8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / i86pc / io / immu_dvma.c
blobefc30c3d64bd244494776fda30e8bd903a5ad5d9
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Portions Copyright (c) 2010, Oracle and/or its affiliates.
23 * All rights reserved.
26 * Copyright (c) 2009, Intel Corporation.
27 * All rights reserved.
30 * Copyright 2012 Garrett D'Amore <garrett@damore.org>. All rights reserved.
34 * DVMA code
35 * This file contains Intel IOMMU code that deals with DVMA
36 * i.e. DMA remapping.
39 #include <sys/sysmacros.h>
40 #include <sys/pcie.h>
41 #include <sys/pci_cfgspace.h>
42 #include <vm/hat_i86.h>
43 #include <sys/memlist.h>
44 #include <sys/acpi/acpi.h>
45 #include <sys/acpica.h>
46 #include <sys/modhash.h>
47 #include <sys/immu.h>
48 #include <sys/x86_archext.h>
49 #include <sys/archsystm.h>
51 #undef TEST
54 * Macros based on PCI spec
56 #define IMMU_PCI_REV2CLASS(r) ((r) >> 8) /* classcode from revid */
57 #define IMMU_PCI_CLASS2BASE(c) ((c) >> 16) /* baseclass from classcode */
58 #define IMMU_PCI_CLASS2SUB(c) (((c) >> 8) & 0xff); /* classcode */
60 #define IMMU_CONTIG_PADDR(d, p) \
61 ((d).dck_paddr && ((d).dck_paddr + IMMU_PAGESIZE) == (p))
63 typedef struct dvma_arg {
64 immu_t *dva_immu;
65 dev_info_t *dva_rdip;
66 dev_info_t *dva_ddip;
67 domain_t *dva_domain;
68 int dva_level;
69 immu_flags_t dva_flags;
70 list_t *dva_list;
71 int dva_error;
72 } dvma_arg_t;
74 static domain_t *domain_create(immu_t *immu, dev_info_t *ddip,
75 dev_info_t *rdip, immu_flags_t immu_flags);
76 static immu_devi_t *create_immu_devi(dev_info_t *rdip, int bus,
77 int dev, int func, immu_flags_t immu_flags);
78 static void destroy_immu_devi(immu_devi_t *immu_devi);
79 static boolean_t dvma_map(domain_t *domain, uint64_t sdvma,
80 uint64_t nvpages, immu_dcookie_t *dcookies, int dcount, dev_info_t *rdip,
81 immu_flags_t immu_flags);
83 /* Extern globals */
84 extern struct memlist *phys_install;
87 * iommulib interface functions.
89 static int immu_probe(iommulib_handle_t unitp, dev_info_t *dip);
90 static int immu_allochdl(iommulib_handle_t handle,
91 dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
92 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *dma_handlep);
93 static int immu_freehdl(iommulib_handle_t handle,
94 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle);
95 static int immu_bindhdl(iommulib_handle_t handle, dev_info_t *dip,
96 dev_info_t *rdip, ddi_dma_handle_t dma_handle, struct ddi_dma_req *dma_req,
97 ddi_dma_cookie_t *cookiep, uint_t *ccountp);
98 static int immu_unbindhdl(iommulib_handle_t handle,
99 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle);
100 static int immu_sync(iommulib_handle_t handle, dev_info_t *dip,
101 dev_info_t *rdip, ddi_dma_handle_t dma_handle, off_t off, size_t len,
102 uint_t cachefl);
103 static int immu_win(iommulib_handle_t handle, dev_info_t *dip,
104 dev_info_t *rdip, ddi_dma_handle_t dma_handle, uint_t win,
105 off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep, uint_t *ccountp);
106 static int immu_mapobject(iommulib_handle_t handle, dev_info_t *dip,
107 dev_info_t *rdip, ddi_dma_handle_t dma_handle,
108 struct ddi_dma_req *dmareq, ddi_dma_obj_t *dmao);
109 static int immu_unmapobject(iommulib_handle_t handle, dev_info_t *dip,
110 dev_info_t *rdip, ddi_dma_handle_t dma_handle, ddi_dma_obj_t *dmao);
112 /* static Globals */
115 * Used to setup DMA objects (memory regions)
116 * for DMA reads by IOMMU units
118 static ddi_dma_attr_t immu_dma_attr = {
119 DMA_ATTR_V0,
121 0xffffffffffffffffULL,
122 0xffffffffU,
123 MMU_PAGESIZE, /* MMU page aligned */
124 0x1,
125 0x1,
126 0xffffffffU,
127 0xffffffffffffffffULL,
133 static ddi_device_acc_attr_t immu_acc_attr = {
134 DDI_DEVICE_ATTR_V0,
135 DDI_NEVERSWAP_ACC,
136 DDI_STRICTORDER_ACC
139 struct iommulib_ops immulib_ops = {
140 IOMMU_OPS_VERSION,
141 INTEL_IOMMU,
142 "Intel IOMMU",
143 NULL,
144 immu_probe,
145 immu_allochdl,
146 immu_freehdl,
147 immu_bindhdl,
148 immu_unbindhdl,
149 immu_sync,
150 immu_win,
151 immu_mapobject,
152 immu_unmapobject,
156 * Fake physical address range used to set up initial prealloc mappings.
157 * This memory is never actually accessed. It is mapped read-only,
158 * and is overwritten as soon as the first DMA bind operation is
159 * performed. Since 0 is a special case, just start at the 2nd
160 * physical page.
163 static immu_dcookie_t immu_precookie = { MMU_PAGESIZE, IMMU_NPREPTES };
165 /* globals private to this file */
166 static kmutex_t immu_domain_lock;
167 static list_t immu_unity_domain_list;
168 static list_t immu_xlate_domain_list;
170 /* structure used to store idx into each level of the page tables */
171 typedef struct xlate {
172 int xlt_level;
173 uint_t xlt_idx;
174 pgtable_t *xlt_pgtable;
175 } xlate_t;
177 /* 0 is reserved by Vt-d spec. Solaris reserves 1 */
178 #define IMMU_UNITY_DID 1
180 static mod_hash_t *bdf_domain_hash;
182 int immu_use_alh;
183 int immu_use_tm;
185 static domain_t *
186 bdf_domain_lookup(immu_devi_t *immu_devi)
188 domain_t *domain;
189 int16_t seg = immu_devi->imd_seg;
190 int16_t bus = immu_devi->imd_bus;
191 int16_t devfunc = immu_devi->imd_devfunc;
192 uintptr_t bdf = (seg << 16 | bus << 8 | devfunc);
194 if (seg < 0 || bus < 0 || devfunc < 0) {
195 return (NULL);
198 domain = NULL;
199 if (mod_hash_find(bdf_domain_hash,
200 (void *)bdf, (void *)&domain) == 0) {
201 ASSERT(domain);
202 ASSERT(domain->dom_did > 0);
203 return (domain);
204 } else {
205 return (NULL);
209 static void
210 bdf_domain_insert(immu_devi_t *immu_devi, domain_t *domain)
212 int16_t seg = immu_devi->imd_seg;
213 int16_t bus = immu_devi->imd_bus;
214 int16_t devfunc = immu_devi->imd_devfunc;
215 uintptr_t bdf = (seg << 16 | bus << 8 | devfunc);
217 if (seg < 0 || bus < 0 || devfunc < 0) {
218 return;
221 (void) mod_hash_insert(bdf_domain_hash, (void *)bdf, (void *)domain);
224 static int
225 match_lpc(dev_info_t *pdip, void *arg)
227 immu_devi_t *immu_devi;
228 dvma_arg_t *dvap = (dvma_arg_t *)arg;
230 if (list_is_empty(dvap->dva_list)) {
231 return (DDI_WALK_TERMINATE);
234 immu_devi = list_head(dvap->dva_list);
235 for (; immu_devi; immu_devi = list_next(dvap->dva_list,
236 immu_devi)) {
237 if (immu_devi->imd_dip == pdip) {
238 dvap->dva_ddip = pdip;
239 dvap->dva_error = DDI_SUCCESS;
240 return (DDI_WALK_TERMINATE);
244 return (DDI_WALK_CONTINUE);
247 static void
248 immu_devi_set_spclist(dev_info_t *dip, immu_t *immu)
250 list_t *spclist = NULL;
251 immu_devi_t *immu_devi;
253 immu_devi = IMMU_DEVI(dip);
254 if (immu_devi->imd_display == B_TRUE) {
255 spclist = &(immu->immu_dvma_gfx_list);
256 } else if (immu_devi->imd_lpc == B_TRUE) {
257 spclist = &(immu->immu_dvma_lpc_list);
260 if (spclist) {
261 mutex_enter(&(immu->immu_lock));
262 list_insert_head(spclist, immu_devi);
263 mutex_exit(&(immu->immu_lock));
268 * Set the immu_devi struct in the immu_devi field of a devinfo node
271 immu_devi_set(dev_info_t *dip, immu_flags_t immu_flags)
273 int bus, dev, func;
274 immu_devi_t *new_imd;
275 immu_devi_t *immu_devi;
277 immu_devi = immu_devi_get(dip);
278 if (immu_devi != NULL) {
279 return (DDI_SUCCESS);
282 bus = dev = func = -1;
285 * Assume a new immu_devi struct is needed
287 if (!DEVI_IS_PCI(dip) || acpica_get_bdf(dip, &bus, &dev, &func) != 0) {
289 * No BDF. Set bus = -1 to indicate this.
290 * We still need to create a immu_devi struct
291 * though
293 bus = -1;
294 dev = 0;
295 func = 0;
298 new_imd = create_immu_devi(dip, bus, dev, func, immu_flags);
299 if (new_imd == NULL) {
300 ddi_err(DER_WARN, dip, "Failed to create immu_devi "
301 "structure");
302 return (DDI_FAILURE);
306 * Check if some other thread allocated a immu_devi while we
307 * didn't own the lock.
309 mutex_enter(&(DEVI(dip)->devi_lock));
310 if (IMMU_DEVI(dip) == NULL) {
311 IMMU_DEVI_SET(dip, new_imd);
312 } else {
313 destroy_immu_devi(new_imd);
315 mutex_exit(&(DEVI(dip)->devi_lock));
317 return (DDI_SUCCESS);
320 static dev_info_t *
321 get_lpc_devinfo(immu_t *immu, dev_info_t *rdip, immu_flags_t immu_flags)
323 dvma_arg_t dvarg = {0};
324 dvarg.dva_list = &(immu->immu_dvma_lpc_list);
325 dvarg.dva_rdip = rdip;
326 dvarg.dva_error = DDI_FAILURE;
328 if (immu_walk_ancestor(rdip, NULL, match_lpc,
329 &dvarg, NULL, immu_flags) != DDI_SUCCESS) {
330 ddi_err(DER_MODE, rdip, "Could not walk ancestors to "
331 "find lpc_devinfo for ISA device");
332 return (NULL);
335 if (dvarg.dva_error != DDI_SUCCESS || dvarg.dva_ddip == NULL) {
336 ddi_err(DER_MODE, rdip, "Could not find lpc_devinfo for "
337 "ISA device");
338 return (NULL);
341 return (dvarg.dva_ddip);
344 static dev_info_t *
345 get_gfx_devinfo(dev_info_t *rdip)
347 immu_t *immu;
348 immu_devi_t *immu_devi;
349 list_t *list_gfx;
352 * The GFX device may not be on the same iommu unit as "agpgart"
353 * so search globally
355 immu_devi = NULL;
356 immu = list_head(&immu_list);
357 for (; immu; immu = list_next(&immu_list, immu)) {
358 list_gfx = &(immu->immu_dvma_gfx_list);
359 if (!list_is_empty(list_gfx)) {
360 immu_devi = list_head(list_gfx);
361 break;
365 if (immu_devi == NULL) {
366 ddi_err(DER_WARN, rdip, "iommu: No GFX device. "
367 "Cannot redirect agpgart");
368 return (NULL);
371 ddi_err(DER_LOG, rdip, "iommu: GFX redirect to %s",
372 ddi_node_name(immu_devi->imd_dip));
374 return (immu_devi->imd_dip);
377 static immu_flags_t
378 dma_to_immu_flags(struct ddi_dma_req *dmareq)
380 immu_flags_t flags = 0;
382 if (dmareq->dmar_fp == DDI_DMA_SLEEP) {
383 flags |= IMMU_FLAGS_SLEEP;
384 } else {
385 flags |= IMMU_FLAGS_NOSLEEP;
388 #ifdef BUGGY_DRIVERS
390 flags |= (IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
392 #else
394 * Read and write flags need to be reversed.
395 * DMA_READ means read from device and write
396 * to memory. So DMA read means DVMA write.
