4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Garrett D'Amore <garrett@damore.org>
25 * Copyright 2014 Pluribus Networks, Inc.
26 * Copyright 2016 Nexenta Systems, Inc.
30 * PC specific DDI implementation
32 #include <sys/types.h>
33 #include <sys/autoconf.h>
34 #include <sys/avintr.h>
35 #include <sys/bootconf.h>
37 #include <sys/cpuvar.h>
38 #include <sys/ddi_impldefs.h>
39 #include <sys/ddi_subrdefs.h>
40 #include <sys/ethernet.h>
42 #include <sys/instance.h>
44 #include <sys/machsystm.h>
45 #include <sys/modctl.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/sunndi.h>
49 #include <sys/ndi_impldefs.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/sysmacros.h>
52 #include <sys/systeminfo.h>
53 #include <sys/utsname.h>
54 #include <sys/atomic.h>
56 #include <sys/archsystm.h>
57 #include <vm/seg_kmem.h>
58 #include <sys/ontrap.h>
59 #include <sys/fm/protocol.h>
60 #include <sys/ramdisk.h>
61 #include <sys/sunndi.h>
63 #include <sys/pci_impl.h>
65 #include <sys/hypervisor.h>
67 #include <sys/mach_intr.h>
68 #include <vm/hat_i86.h>
69 #include <sys/x86_archext.h>
73 * DDI Boot Configuration
77 * Platform drivers on this platform
79 char *platform_module_list
[] = {
85 /* pci bus resource maps */
86 struct pci_bus_resource
*pci_bus_res
;
88 size_t dma_max_copybuf_size
= 0x101000; /* 1M + 4K */
90 uint64_t ramdisk_start
, ramdisk_end
;
95 * Forward declarations
97 static int getlongprop_buf();
98 static void get_boot_properties(void);
99 static void impl_bus_initialprobe(void);
100 static void impl_bus_reprobe(void);
102 static int poke_mem(peekpoke_ctlops_t
*in_args
);
103 static int peek_mem(peekpoke_ctlops_t
*in_args
);
105 static int kmem_override_cache_attrs(caddr_t
, size_t, uint_t
);
107 #if defined(__amd64) && !defined(__xpv)
108 extern void immu_init(void);
112 * We use an AVL tree to store contiguous address allocations made with the
113 * kalloca() routine, so that we can return the size to free with kfreea().
114 * Note that in the future it would be vastly faster if we could eliminate
115 * this lookup by insisting that all callers keep track of their own sizes,
116 * just as for kmem_alloc().
124 static avl_tree_t ctgtree
;
126 static kmutex_t ctgmutex
;
127 #define CTGLOCK() mutex_enter(&ctgmutex)
128 #define CTGUNLOCK() mutex_exit(&ctgmutex)
131 * Minimum pfn value of page_t's put on the free list. This is to simplify
132 * support of ddi dma memory requests which specify small, non-zero addr_lo
135 * The default value of 2, which corresponds to the only known non-zero addr_lo
136 * value used, means a single page will be sacrificed (pfn typically starts
137 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
138 * otherwise mp startup panics.
140 pfn_t ddiphysmin
= 2;
143 check_driver_disable(void)
147 char *drv_name
, *propval
;
150 prop_name
= kmem_alloc(proplen
, KM_SLEEP
);
151 for (major
= 0; major
< devcnt
; major
++) {
152 drv_name
= ddi_major_to_name(major
);
153 if (drv_name
== NULL
)
155 (void) snprintf(prop_name
, proplen
, "disable-%s", drv_name
);
156 if (ddi_prop_lookup_string(DDI_DEV_T_ANY
, ddi_root_node(),
157 DDI_PROP_DONTPASS
, prop_name
, &propval
) == DDI_SUCCESS
) {
158 if (strcmp(propval
, "true") == 0) {
159 devnamesp
[major
].dn_flags
|= DN_DRIVER_REMOVED
;
160 cmn_err(CE_NOTE
, "driver %s disabled",
163 ddi_prop_free(propval
);
166 kmem_free(prop_name
, proplen
);
171 * Configure the hardware on the system.
172 * Called before the rootfs is mounted
177 extern void i_ddi_init_root();
180 extern int fpu_pentium_fdivbug
;
182 extern int fpu_ignored
;
185 * Determine if an FPU is attached
191 if (fpu_pentium_fdivbug
) {
193 FP hardware exhibits Pentium floating point divide problem\n");
198 printf("FP hardware will not be used\n");
199 } else if (!fpu_exists
) {
200 printf("No FPU in configuration\n");
204 * Initialize devices on the machine.
205 * Uses configuration tree built by the PROMs to determine what
206 * is present, and builds a tree of prototype dev_info nodes
207 * corresponding to the hardware which identified itself.
211 * Initialize root node.
215 /* reprogram devices not set up by firmware (BIOS) */
218 #if defined(__amd64) && !defined(__xpv)
220 * Setup but don't startup the IOMMU
221 * Startup happens later via a direct call
222 * to IOMMU code by boot code.
223 * At this point, all PCI bus renumbering
224 * is done, so safe to init the IMMU
231 * attach the isa nexus to get ACPI resource usage
232 * isa is "kind of" a pseudo node
235 if (DOMAIN_IS_INITDOMAIN(xen_info
)) {
237 (void) i_ddi_attach_pseudo_node("isa");
239 (void) i_ddi_attach_hw_nodes("isa");
243 (void) i_ddi_attach_pseudo_node("isa");
245 (void) i_ddi_attach_hw_nodes("isa");
250 * The "status" property indicates the operational status of a device.
251 * If this property is present, the value is a string indicating the
252 * status of the device as follows:
254 * "okay" operational.
255 * "disabled" not operational, but might become operational.
256 * "fail" not operational because a fault has been detected,
257 * and it is unlikely that the device will become
258 * operational without repair. no additional details
260 * "fail-xxx" not operational because a fault has been detected,
261 * and it is unlikely that the device will become
262 * operational without repair. "xxx" is additional
263 * human-readable information about the particular
264 * fault condition that was detected.
266 * The absence of this property means that the operational status is
269 * This routine checks the status property of the specified device node
270 * and returns 0 if the operational status indicates failure, and 1 otherwise.
272 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
273 * And, in that case, the property may not even be a string. So we carefully
274 * check for the value "fail", in the beginning of the string, noting
275 * the property length.
278 status_okay(int id
, char *buf
, int buflen
)
280 char status_buf
[OBP_MAXPROPNAME
];
284 static const char *status
= "status";
285 static const char *fail
= "fail";
286 int fail_len
= (int)strlen(fail
);
289 * Get the proplen ... if it's smaller than "fail",
290 * or doesn't exist ... then we don't care, since
291 * the value can't begin with the char string "fail".
293 * NB: proplen, if it's a string, includes the NULL in the
294 * the size of the property, and fail_len does not.
296 proplen
= prom_getproplen((pnode_t
)id
, (caddr_t
)status
);
297 if (proplen
<= fail_len
) /* nonexistant or uninteresting len */
301 * if a buffer was provided, use it
303 if ((buf
== (char *)NULL
) || (buflen
<= 0)) {
305 len
= sizeof (status_buf
);
310 * Get the property into the buffer, to the extent of the buffer,
311 * and in case the buffer is smaller than the property size,
312 * NULL terminate the buffer. (This handles the case where
313 * a buffer was passed in and the caller wants to print the
314 * value, but the buffer was too small).
316 (void) prom_bounded_getprop((pnode_t
)id
, (caddr_t
)status
,
318 *(bufp
+ len
- 1) = (char)0;
321 * If the value begins with the char string "fail",
322 * then it means the node is failed. We don't care
323 * about any other values. We assume the node is ok
324 * although it might be 'disabled'.
326 if (strncmp(bufp
, fail
, fail_len
) == 0)
333 * Check the status of the device node passed as an argument.
