
1234 process_module(int midx)
1236 uint32_t mod_start = dboot_multiboot_modstart(midx);
1237 uint32_t mod_end = dboot_multiboot_modend(midx);
1238 char *cmdline = dboot_multiboot_modcmdline(midx);
1239 char *p, *q;
1241 check_higher(mod_end);
1242 if (prom_debug) {
1243 dboot_printf("\tmodule #%d: '%s' at 0x%lx, end 0x%lx\n",
1244 midx, cmdline, (ulong_t)mod_start, (ulong_t)mod_end);
1247 if (mod_start > mod_end) {
1248 dboot_panic("module #%d: module start address 0x%lx greater "
1249 "than end address 0x%lx", midx,
1250 (ulong_t)mod_start, (ulong_t)mod_end);
1254 * A brief note on lengths and sizes: GRUB, for reasons unknown, passes
1255 * the address of the last valid byte in a module plus 1 as mod_end.
1256 * This is of course a bug; the multiboot specification simply states
1257 * that mod_start and mod_end "contain the start and end addresses of
1258 * the boot module itself" which is pretty obviously not what GRUB is
1259 * doing. However, fixing it requires that not only this code be
1260 * changed but also that other code consuming this value and values
1261 * derived from it be fixed, and that the kernel and GRUB must either
1262 * both have the bug or neither. While there are a lot of combinations
1263 * that will work, there are also some that won't, so for simplicity
1264 * we'll just cope with the bug. That means we won't actually hash the
1265 * byte at mod_end, and we will expect that mod_end for the hash file
1266 * itself is one greater than some multiple of 41 (40 bytes of ASCII
1267 * hash plus a newline for each module). We set bm_size to the true
1268 * correct number of bytes in each module, achieving exactly this.
1271 modules[midx].bm_addr = mod_start;
1272 modules[midx].bm_size = mod_end - mod_start;
1273 modules[midx].bm_name = (native_ptr_t)(uintptr_t)cmdline;
1274 modules[midx].bm_hash = NULL;
1275 modules[midx].bm_type = BMT_FILE;
1277 if (cmdline == NULL) {
1278 modules[midx].bm_name = (native_ptr_t)(uintptr_t)noname;
1279 return;
1282 p = cmdline;
1283 modules[midx].bm_name =
1284 (native_ptr_t)(uintptr_t)strsep(&p, " \t\f\n\r");
1286 while (p != NULL) {
1287 q = strsep(&p, " \t\f\n\r");
1288 if (strncmp(q, "name=", 5) == 0) {
1289 if (q[5] != '\0' && !isspace(q[5])) {
1290 modules[midx].bm_name =
1291 (native_ptr_t)(uintptr_t)(q + 5);
1293 continue;
1296 if (strncmp(q, "type=", 5) == 0) {
1297 if (q[5] == '\0' || isspace(q[5]))
1298 continue;
1299 q += 5;
1300 if (strcmp(q, "rootfs") == 0) {
1301 modules[midx].bm_type = BMT_ROOTFS;
1302 } else if (strcmp(q, "hash") == 0) {
1303 modules[midx].bm_type = BMT_HASH;
1304 } else if (strcmp(q, "environment") == 0) {
1305 modules[midx].bm_type = BMT_ENV;
1306 } else if (strcmp(q, "file") != 0) {
1307 dboot_printf("\tmodule #%d: unknown module "
1308 "type '%s'; defaulting to 'file'",
1309 midx, q);
1311 continue;
1314 if (strncmp(q, "hash=", 5) == 0) {
1315 if (q[5] != '\0' && !isspace(q[5])) {
1316 modules[midx].bm_hash =
1317 (native_ptr_t)(uintptr_t)(q + 5);
1319 continue;
1322 dboot_printf("ignoring unknown option '%s'\n", q);
1327 * Backward compatibility: if there are exactly one or two modules, both
1328 * of type 'file' and neither with an embedded hash value, we have been
1329 * given the legacy style modules. In this case we need to treat the first
1330 * module as a rootfs and the second as a hash referencing that module.
1331 * Otherwise, even if the configuration is invalid, we assume that the
1332 * operator knows what he's doing or at least isn't being bitten by this
1333 * interface change.