398 if (dmareq->dmar_flags & DDI_DMA_READ)
399 flags |= IMMU_FLAGS_WRITE;
401 if (dmareq->dmar_flags & DDI_DMA_WRITE)
402 flags |= IMMU_FLAGS_READ;
405 * Some buggy drivers specify neither READ or WRITE
406 * For such drivers set both read and write permissions
408 if ((dmareq->dmar_flags & (DDI_DMA_READ | DDI_DMA_WRITE)) == 0) {
409 flags |= (IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
411 #endif
413 return (flags);
416 /*ARGSUSED*/
418 pgtable_ctor(void *buf, void *arg, int kmflag)
420 size_t actual_size = 0;
421 pgtable_t *pgtable;
422 int (*dmafp)(caddr_t);
423 caddr_t vaddr;
424 void *next;
425 uint_t flags;
426 immu_t *immu = arg;
428 pgtable = (pgtable_t *)buf;
430 dmafp = (kmflag & KM_NOSLEEP) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP;
432 next = kmem_zalloc(IMMU_PAGESIZE, kmflag);
433 if (next == NULL) {
434 return (-1);
437 if (ddi_dma_alloc_handle(root_devinfo, &immu_dma_attr,
438 dmafp, NULL, &pgtable->hwpg_dmahdl) != DDI_SUCCESS) {
439 kmem_free(next, IMMU_PAGESIZE);
440 return (-1);
443 flags = DDI_DMA_CONSISTENT;
444 if (!immu->immu_dvma_coherent)
445 flags |= IOMEM_DATA_UC_WR_COMBINE;
447 if (ddi_dma_mem_alloc(pgtable->hwpg_dmahdl, IMMU_PAGESIZE,
448 &immu_acc_attr, flags,
449 dmafp, NULL, &vaddr, &actual_size,
450 &pgtable->hwpg_memhdl) != DDI_SUCCESS) {
451 ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
452 kmem_free(next, IMMU_PAGESIZE);
453 return (-1);
457 * Memory allocation failure. Maybe a temporary condition
458 * so return error rather than panic, so we can try again
460 if (actual_size < IMMU_PAGESIZE) {
461 ddi_dma_mem_free(&pgtable->hwpg_memhdl);
462 ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
463 kmem_free(next, IMMU_PAGESIZE);
464 return (-1);
467 pgtable->hwpg_paddr = pfn_to_pa(hat_getpfnum(kas.a_hat, vaddr));
468 pgtable->hwpg_vaddr = vaddr;
469 pgtable->swpg_next_array = next;
471 rw_init(&(pgtable->swpg_rwlock), NULL, RW_DEFAULT, NULL);
473 return (0);
476 /*ARGSUSED*/
477 void
478 pgtable_dtor(void *buf, void *arg)
480 pgtable_t *pgtable;
482 pgtable = (pgtable_t *)buf;
484 /* destroy will panic if lock is held. */
485 rw_destroy(&(pgtable->swpg_rwlock));
487 ddi_dma_mem_free(&pgtable->hwpg_memhdl);
488 ddi_dma_free_handle(&pgtable->hwpg_dmahdl);
489 kmem_free(pgtable->swpg_next_array, IMMU_PAGESIZE);
493 * pgtable_alloc()
494 * alloc a IOMMU pgtable structure.
495 * This same struct is used for root and context tables as well.
496 * This routine allocs the f/ollowing:
497 * - a pgtable_t struct
498 * - a HW page which holds PTEs/entries which is accesssed by HW
499 * so we set up DMA for this page
500 * - a SW page which is only for our bookeeping
501 * (for example to hold pointers to the next level pgtable).
502 * So a simple kmem_alloc suffices
504 static pgtable_t *
505 pgtable_alloc(immu_t *immu, immu_flags_t immu_flags)
507 pgtable_t *pgtable;
508 int kmflags;
510 kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
512 pgtable = kmem_cache_alloc(immu->immu_pgtable_cache, kmflags);
513 if (pgtable == NULL) {
514 return (NULL);
516 return (pgtable);
519 static void
520 pgtable_zero(pgtable_t *pgtable)
522 bzero(pgtable->hwpg_vaddr, IMMU_PAGESIZE);
523 bzero(pgtable->swpg_next_array, IMMU_PAGESIZE);
526 static void
527 pgtable_free(immu_t *immu, pgtable_t *pgtable)
529 kmem_cache_free(immu->immu_pgtable_cache, pgtable);
533 * Function to identify a display device from the PCI class code
535 static boolean_t
536 device_is_display(uint_t classcode)
538 static uint_t disp_classes[] = {
539 0x000100,
540 0x030000,
541 0x030001
543 int i, nclasses = sizeof (disp_classes) / sizeof (uint_t);
545 for (i = 0; i < nclasses; i++) {
546 if (classcode == disp_classes[i])
547 return (B_TRUE);
549 return (B_FALSE);
553 * Function that determines if device is PCIEX and/or PCIEX bridge
555 static boolean_t
556 device_is_pciex(
557 uchar_t bus, uchar_t dev, uchar_t func, boolean_t *is_pcib)
559 ushort_t cap;
560 ushort_t capsp;
561 ushort_t cap_count = PCI_CAP_MAX_PTR;
562 ushort_t status;
563 boolean_t is_pciex = B_FALSE;
565 *is_pcib = B_FALSE;
567 status = pci_getw_func(bus, dev, func, PCI_CONF_STAT);
568 if (!(status & PCI_STAT_CAP))
569 return (B_FALSE);
571 capsp = pci_getb_func(bus, dev, func, PCI_CONF_CAP_PTR);
572 while (cap_count-- && capsp >= PCI_CAP_PTR_OFF) {
573 capsp &= PCI_CAP_PTR_MASK;
574 cap = pci_getb_func(bus, dev, func, capsp);
576 if (cap == PCI_CAP_ID_PCI_E) {
577 status = pci_getw_func(bus, dev, func, capsp + 2);
579 * See section 7.8.2 of PCI-Express Base Spec v1.0a
580 * for Device/Port Type.
581 * PCIE_PCIECAP_DEV_TYPE_PCIE2PCI implies that the
582 * device is a PCIE2PCI bridge
584 *is_pcib =
585 ((status & PCIE_PCIECAP_DEV_TYPE_MASK) ==
586 PCIE_PCIECAP_DEV_TYPE_PCIE2PCI) ? B_TRUE : B_FALSE;
587 is_pciex = B_TRUE;
590 capsp = (*pci_getb_func)(bus, dev, func,
591 capsp + PCI_CAP_NEXT_PTR);
594 return (is_pciex);
597 static boolean_t
598 device_use_premap(uint_t classcode)
600 if (IMMU_PCI_CLASS2BASE(classcode) == PCI_CLASS_NET)
601 return (B_TRUE);
602 return (B_FALSE);
607 * immu_dvma_get_immu()
608 * get the immu unit structure for a dev_info node
610 immu_t *
611 immu_dvma_get_immu(dev_info_t *dip, immu_flags_t immu_flags)
613 immu_devi_t *immu_devi;
614 immu_t *immu;
617 * check if immu unit was already found earlier.
618 * If yes, then it will be stashed in immu_devi struct.
620 immu_devi = immu_devi_get(dip);
621 if (immu_devi == NULL) {
622 if (immu_devi_set(dip, immu_flags) != DDI_SUCCESS) {
624 * May fail because of low memory. Return error rather
625 * than panic as we want driver to rey again later
627 ddi_err(DER_PANIC, dip, "immu_dvma_get_immu: "
628 "No immu_devi structure");
629 /*NOTREACHED*/
631 immu_devi = immu_devi_get(dip);
634 mutex_enter(&(DEVI(dip)->devi_lock));
635 if (immu_devi->imd_immu) {
636 immu = immu_devi->imd_immu;
637 mutex_exit(&(DEVI(dip)->devi_lock));
638 return (immu);
640 mutex_exit(&(DEVI(dip)->devi_lock));
642 immu = immu_dmar_get_immu(dip);
643 if (immu == NULL) {
644 ddi_err(DER_PANIC, dip, "immu_dvma_get_immu: "
645 "Cannot find immu_t for device");
646 /*NOTREACHED*/
650 * Check if some other thread found immu
651 * while lock was not held
653 immu_devi = immu_devi_get(dip);
654 /* immu_devi should be present as we found it earlier */
655 if (immu_devi == NULL) {
656 ddi_err(DER_PANIC, dip,
657 "immu_dvma_get_immu: No immu_devi structure");
658 /*NOTREACHED*/
661 mutex_enter(&(DEVI(dip)->devi_lock));
662 if (immu_devi->imd_immu == NULL) {
663 /* nobody else set it, so we should do it */
664 immu_devi->imd_immu = immu;
665 immu_devi_set_spclist(dip, immu);
666 } else {
668 * if some other thread got immu before
669 * us, it should get the same results
671 if (immu_devi->imd_immu != immu) {
672 ddi_err(DER_PANIC, dip, "Multiple "
673 "immu units found for device. Expected (%p), "
674 "actual (%p)", (void *)immu,
675 (void *)immu_devi->imd_immu);
676 mutex_exit(&(DEVI(dip)->devi_lock));
677 /*NOTREACHED*/
680 mutex_exit(&(DEVI(dip)->devi_lock));
682 return (immu);
686 /* ############################# IMMU_DEVI code ############################ */
689 * Allocate a immu_devi structure and initialize it
691 static immu_devi_t *
692 create_immu_devi(dev_info_t *rdip, int bus, int dev, int func,
693 immu_flags_t immu_flags)
695 uchar_t baseclass, subclass;
696 uint_t classcode, revclass;
697 immu_devi_t *immu_devi;
698 boolean_t pciex = B_FALSE;
699 int kmflags;
700 boolean_t is_pcib = B_FALSE;
702 /* bus == -1 indicate non-PCI device (no BDF) */
703 ASSERT(bus == -1 || bus >= 0);
704 ASSERT(dev >= 0);
705 ASSERT(func >= 0);
707 kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
708 immu_devi = kmem_zalloc(sizeof (immu_devi_t), kmflags);
709 if (immu_devi == NULL) {
710 ddi_err(DER_WARN, rdip, "Failed to allocate memory for "
711 "Intel IOMMU immu_devi structure");
712 return (NULL);
714 immu_devi->imd_dip = rdip;
715 immu_devi->imd_seg = 0; /* Currently seg can only be 0 */
716 immu_devi->imd_bus = bus;
717 immu_devi->imd_pcib_type = IMMU_PCIB_BAD;
719 if (bus == -1) {
720 immu_devi->imd_pcib_type = IMMU_PCIB_NOBDF;
721 return (immu_devi);
724 immu_devi->imd_devfunc = IMMU_PCI_DEVFUNC(dev, func);
725 immu_devi->imd_sec = 0;
726 immu_devi->imd_sub = 0;
728 revclass = pci_getl_func(bus, dev, func, PCI_CONF_REVID);
730 classcode = IMMU_PCI_REV2CLASS(revclass);
731 baseclass = IMMU_PCI_CLASS2BASE(classcode);
732 subclass = IMMU_PCI_CLASS2SUB(classcode);
734 if (baseclass == PCI_CLASS_BRIDGE && subclass == PCI_BRIDGE_PCI) {
736 immu_devi->imd_sec = pci_getb_func(bus, dev, func,
737 PCI_BCNF_SECBUS);
738 immu_devi->imd_sub = pci_getb_func(bus, dev, func,
739 PCI_BCNF_SUBBUS);
741 pciex = device_is_pciex(bus, dev, func, &is_pcib);
742 if (pciex == B_TRUE && is_pcib == B_TRUE) {
743 immu_devi->imd_pcib_type = IMMU_PCIB_PCIE_PCI;
744 } else if (pciex == B_TRUE) {
745 immu_devi->imd_pcib_type = IMMU_PCIB_PCIE_PCIE;
746 } else {
747 immu_devi->imd_pcib_type = IMMU_PCIB_PCI_PCI;
749 } else {
750 immu_devi->imd_pcib_type = IMMU_PCIB_ENDPOINT;
753 /* check for certain special devices */
754 immu_devi->imd_display = device_is_display(classcode);
755 immu_devi->imd_lpc = ((baseclass == PCI_CLASS_BRIDGE) &&
756 (subclass == PCI_BRIDGE_ISA)) ? B_TRUE : B_FALSE;
757 immu_devi->imd_use_premap = device_use_premap(classcode);
759 immu_devi->imd_domain = NULL;
761 immu_devi->imd_dvma_flags = immu_global_dvma_flags;
763 return (immu_devi);
766 static void
767 destroy_immu_devi(immu_devi_t *immu_devi)
769 kmem_free(immu_devi, sizeof (immu_devi_t));
772 static domain_t *
773 immu_devi_domain(dev_info_t *rdip, dev_info_t **ddipp)
775 immu_devi_t *immu_devi;
776 domain_t *domain;
777 dev_info_t *ddip;
779 *ddipp = NULL;
781 immu_devi = immu_devi_get(rdip);
782 if (immu_devi == NULL) {
783 return (NULL);
786 mutex_enter(&(DEVI(rdip)->devi_lock));
787 domain = immu_devi->imd_domain;
788 ddip = immu_devi->imd_ddip;
789 mutex_exit(&(DEVI(rdip)->devi_lock));
791 if (domain)
792 *ddipp = ddip;
794 return (domain);
798 /* ############################# END IMMU_DEVI code ######################## */
799 /* ############################# DOMAIN code ############################### */
802 * This routine always succeeds
804 static int
805 did_alloc(immu_t *immu, dev_info_t *rdip,
806 dev_info_t *ddip, immu_flags_t immu_flags)
808 int did;
810 did = (uintptr_t)vmem_alloc(immu->immu_did_arena, 1,
811 (immu_flags & IMMU_FLAGS_NOSLEEP) ? VM_NOSLEEP : VM_SLEEP);
813 if (did == 0) {
814 ddi_err(DER_WARN, rdip, "device domain-id alloc error"
815 " domain-device: %s%d. immu unit is %s. Using "
816 "unity domain with domain-id (%d)",
817 ddi_driver_name(ddip), ddi_get_instance(ddip),
818 immu->immu_name, immu->immu_unity_domain->dom_did);
819 did = immu->immu_unity_domain->dom_did;
822 return (did);
825 static int
826 get_branch_domain(dev_info_t *pdip, void *arg)
828 immu_devi_t *immu_devi;
829 domain_t *domain;
830 dev_info_t *ddip;
831 immu_t *immu;
832 dvma_arg_t *dvp = (dvma_arg_t *)arg;
835 * The field dvp->dva_rdip is a work-in-progress
836 * and gets updated as we walk up the ancestor
837 * tree. The final ddip is set only when we reach
838 * the top of the tree. So the dvp->dva_ddip field cannot
839 * be relied on until we reach the top of the field.