335 * if ((status is OKAY) || (status is DISABLED))
338 * print a warning and return DDI_FAILURE
342 check_status(int id
, char *name
, dev_info_t
*parent
)
345 char devtype_buf
[OBP_MAXPROPNAME
];
346 int retval
= DDI_FAILURE
;
349 * is the status okay?
351 if (status_okay(id
, status_buf
, sizeof (status_buf
)))
352 return (DDI_SUCCESS
);
355 * a status property indicating bad memory will be associated
356 * with a node which has a "device_type" property with a value of
357 * "memory-controller". in this situation, return DDI_SUCCESS
359 if (getlongprop_buf(id
, OBP_DEVICETYPE
, devtype_buf
,
360 sizeof (devtype_buf
)) > 0) {
361 if (strcmp(devtype_buf
, "memory-controller") == 0)
362 retval
= DDI_SUCCESS
;
366 * print the status property information
368 cmn_err(CE_WARN
, "status '%s' for '%s'", status_buf
, name
);
374 softlevel1(caddr_t arg1
, caddr_t arg2
)
381 * Allow for implementation specific correction of PROM property values.
386 impl_fix_props(dev_info_t
*dip
, dev_info_t
*ch_dip
, char *name
, int len
,
390 * There are no adjustments needed in this implementation.
395 getlongprop_buf(int id
, char *name
, char *buf
, int maxlen
)
399 size
= prom_getproplen((pnode_t
)id
, name
);
400 if (size
<= 0 || (size
> maxlen
- 1))
403 if (-1 == prom_getprop((pnode_t
)id
, name
, buf
))
406 if (strcmp("name", name
) == 0) {
407 if (buf
[size
- 1] != '\0') {
417 get_prop_int_array(dev_info_t
*di
, char *pname
, int **pval
, uint_t
*plen
)
421 if ((ret
= ddi_prop_lookup_int_array(DDI_DEV_T_ANY
, di
,
422 DDI_PROP_DONTPASS
, pname
, pval
, plen
))
423 == DDI_PROP_SUCCESS
) {
424 *plen
= (*plen
) * (sizeof (int));
439 * For the x86, we're prepared to claim that the interrupt string
440 * is in the form of a list of <ipl,vec> specifications.
447 impl_xlate_intrs(dev_info_t
*child
, int *in
,
448 struct ddi_parent_private_data
*pdptr
)
452 struct intrspec
*new;
456 extern int ignore_hardware_nodes
; /* force flag from ddi_impl.c */
458 static char bad_intr_fmt
[] =
459 "bad interrupt spec from %s%d - ipl %d, irq %d\n";
462 * determine if the driver is expecting the new style "interrupts"
463 * property which just contains the IRQ, or the old style which
464 * contains pairs of <IPL,IRQ>. if it is the new style, we always
465 * assign IPL 5 unless an "interrupt-priorities" property exists.
466 * in that case, the "interrupt-priorities" property contains the
467 * IPL values that match, one for one, the IRQ values in the
468 * "interrupts" property.
471 if ((ddi_getprop(DDI_DEV_T_ANY
, child
, DDI_PROP_DONTPASS
,
472 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes
) {
473 /* the old style "interrupts" property... */
476 * The list consists of <ipl,vec> elements
478 if ((n
= (*in
++ >> 1)) < 1)
479 return (DDI_FAILURE
);
481 pdptr
->par_nintr
= n
;
482 size
= n
* sizeof (struct intrspec
);
483 new = pdptr
->par_intr
= kmem_zalloc(size
, KM_SLEEP
);
489 if (level
< 1 || level
> MAXIPL
||
490 vec
< VEC_MIN
|| vec
> VEC_MAX
) {
491 cmn_err(CE_CONT
, bad_intr_fmt
,
492 DEVI(child
)->devi_name
,
493 DEVI(child
)->devi_instance
, level
, vec
);
496 new->intrspec_pri
= level
;
498 new->intrspec_vec
= vec
;
501 * irq 2 on the PC bus is tied to irq 9
502 * on ISA, EISA and MicroChannel
504 new->intrspec_vec
= 9;
508 return (DDI_SUCCESS
);
510 /* the new style "interrupts" property... */
513 * The list consists of <vec> elements
515 if ((n
= (*in
++)) < 1)
516 return (DDI_FAILURE
);
518 pdptr
->par_nintr
= n
;
519 size
= n
* sizeof (struct intrspec
);
520 new = pdptr
->par_intr
= kmem_zalloc(size
, KM_SLEEP
);
522 /* XXX check for "interrupt-priorities" property... */
523 if (ddi_getlongprop(DDI_DEV_T_ANY
, child
, DDI_PROP_DONTPASS
,
524 "interrupt-priorities", (caddr_t
)&got_prop
, &got_len
)
525 == DDI_PROP_SUCCESS
) {
526 if (n
!= (got_len
/ sizeof (int))) {
528 "bad interrupt-priorities length"
529 " from %s%d: expected %d, got %d\n",
530 DEVI(child
)->devi_name
,
531 DEVI(child
)->devi_instance
, n
,
532 (int)(got_len
/ sizeof (int)));
535 inpri
= (int *)got_prop
;
547 if (level
< 1 || level
> MAXIPL
||
548 vec
< VEC_MIN
|| vec
> VEC_MAX
) {
549 cmn_err(CE_CONT
, bad_intr_fmt
,
550 DEVI(child
)->devi_name
,
551 DEVI(child
)->devi_instance
, level
, vec
);
554 new->intrspec_pri
= level
;
556 new->intrspec_vec
= vec
;
559 * irq 2 on the PC bus is tied to irq 9
560 * on ISA, EISA and MicroChannel
562 new->intrspec_vec
= 9;
567 kmem_free(got_prop
, got_len
);
568 return (DDI_SUCCESS
);
572 kmem_free(pdptr
->par_intr
, size
);
573 pdptr
->par_intr
= NULL
;
574 pdptr
->par_nintr
= 0;
576 kmem_free(got_prop
, got_len
);
578 return (DDI_FAILURE
);
582 * Create a ddi_parent_private_data structure from the ddi properties of
585 * The "reg" and either an "intr" or "interrupts" properties are required
586 * if the driver wishes to create mappings or field interrupts on behalf
589 * The "reg" property is assumed to be a list of at least one triple
591 * <bustype, address, size>*1
593 * The "intr" property is assumed to be a list of at least one duple
595 * <SPARC ipl, vector#>*1
597 * The "interrupts" property is assumed to be a list of at least one
598 * n-tuples that describes the interrupt capabilities of the bus the device
599 * is connected to. For SBus, this looks like
603 * (This property obsoletes the 'intr' property).
605 * The "ranges" property is optional.
608 make_ddi_ppd(dev_info_t
*child
, struct ddi_parent_private_data
**ppd
)
610 struct ddi_parent_private_data
*pdptr
;
612 int *reg_prop
, *rng_prop
, *intr_prop
, *irupts_prop
;
613 uint_t reg_len
, rng_len
, intr_len
, irupts_len
;
615 *ppd
= pdptr
= kmem_zalloc(sizeof (*pdptr
), KM_SLEEP
);
618 * Handle the 'reg' property.
620 if ((get_prop_int_array(child
, "reg", ®_prop
, ®_len
) ==
621 DDI_PROP_SUCCESS
) && (reg_len
!= 0)) {
622 pdptr
->par_nreg
= reg_len
/ (int)sizeof (struct regspec
);
623 pdptr
->par_reg
= (struct regspec
*)reg_prop
;
627 * See if I have a range (adding one where needed - this
628 * means to add one for sbus node in sun4c, when romvec > 0,
629 * if no range is already defined in the PROM node.
630 * (Currently no sun4c PROMS define range properties,
631 * but they should and may in the future.) For the SBus
632 * node, the range is defined by the SBus reg property.