1335 static void
1336 fixup_modules(void)
1338 if (modules_used == 0 || modules_used > 2)
1339 return;
1341 if (modules[0].bm_type != BMT_FILE ||
1342 modules_used > 1 && modules[1].bm_type != BMT_FILE) {
1343 return;
1346 if (modules[0].bm_hash != NULL ||
1347 modules_used > 1 && modules[1].bm_hash != NULL) {
1348 return;
1351 modules[0].bm_type = BMT_ROOTFS;
1352 if (modules_used > 1) {
1353 modules[1].bm_type = BMT_HASH;
1354 modules[1].bm_name = modules[0].bm_name;
1359 * For modules that do not have assigned hashes but have a separate hash module,
1360 * find the assigned hash module and set the primary module's bm_hash to point
1361 * to the hash data from that module. We will then ignore modules of type
1362 * BMT_HASH from this point forward.
1364 static void
1365 assign_module_hashes(void)
1367 uint_t i, j;
1369 for (i = 0; i < modules_used; i++) {
1370 if (modules[i].bm_type == BMT_HASH ||
1371 modules[i].bm_hash != NULL) {
1372 continue;
1375 for (j = 0; j < modules_used; j++) {
1376 if (modules[j].bm_type != BMT_HASH ||
1377 strcmp((char *)(uintptr_t)modules[j].bm_name,
1378 (char *)(uintptr_t)modules[i].bm_name) != 0) {
1379 continue;
1382 if (modules[j].bm_size < SHA1_ASCII_LENGTH) {
1383 dboot_printf("Short hash module of length "
1384 "0x%lx bytes; ignoring\n",
1385 (ulong_t)modules[j].bm_size);
1386 } else {
1387 modules[i].bm_hash = modules[j].bm_addr;
1389 break;
1395 * Walk through the module information finding the last used address.
1396 * The first available address will become the top level page table.
1398 static void
1399 dboot_process_modules(void)
1401 int i, modcount;
1402 extern char _end[];
1404 DBG_MSG("\nFinding Modules\n");
1405 modcount = dboot_multiboot_modcount();
1406 if (modcount > MAX_BOOT_MODULES) {
1407 dboot_panic("Too many modules (%d) -- the maximum is %d.",
1408 modcount, MAX_BOOT_MODULES);
1411 * search the modules to find the last used address
1412 * we'll build the module list while we're walking through here
1414 check_higher((paddr_t)(uintptr_t)&_end);
1415 for (i = 0; i < modcount; ++i) {
1416 process_module(i);
1417 modules_used++;
1419 bi->bi_modules = (native_ptr_t)(uintptr_t)modules;
1420 DBG(bi->bi_modules);
1421 bi->bi_module_cnt = modcount;
1422 DBG(bi->bi_module_cnt);
1424 fixup_modules();
1425 assign_module_hashes();
1426 check_images();
1430 * We then build the phys_install memlist from the multiboot information.
1432 static void
1433 dboot_process_mmap(void)
1435 uint64_t start;
1436 uint64_t end;
1437 uint64_t page_offset = MMU_PAGEOFFSET; /* needs to be 64 bits */
1438 uint32_t lower, upper;
1439 int i, mmap_entries;
1442 * Walk through the memory map from multiboot and build our memlist
1443 * structures. Note these will have native format pointers.
1445 DBG_MSG("\nFinding Memory Map\n");
1446 num_entries = 0;
1447 num_entries_set = B_FALSE;
1448 max_mem = 0;
1449 if ((mmap_entries = dboot_loader_mmap_entries()) > 0) {
1450 for (i = 0; i < mmap_entries; i++) {
1451 uint32_t type = dboot_loader_mmap_get_type(i);
1452 start = dboot_loader_mmap_get_base(i);
1453 end = start + dboot_loader_mmap_get_length(i);
1455 if (prom_debug)
1456 dboot_printf("\ttype: %d %" PRIx64 "..%"
1457 PRIx64 "\n", type, start, end);
1460 * page align start and end
1462 start = (start + page_offset) & ~page_offset;
1463 end &= ~page_offset;
1464 if (end <= start)
1465 continue;
1468 * only type 1 is usable RAM
1470 switch (type) {
1471 case 1:
1472 if (end > max_mem)
1473 max_mem = end;
1474 memlists[memlists_used].addr = start;
1475 memlists[memlists_used].size = end - start;
1476 ++memlists_used;
1477 if (memlists_used > MAX_MEMLIST)
1478 dboot_panic("too many memlists");
1479 break;
1480 case 2:
1481 rsvdmemlists[rsvdmemlists_used].addr = start;
1482 rsvdmemlists[rsvdmemlists_used].size =
1483 end - start;
1484 ++rsvdmemlists_used;
1485 if (rsvdmemlists_used > MAX_MEMLIST)
1486 dboot_panic("too many rsvdmemlists");
1487 break;
1488 default:
1489 continue;
1492 build_pcimemlists();
1493 } else if (dboot_multiboot_basicmeminfo(&lower, &upper)) {
1494 DBG(lower);
1495 memlists[memlists_used].addr = 0;
1496 memlists[memlists_used].size = lower * 1024;
1497 ++memlists_used;
1498 DBG(upper);
1499 memlists[memlists_used].addr = 1024 * 1024;
1500 memlists[memlists_used].size = upper * 1024;
1501 ++memlists_used;
1504 * Old platform - assume I/O space at the end of memory.