842 /* immu_devi may not be set. */
843 immu_devi = immu_devi_get(pdip);
844 if (immu_devi == NULL) {
845 if (immu_devi_set(pdip, dvp->dva_flags) != DDI_SUCCESS) {
846 dvp->dva_error = DDI_FAILURE;
847 return (DDI_WALK_TERMINATE);
851 immu_devi = immu_devi_get(pdip);
852 immu = immu_devi->imd_immu;
853 if (immu == NULL)
854 immu = immu_dvma_get_immu(pdip, dvp->dva_flags);
857 * If we encounter a PCIE_PCIE bridge *ANCESTOR* we need to
858 * terminate the walk (since the device under the PCIE bridge
859 * is a PCIE device and has an independent entry in the
860 * root/context table)
862 if (dvp->dva_rdip != pdip &&
863 immu_devi->imd_pcib_type == IMMU_PCIB_PCIE_PCIE) {
864 return (DDI_WALK_TERMINATE);
868 * In order to be a domain-dim, it must be a PCI device i.e.
869 * must have valid BDF. This also eliminates the root complex.
871 if (immu_devi->imd_pcib_type != IMMU_PCIB_BAD &&
872 immu_devi->imd_pcib_type != IMMU_PCIB_NOBDF) {
873 ASSERT(immu_devi->imd_bus >= 0);
874 ASSERT(immu_devi->imd_devfunc >= 0);
875 dvp->dva_ddip = pdip;
878 if (immu_devi->imd_display == B_TRUE ||
879 (dvp->dva_flags & IMMU_FLAGS_UNITY)) {
880 dvp->dva_domain = immu->immu_unity_domain;
881 /* continue walking to find ddip */
882 return (DDI_WALK_CONTINUE);
885 mutex_enter(&(DEVI(pdip)->devi_lock));
886 domain = immu_devi->imd_domain;
887 ddip = immu_devi->imd_ddip;
888 mutex_exit(&(DEVI(pdip)->devi_lock));
890 if (domain && ddip) {
891 /* if domain is set, it must be the same */
892 if (dvp->dva_domain) {
893 ASSERT(domain == dvp->dva_domain);
895 dvp->dva_domain = domain;
896 dvp->dva_ddip = ddip;
897 return (DDI_WALK_TERMINATE);
900 /* Domain may already be set, continue walking so that ddip gets set */
901 if (dvp->dva_domain) {
902 return (DDI_WALK_CONTINUE);
905 /* domain is not set in either immu_devi or dvp */
906 domain = bdf_domain_lookup(immu_devi);
907 if (domain == NULL) {
908 return (DDI_WALK_CONTINUE);
911 /* ok, the BDF hash had a domain for this BDF. */
913 /* Grab lock again to check if something else set immu_devi fields */
914 mutex_enter(&(DEVI(pdip)->devi_lock));
915 if (immu_devi->imd_domain != NULL) {
916 dvp->dva_domain = domain;
917 } else {
918 dvp->dva_domain = domain;
920 mutex_exit(&(DEVI(pdip)->devi_lock));
923 * walk upwards until the topmost PCI bridge is found
925 return (DDI_WALK_CONTINUE);
929 static void
930 map_unity_domain(domain_t *domain)
932 struct memlist *mp;
933 uint64_t start;
934 uint64_t npages;
935 immu_dcookie_t dcookies[1] = {0};
936 int dcount = 0;
939 * UNITY arenas are a mirror of the physical memory
940 * installed on the system.
943 #ifdef BUGGY_DRIVERS
945 * Dont skip page0. Some broken HW/FW access it.
947 dcookies[0].dck_paddr = 0;
948 dcookies[0].dck_npages = 1;
949 dcount = 1;
950 (void) dvma_map(domain, 0, 1, dcookies, dcount, NULL,
951 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE | IMMU_FLAGS_PAGE1);
952 #endif
954 memlist_read_lock();
956 mp = phys_install;
958 if (mp->ml_address == 0) {
959 /* since we already mapped page1 above */
960 start = IMMU_PAGESIZE;
961 } else {
962 start = mp->ml_address;
964 npages = mp->ml_size/IMMU_PAGESIZE + 1;
966 dcookies[0].dck_paddr = start;
967 dcookies[0].dck_npages = npages;
968 dcount = 1;
969 (void) dvma_map(domain, start, npages, dcookies,
970 dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
972 ddi_err(DER_LOG, domain->dom_dip, "iommu: mapping PHYS span [0x%" PRIx64
973 " - 0x%" PRIx64 "]", start, start + mp->ml_size);
975 mp = mp->ml_next;
976 while (mp) {
977 ddi_err(DER_LOG, domain->dom_dip,
978 "iommu: mapping PHYS span [0x%" PRIx64 " - 0x%" PRIx64 "]",
979 mp->ml_address, mp->ml_address + mp->ml_size);
981 start = mp->ml_address;
982 npages = mp->ml_size/IMMU_PAGESIZE + 1;
984 dcookies[0].dck_paddr = start;
985 dcookies[0].dck_npages = npages;
986 dcount = 1;
987 (void) dvma_map(domain, start, npages,
988 dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
989 mp = mp->ml_next;
992 mp = bios_rsvd;
993 while (mp) {
994 ddi_err(DER_LOG, domain->dom_dip,
995 "iommu: mapping PHYS span [0x%" PRIx64 " - 0x%" PRIx64 "]",
996 mp->ml_address, mp->ml_address + mp->ml_size);
998 start = mp->ml_address;
999 npages = mp->ml_size/IMMU_PAGESIZE + 1;
1001 dcookies[0].dck_paddr = start;
1002 dcookies[0].dck_npages = npages;
1003 dcount = 1;
1004 (void) dvma_map(domain, start, npages,
1005 dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
1007 mp = mp->ml_next;
1010 memlist_read_unlock();
1014 * create_xlate_arena()
1015 * Create the dvma arena for a domain with translation
1016 * mapping
1018 static void
1019 create_xlate_arena(immu_t *immu, domain_t *domain,
1020 dev_info_t *rdip, immu_flags_t immu_flags)
1022 char *arena_name;
1023 struct memlist *mp;
1024 int vmem_flags;
1025 uint64_t start;
1026 uint_t mgaw;
1027 uint64_t size;
1028 uint64_t maxaddr;
1029 void *vmem_ret;
1031 arena_name = domain->dom_dvma_arena_name;
1033 /* Note, don't do sizeof (arena_name) - it is just a pointer */
1034 (void) snprintf(arena_name,
1035 sizeof (domain->dom_dvma_arena_name),
1036 "%s-domain-%d-xlate-DVMA-arena", immu->immu_name,
1037 domain->dom_did);
1039 vmem_flags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? VM_NOSLEEP : VM_SLEEP;
1041 /* Restrict mgaddr (max guest addr) to MGAW */
1042 mgaw = IMMU_CAP_MGAW(immu->immu_regs_cap);
1045 * To ensure we avoid ioapic and PCI MMIO ranges we just
1046 * use the physical memory address range of the system as the
1047 * range
1049 maxaddr = ((uint64_t)1 << mgaw);
1051 memlist_read_lock();
1053 mp = phys_install;
1055 if (mp->ml_address == 0)
1056 start = MMU_PAGESIZE;
1057 else
1058 start = mp->ml_address;
1060 if (start + mp->ml_size > maxaddr)
1061 size = maxaddr - start;
1062 else
1063 size = mp->ml_size;
1065 ddi_err(DER_VERB, rdip,
1066 "iommu: %s: Creating dvma vmem arena [0x%" PRIx64
1067 " - 0x%" PRIx64 "]", arena_name, start, start + size);
1070 * We always allocate in quanta of IMMU_PAGESIZE
1072 domain->dom_dvma_arena = vmem_create(arena_name,
1073 (void *)(uintptr_t)start, /* start addr */
1074 size, /* size */
1075 IMMU_PAGESIZE, /* quantum */
1076 NULL, /* afunc */
1077 NULL, /* ffunc */
1078 NULL, /* source */
1079 0, /* qcache_max */
1080 vmem_flags);
1082 if (domain->dom_dvma_arena == NULL) {
1083 ddi_err(DER_PANIC, rdip,
1084 "Failed to allocate DVMA arena(%s) "
1085 "for domain ID (%d)", arena_name, domain->dom_did);
1086 /*NOTREACHED*/
1089 mp = mp->ml_next;
1090 while (mp) {
1092 if (mp->ml_address == 0)
1093 start = MMU_PAGESIZE;
1094 else
1095 start = mp->ml_address;
1097 if (start + mp->ml_size > maxaddr)
1098 size = maxaddr - start;
1099 else
1100 size = mp->ml_size;
1102 ddi_err(DER_VERB, rdip,
1103 "iommu: %s: Adding dvma vmem span [0x%" PRIx64
1104 " - 0x%" PRIx64 "]", arena_name, start,
1105 start + size);
1107 vmem_ret = vmem_add(domain->dom_dvma_arena,
1108 (void *)(uintptr_t)start, size, vmem_flags);
1110 if (vmem_ret == NULL) {
1111 ddi_err(DER_PANIC, rdip,
1112 "Failed to allocate DVMA arena(%s) "
1113 "for domain ID (%d)",
1114 arena_name, domain->dom_did);
1115 /*NOTREACHED*/
1117 mp = mp->ml_next;
1119 memlist_read_unlock();
1122 /* ################################### DOMAIN CODE ######################### */
1125 * Set the domain and domain-dip for a dip
1127 static void
1128 set_domain(
1129 dev_info_t *dip,
1130 dev_info_t *ddip,
1131 domain_t *domain)
1133 immu_devi_t *immu_devi;
1134 domain_t *fdomain;
1135 dev_info_t *fddip;
1137 immu_devi = immu_devi_get(dip);
1139 mutex_enter(&(DEVI(dip)->devi_lock));
1140 fddip = immu_devi->imd_ddip;
1141 fdomain = immu_devi->imd_domain;
1143 if (fddip) {
1144 ASSERT(fddip == ddip);
1145 } else {
1146 immu_devi->imd_ddip = ddip;
1149 if (fdomain) {
1150 ASSERT(fdomain == domain);
1151 } else {
1152 immu_devi->imd_domain = domain;
1154 mutex_exit(&(DEVI(dip)->devi_lock));
1158 * device_domain()
1159 * Get domain for a device. The domain may be global in which case it
1160 * is shared between all IOMMU units. Due to potential AGAW differences
1161 * between IOMMU units, such global domains *have to be* UNITY mapping
1162 * domains. Alternatively, the domain may be local to a IOMMU unit.
1163 * Local domains may be shared or immu_devi, although the
1164 * scope of sharing
1165 * is restricted to devices controlled by the IOMMU unit to
1166 * which the domain
1167 * belongs. If shared, they (currently) have to be UNITY domains. If
1168 * immu_devi a domain may be either UNITY or translation (XLATE) domain.
1170 static domain_t *
1171 device_domain(dev_info_t *rdip, dev_info_t **ddipp, immu_flags_t immu_flags)
1173 dev_info_t *ddip; /* topmost dip in domain i.e. domain owner */
1174 immu_t *immu;
1175 domain_t *domain;
1176 dvma_arg_t dvarg = {0};
1177 int level;
1179 *ddipp = NULL;
1182 * Check if the domain is already set. This is usually true
1183 * if this is not the first DVMA transaction.
1185 ddip = NULL;
1186 domain = immu_devi_domain(rdip, &ddip);
1187 if (domain) {
1188 *ddipp = ddip;
1189 return (domain);
1192 immu = immu_dvma_get_immu(rdip, immu_flags);
1193 if (immu == NULL) {
1195 * possible that there is no IOMMU unit for this device
1196 * - BIOS bugs are one example.
1198 ddi_err(DER_WARN, rdip, "No iommu unit found for device");
1199 return (NULL);
1202 immu_flags |= immu_devi_get(rdip)->imd_dvma_flags;
1204 dvarg.dva_rdip = rdip;
1205 dvarg.dva_ddip = NULL;
1206 dvarg.dva_domain = NULL;
1207 dvarg.dva_flags = immu_flags;
1208 level = 0;
1209 if (immu_walk_ancestor(rdip, NULL, get_branch_domain,
1210 &dvarg, &level, immu_flags) != DDI_SUCCESS) {
1212 * maybe low memory. return error,
1213 * so driver tries again later
1215 return (NULL);
1218 /* should have walked at least 1 dip (i.e. edip) */
1219 ASSERT(level > 0);
1221 ddip = dvarg.dva_ddip; /* must be present */
1222 domain = dvarg.dva_domain; /* may be NULL */
1225 * We may find the domain during our ancestor walk on any one of our
1226 * ancestor dips, If the domain is found then the domain-dip
1227 * (i.e. ddip) will also be found in the same immu_devi struct.
1228 * The domain-dip is the highest ancestor dip which shares the
1229 * same domain with edip.
1230 * The domain may or may not be found, but the domain dip must
1231 * be found.
1233 if (ddip == NULL) {
1234 ddi_err(DER_MODE, rdip, "Cannot find domain dip for device.");
1235 return (NULL);
1239 * Did we find a domain ?
1241 if (domain) {
1242 goto found;
1245 /* nope, so allocate */
1246 domain = domain_create(immu, ddip, rdip, immu_flags);
1247 if (domain == NULL) {
1248 return (NULL);
1251 /*FALLTHROUGH*/
1252 found:
1254 * We know *domain *is* the right domain, so panic if
1255 * another domain is set for either the request-dip or
1256 * effective dip.
1258 set_domain(ddip, ddip, domain);
1259 set_domain(rdip, ddip, domain);
1261 *ddipp = ddip;
1262 return (domain);
1265 static void
1266 create_unity_domain(immu_t *immu)
1268 domain_t *domain;
1270 /* domain created during boot and always use sleep flag */
1271 domain = kmem_zalloc(sizeof (domain_t), KM_SLEEP);
1273 rw_init(&(domain->dom_pgtable_rwlock), NULL, RW_DEFAULT, NULL);
1275 domain->dom_did = IMMU_UNITY_DID;
1276 domain->dom_maptype = IMMU_MAPTYPE_UNITY;
1278 domain->dom_immu = immu;
1279 immu->immu_unity_domain = domain;
1282 * Setup the domain's initial page table
1283 * should never fail.