634 if (get_prop_int_array(child
, "ranges", &rng_prop
, &rng_len
)
635 == DDI_PROP_SUCCESS
) {
636 pdptr
->par_nrng
= rng_len
/ (int)(sizeof (struct rangespec
));
637 pdptr
->par_rng
= (struct rangespec
*)rng_prop
;
641 * Handle the 'intr' and 'interrupts' properties
645 * For backwards compatibility
646 * we first look for the 'intr' property for the device.
648 if (get_prop_int_array(child
, "intr", &intr_prop
, &intr_len
)
649 != DDI_PROP_SUCCESS
) {
654 * If we're to support bus adapters and future platforms cleanly,
655 * we need to support the generalized 'interrupts' property.
657 if (get_prop_int_array(child
, "interrupts", &irupts_prop
,
658 &irupts_len
) != DDI_PROP_SUCCESS
) {
660 } else if (intr_len
!= 0) {
662 * If both 'intr' and 'interrupts' are defined,
663 * then 'interrupts' wins and we toss the 'intr' away.
665 ddi_prop_free((void *)intr_prop
);
672 * Translate the 'intr' property into an array
673 * an array of struct intrspec's. There's not really
674 * very much to do here except copy what's out there.
677 struct intrspec
*new;
678 struct prop_ispec
*l
;
680 n
= pdptr
->par_nintr
= intr_len
/ sizeof (struct prop_ispec
);
681 l
= (struct prop_ispec
*)intr_prop
;
683 new = kmem_zalloc(n
* sizeof (struct intrspec
), KM_SLEEP
);
685 new->intrspec_pri
= l
->pri
;
686 new->intrspec_vec
= l
->vec
;
690 ddi_prop_free((void *)intr_prop
);
692 } else if ((n
= irupts_len
) != 0) {
697 * Translate the 'interrupts' property into an array
698 * of intrspecs for the rest of the DDI framework to
699 * toy with. Only our ancestors really know how to
700 * do this, so ask 'em. We massage the 'interrupts'
701 * property so that it is pre-pended by a count of
702 * the number of integers in the argument.
704 size
= sizeof (int) + n
;
705 out
= kmem_alloc(size
, KM_SLEEP
);
706 *out
= n
/ sizeof (int);
707 bcopy(irupts_prop
, out
+ 1, (size_t)n
);
708 ddi_prop_free((void *)irupts_prop
);
709 if (impl_xlate_intrs(child
, out
, pdptr
) != DDI_SUCCESS
) {
711 "Unable to translate 'interrupts' for %s%d\n",
712 DEVI(child
)->devi_binding_name
,
713 DEVI(child
)->devi_instance
);
715 kmem_free(out
, size
);
723 impl_sunbus_name_child(dev_info_t
*child
, char *name
, int namelen
)
726 * Fill in parent-private data and this function returns to us
727 * an indication if it used "registers" to fill in the data.
729 if (ddi_get_parent_data(child
) == NULL
) {
730 struct ddi_parent_private_data
*pdptr
;
731 make_ddi_ppd(child
, &pdptr
);
732 ddi_set_parent_data(child
, pdptr
);
736 if (sparc_pd_getnreg(child
) > 0) {
737 (void) snprintf(name
, namelen
, "%x,%x",
738 (uint_t
)sparc_pd_getreg(child
, 0)->regspec_bustype
,
739 (uint_t
)sparc_pd_getreg(child
, 0)->regspec_addr
);
742 return (DDI_SUCCESS
);
746 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
747 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names
748 * the children of sun busses based on the reg spec.
750 * Handles the following properties (in make_ddi_ppd):
754 * intr old-form interrupt spec
755 * interrupts new (bus-oriented) interrupt spec
759 impl_ddi_sunbus_initchild(dev_info_t
*child
)
761 char name
[MAXNAMELEN
];
762 void impl_ddi_sunbus_removechild(dev_info_t
*);
765 * Name the child, also makes parent private data
767 (void) impl_sunbus_name_child(child
, name
, MAXNAMELEN
);
768 ddi_set_name_addr(child
, name
);
771 * Attempt to merge a .conf node; if successful, remove the
774 if ((ndi_dev_is_persistent_node(child
) == 0) &&
775 (ndi_merge_node(child
, impl_sunbus_name_child
) == DDI_SUCCESS
)) {
777 * Return failure to remove node
779 impl_ddi_sunbus_removechild(child
);
780 return (DDI_FAILURE
);
782 return (DDI_SUCCESS
);
786 impl_free_ddi_ppd(dev_info_t
*dip
)
788 struct ddi_parent_private_data
*pdptr
;
791 if ((pdptr
= ddi_get_parent_data(dip
)) == NULL
)
794 if ((n
= (size_t)pdptr
->par_nintr
) != 0)
796 * Note that kmem_free is used here (instead of
797 * ddi_prop_free) because the contents of the
798 * property were placed into a separate buffer and
799 * mucked with a bit before being stored in par_intr.
800 * The actual return value from the prop lookup
801 * was freed with ddi_prop_free previously.
803 kmem_free(pdptr
->par_intr
, n
* sizeof (struct intrspec
));
805 if ((n
= (size_t)pdptr
->par_nrng
) != 0)
806 ddi_prop_free((void *)pdptr
->par_rng
);
808 if ((n
= pdptr
->par_nreg
) != 0)
809 ddi_prop_free((void *)pdptr
->par_reg
);
811 kmem_free(pdptr
, sizeof (*pdptr
));
812 ddi_set_parent_data(dip
, NULL
);
816 impl_ddi_sunbus_removechild(dev_info_t
*dip
)
818 impl_free_ddi_ppd(dip
);
819 ddi_set_name_addr(dip
, NULL
);
821 * Strip the node to properly convert it back to prototype form
823 impl_rem_dev_props(dip
);
831 * turn this on to force isa, eisa, and mca device to ignore the new
832 * hardware nodes in the device tree (normally turned on only for
833 * drivers that need it by setting the property "ignore-hardware-nodes"
834 * in their driver.conf file).
836 * 7/31/96 -- Turned off globally. Leaving variable in for the moment
839 int ignore_hardware_nodes
= 0;
844 static struct impl_bus_promops
*impl_busp
;
848 * New DDI interrupt framework
854 * This is the interrupt operator function wrapper for the bus function
858 i_ddi_intr_ops(dev_info_t
*dip
, dev_info_t
*rdip
, ddi_intr_op_t op
,
859 ddi_intr_handle_impl_t
*hdlp
, void * result
)
861 dev_info_t
*pdip
= (dev_info_t
*)DEVI(dip
)->devi_parent
;
862 int ret
= DDI_FAILURE
;
864 /* request parent to process this interrupt op */
865 if (NEXUS_HAS_INTR_OP(pdip
))
866 ret
= (*(DEVI(pdip
)->devi_ops
->devo_bus_ops
->bus_intr_op
))(
867 pdip
, rdip
, op
, hdlp
, result
);
869 cmn_err(CE_WARN
, "Failed to process interrupt "
870 "for %s%d due to down-rev nexus driver %s%d",
871 ddi_get_name(rdip
), ddi_get_instance(rdip
),
872 ddi_get_name(pdip
), ddi_get_instance(pdip
));
877 * i_ddi_add_softint - allocate and add a soft interrupt to the system
880 i_ddi_add_softint(ddi_softint_hdl_impl_t
*hdlp
)
884 /* add soft interrupt handler */
885 ret
= add_avsoftintr((void *)hdlp
, hdlp
->ih_pri
, hdlp
->ih_cb_func
,
886 DEVI(hdlp
->ih_dip
)->devi_name
, hdlp
->ih_cb_arg1
, hdlp
->ih_cb_arg2
);
887 return (ret
? DDI_SUCCESS
: DDI_FAILURE
);
892 i_ddi_remove_softint(ddi_softint_hdl_impl_t
*hdlp
)
894 (void) rem_avsoftintr((void *)hdlp
, hdlp
->ih_pri
, hdlp
->ih_cb_func
);
898 extern void (*setsoftint
)(int, struct av_softinfo
*);
899 extern boolean_t
av_check_softint_pending(struct av_softinfo
*, boolean_t
);
902 i_ddi_trigger_softint(ddi_softint_hdl_impl_t
*hdlp
, void *arg2
)
904 if (av_check_softint_pending(hdlp
->ih_pending
, B_FALSE
))
905 return (DDI_EPENDING
);
907 update_avsoftintr_args((void *)hdlp
, hdlp
->ih_pri
, arg2
);
909 (*setsoftint
)(hdlp
->ih_pri
, hdlp
->ih_pending
);
910 return (DDI_SUCCESS
);
914 * i_ddi_set_softint_pri:
916 * The way this works is that it first tries to add a softint vector
917 * at the new priority in hdlp. If that succeeds; then it removes the
918 * existing softint vector at the old priority.