1506 pcimemlists[0].addr = (upper * 1024) + (1024 * 1024);
1507 pcimemlists[0].size = pci_hi_limit - pcimemlists[0].addr;
1508 pcimemlists[0].next = 0;
1509 pcimemlists[0].prev = 0;
1510 bi->bi_pcimem = (native_ptr_t)(uintptr_t)pcimemlists;
1511 DBG(bi->bi_pcimem);
1512 } else {
1513 dboot_panic("No memory info from boot loader!!!");
1517 * finish processing the physinstall list
1519 sort_physinstall();
1522 * build bios reserved mem lists
1524 build_rsvdmemlists();
1528 * The highest address is used as the starting point for dboot's simple
1529 * memory allocator.
1531 * Finding the highest address in case of Multiboot 1 protocol is
1532 * quite painful in the sense that some information provided by
1533 * the multiboot info structure points to BIOS data, and some to RAM.
1535 * The module list was processed and checked already by dboot_process_modules(),
1536 * so we will check the command line string and the memory map.
1538 * This list of to be checked items is based on our current knowledge of
1539 * allocations made by grub1 and will need to be reviewed if there
1540 * are updates about the information provided by Multiboot 1.
1542 * In the case of the Multiboot 2, our life is much simpler, as the MB2
1543 * information tag list is one contiguous chunk of memory.
1545 static paddr_t
1546 dboot_multiboot1_highest_addr(void)
1548 paddr_t addr = NULL;
1549 char *cmdl = (char *)mb_info->cmdline;
1551 if (mb_info->flags & MB_INFO_CMDLINE)
1552 addr = ((paddr_t)((uintptr_t)cmdl + strlen(cmdl) + 1));
1554 if (mb_info->flags & MB_INFO_MEM_MAP)
1555 addr = MAX(addr,
1556 ((paddr_t)(mb_info->mmap_addr + mb_info->mmap_length)));
1557 return (addr);
1560 static void
1561 dboot_multiboot_highest_addr(void)
1563 paddr_t addr;
1565 switch (multiboot_version) {
1566 case 1:
1567 addr = dboot_multiboot1_highest_addr();
1568 if (addr != NULL)
1569 check_higher(addr);
1570 break;
1571 case 2:
1572 addr = dboot_multiboot2_highest_addr(mb2_info);
1573 if (addr != NULL)
1574 check_higher(addr);
1575 break;
1576 default:
1577 dboot_panic("Unknown multiboot version: %d\n",
1578 multiboot_version);
1579 break;
1584 * Walk the boot loader provided information and find the highest free address.
1586 static void
1587 init_mem_alloc(void)
1589 DBG_MSG("Entered init_mem_alloc()\n");
1590 dboot_process_modules();
1591 dboot_process_mmap();
1592 dboot_multiboot_highest_addr();
1595 static void
1596 dboot_multiboot_get_fwtables(void)
1598 multiboot_tag_new_acpi_t *nacpitagp;
1599 multiboot_tag_old_acpi_t *oacpitagp;
1601 /* no fw tables from multiboot 1 */
1602 if (multiboot_version != 2)
1603 return;
1605 /* only provide SMBIOS pointer in case of UEFI */
1606 bi->bi_smbios = NULL;
1608 nacpitagp = (multiboot_tag_new_acpi_t *)
1609 dboot_multiboot2_find_tag(mb2_info,
1610 MULTIBOOT_TAG_TYPE_ACPI_NEW);
1611 oacpitagp = (multiboot_tag_old_acpi_t *)
1612 dboot_multiboot2_find_tag(mb2_info,
1613 MULTIBOOT_TAG_TYPE_ACPI_OLD);
1615 if (nacpitagp != NULL) {
1616 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1617 &nacpitagp->mb_rsdp[0];
1618 } else if (oacpitagp != NULL) {
1619 bi->bi_acpi_rsdp = (native_ptr_t)(uintptr_t)
1620 &oacpitagp->mb_rsdp[0];
1621 } else {
1622 bi->bi_acpi_rsdp = NULL;
1625 #endif /* !__xpv */
1628 * Simple memory allocator, allocates aligned physical memory.