1285 domain->dom_pgtable_root = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1286 pgtable_zero(domain->dom_pgtable_root);
1289 * Only map all physical memory in to the unity domain
1290 * if passthrough is not supported. If it is supported,
1291 * passthrough is set in the context entry instead.
1293 if (!IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1294 map_unity_domain(domain);
1298 * put it on the system-wide UNITY domain list
1300 mutex_enter(&(immu_domain_lock));
1301 list_insert_tail(&immu_unity_domain_list, domain);
1302 mutex_exit(&(immu_domain_lock));
1306 * ddip is the domain-dip - the topmost dip in a domain
1307 * rdip is the requesting-dip - the device which is
1308 * requesting DVMA setup
1309 * if domain is a non-shared domain rdip == ddip
1311 static domain_t *
1312 domain_create(immu_t *immu, dev_info_t *ddip, dev_info_t *rdip,
1313 immu_flags_t immu_flags)
1315 int kmflags;
1316 domain_t *domain;
1317 char mod_hash_name[128];
1318 immu_devi_t *immu_devi;
1319 int did;
1320 immu_dcookie_t dcookies[1] = {0};
1321 int dcount = 0;
1323 immu_devi = immu_devi_get(rdip);
1326 * First allocate a domainid.
1327 * This routine will never fail, since if we run out
1328 * of domains the unity domain will be allocated.
1330 did = did_alloc(immu, rdip, ddip, immu_flags);
1331 if (did == IMMU_UNITY_DID) {
1332 /* domain overflow */
1333 ASSERT(immu->immu_unity_domain);
1334 return (immu->immu_unity_domain);
1337 kmflags = (immu_flags & IMMU_FLAGS_NOSLEEP) ? KM_NOSLEEP : KM_SLEEP;
1338 domain = kmem_zalloc(sizeof (domain_t), kmflags);
1339 if (domain == NULL) {
1340 ddi_err(DER_PANIC, rdip, "Failed to alloc DVMA domain "
1341 "structure for device. IOMMU unit: %s", immu->immu_name);
1342 /*NOTREACHED*/
1345 rw_init(&(domain->dom_pgtable_rwlock), NULL, RW_DEFAULT, NULL);
1347 (void) snprintf(mod_hash_name, sizeof (mod_hash_name),
1348 "immu%s-domain%d-pava-hash", immu->immu_name, did);
1350 domain->dom_did = did;
1351 domain->dom_immu = immu;
1352 domain->dom_maptype = IMMU_MAPTYPE_XLATE;
1353 domain->dom_dip = ddip;
1356 * Create xlate DVMA arena for this domain.
1358 create_xlate_arena(immu, domain, rdip, immu_flags);
1361 * Setup the domain's initial page table
1363 domain->dom_pgtable_root = pgtable_alloc(immu, immu_flags);
1364 if (domain->dom_pgtable_root == NULL) {
1365 ddi_err(DER_PANIC, rdip, "Failed to alloc root "
1366 "pgtable for domain (%d). IOMMU unit: %s",
1367 domain->dom_did, immu->immu_name);
1368 /*NOTREACHED*/
1370 pgtable_zero(domain->dom_pgtable_root);
1373 * Since this is a immu unit-specific domain, put it on
1374 * the per-immu domain list.
1376 mutex_enter(&(immu->immu_lock));
1377 list_insert_head(&immu->immu_domain_list, domain);
1378 mutex_exit(&(immu->immu_lock));
1381 * Also put it on the system-wide xlate domain list
1383 mutex_enter(&(immu_domain_lock));
1384 list_insert_head(&immu_xlate_domain_list, domain);
1385 mutex_exit(&(immu_domain_lock));
1387 bdf_domain_insert(immu_devi, domain);
1389 #ifdef BUGGY_DRIVERS
1391 * Map page0. Some broken HW/FW access it.
1393 dcookies[0].dck_paddr = 0;
1394 dcookies[0].dck_npages = 1;
1395 dcount = 1;
1396 (void) dvma_map(domain, 0, 1, dcookies, dcount, NULL,
1397 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE | IMMU_FLAGS_PAGE1);
1398 #endif
1399 return (domain);
1403 * Create domainid arena.
1404 * Domainid 0 is reserved by Vt-d spec and cannot be used by
1405 * system software.
1406 * Domainid 1 is reserved by solaris and used for *all* of the following:
1407 * as the "uninitialized" domain - For devices not yet controlled
1408 * by Solaris
1409 * as the "unity" domain - For devices that will always belong
1410 * to the unity domain
1411 * as the "overflow" domain - Used for any new device after we
1412 * run out of domains
1413 * All of the above domains map into a single domain with
1414 * domainid 1 and UNITY DVMA mapping
1415 * Each IMMU unity has its own unity/uninit/overflow domain
1417 static void
1418 did_init(immu_t *immu)
1420 (void) snprintf(immu->immu_did_arena_name,
1421 sizeof (immu->immu_did_arena_name),
1422 "%s_domainid_arena", immu->immu_name);
1424 ddi_err(DER_VERB, immu->immu_dip, "creating domainid arena %s",
1425 immu->immu_did_arena_name);
1427 immu->immu_did_arena = vmem_create(
1428 immu->immu_did_arena_name,
1429 (void *)(uintptr_t)(IMMU_UNITY_DID + 1), /* start addr */
1430 immu->immu_max_domains - IMMU_UNITY_DID,
1431 1, /* quantum */
1432 NULL, /* afunc */
1433 NULL, /* ffunc */
1434 NULL, /* source */
1435 0, /* qcache_max */
1436 VM_SLEEP);
1438 /* Even with SLEEP flag, vmem_create() can fail */
1439 if (immu->immu_did_arena == NULL) {
1440 ddi_err(DER_PANIC, NULL, "%s: Failed to create Intel "
1441 "IOMMU domainid allocator: %s", immu->immu_name,
1442 immu->immu_did_arena_name);
1446 /* ######################### CONTEXT CODE ################################# */
1448 static void
1449 context_set(immu_t *immu, domain_t *domain, pgtable_t *root_table,
1450 int bus, int devfunc)
1452 pgtable_t *context;
1453 pgtable_t *pgtable_root;
1454 hw_rce_t *hw_rent;
1455 hw_rce_t *hw_cent;
1456 hw_rce_t *ctxp;
1457 int sid;
1458 krw_t rwtype;
1459 boolean_t fill_root;
1460 boolean_t fill_ctx;
1462 pgtable_root = domain->dom_pgtable_root;
1464 ctxp = (hw_rce_t *)(root_table->swpg_next_array);
1465 context = *(pgtable_t **)(ctxp + bus);
1466 hw_rent = (hw_rce_t *)(root_table->hwpg_vaddr) + bus;
1468 fill_root = B_FALSE;
1469 fill_ctx = B_FALSE;
1471 /* Check the most common case first with reader lock */
1472 rw_enter(&(immu->immu_ctx_rwlock), RW_READER);
1473 rwtype = RW_READER;
1474 again:
1475 if (ROOT_GET_P(hw_rent)) {
1476 hw_cent = (hw_rce_t *)(context->hwpg_vaddr) + devfunc;
1477 if (CONT_GET_AVAIL(hw_cent) == IMMU_CONT_INITED) {
1478 rw_exit(&(immu->immu_ctx_rwlock));
1479 return;
1480 } else {
1481 fill_ctx = B_TRUE;
1483 } else {
1484 fill_root = B_TRUE;
1485 fill_ctx = B_TRUE;
1488 if (rwtype == RW_READER &&
1489 rw_tryupgrade(&(immu->immu_ctx_rwlock)) == 0) {
1490 rw_exit(&(immu->immu_ctx_rwlock));
1491 rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER);
1492 rwtype = RW_WRITER;
1493 goto again;
1495 rwtype = RW_WRITER;
1497 if (fill_root == B_TRUE) {
1498 ROOT_SET_CONT(hw_rent, context->hwpg_paddr);
1499 ROOT_SET_P(hw_rent);
1500 immu_regs_cpu_flush(immu, (caddr_t)hw_rent, sizeof (hw_rce_t));
1503 if (fill_ctx == B_TRUE) {
1504 hw_cent = (hw_rce_t *)(context->hwpg_vaddr) + devfunc;
1505 /* need to disable context entry before reprogramming it */
1506 bzero(hw_cent, sizeof (hw_rce_t));
1508 /* flush caches */
1509 immu_regs_cpu_flush(immu, (caddr_t)hw_cent, sizeof (hw_rce_t));
1511 sid = ((bus << 8) | devfunc);
1512 immu_flush_context_fsi(immu, 0, sid, domain->dom_did,
1513 &immu->immu_ctx_inv_wait);
1515 CONT_SET_AVAIL(hw_cent, IMMU_CONT_INITED);
1516 CONT_SET_DID(hw_cent, domain->dom_did);
1517 CONT_SET_AW(hw_cent, immu->immu_dvma_agaw);
1518 CONT_SET_ASR(hw_cent, pgtable_root->hwpg_paddr);
1519 if (domain->dom_did == IMMU_UNITY_DID &&
1520 IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1521 CONT_SET_TTYPE(hw_cent, TTYPE_PASSTHRU);
1522 else
1523 /*LINTED*/
1524 CONT_SET_TTYPE(hw_cent, TTYPE_XLATE_ONLY);
1525 CONT_SET_P(hw_cent);
1526 if (IMMU_ECAP_GET_CH(immu->immu_regs_excap)) {
1527 CONT_SET_EH(hw_cent);
1528 if (immu_use_alh)
1529 CONT_SET_ALH(hw_cent);
1531 immu_regs_cpu_flush(immu, (caddr_t)hw_cent, sizeof (hw_rce_t));
1533 rw_exit(&(immu->immu_ctx_rwlock));
1536 static pgtable_t *
1537 context_create(immu_t *immu)
1539 int bus;
1540 int devfunc;
1541 pgtable_t *root_table;
1542 pgtable_t *context;
1543 pgtable_t *pgtable_root;
1544 hw_rce_t *ctxp;
1545 hw_rce_t *hw_rent;
1546 hw_rce_t *hw_cent;
1548 /* Allocate a zeroed root table (4K 256b entries) */
1549 root_table = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1550 pgtable_zero(root_table);
1553 * Setup context tables for all possible root table entries.
1554 * Start out with unity domains for all entries.
1556 ctxp = (hw_rce_t *)(root_table->swpg_next_array);
1557 hw_rent = (hw_rce_t *)(root_table->hwpg_vaddr);
1558 for (bus = 0; bus < IMMU_ROOT_NUM; bus++, ctxp++, hw_rent++) {
1559 context = pgtable_alloc(immu, IMMU_FLAGS_SLEEP);
1560 pgtable_zero(context);
1561 ROOT_SET_P(hw_rent);
1562 ROOT_SET_CONT(hw_rent, context->hwpg_paddr);
1563 hw_cent = (hw_rce_t *)(context->hwpg_vaddr);
1564 for (devfunc = 0; devfunc < IMMU_CONT_NUM;
1565 devfunc++, hw_cent++) {
1566 pgtable_root =
1567 immu->immu_unity_domain->dom_pgtable_root;
1568 CONT_SET_DID(hw_cent,
1569 immu->immu_unity_domain->dom_did);
1570 CONT_SET_AW(hw_cent, immu->immu_dvma_agaw);
1571 CONT_SET_ASR(hw_cent, pgtable_root->hwpg_paddr);
1572 if (IMMU_ECAP_GET_PT(immu->immu_regs_excap))
1573 CONT_SET_TTYPE(hw_cent, TTYPE_PASSTHRU);
1574 else
1575 /*LINTED*/
1576 CONT_SET_TTYPE(hw_cent, TTYPE_XLATE_ONLY);
1577 CONT_SET_AVAIL(hw_cent, IMMU_CONT_UNINITED);
1578 CONT_SET_P(hw_cent);
1580 immu_regs_cpu_flush(immu, context->hwpg_vaddr, IMMU_PAGESIZE);
1581 *((pgtable_t **)ctxp) = context;
1584 return (root_table);
1588 * Called during rootnex attach, so no locks needed
1590 static void
1591 context_init(immu_t *immu)
1593 rw_init(&(immu->immu_ctx_rwlock), NULL, RW_DEFAULT, NULL);
1595 immu_init_inv_wait(&immu->immu_ctx_inv_wait, "ctxglobal", B_TRUE);
1597 immu_regs_wbf_flush(immu);
1599 immu->immu_ctx_root = context_create(immu);
1601 immu_regs_set_root_table(immu);
1603 rw_enter(&(immu->immu_ctx_rwlock), RW_WRITER);
1604 immu_flush_context_gbl(immu, &immu->immu_ctx_inv_wait);
1605 immu_flush_iotlb_gbl(immu, &immu->immu_ctx_inv_wait);
1606 rw_exit(&(immu->immu_ctx_rwlock));
1611 * Find top pcib
1613 static int
1614 find_top_pcib(dev_info_t *dip, void *arg)
1616 immu_devi_t *immu_devi;
1617 dev_info_t **pcibdipp = (dev_info_t **)arg;
1619 immu_devi = immu_devi_get(dip);
1621 if (immu_devi->imd_pcib_type == IMMU_PCIB_PCI_PCI) {
1622 *pcibdipp = dip;
1625 return (DDI_WALK_CONTINUE);
1628 static int
1629 immu_context_update(immu_t *immu, domain_t *domain, dev_info_t *ddip,
1630 dev_info_t *rdip, immu_flags_t immu_flags)
1632 immu_devi_t *r_immu_devi;
1633 immu_devi_t *d_immu_devi;
1634 int r_bus;
1635 int d_bus;
1636 int r_devfunc;
1637 int d_devfunc;
1638 immu_pcib_t d_pcib_type;
1639 dev_info_t *pcibdip;
1641 if (ddip == NULL || rdip == NULL ||
1642 ddip == root_devinfo || rdip == root_devinfo) {
1643 ddi_err(DER_MODE, rdip, "immu_contexts_update: domain-dip or "
1644 "request-dip are NULL or are root devinfo");
1645 return (DDI_FAILURE);
1649 * We need to set the context fields
1650 * based on what type of device rdip and ddip are.