921 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t
*hdlp
, uint_t old_pri
)
926 * If a softint is pending at the old priority then fail the request.
928 if (av_check_softint_pending(hdlp
->ih_pending
, B_TRUE
))
929 return (DDI_FAILURE
);
931 ret
= av_softint_movepri((void *)hdlp
, old_pri
);
932 return (ret
? DDI_SUCCESS
: DDI_FAILURE
);
936 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t
*hdlp
)
938 hdlp
->ih_private
= (void *)kmem_zalloc(sizeof (ihdl_plat_t
), KM_SLEEP
);
942 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t
*hdlp
)
944 kmem_free(hdlp
->ih_private
, sizeof (ihdl_plat_t
));
945 hdlp
->ih_private
= NULL
;
949 i_ddi_get_intx_nintrs(dev_info_t
*dip
)
951 struct ddi_parent_private_data
*pdp
;
953 if ((pdp
= ddi_get_parent_data(dip
)) == NULL
)
956 return (pdp
->par_nintr
);
964 * Support for allocating DMAable memory to implement
965 * ddi_dma_mem_alloc(9F) interface.
968 #define KA_ALIGN_SHIFT 7
969 #define KA_ALIGN (1 << KA_ALIGN_SHIFT)
970 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT)
973 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only
974 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set.
977 static ddi_dma_attr_t kmem_io_attr
= {
979 0x0000000000000000ULL
, /* dma_attr_addr_lo */
980 0x0000000000000000ULL
, /* dma_attr_addr_hi */
982 0x1000, /* dma_attr_align */
983 1, 1, 0xffffffffULL
, 0xffffffffULL
, 0x1, 1, 0
986 /* kmem io memory ranges and indices */
988 IO_4P
, IO_64G
, IO_4G
, IO_2G
, IO_1G
, IO_512M
,
989 IO_256M
, IO_128M
, IO_64M
, IO_32M
, IO_16M
, MAX_MEM_RANGES
993 vmem_t
*kmem_io_arena
;
994 kmem_cache_t
*kmem_io_cache
[KA_NCACHE
];
995 ddi_dma_attr_t kmem_io_attr
;
996 } kmem_io
[MAX_MEM_RANGES
];
998 static int kmem_io_idx
; /* index of first populated kmem_io[] */
1001 page_create_io_wrapper(void *addr
, size_t len
, int vmflag
, void *arg
)
1003 extern page_t
*page_create_io(vnode_t
*, u_offset_t
, uint_t
,
1004 uint_t
, struct as
*, caddr_t
, ddi_dma_attr_t
*);
1006 return (page_create_io(&kvp
, (u_offset_t
)(uintptr_t)addr
, len
,
1007 PG_EXCL
| ((vmflag
& VM_NOSLEEP
) ? 0 : PG_WAIT
), &kas
, addr
, arg
));
1012 segkmem_free_io(vmem_t
*vmp
, void * ptr
, size_t size
)
1014 extern void page_destroy_io(page_t
*);
1015 segkmem_xfree(vmp
, ptr
, size
, page_destroy_io
);
1020 segkmem_alloc_io_4P(vmem_t
*vmp
, size_t size
, int vmflag
)
1022 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1023 page_create_io_wrapper
, &kmem_io
[IO_4P
].kmem_io_attr
));
1027 segkmem_alloc_io_64G(vmem_t
*vmp
, size_t size
, int vmflag
)
1029 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1030 page_create_io_wrapper
, &kmem_io
[IO_64G
].kmem_io_attr
));
1034 segkmem_alloc_io_4G(vmem_t
*vmp
, size_t size
, int vmflag
)
1036 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1037 page_create_io_wrapper
, &kmem_io
[IO_4G
].kmem_io_attr
));
1041 segkmem_alloc_io_2G(vmem_t
*vmp
, size_t size
, int vmflag
)
1043 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1044 page_create_io_wrapper
, &kmem_io
[IO_2G
].kmem_io_attr
));
1048 segkmem_alloc_io_1G(vmem_t
*vmp
, size_t size
, int vmflag
)
1050 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1051 page_create_io_wrapper
, &kmem_io
[IO_1G
].kmem_io_attr
));
1055 segkmem_alloc_io_512M(vmem_t
*vmp
, size_t size
, int vmflag
)
1057 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1058 page_create_io_wrapper
, &kmem_io
[IO_512M
].kmem_io_attr
));
1062 segkmem_alloc_io_256M(vmem_t
*vmp
, size_t size
, int vmflag
)
1064 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1065 page_create_io_wrapper
, &kmem_io
[IO_256M
].kmem_io_attr
));
1069 segkmem_alloc_io_128M(vmem_t
*vmp
, size_t size
, int vmflag
)
1071 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1072 page_create_io_wrapper
, &kmem_io
[IO_128M
].kmem_io_attr
));
1076 segkmem_alloc_io_64M(vmem_t
*vmp
, size_t size
, int vmflag
)
1078 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1079 page_create_io_wrapper
, &kmem_io
[IO_64M
].kmem_io_attr
));
1083 segkmem_alloc_io_32M(vmem_t
*vmp
, size_t size
, int vmflag
)
1085 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1086 page_create_io_wrapper
, &kmem_io
[IO_32M
].kmem_io_attr
));
1090 segkmem_alloc_io_16M(vmem_t
*vmp
, size_t size
, int vmflag
)
1092 return (segkmem_xalloc(vmp
, NULL
, size
, vmflag
, 0,
1093 page_create_io_wrapper
, &kmem_io
[IO_16M
].kmem_io_attr
));
1099 void *(*io_alloc
)(vmem_t
*, size_t, int);
1100 int io_initial
; /* kmem_io_init during startup */
1101 } io_arena_params
[MAX_MEM_RANGES
] = {
1102 {0x000fffffffffffffULL
, "kmem_io_4P", segkmem_alloc_io_4P
, 1},
1103 {0x0000000fffffffffULL
, "kmem_io_64G", segkmem_alloc_io_64G
, 0},
1104 {0x00000000ffffffffULL
, "kmem_io_4G", segkmem_alloc_io_4G
, 1},
1105 {0x000000007fffffffULL
, "kmem_io_2G", segkmem_alloc_io_2G
, 1},
1106 {0x000000003fffffffULL
, "kmem_io_1G", segkmem_alloc_io_1G
, 0},
1107 {0x000000001fffffffULL
, "kmem_io_512M", segkmem_alloc_io_512M
, 0},
1108 {0x000000000fffffffULL
, "kmem_io_256M", segkmem_alloc_io_256M
, 0},
1109 {0x0000000007ffffffULL
, "kmem_io_128M", segkmem_alloc_io_128M
, 0},
1110 {0x0000000003ffffffULL
, "kmem_io_64M", segkmem_alloc_io_64M
, 0},
1111 {0x0000000001ffffffULL
, "kmem_io_32M", segkmem_alloc_io_32M
, 0},
1112 {0x0000000000ffffffULL
, "kmem_io_16M", segkmem_alloc_io_16M
, 1}
1121 kmem_io
[a
].kmem_io_arena
= vmem_create(io_arena_params
[a
].io_name
,
1122 NULL
, 0, PAGESIZE
, io_arena_params
[a
].io_alloc
,
1128 heap_arena
, 0, VM_SLEEP
);
1130 for (c
= 0; c
< KA_NCACHE
; c
++) {
1131 size_t size
= KA_ALIGN
<< c
;
1132 (void) sprintf(name
, "%s_%lu",
1133 io_arena_params
[a
].io_name
, size
);
1134 kmem_io
[a
].kmem_io_cache
[c
] = kmem_cache_create(name
,
1135 size
, size
, NULL
, NULL
, NULL
, NULL
,
1136 kmem_io
[a
].kmem_io_arena
, 0);
1141 * Return the index of the highest memory range for addr.