1629 * Note that startup_kernel() only allocates memory, never frees.
1630 * Memory usage just grows in an upward direction.
1632 static void *
1633 do_mem_alloc(uint32_t size, uint32_t align)
1635 uint_t i;
1636 uint64_t best;
1637 uint64_t start;
1638 uint64_t end;
1641 * make sure size is a multiple of pagesize
1643 size = RNDUP(size, MMU_PAGESIZE);
1644 next_avail_addr = RNDUP(next_avail_addr, align);
1647 * XXPV fixme joe
1649 * a really large bootarchive that causes you to run out of memory
1650 * may cause this to blow up
1652 /* LINTED E_UNEXPECTED_UINT_PROMOTION */
1653 best = (uint64_t)-size;
1654 for (i = 0; i < memlists_used; ++i) {
1655 start = memlists[i].addr;
1656 #if defined(__xpv)
1657 start += mfn_base;
1658 #endif
1659 end = start + memlists[i].size;
1662 * did we find the desired address?
1664 if (start <= next_avail_addr && next_avail_addr + size <= end) {
1665 best = next_avail_addr;
1666 goto done;
1670 * if not is this address the best so far?
1672 if (start > next_avail_addr && start < best &&
1673 RNDUP(start, align) + size <= end)
1674 best = RNDUP(start, align);
1678 * We didn't find exactly the address we wanted, due to going off the
1679 * end of a memory region. Return the best found memory address.
1681 done:
1682 next_avail_addr = best + size;
1683 #if defined(__xpv)
1684 if (next_avail_addr > scratch_end)
1685 dboot_panic("Out of mem next_avail: 0x%lx, scratch_end: "
1686 "0x%lx", (ulong_t)next_avail_addr,
1687 (ulong_t)scratch_end);
1688 #endif
1689 (void) memset((void *)(uintptr_t)best, 0, size);
1690 return ((void *)(uintptr_t)best);
1693 void *
1694 mem_alloc(uint32_t size)
1696 return (do_mem_alloc(size, MMU_PAGESIZE));
1701 * Build page tables to map all of memory used so far as well as the kernel.
1703 static void
1704 build_page_tables(void)
1706 uint32_t psize;
1707 uint32_t level;
1708 uint32_t off;
1709 uint64_t start;
1710 #if !defined(__xpv)
1711 uint32_t i;
1712 uint64_t end;
1713 #endif /* __xpv */
1716 * If we're on metal, we need to create the top level pagetable.
1718 #if defined(__xpv)
1719 top_page_table = (paddr_t)(uintptr_t)xen_info->pt_base;
1720 #else /* __xpv */
1721 top_page_table = (paddr_t)(uintptr_t)mem_alloc(MMU_PAGESIZE);
1722 #endif /* __xpv */
1723 DBG((uintptr_t)top_page_table);
1726 * Determine if we'll use large mappings for kernel, then map it.
1728 if (largepage_support) {
1729 psize = lpagesize;
1730 level = 1;
1731 } else {
1732 psize = MMU_PAGESIZE;
1733 level = 0;
1736 DBG_MSG("Mapping kernel\n");
1737 DBG(ktext_phys);
1738 DBG(target_kernel_text);
1739 DBG(ksize);
1740 DBG(psize);
1741 for (off = 0; off < ksize; off += psize)
1742 map_pa_at_va(ktext_phys + off, target_kernel_text + off, level);
1745 * The kernel will need a 1 page window to work with page tables
1747 bi->bi_pt_window = (uintptr_t)mem_alloc(MMU_PAGESIZE);
1748 DBG(bi->bi_pt_window);
1749 bi->bi_pte_to_pt_window =
1750 (uintptr_t)find_pte(bi->bi_pt_window, NULL, 0, 0);
1751 DBG(bi->bi_pte_to_pt_window);
1753 #if defined(__xpv)
1754 if (!DOMAIN_IS_INITDOMAIN(xen_info)) {
1755 /* If this is a domU we're done. */
1756 DBG_MSG("\nPage tables constructed\n");
1757 return;
1759 #endif /* __xpv */
1762 * We need 1:1 mappings for the lower 1M of memory to access
1763 * BIOS tables used by a couple of drivers during boot.