1651 * To do that we need the immu_devi field.
1652 * Set the immu_devi field (if not already set)
1654 if (immu_devi_set(ddip, immu_flags) == DDI_FAILURE) {
1655 ddi_err(DER_MODE, rdip,
1656 "immu_context_update: failed to set immu_devi for ddip");
1657 return (DDI_FAILURE);
1660 if (immu_devi_set(rdip, immu_flags) == DDI_FAILURE) {
1661 ddi_err(DER_MODE, rdip,
1662 "immu_context_update: failed to set immu_devi for rdip");
1663 return (DDI_FAILURE);
1666 d_immu_devi = immu_devi_get(ddip);
1667 r_immu_devi = immu_devi_get(rdip);
1669 d_bus = d_immu_devi->imd_bus;
1670 d_devfunc = d_immu_devi->imd_devfunc;
1671 d_pcib_type = d_immu_devi->imd_pcib_type;
1672 r_bus = r_immu_devi->imd_bus;
1673 r_devfunc = r_immu_devi->imd_devfunc;
1675 if (rdip == ddip) {
1676 /* rdip is a PCIE device. set context for it only */
1677 context_set(immu, domain, immu->immu_ctx_root, r_bus,
1678 r_devfunc);
1679 #ifdef BUGGY_DRIVERS
1680 } else if (r_immu_devi == d_immu_devi) {
1681 #ifdef TEST
1682 ddi_err(DER_WARN, rdip, "Driver bug: Devices 0x%lx and "
1683 "0x%lx are identical", rdip, ddip);
1684 #endif
1685 /* rdip is a PCIE device. set context for it only */
1686 context_set(immu, domain, immu->immu_ctx_root, r_bus,
1687 r_devfunc);
1688 #endif
1689 } else if (d_pcib_type == IMMU_PCIB_PCIE_PCI) {
1691 * ddip is a PCIE_PCI bridge. Set context for ddip's
1692 * secondary bus. If rdip is on ddip's secondary
1693 * bus, set context for rdip. Else, set context
1694 * for rdip's PCI bridge on ddip's secondary bus.
1696 context_set(immu, domain, immu->immu_ctx_root,
1697 d_immu_devi->imd_sec, 0);
1698 if (d_immu_devi->imd_sec == r_bus) {
1699 context_set(immu, domain, immu->immu_ctx_root,
1700 r_bus, r_devfunc);
1701 } else {
1702 pcibdip = NULL;
1703 if (immu_walk_ancestor(rdip, ddip, find_top_pcib,
1704 &pcibdip, NULL, immu_flags) == DDI_SUCCESS &&
1705 pcibdip != NULL) {
1706 r_immu_devi = immu_devi_get(pcibdip);
1707 r_bus = r_immu_devi->imd_bus;
1708 r_devfunc = r_immu_devi->imd_devfunc;
1709 context_set(immu, domain, immu->immu_ctx_root,
1710 r_bus, r_devfunc);
1711 } else {
1712 ddi_err(DER_PANIC, rdip, "Failed to find PCI "
1713 " bridge for PCI device");
1714 /*NOTREACHED*/
1717 } else if (d_pcib_type == IMMU_PCIB_PCI_PCI) {
1718 context_set(immu, domain, immu->immu_ctx_root, d_bus,
1719 d_devfunc);
1720 } else if (d_pcib_type == IMMU_PCIB_ENDPOINT) {
1722 * ddip is a PCIE device which has a non-PCI device under it
1723 * i.e. it is a PCI-nonPCI bridge. Example: pciicde-ata
1725 context_set(immu, domain, immu->immu_ctx_root, d_bus,
1726 d_devfunc);
1727 } else {
1728 ddi_err(DER_PANIC, rdip, "unknown device type. Cannot "
1729 "set iommu context.");
1730 /*NOTREACHED*/
1733 /* XXX do we need a membar_producer() here */
1734 return (DDI_SUCCESS);
1737 /* ##################### END CONTEXT CODE ################################## */
1738 /* ##################### MAPPING CODE ################################## */
1741 #ifdef DEBUG
1742 static boolean_t
1743 PDTE_check(immu_t *immu, hw_pdte_t pdte, pgtable_t *next, paddr_t paddr,
1744 dev_info_t *rdip, immu_flags_t immu_flags)
1746 /* The PDTE must be set i.e. present bit is set */
1747 if (!PDTE_P(pdte)) {
1748 ddi_err(DER_MODE, rdip, "No present flag");
1749 return (B_FALSE);
1753 * Just assert to check most significant system software field
1754 * (PDTE_SW4) as it is same as present bit and we
1755 * checked that above
1757 ASSERT(PDTE_SW4(pdte));
1760 * TM field should be clear if not reserved.
1761 * non-leaf is always reserved
1763 if (next == NULL && immu->immu_TM_reserved == B_FALSE) {
1764 if (PDTE_TM(pdte)) {
1765 ddi_err(DER_MODE, rdip, "TM flag set");
1766 return (B_FALSE);
1771 * The SW3 field is not used and must be clear
1773 if (PDTE_SW3(pdte)) {
1774 ddi_err(DER_MODE, rdip, "SW3 set");
1775 return (B_FALSE);
1779 * PFN (for PTE) or next level pgtable-paddr (for PDE) must be set
1781 if (next == NULL) {
1782 ASSERT(paddr % IMMU_PAGESIZE == 0);
1783 if (PDTE_PADDR(pdte) != paddr) {
1784 ddi_err(DER_MODE, rdip,
1785 "PTE paddr mismatch: %lx != %lx",
1786 PDTE_PADDR(pdte), paddr);
1787 return (B_FALSE);
1789 } else {
1790 if (PDTE_PADDR(pdte) != next->hwpg_paddr) {
1791 ddi_err(DER_MODE, rdip,
1792 "PDE paddr mismatch: %lx != %lx",
1793 PDTE_PADDR(pdte), next->hwpg_paddr);
1794 return (B_FALSE);
1799 * SNP field should be clear if not reserved.
1800 * non-leaf is always reserved
1802 if (next == NULL && immu->immu_SNP_reserved == B_FALSE) {
1803 if (PDTE_SNP(pdte)) {
1804 ddi_err(DER_MODE, rdip, "SNP set");
1805 return (B_FALSE);
1809 /* second field available for system software should be clear */
1810 if (PDTE_SW2(pdte)) {
1811 ddi_err(DER_MODE, rdip, "SW2 set");
1812 return (B_FALSE);
1815 /* Super pages field should be clear */
1816 if (PDTE_SP(pdte)) {
1817 ddi_err(DER_MODE, rdip, "SP set");
1818 return (B_FALSE);
1822 * least significant field available for
1823 * system software should be clear
1825 if (PDTE_SW1(pdte)) {
1826 ddi_err(DER_MODE, rdip, "SW1 set");
1827 return (B_FALSE);
1830 if ((immu_flags & IMMU_FLAGS_READ) && !PDTE_READ(pdte)) {
1831 ddi_err(DER_MODE, rdip, "READ not set");
1832 return (B_FALSE);
1835 if ((immu_flags & IMMU_FLAGS_WRITE) && !PDTE_WRITE(pdte)) {
1836 ddi_err(DER_MODE, rdip, "WRITE not set");
1837 return (B_FALSE);
1840 return (B_TRUE);
1842 #endif
1844 /*ARGSUSED*/
1845 static void
1846 PTE_clear_all(immu_t *immu, domain_t *domain, xlate_t *xlate,
1847 uint64_t *dvma_ptr, uint64_t *npages_ptr, dev_info_t *rdip)
1849 uint64_t npages;
1850 uint64_t dvma;
1851 pgtable_t *pgtable;
1852 hw_pdte_t *hwp;
1853 hw_pdte_t *shwp;
1854 int idx;
1856 pgtable = xlate->xlt_pgtable;
1857 idx = xlate->xlt_idx;
1859 dvma = *dvma_ptr;
1860 npages = *npages_ptr;
1863 * since a caller gets a unique dvma for a physical address,
1864 * no other concurrent thread will be writing to the same
1865 * PTE even if it has the same paddr. So no locks needed.
1867 shwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
1869 hwp = shwp;
1870 for (; npages > 0 && idx <= IMMU_PGTABLE_MAXIDX; idx++, hwp++) {
1871 PDTE_CLEAR_P(*hwp);
1872 dvma += IMMU_PAGESIZE;
1873 npages--;
1876 *dvma_ptr = dvma;
1877 *npages_ptr = npages;
1879 xlate->xlt_idx = idx;
1882 static void
1883 xlate_setup(uint64_t dvma, xlate_t *xlate, int nlevels)
1885 int level;
1886 uint64_t offbits;
1889 * Skip the first 12 bits which is the offset into
1890 * 4K PFN (phys page frame based on IMMU_PAGESIZE)
1892 offbits = dvma >> IMMU_PAGESHIFT;
1894 /* skip to level 1 i.e. leaf PTE */
1895 for (level = 1, xlate++; level <= nlevels; level++, xlate++) {
1896 xlate->xlt_level = level;
1897 xlate->xlt_idx = (offbits & IMMU_PGTABLE_LEVEL_MASK);
1898 ASSERT(xlate->xlt_idx <= IMMU_PGTABLE_MAXIDX);
1899 xlate->xlt_pgtable = NULL;
1900 offbits >>= IMMU_PGTABLE_LEVEL_STRIDE;
1905 * Read the pgtables
1907 static boolean_t
1908 PDE_lookup(domain_t *domain, xlate_t *xlate, int nlevels)
1910 pgtable_t *pgtable;
1911 pgtable_t *next;
1912 uint_t idx;
1914 /* start with highest level pgtable i.e. root */
1915 xlate += nlevels;
1917 if (xlate->xlt_pgtable == NULL) {
1918 xlate->xlt_pgtable = domain->dom_pgtable_root;
1921 for (; xlate->xlt_level > 1; xlate--) {
1922 idx = xlate->xlt_idx;
1923 pgtable = xlate->xlt_pgtable;
1925 if ((xlate - 1)->xlt_pgtable) {
1926 continue;
1929 /* Lock the pgtable in read mode */
1930 rw_enter(&(pgtable->swpg_rwlock), RW_READER);
1933 * since we are unmapping, the pgtable should
1934 * already point to a leafier pgtable.
1936 next = *(pgtable->swpg_next_array + idx);
1937 (xlate - 1)->xlt_pgtable = next;
1938 rw_exit(&(pgtable->swpg_rwlock));
1939 if (next == NULL)
1940 return (B_FALSE);
1943 return (B_TRUE);
1946 static void
1947 immu_fault_walk(void *arg, void *base, size_t len)
1949 uint64_t dvma, start;
1951 dvma = *(uint64_t *)arg;
1952 start = (uint64_t)(uintptr_t)base;
1954 if (dvma >= start && dvma < (start + len)) {
1955 ddi_err(DER_WARN, NULL,
1956 "faulting DVMA address is in vmem arena "
1957 "(%" PRIx64 "-%" PRIx64 ")",
1958 start, start + len);
1959 *(uint64_t *)arg = ~0ULL;
1963 void
1964 immu_print_fault_info(uint_t sid, uint64_t dvma)
1966 int nlevels;
1967 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
1968 xlate_t *xlatep;
1969 hw_pdte_t pte;
1970 domain_t *domain;
1971 immu_t *immu;
1972 uint64_t dvma_arg;
1974 if (mod_hash_find(bdf_domain_hash,
1975 (void *)(uintptr_t)sid, (void *)&domain) != 0) {
1976 ddi_err(DER_WARN, NULL,
1977 "no domain for faulting SID %08x", sid);
1978 return;
1981 immu = domain->dom_immu;
1983 dvma_arg = dvma;
1984 vmem_walk(domain->dom_dvma_arena, VMEM_ALLOC, immu_fault_walk,
1985 (void *)&dvma_arg);
1986 if (dvma_arg != ~0ULL)
1987 ddi_err(DER_WARN, domain->dom_dip,
1988 "faulting DVMA address is not in vmem arena");
1990 nlevels = immu->immu_dvma_nlevels;
1991 xlate_setup(dvma, xlate, nlevels);
1993 if (!PDE_lookup(domain, xlate, nlevels)) {
1994 ddi_err(DER_WARN, domain->dom_dip,
1995 "pte not found in domid %d for faulting addr %" PRIx64,
1996 domain->dom_did, dvma);
1997 return;
2000 xlatep = &xlate[1];
2001 pte = *((hw_pdte_t *)
2002 (xlatep->xlt_pgtable->hwpg_vaddr) + xlatep->xlt_idx);
2004 ddi_err(DER_WARN, domain->dom_dip,
2005 "domid %d pte: %" PRIx64 "(paddr %" PRIx64 ")", domain->dom_did,
2006 (unsigned long long)pte, (unsigned long long)PDTE_PADDR(pte));
2009 /*ARGSUSED*/
2010 static void
2011 PTE_set_one(immu_t *immu, hw_pdte_t *hwp, paddr_t paddr,
2012 dev_info_t *rdip, immu_flags_t immu_flags)
2014 hw_pdte_t pte;
2016 #ifndef DEBUG
2017 pte = immu->immu_ptemask;
2018 PDTE_SET_PADDR(pte, paddr);
2019 #else
2020 pte = *hwp;
2022 if (PDTE_P(pte)) {
2023 if (PDTE_PADDR(pte) != paddr) {
2024 ddi_err(DER_MODE, rdip, "PTE paddr %lx != paddr %lx",
2025 PDTE_PADDR(pte), paddr);
2027 #ifdef BUGGY_DRIVERS
2028 return;
2029 #else
2030 goto out;
2031 #endif
2034 /* clear TM field if not reserved */
2035 if (immu->immu_TM_reserved == B_FALSE) {
2036 PDTE_CLEAR_TM(pte);
2039 /* Clear 3rd field for system software - not used */
2040 PDTE_CLEAR_SW3(pte);
2042 /* Set paddr */
2043 ASSERT(paddr % IMMU_PAGESIZE == 0);
2044 PDTE_CLEAR_PADDR(pte);
2045 PDTE_SET_PADDR(pte, paddr);
2047 /* clear SNP field if not reserved. */
2048 if (immu->immu_SNP_reserved == B_FALSE) {
2049 PDTE_CLEAR_SNP(pte);
2052 /* Clear SW2 field available for software */
2053 PDTE_CLEAR_SW2(pte);
2056 /* SP is don't care for PTEs. Clear it for cleanliness */
2057 PDTE_CLEAR_SP(pte);
2059 /* Clear SW1 field available for software */
2060 PDTE_CLEAR_SW1(pte);
2063 * Now that we are done writing the PTE
2064 * set the "present" flag. Note this present
2065 * flag is a bit in the PDE/PTE that the
2066 * spec says is available for system software.