1144 kmem_io_index(uint64_t addr
)
1148 for (n
= kmem_io_idx
; n
< MAX_MEM_RANGES
; n
++) {
1149 if (kmem_io
[n
].kmem_io_attr
.dma_attr_addr_hi
<= addr
) {
1150 if (kmem_io
[n
].kmem_io_arena
== NULL
)
1155 panic("kmem_io_index: invalid addr - must be at least 16m");
1161 * Return the index of the next kmem_io populated memory range
1165 kmem_io_index_next(int curindex
)
1169 for (n
= curindex
+ 1; n
< MAX_MEM_RANGES
; n
++) {
1170 if (kmem_io
[n
].kmem_io_arena
)
1177 * allow kmem to be mapped in with different PTE cache attribute settings.
1178 * Used by i_ddi_mem_alloc()
1181 kmem_override_cache_attrs(caddr_t kva
, size_t size
, uint_t order
)
1188 if (hat_getattr(kas
.a_hat
, kva
, &hat_attr
) == -1) {
1192 hat_attr
&= ~HAT_ORDER_MASK
;
1193 hat_attr
|= order
| HAT_NOSYNC
;
1194 hat_flags
= HAT_LOAD_LOCK
;
1196 kva_end
= (caddr_t
)(((uintptr_t)kva
+ size
+ PAGEOFFSET
) &
1197 (uintptr_t)PAGEMASK
);
1198 kva
= (caddr_t
)((uintptr_t)kva
& (uintptr_t)PAGEMASK
);
1200 while (kva
< kva_end
) {
1201 pfn
= hat_getpfnum(kas
.a_hat
, kva
);
1202 hat_unload(kas
.a_hat
, kva
, PAGESIZE
, HAT_UNLOAD_UNLOCK
);
1203 hat_devload(kas
.a_hat
, kva
, PAGESIZE
, pfn
, hat_attr
, hat_flags
);
1204 kva
+= MMU_PAGESIZE
;
1211 ctgcompare(const void *a1
, const void *a2
)
1213 /* we just want to compare virtual addresses */
1214 a1
= ((struct ctgas
*)a1
)->ctg_addr
;
1215 a2
= ((struct ctgas
*)a2
)->ctg_addr
;
1216 return (a1
== a2
? 0 : (a1
< a2
? -1 : 1));
1223 paddr_t maxphysaddr
;
1225 extern pfn_t physmax
;
1227 maxphysaddr
= mmu_ptob((paddr_t
)physmax
) + MMU_PAGEOFFSET
;
1229 maxphysaddr
= mmu_ptob((paddr_t
)HYPERVISOR_memory_op(
1230 XENMEM_maximum_ram_page
, NULL
)) + MMU_PAGEOFFSET
;
1233 ASSERT(maxphysaddr
<= io_arena_params
[0].io_limit
);
1235 for (a
= 0; a
< MAX_MEM_RANGES
; a
++) {
1236 if (maxphysaddr
>= io_arena_params
[a
+ 1].io_limit
) {
1237 if (maxphysaddr
> io_arena_params
[a
+ 1].io_limit
)
1238 io_arena_params
[a
].io_limit
= maxphysaddr
;
1246 for (; a
< MAX_MEM_RANGES
; a
++) {
1247 kmem_io
[a
].kmem_io_attr
= kmem_io_attr
;
1248 kmem_io
[a
].kmem_io_attr
.dma_attr_addr_hi
=
1249 io_arena_params
[a
].io_limit
;
1251 * initialize kmem_io[] arena/cache corresponding to
1252 * maxphysaddr and to the "common" io memory ranges that
1253 * have io_initial set to a non-zero value.
1255 if (io_arena_params
[a
].io_initial
|| a
== kmem_io_idx
)
1259 /* initialize ctgtree */
1260 avl_create(&ctgtree
, ctgcompare
, sizeof (struct ctgas
),
1261 offsetof(struct ctgas
, ctg_link
));
1265 * put contig address/size
1268 putctgas(void *addr
, size_t size
)
1271 if ((ctgp
= kmem_zalloc(sizeof (*ctgp
), KM_NOSLEEP
)) != NULL
) {
1272 ctgp
->ctg_addr
= addr
;
1273 ctgp
->ctg_size
= size
;
1275 avl_add(&ctgtree
, ctgp
);
1282 * get contig size by addr
1285 getctgsz(void *addr
)
1291 find
.ctg_addr
= addr
;
1293 if ((ctgp
= avl_find(&ctgtree
, &find
, NULL
)) != NULL
) {
1294 avl_remove(&ctgtree
, ctgp
);
1299 sz
= ctgp
->ctg_size
;
1300 kmem_free(ctgp
, sizeof (*ctgp
));
1309 * allocates contiguous memory to satisfy the 'size' and dma attributes
1310 * specified in 'attr'.
1312 * Not all of memory need to be physically contiguous if the
1313 * scatter-gather list length is greater than 1.
1318 contig_alloc(size_t size
, ddi_dma_attr_t
*attr
, uintptr_t align
, int cansleep
)
1320 pgcnt_t pgcnt
= btopr(size
);
1321 size_t asize
= pgcnt
* PAGESIZE
;
1326 extern page_t
*page_create_io(vnode_t
*, u_offset_t
, uint_t
,
1327 uint_t
, struct as
*, caddr_t
, ddi_dma_attr_t
*);
1329 /* segkmem_xalloc */
1331 if (align
<= PAGESIZE
)
1332 addr
= vmem_alloc(heap_arena
, asize
,
1333 (cansleep
) ? VM_SLEEP
: VM_NOSLEEP
);
1335 addr
= vmem_xalloc(heap_arena
, asize
, align
, 0, 0, NULL
, NULL
,
1336 (cansleep
) ? VM_SLEEP
: VM_NOSLEEP
);
1338 ASSERT(!((uintptr_t)addr
& (align
- 1)));
1340 if (page_resv(pgcnt
, (cansleep
) ? KM_SLEEP
: KM_NOSLEEP
) == 0) {
1341 vmem_free(heap_arena
, addr
, asize
);
1349 /* 4k req gets from freelists rather than pfn search */
1350 if (pgcnt
> 1 || align
> PAGESIZE
)
1351 pflag
|= PG_PHYSCONTIG
;
1353 ppl
= page_create_io(&kvp
, (u_offset_t
)(uintptr_t)addr
,
1354 asize
, pflag
, &kas
, (caddr_t
)addr
, attr
);
1357 vmem_free(heap_arena
, addr
, asize
);
1362 while (ppl
!= NULL
) {
1365 ASSERT(page_iolock_assert(pp
));
1368 hat_memload(kas
.a_hat
, (caddr_t
)(uintptr_t)pp
->p_offset
,
1369 pp
, (PROT_ALL
& ~PROT_USER
) |
1370 HAT_NOSYNC
, HAT_LOAD_LOCK
);
1377 contig_free(void *addr
, size_t size
)
1379 pgcnt_t pgcnt
= btopr(size
);
1380 size_t asize
= pgcnt
* PAGESIZE
;
1384 hat_unload(kas
.a_hat
, addr
, asize
, HAT_UNLOAD_UNLOCK
);
1386 for (a
= addr
, ea
= a
+ asize
; a
< ea
; a
+= PAGESIZE
) {
1387 pp
= page_find(&kvp
, (u_offset_t
)(uintptr_t)a
);
1389 panic("contig_free: contig pp not found");
1391 if (!page_tryupgrade(pp
)) {
1393 pp
= page_lookup(&kvp
,
1394 (u_offset_t
)(uintptr_t)a
, SE_EXCL
);
1396 panic("contig_free: page freed");
1398 page_destroy(pp
, 0);
1402 vmem_free(heap_arena
, addr
, asize
);
1406 * Allocate from the system, aligned on a specific boundary.