1765 * The following code works because our simple memory allocator
1766 * only grows usage in an upwards direction.
1768 * Note that by this point in boot some mappings for low memory
1769 * may already exist because we've already accessed device in low
1770 * memory. (Specifically the video frame buffer and keyboard
1771 * status ports.) If we're booting on raw hardware then GRUB
1772 * created these mappings for us. If we're booting under a
1773 * hypervisor then we went ahead and remapped these devices into
1774 * memory allocated within dboot itself.
1776 if (map_debug)
1777 dboot_printf("1:1 map pa=0..1Meg\n");
1778 for (start = 0; start < 1024 * 1024; start += MMU_PAGESIZE) {
1779 #if defined(__xpv)
1780 map_ma_at_va(start, start, 0);
1781 #else /* __xpv */
1782 map_pa_at_va(start, start, 0);
1783 #endif /* __xpv */
1786 #if !defined(__xpv)
1787 for (i = 0; i < memlists_used; ++i) {
1788 start = memlists[i].addr;
1790 end = start + memlists[i].size;
1792 if (map_debug)
1793 dboot_printf("1:1 map pa=%" PRIx64 "..%" PRIx64 "\n",
1794 start, end);
1795 while (start < end && start < next_avail_addr) {
1796 map_pa_at_va(start, start, 0);
1797 start += MMU_PAGESIZE;
1800 #endif /* !__xpv */
1802 DBG_MSG("\nPage tables constructed\n");
1805 #define NO_MULTIBOOT \
1806 "multiboot is no longer used to boot the Solaris Operating System.\n\
1807 The grub entry should be changed to:\n\
1808 kernel$ /platform/i86pc/kernel/$ISADIR/unix\n\
1809 module$ /platform/i86pc/$ISADIR/boot_archive\n\
1810 See http://illumos.org/msg/SUNOS-8000-AK for details.\n"
1812 static void
1813 dboot_init_xboot_consinfo(void)
1815 uintptr_t addr;
1817 * boot info must be 16 byte aligned for 64 bit kernel ABI
1819 addr = (uintptr_t)boot_info;
1820 addr = (addr + 0xf) & ~0xf;
1821 bi = (struct xboot_info *)addr;
1823 #if !defined(__xpv)
1824 switch (multiboot_version) {
1825 case 1:
1826 dboot_multiboot1_xboot_consinfo();
1827 break;
1828 case 2:
1829 dboot_multiboot2_xboot_consinfo();
1830 break;
1831 default:
1832 dboot_panic("Unknown multiboot version: %d\n",
1833 multiboot_version);
1834 break;
1837 * Lookup environment module for the console. Complete module list
1838 * will be built after console setup.
1840 dboot_find_env();
1841 #endif
1845 * Set up basic data from the boot loader.
1846 * The load_addr is part of AOUT kludge setup in dboot_grub.s, to support
1847 * 32-bit dboot code setup used to set up and start 64-bit kernel.
1848 * AOUT kludge does allow 32-bit boot loader, such as grub1, to load and
1849 * start 64-bit illumos kernel.
1851 static void
1852 dboot_loader_init(void)
1854 #if !defined(__xpv)
1855 mb_info = NULL;
1856 mb2_info = NULL;
1858 switch (mb_magic) {
1859 case MB_BOOTLOADER_MAGIC:
1860 multiboot_version = 1;
1861 mb_info = (multiboot_info_t *)(uintptr_t)mb_addr;
1862 #if defined(_BOOT_TARGET_amd64)
1863 load_addr = mb_header.load_addr;
1864 #endif
1865 break;
1867 case MULTIBOOT2_BOOTLOADER_MAGIC:
1868 multiboot_version = 2;
1869 mb2_info = (multiboot2_info_header_t *)(uintptr_t)mb_addr;
1870 mb2_mmap_tagp = dboot_multiboot2_get_mmap_tagp(mb2_info);
1871 #if defined(_BOOT_TARGET_amd64)
1872 load_addr = mb2_load_addr;
1873 #endif
1874 break;
1876 default:
1877 dboot_panic("Unknown bootloader magic: 0x%x\n", mb_magic);
1878 break;
1880 #endif /* !defined(__xpv) */
1883 /* Extract the kernel command line from [multi]boot information. */
1884 static char *
1885 dboot_loader_cmdline(void)
1887 char *line = NULL;
1889 #if defined(__xpv)
1890 line = (char *)xen_info->cmd_line;
1891 #else /* __xpv */
1893 switch (multiboot_version) {
1894 case 1:
1895 if (mb_info->flags & MB_INFO_CMDLINE)
1896 line = (char *)mb_info->cmdline;
1897 break;
1899 case 2:
1900 line = dboot_multiboot2_cmdline(mb2_info);
1901 break;
1903 default:
1904 dboot_panic("Unknown multiboot version: %d\n",
1905 multiboot_version);
1906 break;
1909 #endif /* __xpv */
1912 * Make sure we have valid pointer so the string operations
1913 * will not crash us.