2067 * This is an implementation detail of Solaris
2068 * bare-metal Intel IOMMU.
2069 * The present field in a PDE/PTE is not defined
2070 * by the Vt-d spec
2073 PDTE_SET_P(pte);
2075 pte |= immu->immu_ptemask;
2077 out:
2078 #endif /* DEBUG */
2079 #ifdef BUGGY_DRIVERS
2080 PDTE_SET_READ(pte);
2081 PDTE_SET_WRITE(pte);
2082 #else
2083 if (immu_flags & IMMU_FLAGS_READ)
2084 PDTE_SET_READ(pte);
2085 if (immu_flags & IMMU_FLAGS_WRITE)
2086 PDTE_SET_WRITE(pte);
2087 #endif /* BUGGY_DRIVERS */
2089 *hwp = pte;
2092 /*ARGSUSED*/
2093 static void
2094 PTE_set_all(immu_t *immu, domain_t *domain, xlate_t *xlate,
2095 uint64_t *dvma_ptr, uint64_t *nvpages_ptr, immu_dcookie_t *dcookies,
2096 int dcount, dev_info_t *rdip, immu_flags_t immu_flags)
2098 paddr_t paddr;
2099 uint64_t nvpages;
2100 uint64_t nppages;
2101 uint64_t dvma;
2102 pgtable_t *pgtable;
2103 hw_pdte_t *hwp;
2104 hw_pdte_t *shwp;
2105 int idx, nset;
2106 int j;
2108 pgtable = xlate->xlt_pgtable;
2109 idx = xlate->xlt_idx;
2111 dvma = *dvma_ptr;
2112 nvpages = *nvpages_ptr;
2115 * since a caller gets a unique dvma for a physical address,
2116 * no other concurrent thread will be writing to the same
2117 * PTE even if it has the same paddr. So no locks needed.
2119 shwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
2121 hwp = shwp;
2122 for (j = dcount - 1; j >= 0; j--) {
2123 if (nvpages <= dcookies[j].dck_npages)
2124 break;
2125 nvpages -= dcookies[j].dck_npages;
2128 nppages = nvpages;
2129 paddr = dcookies[j].dck_paddr +
2130 (dcookies[j].dck_npages - nppages) * IMMU_PAGESIZE;
2132 nvpages = *nvpages_ptr;
2133 nset = 0;
2134 for (; nvpages > 0 && idx <= IMMU_PGTABLE_MAXIDX; idx++, hwp++) {
2135 PTE_set_one(immu, hwp, paddr, rdip, immu_flags);
2136 nset++;
2138 ASSERT(PDTE_check(immu, *hwp, NULL, paddr, rdip, immu_flags)
2139 == B_TRUE);
2140 nppages--;
2141 nvpages--;
2142 paddr += IMMU_PAGESIZE;
2143 dvma += IMMU_PAGESIZE;
2145 if (nppages == 0) {
2146 j++;
2149 if (j == dcount)
2150 break;
2152 if (nppages == 0) {
2153 nppages = dcookies[j].dck_npages;
2154 paddr = dcookies[j].dck_paddr;
2158 if (nvpages) {
2159 *dvma_ptr = dvma;
2160 *nvpages_ptr = nvpages;
2161 } else {
2162 *dvma_ptr = 0;
2163 *nvpages_ptr = 0;
2166 xlate->xlt_idx = idx;
2169 /*ARGSUSED*/
2170 static void
2171 PDE_set_one(immu_t *immu, hw_pdte_t *hwp, pgtable_t *next,
2172 dev_info_t *rdip, immu_flags_t immu_flags)
2174 hw_pdte_t pde;
2176 pde = *hwp;
2178 /* if PDE is already set, make sure it is correct */
2179 if (PDTE_P(pde)) {
2180 ASSERT(PDTE_PADDR(pde) == next->hwpg_paddr);
2181 #ifdef BUGGY_DRIVERS
2182 return;
2183 #else
2184 goto out;
2185 #endif
2188 /* Dont touch SW4, it is the present bit */
2190 /* don't touch TM field it is reserved for PDEs */
2192 /* 3rd field available for system software is not used */
2193 PDTE_CLEAR_SW3(pde);
2195 /* Set next level pgtable-paddr for PDE */
2196 PDTE_CLEAR_PADDR(pde);
2197 PDTE_SET_PADDR(pde, next->hwpg_paddr);
2199 /* don't touch SNP field it is reserved for PDEs */
2201 /* Clear second field available for system software */
2202 PDTE_CLEAR_SW2(pde);
2204 /* No super pages for PDEs */
2205 PDTE_CLEAR_SP(pde);
2207 /* Clear SW1 for software */
2208 PDTE_CLEAR_SW1(pde);
2211 * Now that we are done writing the PDE
2212 * set the "present" flag. Note this present
2213 * flag is a bit in the PDE/PTE that the
2214 * spec says is available for system software.
2215 * This is an implementation detail of Solaris
2216 * base-metal Intel IOMMU.
2217 * The present field in a PDE/PTE is not defined
2218 * by the Vt-d spec
2221 out:
2222 #ifdef BUGGY_DRIVERS
2223 PDTE_SET_READ(pde);
2224 PDTE_SET_WRITE(pde);
2225 #else
2226 if (immu_flags & IMMU_FLAGS_READ)
2227 PDTE_SET_READ(pde);
2228 if (immu_flags & IMMU_FLAGS_WRITE)
2229 PDTE_SET_WRITE(pde);
2230 #endif
2232 PDTE_SET_P(pde);
2234 *hwp = pde;
2238 * Used to set PDEs
2240 static boolean_t
2241 PDE_set_all(immu_t *immu, domain_t *domain, xlate_t *xlate, int nlevels,
2242 dev_info_t *rdip, immu_flags_t immu_flags)
2244 pgtable_t *pgtable;
2245 pgtable_t *new;
2246 pgtable_t *next;
2247 hw_pdte_t *hwp;
2248 int level;
2249 uint_t idx;
2250 krw_t rwtype;
2251 boolean_t set = B_FALSE;
2253 /* start with highest level pgtable i.e. root */
2254 xlate += nlevels;
2256 new = NULL;
2257 xlate->xlt_pgtable = domain->dom_pgtable_root;
2258 for (level = nlevels; level > 1; level--, xlate--) {
2259 idx = xlate->xlt_idx;
2260 pgtable = xlate->xlt_pgtable;
2262 /* Lock the pgtable in READ mode first */
2263 rw_enter(&(pgtable->swpg_rwlock), RW_READER);
2264 rwtype = RW_READER;
2265 again:
2266 hwp = (hw_pdte_t *)(pgtable->hwpg_vaddr) + idx;
2267 next = (pgtable->swpg_next_array)[idx];
2270 * check if leafier level already has a pgtable
2271 * if yes, verify
2273 if (next == NULL) {
2274 if (new == NULL) {
2276 IMMU_DPROBE2(immu__pdp__alloc, dev_info_t *,
2277 rdip, int, level);
2279 new = pgtable_alloc(immu, immu_flags);
2280 if (new == NULL) {
2281 ddi_err(DER_PANIC, rdip,
2282 "pgtable alloc err");
2284 pgtable_zero(new);
2287 /* Change to a write lock */
2288 if (rwtype == RW_READER &&
2289 rw_tryupgrade(&(pgtable->swpg_rwlock)) == 0) {
2290 rw_exit(&(pgtable->swpg_rwlock));
2291 rw_enter(&(pgtable->swpg_rwlock), RW_WRITER);
2292 rwtype = RW_WRITER;
2293 goto again;
2295 rwtype = RW_WRITER;
2296 next = new;
2297 (pgtable->swpg_next_array)[idx] = next;
2298 new = NULL;
2299 PDE_set_one(immu, hwp, next, rdip, immu_flags);
2300 set = B_TRUE;
2301 rw_downgrade(&(pgtable->swpg_rwlock));
2302 rwtype = RW_READER;
2304 #ifndef BUGGY_DRIVERS
2305 else {
2306 hw_pdte_t pde = *hwp;
2309 * If buggy driver we already set permission
2310 * READ+WRITE so nothing to do for that case
2311 * XXX Check that read writer perms change before
2312 * actually setting perms. Also need to hold lock
2314 if (immu_flags & IMMU_FLAGS_READ)
2315 PDTE_SET_READ(pde);
2316 if (immu_flags & IMMU_FLAGS_WRITE)
2317 PDTE_SET_WRITE(pde);
2319 *hwp = pde;
2321 #endif
2323 ASSERT(PDTE_check(immu, *hwp, next, 0, rdip, immu_flags)
2324 == B_TRUE);
2326 (xlate - 1)->xlt_pgtable = next;
2327 rw_exit(&(pgtable->swpg_rwlock));
2330 if (new) {
2331 pgtable_free(immu, new);
2334 return (set);
2338 * dvma_map()
2339 * map a contiguous range of DVMA pages
2341 * immu: IOMMU unit for which we are generating DVMA cookies
2342 * domain: domain
2343 * sdvma: Starting dvma
2344 * spaddr: Starting paddr
2345 * npages: Number of pages
2346 * rdip: requesting device
2347 * immu_flags: flags
2349 static boolean_t
2350 dvma_map(domain_t *domain, uint64_t sdvma, uint64_t snvpages,
2351 immu_dcookie_t *dcookies, int dcount, dev_info_t *rdip,
2352 immu_flags_t immu_flags)
2354 uint64_t dvma;
2355 uint64_t n;
2356 immu_t *immu = domain->dom_immu;
2357 int nlevels = immu->immu_dvma_nlevels;
2358 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
2359 boolean_t pde_set = B_FALSE;
2361 n = snvpages;
2362 dvma = sdvma;
2364 while (n > 0) {
2365 xlate_setup(dvma, xlate, nlevels);
2367 /* Lookup or allocate PGDIRs and PGTABLEs if necessary */
2368 if (PDE_set_all(immu, domain, xlate, nlevels, rdip, immu_flags)
2369 == B_TRUE) {
2370 pde_set = B_TRUE;
2373 /* set all matching ptes that fit into this leaf pgtable */
2374 PTE_set_all(immu, domain, &xlate[1], &dvma, &n, dcookies,
2375 dcount, rdip, immu_flags);
2378 return (pde_set);
2382 * dvma_unmap()
2383 * unmap a range of DVMAs
2385 * immu: IOMMU unit state
2386 * domain: domain for requesting device
2387 * ddip: domain-dip
2388 * dvma: starting DVMA
2389 * npages: Number of IMMU pages to be unmapped
2390 * rdip: requesting device
2392 static void
2393 dvma_unmap(domain_t *domain, uint64_t sdvma, uint64_t snpages,
2394 dev_info_t *rdip)
2396 immu_t *immu = domain->dom_immu;
2397 int nlevels = immu->immu_dvma_nlevels;
2398 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0};
2399 uint64_t n;
2400 uint64_t dvma;
2402 dvma = sdvma;
2403 n = snpages;
2405 while (n > 0) {
2406 /* setup the xlate array */
2407 xlate_setup(dvma, xlate, nlevels);
2409 /* just lookup existing pgtables. Should never fail */
2410 if (!PDE_lookup(domain, xlate, nlevels))
2411 ddi_err(DER_PANIC, rdip,
2412 "PTE not found for addr %" PRIx64,
2413 (unsigned long long)dvma);
2415 /* clear all matching ptes that fit into this leaf pgtable */
2416 PTE_clear_all(immu, domain, &xlate[1], &dvma, &n, rdip);
2419 /* No need to flush IOTLB after unmap */
2422 static uint64_t
2423 dvma_alloc(domain_t *domain, ddi_dma_attr_t *dma_attr, uint_t npages, int kmf)
2425 uint64_t dvma;
2426 size_t xsize, align;
2427 uint64_t minaddr, maxaddr;
2429 /* parameters */
2430 xsize = npages * IMMU_PAGESIZE;
2431 align = MAX((size_t)(dma_attr->dma_attr_align), IMMU_PAGESIZE);
2432 minaddr = dma_attr->dma_attr_addr_lo;
2433 maxaddr = dma_attr->dma_attr_addr_hi + 1;
2435 /* handle the rollover cases */
2436 if (maxaddr < dma_attr->dma_attr_addr_hi) {
2437 maxaddr = dma_attr->dma_attr_addr_hi;
2441 * allocate from vmem arena.