1407 * The alignment, if non-zero, must be a power of 2.
1410 kalloca(size_t size
, size_t align
, int cansleep
, int physcontig
,
1411 ddi_dma_attr_t
*attr
)
1413 size_t *addr
, *raddr
, rsize
;
1414 size_t hdrsize
= 4 * sizeof (size_t); /* must be power of 2 */
1417 kmem_cache_t
*cp
= NULL
;
1419 if (attr
->dma_attr_addr_lo
> mmu_ptob((uint64_t)ddiphysmin
))
1422 align
= MAX(align
, hdrsize
);
1423 ASSERT((align
& (align
- 1)) == 0);
1426 * All of our allocators guarantee 16-byte alignment, so we don't
1427 * need to reserve additional space for the header.
1428 * To simplify picking the correct kmem_io_cache, we round up to
1429 * a multiple of KA_ALIGN.
1431 rsize
= P2ROUNDUP_TYPED(size
+ align
, KA_ALIGN
, size_t);
1433 if (physcontig
&& rsize
> PAGESIZE
) {
1434 if (addr
= contig_alloc(size
, attr
, align
, cansleep
)) {
1435 if (!putctgas(addr
, size
))
1436 contig_free(addr
, size
);
1443 a
= kmem_io_index(attr
->dma_attr_addr_hi
);
1445 if (rsize
> PAGESIZE
) {
1446 vmp
= kmem_io
[a
].kmem_io_arena
;
1447 raddr
= vmem_alloc(vmp
, rsize
,
1448 (cansleep
) ? VM_SLEEP
: VM_NOSLEEP
);
1450 c
= highbit((rsize
>> KA_ALIGN_SHIFT
) - 1);
1451 cp
= kmem_io
[a
].kmem_io_cache
[c
];
1452 raddr
= kmem_cache_alloc(cp
, (cansleep
) ? KM_SLEEP
:
1456 if (raddr
== NULL
) {
1459 ASSERT(cansleep
== 0);
1460 if (rsize
> PAGESIZE
)
1463 * System does not have memory in the requested range.
1464 * Try smaller kmem io ranges and larger cache sizes
1465 * to see if there might be memory available in
1466 * these other caches.
1469 for (na
= kmem_io_index_next(a
); na
>= 0;
1470 na
= kmem_io_index_next(na
)) {
1471 ASSERT(kmem_io
[na
].kmem_io_arena
);
1472 cp
= kmem_io
[na
].kmem_io_cache
[c
];
1473 raddr
= kmem_cache_alloc(cp
, KM_NOSLEEP
);
1477 /* now try the larger kmem io cache sizes */
1478 for (na
= a
; na
>= 0; na
= kmem_io_index_next(na
)) {
1479 for (i
= c
+ 1; i
< KA_NCACHE
; i
++) {
1480 cp
= kmem_io
[na
].kmem_io_cache
[i
];
1481 raddr
= kmem_cache_alloc(cp
, KM_NOSLEEP
);
1490 ASSERT(!P2BOUNDARY((uintptr_t)raddr
, rsize
, PAGESIZE
) ||
1493 addr
= (size_t *)P2ROUNDUP((uintptr_t)raddr
+ hdrsize
, align
);
1494 ASSERT((uintptr_t)addr
+ size
- (uintptr_t)raddr
<= rsize
);
1496 addr
[-4] = (size_t)cp
;
1497 addr
[-3] = (size_t)vmp
;
1498 addr
[-2] = (size_t)raddr
;
1509 if (!((uintptr_t)addr
& PAGEOFFSET
) && (size
= getctgsz(addr
))) {
1510 contig_free(addr
, size
);
1512 size_t *saddr
= addr
;
1514 vmem_free((vmem_t
*)saddr
[-3], (void *)saddr
[-2],
1517 kmem_cache_free((kmem_cache_t
*)saddr
[-4],
1524 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t
*devaccp
, uint_t
*hataccp
)
1529 * Check if the specified cache attribute is supported on the platform.
1530 * This function must be called before i_ddi_cacheattr_to_hatacc().
1533 i_ddi_check_cache_attr(uint_t flags
)
1536 * The cache attributes are mutually exclusive. Any combination of
1537 * the attributes leads to a failure.
1539 uint_t cache_attr
= IOMEM_CACHE_ATTR(flags
);
1540 if ((cache_attr
!= 0) && !ISP2(cache_attr
))
1543 /* All cache attributes are supported on X86/X64 */
1544 if (cache_attr
& (IOMEM_DATA_UNCACHED
| IOMEM_DATA_CACHED
|
1545 IOMEM_DATA_UC_WR_COMBINE
))
1548 /* undefined attributes */
1552 /* set HAT cache attributes from the cache attributes */
1554 i_ddi_cacheattr_to_hatacc(uint_t flags
, uint_t
*hataccp
)
1556 uint_t cache_attr
= IOMEM_CACHE_ATTR(flags
);
1557 static char *fname
= "i_ddi_cacheattr_to_hatacc";
1560 * If write-combining is not supported, then it falls back
1563 if (cache_attr
== IOMEM_DATA_UC_WR_COMBINE
&&
1564 !is_x86_feature(x86_featureset
, X86FSET_PAT
))
1565 cache_attr
= IOMEM_DATA_UNCACHED
;
1568 * set HAT attrs according to the cache attrs.
1570 switch (cache_attr
) {
1571 case IOMEM_DATA_UNCACHED
:
1572 *hataccp
&= ~HAT_ORDER_MASK
;
1573 *hataccp
|= (HAT_STRICTORDER
| HAT_PLAT_NOCACHE
);
1575 case IOMEM_DATA_UC_WR_COMBINE
:
1576 *hataccp
&= ~HAT_ORDER_MASK
;
1577 *hataccp
|= (HAT_MERGING_OK
| HAT_PLAT_NOCACHE
);
1579 case IOMEM_DATA_CACHED
:
1580 *hataccp
&= ~HAT_ORDER_MASK
;
1581 *hataccp
|= HAT_UNORDERED_OK
;
1584 * This case must not occur because the cache attribute is scrutinized
1585 * before this function is called.
1589 * set cacheable to hat attrs.
1591 *hataccp
&= ~HAT_ORDER_MASK
;
1592 *hataccp
|= HAT_UNORDERED_OK
;
1593 cmn_err(CE_WARN
, "%s: cache_attr=0x%x is ignored.",
1599 * This should actually be called i_ddi_dma_mem_alloc. There should
1600 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1601 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1602 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1603 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1604 * so far which is used for both, DMA and PIO, we have to use the DMA
1605 * ctl ops to make everybody happy.