1915 if (line == NULL)
1916 line = "";
1918 return (line);
1921 static char *
1922 dboot_loader_name(void)
1924 #if defined(__xpv)
1925 return (NULL);
1926 #else /* __xpv */
1927 multiboot_tag_string_t *tag;
1929 switch (multiboot_version) {
1930 case 1:
1931 return ((char *)mb_info->boot_loader_name);
1933 case 2:
1934 tag = dboot_multiboot2_find_tag(mb2_info,
1935 MULTIBOOT_TAG_TYPE_BOOT_LOADER_NAME);
1936 return (tag->mb_string);
1937 default:
1938 dboot_panic("Unknown multiboot version: %d\n",
1939 multiboot_version);
1940 break;
1943 return (NULL);
1944 #endif /* __xpv */
1947 * startup_kernel has a pretty simple job. It builds pagetables which reflect
1948 * 1:1 mappings for all memory in use. It then also adds mappings for
1949 * the kernel nucleus at virtual address of target_kernel_text using large page
1950 * mappings. The page table pages are also accessible at 1:1 mapped
1951 * virtual addresses.
1953 /*ARGSUSED*/
1954 void
1955 startup_kernel(void)
1957 char *cmdline;
1958 char *bootloader;
1959 #if defined(__xpv)
1960 physdev_set_iopl_t set_iopl;
1961 #endif /* __xpv */
1963 dboot_loader_init();
1965 * At this point we are executing in a 32 bit real mode.
1968 bootloader = dboot_loader_name();
1969 cmdline = dboot_loader_cmdline();
1971 #if defined(__xpv)
1973 * For dom0, before we initialize the console subsystem we'll
1974 * need to enable io operations, so set I/O priveldge level to 1.
1976 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1977 set_iopl.iopl = 1;
1978 (void) HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1980 #endif /* __xpv */
1982 dboot_init_xboot_consinfo();
1983 bi->bi_cmdline = (native_ptr_t)(uintptr_t)cmdline;
1984 bcons_init(bi);
1986 prom_debug = (find_boot_prop("prom_debug") != NULL);
1987 map_debug = (find_boot_prop("map_debug") != NULL);
1989 #if !defined(__xpv)
1990 dboot_multiboot_get_fwtables();
1991 #endif
1992 DBG_MSG("\n\nillumos prekernel set: ");
1993 DBG_MSG(cmdline);
1994 DBG_MSG("\n");
1996 if (bootloader != NULL && prom_debug) {
1997 dboot_printf("Kernel loaded by: %s\n", bootloader);
1998 #if !defined(__xpv)
1999 dboot_printf("Using multiboot %d boot protocol.\n",
2000 multiboot_version);
2001 #endif
2004 if (strstr(cmdline, "multiboot") != NULL) {
2005 dboot_panic(NO_MULTIBOOT);
2008 DBG((uintptr_t)bi);
2009 #if !defined(__xpv)
2010 DBG((uintptr_t)mb_info);
2011 DBG((uintptr_t)mb2_info);
2012 if (mb2_info != NULL)
2013 DBG(mb2_info->mbi_total_size);
2014 DBG(bi->bi_acpi_rsdp);
2015 DBG(bi->bi_smbios);
2016 #endif
2019 * Need correct target_kernel_text value
2021 #if defined(_BOOT_TARGET_amd64)
2022 target_kernel_text = KERNEL_TEXT_amd64;
2023 #elif defined(__xpv)
2024 target_kernel_text = KERNEL_TEXT_i386_xpv;
2025 #else
2026 target_kernel_text = KERNEL_TEXT_i386;
2027 #endif
2028 DBG(target_kernel_text);
2030 #if defined(__xpv)
2033 * XXPV Derive this stuff from CPUID / what the hypervisor has enabled
2036 #if defined(_BOOT_TARGET_amd64)
2038 * 64-bit hypervisor.