2443 dvma = (uint64_t)(uintptr_t)vmem_xalloc(domain->dom_dvma_arena,
2444 xsize, align, 0, 0, (void *)(uintptr_t)minaddr,
2445 (void *)(uintptr_t)maxaddr, kmf);
2447 return (dvma);
2450 static void
2451 dvma_prealloc(dev_info_t *rdip, immu_hdl_priv_t *ihp, ddi_dma_attr_t *dma_attr)
2453 int nlevels;
2454 xlate_t xlate[IMMU_PGTABLE_MAX_LEVELS + 1] = {0}, *xlp;
2455 uint64_t dvma, n;
2456 size_t xsize, align;
2457 uint64_t minaddr, maxaddr, dmamax;
2458 int on, npte, pindex;
2459 hw_pdte_t *shwp;
2460 immu_t *immu;
2461 domain_t *domain;
2463 /* parameters */
2464 domain = IMMU_DEVI(rdip)->imd_domain;
2465 immu = domain->dom_immu;
2466 nlevels = immu->immu_dvma_nlevels;
2467 xsize = IMMU_NPREPTES * IMMU_PAGESIZE;
2468 align = MAX((size_t)(dma_attr->dma_attr_align), IMMU_PAGESIZE);
2469 minaddr = dma_attr->dma_attr_addr_lo;
2470 if (dma_attr->dma_attr_flags & _DDI_DMA_BOUNCE_ON_SEG)
2471 dmamax = dma_attr->dma_attr_seg;
2472 else
2473 dmamax = dma_attr->dma_attr_addr_hi;
2474 maxaddr = dmamax + 1;
2476 if (maxaddr < dmamax)
2477 maxaddr = dmamax;
2479 dvma = (uint64_t)(uintptr_t)vmem_xalloc(domain->dom_dvma_arena,
2480 xsize, align, 0, dma_attr->dma_attr_seg + 1,
2481 (void *)(uintptr_t)minaddr, (void *)(uintptr_t)maxaddr, VM_NOSLEEP);
2483 ihp->ihp_predvma = dvma;
2484 ihp->ihp_npremapped = 0;
2485 if (dvma == 0)
2486 return;
2488 n = IMMU_NPREPTES;
2489 pindex = 0;
2492 * Set up a mapping at address 0, just so that all PDPs get allocated
2493 * now. Although this initial mapping should never be used,
2494 * explicitly set it to read-only, just to be safe.
2496 while (n > 0) {
2497 xlate_setup(dvma, xlate, nlevels);
2499 (void) PDE_set_all(immu, domain, xlate, nlevels, rdip,
2500 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2502 xlp = &xlate[1];
2503 shwp = (hw_pdte_t *)(xlp->xlt_pgtable->hwpg_vaddr)
2504 + xlp->xlt_idx;
2505 on = n;
2507 PTE_set_all(immu, domain, xlp, &dvma, &n, &immu_precookie,
2508 1, rdip, IMMU_FLAGS_READ);
2510 npte = on - n;
2512 while (npte > 0) {
2513 ihp->ihp_preptes[pindex++] = shwp;
2514 #ifdef BUGGY_DRIVERS
2515 PDTE_CLEAR_WRITE(*shwp);
2516 #endif
2517 shwp++;
2518 npte--;
2523 static void
2524 dvma_prefree(dev_info_t *rdip, immu_hdl_priv_t *ihp)
2526 domain_t *domain;
2528 domain = IMMU_DEVI(rdip)->imd_domain;
2530 if (ihp->ihp_predvma != 0) {
2531 dvma_unmap(domain, ihp->ihp_predvma, IMMU_NPREPTES, rdip);
2532 vmem_free(domain->dom_dvma_arena,
2533 (void *)(uintptr_t)ihp->ihp_predvma,
2534 IMMU_NPREPTES * IMMU_PAGESIZE);
2538 static void
2539 dvma_free(domain_t *domain, uint64_t dvma, uint64_t npages)
2541 uint64_t size = npages * IMMU_PAGESIZE;
2543 if (domain->dom_maptype != IMMU_MAPTYPE_XLATE)
2544 return;
2546 vmem_free(domain->dom_dvma_arena, (void *)(uintptr_t)dvma, size);
2549 static int
2550 immu_map_dvmaseg(dev_info_t *rdip, ddi_dma_handle_t handle,
2551 immu_hdl_priv_t *ihp, struct ddi_dma_req *dmareq,
2552 ddi_dma_obj_t *dma_out)
2554 domain_t *domain;
2555 immu_t *immu;
2556 immu_flags_t immu_flags;
2557 ddi_dma_atyp_t buftype;
2558 ddi_dma_obj_t *dmar_object;
2559 ddi_dma_attr_t *attrp;
2560 uint64_t offset, paddr, dvma, sdvma, rwmask;
2561 size_t npages, npgalloc;
2562 uint_t psize, size, pcnt, dmax;
2563 page_t **pparray;
2564 caddr_t vaddr;
2565 page_t *page;
2566 struct as *vas;
2567 immu_dcookie_t *dcookies;
2568 int pde_set;
2570 domain = IMMU_DEVI(rdip)->imd_domain;
2571 immu = domain->dom_immu;
2572 immu_flags = dma_to_immu_flags(dmareq);
2574 attrp = &((ddi_dma_impl_t *)handle)->dmai_attr;
2576 dmar_object = &dmareq->dmar_object;
2577 pparray = dmar_object->dmao_obj.virt_obj.v_priv;
2578 vaddr = dmar_object->dmao_obj.virt_obj.v_addr;
2579 buftype = dmar_object->dmao_type;
2580 size = dmar_object->dmao_size;
2582 IMMU_DPROBE3(immu__map__dvma, dev_info_t *, rdip, ddi_dma_atyp_t,
2583 buftype, uint_t, size);
2585 dcookies = &ihp->ihp_dcookies[0];
2587 pcnt = dmax = 0;
2589 /* retrieve paddr, psize, offset from dmareq */
2590 if (buftype == DMA_OTYP_PAGES) {
2591 page = dmar_object->dmao_obj.pp_obj.pp_pp;
2592 offset = dmar_object->dmao_obj.pp_obj.pp_offset &
2593 MMU_PAGEOFFSET;
2594 paddr = pfn_to_pa(page->p_pagenum) + offset;
2595 psize = MIN((MMU_PAGESIZE - offset), size);
2596 page = page->p_next;
2597 vas = dmar_object->dmao_obj.virt_obj.v_as;
2598 } else {
2599 if (vas == NULL) {
2600 vas = &kas;
2602 offset = (uintptr_t)vaddr & MMU_PAGEOFFSET;
2603 if (pparray != NULL) {
2604 paddr = pfn_to_pa(pparray[pcnt]->p_pagenum) + offset;
2605 psize = MIN((MMU_PAGESIZE - offset), size);
2606 pcnt++;
2607 } else {
2608 paddr = pfn_to_pa(hat_getpfnum(vas->a_hat,
2609 vaddr)) + offset;
2610 psize = MIN(size, (MMU_PAGESIZE - offset));
2611 vaddr += psize;
2615 npgalloc = IMMU_BTOPR(size + offset);
2617 if (npgalloc <= IMMU_NPREPTES && ihp->ihp_predvma != 0) {
2618 #ifdef BUGGY_DRIVERS
2619 rwmask = PDTE_MASK_R | PDTE_MASK_W | immu->immu_ptemask;
2620 #else
2621 rwmask = immu->immu_ptemask;
2622 if (immu_flags & IMMU_FLAGS_READ)
2623 rwmask |= PDTE_MASK_R;
2624 if (immu_flags & IMMU_FLAGS_WRITE)
2625 rwmask |= PDTE_MASK_W;
2626 #endif
2627 #ifdef DEBUG
2628 rwmask |= PDTE_MASK_P;
2629 #endif
2630 sdvma = ihp->ihp_predvma;
2631 ihp->ihp_npremapped = npgalloc;
2632 *ihp->ihp_preptes[0] =
2633 PDTE_PADDR(paddr & ~MMU_PAGEOFFSET) | rwmask;
2634 } else {
2635 ihp->ihp_npremapped = 0;
2636 sdvma = dvma_alloc(domain, attrp, npgalloc,
2637 dmareq->dmar_fp == DDI_DMA_SLEEP ? VM_SLEEP : VM_NOSLEEP);
2638 if (sdvma == 0)
2639 return (DDI_DMA_NORESOURCES);
2641 dcookies[0].dck_paddr = (paddr & ~MMU_PAGEOFFSET);
2642 dcookies[0].dck_npages = 1;
2645 IMMU_DPROBE3(immu__dvma__alloc, dev_info_t *, rdip, uint64_t, npgalloc,
2646 uint64_t, sdvma);
2648 dvma = sdvma;
2649 pde_set = 0;
2650 npages = 1;
2651 size -= psize;
2652 while (size > 0) {
2653 /* get the size for this page (i.e. partial or full page) */
2654 psize = MIN(size, MMU_PAGESIZE);
2655 if (buftype == DMA_OTYP_PAGES) {
2656 /* get the paddr from the page_t */
2657 paddr = pfn_to_pa(page->p_pagenum);
2658 page = page->p_next;
2659 } else if (pparray != NULL) {
2660 /* index into the array of page_t's to get the paddr */
2661 paddr = pfn_to_pa(pparray[pcnt]->p_pagenum);
2662 pcnt++;
2663 } else {
2664 /* call into the VM to get the paddr */
2665 paddr = pfn_to_pa(hat_getpfnum(vas->a_hat, vaddr));
2666 vaddr += psize;
2669 npages++;
2671 if (ihp->ihp_npremapped > 0) {
2672 *ihp->ihp_preptes[npages - 1] =
2673 PDTE_PADDR(paddr) | rwmask;
2674 } else if (IMMU_CONTIG_PADDR(dcookies[dmax], paddr)) {
2675 dcookies[dmax].dck_npages++;
2676 } else {
2677 /* No, we need a new dcookie */
2678 if (dmax == (IMMU_NDCK - 1)) {
2680 * Ran out of dcookies. Map them now.
2682 if (dvma_map(domain, dvma,
2683 npages, dcookies, dmax + 1, rdip,
2684 immu_flags))
2685 pde_set++;
2687 IMMU_DPROBE4(immu__dvmamap__early,
2688 dev_info_t *, rdip, uint64_t, dvma,
2689 uint_t, npages, uint_t, dmax+1);
2691 dvma += (npages << IMMU_PAGESHIFT);
2692 npages = 0;
2693 dmax = 0;
2694 } else
2695 dmax++;
2696 dcookies[dmax].dck_paddr = paddr;
2697 dcookies[dmax].dck_npages = 1;
2699 size -= psize;
2703 * Finish up, mapping all, or all of the remaining,
2704 * physical memory ranges.
2706 if (ihp->ihp_npremapped == 0 && npages > 0) {
2707 IMMU_DPROBE4(immu__dvmamap__late, dev_info_t *, rdip, \
2708 uint64_t, dvma, uint_t, npages, uint_t, dmax+1);
2710 if (dvma_map(domain, dvma, npages, dcookies,
2711 dmax + 1, rdip, immu_flags))
2712 pde_set++;
2715 /* Invalidate the IOTLB */
2716 immu_flush_iotlb_psi(immu, domain->dom_did, sdvma, npgalloc,
2717 pde_set > 0 ? TLB_IVA_WHOLE : TLB_IVA_LEAF,
2718 &ihp->ihp_inv_wait);
2720 ihp->ihp_ndvseg = 1;
2721 ihp->ihp_dvseg[0].dvs_start = sdvma;
2722 ihp->ihp_dvseg[0].dvs_len = dmar_object->dmao_size;
2724 dma_out->dmao_size = dmar_object->dmao_size;
2725 dma_out->dmao_obj.dvma_obj.dv_off = offset & IMMU_PAGEOFFSET;
2726 dma_out->dmao_obj.dvma_obj.dv_nseg = 1;
2727 dma_out->dmao_obj.dvma_obj.dv_seg = &ihp->ihp_dvseg[0];
2728 dma_out->dmao_type = DMA_OTYP_DVADDR;
2730 return (DDI_DMA_MAPPED);
2733 static int
2734 immu_unmap_dvmaseg(dev_info_t *rdip, ddi_dma_obj_t *dmao)
2736 uint64_t dvma, npages;
2737 domain_t *domain;
2738 struct dvmaseg *dvs;
2740 domain = IMMU_DEVI(rdip)->imd_domain;
2741 dvs = dmao->dmao_obj.dvma_obj.dv_seg;
2743 dvma = dvs[0].dvs_start;
2744 npages = IMMU_BTOPR(dvs[0].dvs_len + dmao->dmao_obj.dvma_obj.dv_off);
2746 #ifdef DEBUG
2747 /* Unmap only in DEBUG mode */
2748 dvma_unmap(domain, dvma, npages, rdip);
2749 #endif
2750 dvma_free(domain, dvma, npages);
2752 IMMU_DPROBE3(immu__dvma__free, dev_info_t *, rdip, uint_t, npages,
2753 uint64_t, dvma);
2755 #ifdef DEBUG
2757 * In the DEBUG case, the unmap was actually done,
2758 * but an IOTLB flush was not done. So, an explicit
2759 * write back flush is needed.