1609 i_ddi_mem_alloc(dev_info_t
*dip
, ddi_dma_attr_t
*attr
,
1610 size_t length
, int cansleep
, int flags
,
1611 ddi_device_acc_attr_t
*accattrp
, caddr_t
*kaddrp
,
1612 size_t *real_length
, ddi_acc_hdl_t
*ap
)
1616 ddi_acc_impl_t
*iap
;
1624 * Check legality of arguments
1626 if (length
== 0 || kaddrp
== NULL
|| attr
== NULL
) {
1627 return (DDI_FAILURE
);
1630 if (attr
->dma_attr_minxfer
== 0 || attr
->dma_attr_align
== 0 ||
1631 !ISP2(attr
->dma_attr_align
) || !ISP2(attr
->dma_attr_minxfer
)) {
1632 return (DDI_FAILURE
);
1636 * figure out most restrictive alignment requirement
1638 iomin
= attr
->dma_attr_minxfer
;
1639 iomin
= maxbit(iomin
, attr
->dma_attr_align
);
1641 return (DDI_FAILURE
);
1643 ASSERT((iomin
& (iomin
- 1)) == 0);
1646 * if we allocate memory with IOMEM_DATA_UNCACHED or
1647 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1648 * memory that ends on a page boundry.
1649 * Don't want to have to different cache mappings to the same
1652 if (OVERRIDE_CACHE_ATTR(flags
)) {
1653 iomin
= (iomin
+ MMU_PAGEOFFSET
) & MMU_PAGEMASK
;
1654 length
= (length
+ MMU_PAGEOFFSET
) & (size_t)MMU_PAGEMASK
;
1658 * Determine if we need to satisfy the request for physically
1659 * contiguous memory or alignments larger than pagesize.
1661 npages
= btopr(length
+ attr
->dma_attr_align
);
1662 minctg
= howmany(npages
, attr
->dma_attr_sgllen
);
1665 uint64_t pfnseg
= attr
->dma_attr_seg
>> PAGESHIFT
;
1667 * verify that the minimum contig requirement for the
1668 * actual length does not cross segment boundary.
1670 length
= P2ROUNDUP_TYPED(length
, attr
->dma_attr_minxfer
,
1672 npages
= btopr(length
);
1673 minctg
= howmany(npages
, attr
->dma_attr_sgllen
);
1674 if (minctg
> pfnseg
+ 1)
1675 return (DDI_FAILURE
);
1678 length
= P2ROUNDUP_TYPED(length
, iomin
, size_t);
1682 * Allocate the requested amount from the system.
1684 a
= kalloca(length
, iomin
, cansleep
, physcontig
, attr
);
1686 if ((*kaddrp
= a
) == NULL
)
1687 return (DDI_FAILURE
);
1690 * if we to modify the cache attributes, go back and muck with the
1693 if (OVERRIDE_CACHE_ATTR(flags
)) {
1695 i_ddi_cacheattr_to_hatacc(flags
, &order
);
1696 e
= kmem_override_cache_attrs(a
, length
, order
);
1699 return (DDI_FAILURE
);
1704 *real_length
= length
;
1708 * initialize access handle
1710 iap
= (ddi_acc_impl_t
*)ap
->ah_platform_private
;
1711 iap
->ahi_acc_attr
|= DDI_ACCATTR_CPU_VADDR
;
1712 impl_acc_hdl_init(ap
);
1715 return (DDI_SUCCESS
);
1720 i_ddi_mem_free(caddr_t kaddr
, ddi_acc_hdl_t
*ap
)
1724 * if we modified the cache attributes on alloc, go back and
1725 * fix them since this memory could be returned to the
1728 if (OVERRIDE_CACHE_ATTR(ap
->ah_xfermodes
)) {
1731 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED
, &order
);
1732 e
= kmem_override_cache_attrs(kaddr
, ap
->ah_len
, order
);
1734 cmn_err(CE_WARN
, "i_ddi_mem_free() failed to "
1735 "override cache attrs, memory leaked\n");
1749 i_ddi_ontrap(ddi_acc_handle_t hp
)
1751 return (DDI_FAILURE
);
1756 i_ddi_notrap(ddi_acc_handle_t hp
)
1766 * Implementation instance override functions
1768 * No override on i86pc
1772 impl_assign_instance(dev_info_t
*dip
)
1774 return ((uint_t
)-1);
1779 impl_keep_instance(dev_info_t
*dip
)
1784 * Do not persist instance numbers assigned to devices in dom0
1787 if (DOMAIN_IS_INITDOMAIN(xen_info
)) {
1788 if (((pdip
= ddi_get_parent(dip
)) != NULL
) &&
1789 (strcmp(ddi_get_name(pdip
), "xpvd") == 0))
1790 return (DDI_SUCCESS
);
1793 return (DDI_FAILURE
);
1798 impl_free_instance(dev_info_t
*dip
)
1800 return (DDI_FAILURE
);
1805 impl_check_cpu(dev_info_t
*devi
)
1807 return (DDI_SUCCESS
);
1811 * Referenced in common/cpr_driver.c: Power off machine.
1812 * Don't know how to power off i86pc.
1819 * Copy name to property_name, since name
1820 * is in the low address range below kernelbase.
1823 copy_boot_str(const char *boot_str
, char *kern_str
, int len
)
1827 while (i
< len
- 1 && boot_str
[i
] != '\0') {
1828 kern_str
[i
] = boot_str
[i
];
1832 kern_str
[i
] = 0; /* null terminate */
1833 if (boot_str
[i
] != '\0')
1835 "boot property string is truncated to %s", kern_str
);
1839 get_boot_properties(void)
1841 extern char hw_provider
[];
1845 char property_name
[50], property_val
[50];
1846 void *bop_staging_area
;
1848 bop_staging_area
= kmem_zalloc(MMU_PAGESIZE
, KM_NOSLEEP
);
1851 * Import "root" properties from the boot.
1853 * We do this by invoking BOP_NEXTPROP until the list
1854 * is completely copied in.
1857 devi
= ddi_root_node();
1858 for (name
= BOP_NEXTPROP(bootops
, ""); /* get first */
1859 name
; /* NULL => DONE */
1860 name
= BOP_NEXTPROP(bootops
, name
)) { /* get next */
1862 /* copy string to memory above kernelbase */
1863 copy_boot_str(name
, property_name
, 50);
1866 * Skip vga properties. They will be picked up later
1867 * by get_vga_properties.
1869 if (strcmp(property_name
, "display-edif-block") == 0 ||
1870 strcmp(property_name
, "display-edif-id") == 0) {
1874 length
= BOP_GETPROPLEN(bootops
, property_name
);
1877 if (length
> MMU_PAGESIZE
) {
1879 "boot property %s longer than 0x%x, ignored\n",
1880 property_name
, MMU_PAGESIZE
);
1883 BOP_GETPROP(bootops
, property_name
, bop_staging_area
);
1886 * special properties:
1887 * si-machine, si-hw-provider
1888 * goes to kernel data structures.
1889 * bios-boot-device and stdout
1890 * goes to hardware property list so it may show up
1891 * in the prtconf -vp output. This is needed by
1892 * Install/Upgrade. Once we fix install upgrade,
1893 * this can be taken out.