2040 amd64_support = 1;
2041 pae_support = 1;
2043 #else /* _BOOT_TARGET_amd64 */
2046 * See if we are running on a PAE Hypervisor
2049 xen_capabilities_info_t caps;
2051 if (HYPERVISOR_xen_version(XENVER_capabilities, &caps) != 0)
2052 dboot_panic("HYPERVISOR_xen_version(caps) failed");
2053 caps[sizeof (caps) - 1] = 0;
2054 if (prom_debug)
2055 dboot_printf("xen capabilities %s\n", caps);
2056 if (strstr(caps, "x86_32p") != NULL)
2057 pae_support = 1;
2060 #endif /* _BOOT_TARGET_amd64 */
2062 xen_platform_parameters_t p;
2064 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &p) != 0)
2065 dboot_panic("HYPERVISOR_xen_version(parms) failed");
2066 DBG(p.virt_start);
2067 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2071 * The hypervisor loads stuff starting at 1Gig
2073 mfn_base = ONE_GIG;
2074 DBG(mfn_base);
2077 * enable writable page table mode for the hypervisor
2079 if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2080 VMASST_TYPE_writable_pagetables) < 0)
2081 dboot_panic("HYPERVISOR_vm_assist(writable_pagetables) failed");
2084 * check for NX support
2086 if (pae_support) {
2087 uint32_t eax = 0x80000000;
2088 uint32_t edx = get_cpuid_edx(&eax);
2090 if (eax >= 0x80000001) {
2091 eax = 0x80000001;
2092 edx = get_cpuid_edx(&eax);
2093 if (edx & CPUID_AMD_EDX_NX)
2094 NX_support = 1;
2098 #if !defined(_BOOT_TARGET_amd64)
2101 * The 32-bit hypervisor uses segmentation to protect itself from
2102 * guests. This means when a guest attempts to install a flat 4GB
2103 * code or data descriptor the 32-bit hypervisor will protect itself
2104 * by silently shrinking the segment such that if the guest attempts
2105 * any access where the hypervisor lives a #gp fault is generated.
2106 * The problem is that some applications expect a full 4GB flat
2107 * segment for their current thread pointer and will use negative
2108 * offset segment wrap around to access data. TLS support in linux
2109 * brand is one example of this.
2111 * The 32-bit hypervisor can catch the #gp fault in these cases
2112 * and emulate the access without passing the #gp fault to the guest
2113 * but only if VMASST_TYPE_4gb_segments is explicitly turned on.
2114 * Seems like this should have been the default.
2115 * Either way, we want the hypervisor -- and not Solaris -- to deal
2116 * to deal with emulating these accesses.
2118 if (HYPERVISOR_vm_assist(VMASST_CMD_enable,
2119 VMASST_TYPE_4gb_segments) < 0)
2120 dboot_panic("HYPERVISOR_vm_assist(4gb_segments) failed");
2121 #endif /* !_BOOT_TARGET_amd64 */
2123 #else /* __xpv */
2126 * use cpuid to enable MMU features
2128 if (have_cpuid()) {
2129 uint32_t eax, edx;
2131 eax = 1;
2132 edx = get_cpuid_edx(&eax);
2133 if (edx & CPUID_INTC_EDX_PSE)
2134 largepage_support = 1;
2135 if (edx & CPUID_INTC_EDX_PGE)
2136 pge_support = 1;
2137 if (edx & CPUID_INTC_EDX_PAE)
2138 pae_support = 1;
2140 eax = 0x80000000;
2141 edx = get_cpuid_edx(&eax);
2142 if (eax >= 0x80000001) {
2143 eax = 0x80000001;
2144 edx = get_cpuid_edx(&eax);
2145 if (edx & CPUID_AMD_EDX_LM)
2146 amd64_support = 1;
2147 if (edx & CPUID_AMD_EDX_NX)
2148 NX_support = 1;
2150 } else {
2151 dboot_printf("cpuid not supported\n");
2153 #endif /* __xpv */
2156 #if defined(_BOOT_TARGET_amd64)
2157 if (amd64_support == 0)
2158 dboot_panic("long mode not supported, rebooting");
2159 else if (pae_support == 0)
2160 dboot_panic("long mode, but no PAE; rebooting");
2161 #else
2163 * Allow the command line to over-ride use of PAE for 32 bit.