2761 immu_regs_wbf_flush(domain->dom_immu);
2762 #endif
2764 return (DDI_SUCCESS);
2767 /* ############################# Functions exported ######################## */
2770 * setup the DVMA subsystem
2771 * this code runs only for the first IOMMU unit
2773 void
2774 immu_dvma_setup(list_t *listp)
2776 immu_t *immu;
2777 uint_t kval;
2778 size_t nchains;
2780 /* locks */
2781 mutex_init(&immu_domain_lock, NULL, MUTEX_DEFAULT, NULL);
2783 /* Create lists */
2784 list_create(&immu_unity_domain_list, sizeof (domain_t),
2785 offsetof(domain_t, dom_maptype_node));
2786 list_create(&immu_xlate_domain_list, sizeof (domain_t),
2787 offsetof(domain_t, dom_maptype_node));
2789 /* Setup BDF domain hash */
2790 nchains = 0xff;
2791 kval = mod_hash_iddata_gen(nchains);
2793 bdf_domain_hash = mod_hash_create_extended("BDF-DOMAIN_HASH",
2794 nchains, mod_hash_null_keydtor, mod_hash_null_valdtor,
2795 mod_hash_byid, (void *)(uintptr_t)kval, mod_hash_idkey_cmp,
2796 KM_NOSLEEP);
2798 immu = list_head(listp);
2799 for (; immu; immu = list_next(listp, immu)) {
2800 create_unity_domain(immu);
2801 did_init(immu);
2802 context_init(immu);
2803 immu->immu_dvma_setup = B_TRUE;
2808 * Startup up one DVMA unit
2810 void
2811 immu_dvma_startup(immu_t *immu)
2813 if (immu_gfxdvma_enable == B_FALSE &&
2814 immu->immu_dvma_gfx_only == B_TRUE) {
2815 return;
2819 * DVMA will start once IOMMU is "running"
2821 immu->immu_dvma_running = B_TRUE;
2825 * immu_dvma_physmem_update()
2826 * called when the installed memory on a
2827 * system increases, to expand domain DVMA
2828 * for domains with UNITY mapping
2830 void
2831 immu_dvma_physmem_update(uint64_t addr, uint64_t size)
2833 uint64_t start;
2834 uint64_t npages;
2835 int dcount;
2836 immu_dcookie_t dcookies[1] = {0};
2837 domain_t *domain;
2840 * Just walk the system-wide list of domains with
2841 * UNITY mapping. Both the list of *all* domains
2842 * and *UNITY* domains is protected by the same
2843 * single lock
2845 mutex_enter(&immu_domain_lock);
2846 domain = list_head(&immu_unity_domain_list);
2847 for (; domain; domain = list_next(&immu_unity_domain_list, domain)) {
2849 * Nothing to do if the IOMMU supports passthrough.
2851 if (IMMU_ECAP_GET_PT(domain->dom_immu->immu_regs_excap))
2852 continue;
2854 /* There is no vmem_arena for unity domains. Just map it */
2855 ddi_err(DER_LOG, domain->dom_dip,
2856 "iommu: unity-domain: Adding map "
2857 "[0x%" PRIx64 " - 0x%" PRIx64 "]", addr, addr + size);
2859 start = IMMU_ROUNDOWN(addr);
2860 npages = (IMMU_ROUNDUP(size) / IMMU_PAGESIZE) + 1;
2862 dcookies[0].dck_paddr = start;
2863 dcookies[0].dck_npages = npages;
2864 dcount = 1;
2865 (void) dvma_map(domain, start, npages,
2866 dcookies, dcount, NULL, IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2869 mutex_exit(&immu_domain_lock);
2873 immu_dvma_device_setup(dev_info_t *rdip, immu_flags_t immu_flags)
2875 dev_info_t *ddip, *odip;
2876 immu_t *immu;
2877 domain_t *domain;
2879 odip = rdip;
2881 immu = immu_dvma_get_immu(rdip, immu_flags);
2882 if (immu == NULL) {
2884 * possible that there is no IOMMU unit for this device
2885 * - BIOS bugs are one example.
2887 ddi_err(DER_WARN, rdip, "No iommu unit found for device");
2888 return (DDI_DMA_NORESOURCES);
2892 * redirect isa devices attached under lpc to lpc dip
2894 if (strcmp(ddi_node_name(ddi_get_parent(rdip)), "isa") == 0) {
2895 rdip = get_lpc_devinfo(immu, rdip, immu_flags);
2896 if (rdip == NULL) {
2897 ddi_err(DER_PANIC, rdip, "iommu redirect failed");
2898 /*NOTREACHED*/
2902 /* Reset immu, as redirection can change IMMU */
2903 immu = NULL;
2906 * for gart, redirect to the real graphic devinfo
2908 if (strcmp(ddi_node_name(rdip), "agpgart") == 0) {
2909 rdip = get_gfx_devinfo(rdip);
2910 if (rdip == NULL) {
2911 ddi_err(DER_PANIC, rdip, "iommu redirect failed");
2912 /*NOTREACHED*/
2917 * Setup DVMA domain for the device. This does
2918 * work only the first time we do DVMA for a
2919 * device.
2921 ddip = NULL;
2922 domain = device_domain(rdip, &ddip, immu_flags);
2923 if (domain == NULL) {
2924 ddi_err(DER_MODE, rdip, "Intel IOMMU setup failed for device");
2925 return (DDI_DMA_NORESOURCES);
2928 immu = domain->dom_immu;
2931 * If a domain is found, we must also have a domain dip
2932 * which is the topmost ancestor dip of rdip that shares
2933 * the same domain with rdip.
2935 if (domain->dom_did == 0 || ddip == NULL) {
2936 ddi_err(DER_MODE, rdip, "domain did 0(%d) or ddip NULL(%p)",
2937 domain->dom_did, ddip);
2938 return (DDI_DMA_NORESOURCES);
2941 if (odip != rdip)
2942 set_domain(odip, ddip, domain);
2945 * Update the root and context entries
2947 if (immu_context_update(immu, domain, ddip, rdip, immu_flags)
2948 != DDI_SUCCESS) {
2949 ddi_err(DER_MODE, rdip, "DVMA map: context update failed");
2950 return (DDI_DMA_NORESOURCES);
2953 return (DDI_SUCCESS);
2957 immu_map_memrange(dev_info_t *rdip, memrng_t *mrng)
2959 immu_dcookie_t dcookies[1] = {0};
2960 boolean_t pde_set;
2961 immu_t *immu;
2962 domain_t *domain;
2963 immu_inv_wait_t iw;
2965 dcookies[0].dck_paddr = mrng->mrng_start;
2966 dcookies[0].dck_npages = mrng->mrng_npages;
2968 domain = IMMU_DEVI(rdip)->imd_domain;
2969 immu = domain->dom_immu;
2971 pde_set = dvma_map(domain, mrng->mrng_start,
2972 mrng->mrng_npages, dcookies, 1, rdip,
2973 IMMU_FLAGS_READ | IMMU_FLAGS_WRITE);
2975 immu_init_inv_wait(&iw, "memrange", B_TRUE);
2977 immu_flush_iotlb_psi(immu, domain->dom_did, mrng->mrng_start,
2978 mrng->mrng_npages, pde_set == B_TRUE ?
2979 TLB_IVA_WHOLE : TLB_IVA_LEAF, &iw);
2981 return (DDI_SUCCESS);
2984 immu_devi_t *
2985 immu_devi_get(dev_info_t *rdip)
2987 immu_devi_t *immu_devi;
2988 volatile uintptr_t *vptr = (uintptr_t *)&(DEVI(rdip)->devi_iommu);
2990 /* Just want atomic reads. No need for lock */
2991 immu_devi = (immu_devi_t *)(uintptr_t)atomic_or_64_nv((uint64_t *)vptr,
2993 return (immu_devi);
2996 /*ARGSUSED*/
2998 immu_hdl_priv_ctor(void *buf, void *arg, int kmf)
3000 immu_hdl_priv_t *ihp;
3002 ihp = buf;
3003 immu_init_inv_wait(&ihp->ihp_inv_wait, "dmahandle", B_FALSE);
3005 return (0);
3009 * iommulib interface functions
3011 static int
3012 immu_probe(iommulib_handle_t handle, dev_info_t *dip)
3014 immu_devi_t *immu_devi;
3015 int ret;
3017 if (!immu_enable)
3018 return (DDI_FAILURE);
3021 * Make sure the device has all the IOMMU structures
3022 * initialized. If this device goes through an IOMMU
3023 * unit (e.g. this probe function returns success),
3024 * this will be called at most N times, with N being
3025 * the number of IOMMUs in the system.
3027 * After that, when iommulib_nex_open succeeds,
3028 * we can always assume that this device has all
3029 * the structures initialized. IOMMU_USED(dip) will
3030 * be true. There is no need to find the controlling
3031 * IOMMU/domain again.
3033 ret = immu_dvma_device_setup(dip, IMMU_FLAGS_NOSLEEP);
3034 if (ret != DDI_SUCCESS)
3035 return (ret);
3037 immu_devi = IMMU_DEVI(dip);
3040 * For unity domains, there is no need to call in to
3041 * the IOMMU code.
3043 if (immu_devi->imd_domain->dom_did == IMMU_UNITY_DID)
3044 return (DDI_FAILURE);
3046 if (immu_devi->imd_immu->immu_dip == iommulib_iommu_getdip(handle))
3047 return (DDI_SUCCESS);
3049 return (DDI_FAILURE);
3052 /*ARGSUSED*/
3053 static int
3054 immu_allochdl(iommulib_handle_t handle,
3055 dev_info_t *dip, dev_info_t *rdip, ddi_dma_attr_t *attr,
3056 int (*waitfp)(caddr_t), caddr_t arg, ddi_dma_handle_t *dma_handlep)
3058 int ret;
3059 immu_hdl_priv_t *ihp;
3060 immu_t *immu;
3062 ret = iommulib_iommu_dma_allochdl(dip, rdip, attr, waitfp,
3063 arg, dma_handlep);
3064 if (ret == DDI_SUCCESS) {
3065 immu = IMMU_DEVI(rdip)->imd_immu;
3067 ihp = kmem_cache_alloc(immu->immu_hdl_cache,
3068 waitfp == DDI_DMA_SLEEP ? KM_SLEEP : KM_NOSLEEP);
3069 if (ihp == NULL) {
3070 (void) iommulib_iommu_dma_freehdl(dip, rdip,
3071 *dma_handlep);
3072 return (DDI_DMA_NORESOURCES);
3075 if (IMMU_DEVI(rdip)->imd_use_premap)
3076 dvma_prealloc(rdip, ihp, attr);
3077 else {
3078 ihp->ihp_npremapped = 0;
3079 ihp->ihp_predvma = 0;
3081 ret = iommulib_iommu_dmahdl_setprivate(dip, rdip, *dma_handlep,
3082 ihp);
3084 return (ret);
3087 /*ARGSUSED*/
3088 static int
3089 immu_freehdl(iommulib_handle_t handle,
3090 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle)
3092 immu_hdl_priv_t *ihp;
3094 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3095 if (ihp != NULL) {
3096 if (IMMU_DEVI(rdip)->imd_use_premap)
3097 dvma_prefree(rdip, ihp);
3098 kmem_cache_free(IMMU_DEVI(rdip)->imd_immu->immu_hdl_cache, ihp);
3101 return (iommulib_iommu_dma_freehdl(dip, rdip, dma_handle));
3105 /*ARGSUSED*/
3106 static int
3107 immu_bindhdl(iommulib_handle_t handle, dev_info_t *dip,
3108 dev_info_t *rdip, ddi_dma_handle_t dma_handle,
3109 struct ddi_dma_req *dma_req, ddi_dma_cookie_t *cookiep,
3110 uint_t *ccountp)
3112 int ret;
3113 immu_hdl_priv_t *ihp;
3115 ret = iommulib_iommu_dma_bindhdl(dip, rdip, dma_handle,
3116 dma_req, cookiep, ccountp);
3118 if (ret == DDI_DMA_MAPPED) {
3119 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3120 immu_flush_wait(IMMU_DEVI(rdip)->imd_immu, &ihp->ihp_inv_wait);
3123 return (ret);
3126 /*ARGSUSED*/
3127 static int
3128 immu_unbindhdl(iommulib_handle_t handle,
3129 dev_info_t *dip, dev_info_t *rdip, ddi_dma_handle_t dma_handle)
3131 return (iommulib_iommu_dma_unbindhdl(dip, rdip, dma_handle));
3134 /*ARGSUSED*/
3135 static int
3136 immu_sync(iommulib_handle_t handle, dev_info_t *dip,
3137 dev_info_t *rdip, ddi_dma_handle_t dma_handle, off_t off,
3138 size_t len, uint_t cachefl)
3140 return (iommulib_iommu_dma_sync(dip, rdip, dma_handle, off, len,
3141 cachefl));
3144 /*ARGSUSED*/
3145 static int
3146 immu_win(iommulib_handle_t handle, dev_info_t *dip,
3147 dev_info_t *rdip, ddi_dma_handle_t dma_handle, uint_t win,
3148 off_t *offp, size_t *lenp, ddi_dma_cookie_t *cookiep,
3149 uint_t *ccountp)
3151 return (iommulib_iommu_dma_win(dip, rdip, dma_handle, win, offp,
3152 lenp, cookiep, ccountp));
3155 /*ARGSUSED*/
3156 static int
3157 immu_mapobject(iommulib_handle_t handle, dev_info_t *dip,
3158 dev_info_t *rdip, ddi_dma_handle_t dma_handle,
3159 struct ddi_dma_req *dmareq, ddi_dma_obj_t *dmao)
3161 immu_hdl_priv_t *ihp;
3163 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3165 return (immu_map_dvmaseg(rdip, dma_handle, ihp, dmareq, dmao));
3168 /*ARGSUSED*/
3169 static int
3170 immu_unmapobject(iommulib_handle_t handle, dev_info_t *dip,
3171 dev_info_t *rdip, ddi_dma_handle_t dma_handle, ddi_dma_obj_t *dmao)
3173 immu_hdl_priv_t *ihp;
3175 ihp = iommulib_iommu_dmahdl_getprivate(dip, rdip, dma_handle);
3176 if (ihp->ihp_npremapped > 0)
3177 return (DDI_SUCCESS);
3178 return (immu_unmap_dvmaseg(rdip, dmao));