2165 if (strstr(cmdline, "disablePAE=true") != NULL) {
2166 pae_support = 0;
2167 NX_support = 0;
2168 amd64_support = 0;
2170 #endif
2173 * initialize the simple memory allocator
2175 init_mem_alloc();
2177 #if !defined(__xpv) && !defined(_BOOT_TARGET_amd64)
2179 * disable PAE on 32 bit h/w w/o NX and < 4Gig of memory
2181 if (max_mem < FOUR_GIG && NX_support == 0)
2182 pae_support = 0;
2183 #endif
2186 * configure mmu information
2188 if (pae_support) {
2189 shift_amt = shift_amt_pae;
2190 ptes_per_table = 512;
2191 pte_size = 8;
2192 lpagesize = TWO_MEG;
2193 #if defined(_BOOT_TARGET_amd64)
2194 top_level = 3;
2195 #else
2196 top_level = 2;
2197 #endif
2198 } else {
2199 pae_support = 0;
2200 NX_support = 0;
2201 shift_amt = shift_amt_nopae;
2202 ptes_per_table = 1024;
2203 pte_size = 4;
2204 lpagesize = FOUR_MEG;
2205 top_level = 1;
2208 DBG(pge_support);
2209 DBG(NX_support);
2210 DBG(largepage_support);
2211 DBG(amd64_support);
2212 DBG(top_level);
2213 DBG(pte_size);
2214 DBG(ptes_per_table);
2215 DBG(lpagesize);
2217 #if defined(__xpv)
2218 ktext_phys = ONE_GIG; /* from UNIX Mapfile */
2219 #else
2220 ktext_phys = FOUR_MEG; /* from UNIX Mapfile */
2221 #endif
2223 #if !defined(__xpv) && defined(_BOOT_TARGET_amd64)
2225 * For grub, copy kernel bits from the ELF64 file to final place.
2227 DBG_MSG("\nAllocating nucleus pages.\n");
2228 ktext_phys = (uintptr_t)do_mem_alloc(ksize, FOUR_MEG);
2229 if (ktext_phys == 0)
2230 dboot_panic("failed to allocate aligned kernel memory");
2231 DBG(load_addr);
2232 if (dboot_elfload64(load_addr) != 0)
2233 dboot_panic("failed to parse kernel ELF image, rebooting");
2234 #endif
2236 DBG(ktext_phys);
2239 * Allocate page tables.
2241 build_page_tables();
2244 * return to assembly code to switch to running kernel
2246 entry_addr_low = (uint32_t)target_kernel_text;
2247 DBG(entry_addr_low);
2248 bi->bi_use_largepage = largepage_support;
2249 bi->bi_use_pae = pae_support;
2250 bi->bi_use_pge = pge_support;
2251 bi->bi_use_nx = NX_support;
2253 #if defined(__xpv)
2255 bi->bi_next_paddr = next_avail_addr - mfn_base;
2256 DBG(bi->bi_next_paddr);
2257 bi->bi_next_vaddr = (native_ptr_t)next_avail_addr;
2258 DBG(bi->bi_next_vaddr);
2261 * unmap unused pages in start area to make them available for DMA
2263 while (next_avail_addr < scratch_end) {
2264 (void) HYPERVISOR_update_va_mapping(next_avail_addr,
2265 0, UVMF_INVLPG | UVMF_LOCAL);
2266 next_avail_addr += MMU_PAGESIZE;
2269 bi->bi_xen_start_info = (uintptr_t)xen_info;
2270 DBG((uintptr_t)HYPERVISOR_shared_info);
2271 bi->bi_shared_info = (native_ptr_t)HYPERVISOR_shared_info;
2272 bi->bi_top_page_table = (uintptr_t)top_page_table - mfn_base;
2274 #else /* __xpv */
2276 bi->bi_next_paddr = next_avail_addr;
2277 DBG(bi->bi_next_paddr);
2278 bi->bi_next_vaddr = (uintptr_t)next_avail_addr;
2279 DBG(bi->bi_next_vaddr);
2280 bi->bi_mb_version = multiboot_version;
2282 switch (multiboot_version) {
2283 case 1:
2284 bi->bi_mb_info = (uintptr_t)mb_info;
2285 break;
2286 case 2:
2287 bi->bi_mb_info = (uintptr_t)mb2_info;
2288 break;
2289 default:
2290 dboot_panic("Unknown multiboot version: %d\n",
2291 multiboot_version);
2292 break;
2294 bi->bi_top_page_table = (uintptr_t)top_page_table;
2296 #endif /* __xpv */
2298 bi->bi_kseg_size = FOUR_MEG;
2299 DBG(bi->bi_kseg_size);
2301 #ifndef __xpv
2302 if (map_debug)
2303 dump_tables();
2304 #endif
2306 DBG_MSG("\n\n*** DBOOT DONE -- back to asm to jump to kernel\n\n");