1895 if (strcmp(name
, "si-machine") == 0) {
1896 (void) strncpy(utsname
.machine
, bop_staging_area
,
1898 utsname
.machine
[SYS_NMLN
- 1] = (char)NULL
;
1899 } else if (strcmp(name
, "si-hw-provider") == 0) {
1900 (void) strncpy(hw_provider
, bop_staging_area
, SYS_NMLN
);
1901 hw_provider
[SYS_NMLN
- 1] = (char)NULL
;
1902 } else if (strcmp(name
, "bios-boot-device") == 0) {
1903 copy_boot_str(bop_staging_area
, property_val
, 50);
1904 (void) ndi_prop_update_string(DDI_DEV_T_NONE
, devi
,
1905 property_name
, property_val
);
1906 } else if (strcmp(name
, "acpi-root-tab") == 0) {
1907 (void) ndi_prop_update_int64(DDI_DEV_T_NONE
, devi
,
1908 property_name
, *((int64_t *)bop_staging_area
));
1909 } else if (strcmp(name
, "smbios-address") == 0) {
1910 (void) ndi_prop_update_int64(DDI_DEV_T_NONE
, devi
,
1911 property_name
, *((int64_t *)bop_staging_area
));
1912 } else if (strcmp(name
, "stdout") == 0) {
1913 (void) ndi_prop_update_int(DDI_DEV_T_NONE
, devi
,
1914 property_name
, *((int *)bop_staging_area
));
1915 } else if (strcmp(name
, "boot-args") == 0) {
1916 copy_boot_str(bop_staging_area
, property_val
, 50);
1917 (void) e_ddi_prop_update_string(DDI_DEV_T_NONE
, devi
,
1918 property_name
, property_val
);
1919 } else if (strcmp(name
, "bootargs") == 0) {
1920 copy_boot_str(bop_staging_area
, property_val
, 50);
1921 (void) e_ddi_prop_update_string(DDI_DEV_T_NONE
, devi
,
1922 property_name
, property_val
);
1923 } else if (strcmp(name
, "bootp-response") == 0) {
1924 (void) e_ddi_prop_update_byte_array(DDI_DEV_T_NONE
,
1925 devi
, property_name
, bop_staging_area
, length
);
1926 } else if (strcmp(name
, "ramdisk_start") == 0) {
1927 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE
, devi
,
1928 property_name
, *((int64_t *)bop_staging_area
));
1929 } else if (strcmp(name
, "ramdisk_end") == 0) {
1930 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE
, devi
,
1931 property_name
, *((int64_t *)bop_staging_area
));
1932 } else if (strncmp(name
, "module-addr-", 12) == 0) {
1933 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE
, devi
,
1934 property_name
, *((int64_t *)bop_staging_area
));
1935 } else if (strncmp(name
, "module-size-", 12) == 0) {
1936 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE
, devi
,
1937 property_name
, *((int64_t *)bop_staging_area
));
1939 /* Property type unknown, use old prop interface */
1940 (void) e_ddi_prop_create(DDI_DEV_T_NONE
, devi
,
1941 DDI_PROP_CANSLEEP
, property_name
, bop_staging_area
,
1946 kmem_free(bop_staging_area
, MMU_PAGESIZE
);
1950 get_vga_properties(void)
1956 char property_val
[50];
1957 void *bop_staging_area
;
1961 * There really needs to be a better way for identifying various
1962 * console framebuffers and their related issues. Till then,
1963 * check for this one as a replacement to vgatext.
1965 major
= ddi_name_to_major("ragexl");
1966 if (major
== (major_t
)-1) {
1967 major
= ddi_name_to_major("vgatext");
1968 if (major
== (major_t
)-1)
1971 devi
= devnamesp
[major
].dn_head
;
1975 bop_staging_area
= kmem_zalloc(MMU_PAGESIZE
, KM_SLEEP
);
1978 * Import "vga" properties from the boot.
1980 name
= "display-edif-block";
1981 length
= BOP_GETPROPLEN(bootops
, name
);
1982 if (length
> 0 && length
< MMU_PAGESIZE
) {
1983 BOP_GETPROP(bootops
, name
, bop_staging_area
);
1984 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE
,
1985 devi
, name
, bop_staging_area
, length
);
1989 * kdmconfig is also looking for display-type and
1990 * video-adapter-type. We default to color and svga.
1992 * Could it be "monochrome", "vga"?
1993 * Nah, you've got to come to the 21st century...
1994 * And you can set monitor type manually in kdmconfig
1995 * if you are really an old junky.
1997 (void) ndi_prop_update_string(DDI_DEV_T_NONE
,
1998 devi
, "display-type", "color");
1999 (void) ndi_prop_update_string(DDI_DEV_T_NONE
,
2000 devi
, "video-adapter-type", "svga");
2002 name
= "display-edif-id";
2003 length
= BOP_GETPROPLEN(bootops
, name
);
2004 if (length
> 0 && length
< MMU_PAGESIZE
) {
2005 BOP_GETPROP(bootops
, name
, bop_staging_area
);
2006 copy_boot_str(bop_staging_area
, property_val
, length
);
2007 (void) ndi_prop_update_string(DDI_DEV_T_NONE
,
2008 devi
, name
, property_val
);
2011 kmem_free(bop_staging_area
, MMU_PAGESIZE
);
2016 * This is temporary, but absolutely necessary. If we are being
2017 * booted with a device tree created by the DevConf project's bootconf
2018 * program, then we have device information nodes that reflect
2019 * reality. At this point in time in the Solaris release schedule, the
2020 * kernel drivers aren't prepared for reality. They still depend on their
2021 * own ad-hoc interpretations of the properties created when their .conf
2022 * files were interpreted. These drivers use an "ignore-hardware-nodes"
2023 * property to prevent them from using the nodes passed up from the bootconf
2026 * Trying to assemble root file system drivers as we are booting from
2027 * devconf will fail if the kernel driver is basing its name_addr's on the
2028 * psuedo-node device info while the bootpath passed up from bootconf is using
2029 * reality-based name_addrs. We help the boot along in this case by
2030 * looking at the pre-bootconf bootpath and determining if we would have
2031 * successfully matched if that had been the bootpath we had chosen.
2033 * Note that we only even perform this extra check if we've booted
2034 * using bootconf's 1275 compliant bootpath, this is the boot device, and
2035 * we're trying to match the name_addr specified in the 1275 bootpath.
2038 #define MAXCOMPONENTLEN 32
2041 x86_old_bootpath_name_addr_match(dev_info_t
*cdip
, char *caddr
, char *naddr
)
2044 * There are multiple criteria to be met before we can even
2045 * consider allowing a name_addr match here.
2047 * 1) We must have been booted such that the bootconf program
2048 * created device tree nodes and properties. This can be
2049 * determined by examining the 'bootpath' property. This
2050 * property will be a non-null string iff bootconf was
2051 * involved in the boot.
2053 * 2) The module that we want to match must be the boot device.
2055 * 3) The instance of the module we are thinking of letting be
2056 * our match must be ignoring hardware nodes.
2058 * 4) The name_addr we want to match must be the name_addr
2059 * specified in the 1275 bootpath.
2061 static char bootdev_module
[MAXCOMPONENTLEN
];
2062 static char bootdev_oldmod
[MAXCOMPONENTLEN
];
2063 static char bootdev_newaddr
[MAXCOMPONENTLEN
];
2064 static char bootdev_oldaddr
[MAXCOMPONENTLEN
];
2065 static int quickexit
;
2071 int rv
= DDI_FAILURE
;
2073 if ((ddi_getlongprop(DDI_DEV_T_ANY
, cdip
, DDI_PROP_DONTPASS
,
2074 "devconf-addr", (caddr_t
)&daddr
, &dlen
) == DDI_PROP_SUCCESS
) &&
2075 (ddi_getprop(DDI_DEV_T_ANY
, cdip
, DDI_PROP_DONTPASS
,
2076 "ignore-hardware-nodes", -1) != -1)) {
2077 if (strcmp(daddr
, caddr
) == 0) {
2078 return (DDI_SUCCESS
);
2085 if (bootdev_module
[0] == '\0') {
2086 char *addrp
, *eoaddrp
;
2087 char *busp
, *modp
, *atp
;
2089 int bp1275len
, bplen
;
2091 bp1275
= bp
= addrp
= eoaddrp
= busp
= modp
= atp
= NULL
;
2093 if (ddi_getlongprop(DDI_DEV_T_ANY
,
2094 ddi_root_node(), 0, "bootpath",
2095 (caddr_t
)&bp1275
, &bp1275len
) != DDI_PROP_SUCCESS
||
2098 * We didn't boot from bootconf so we never need to
2099 * do any special matches.
2103 kmem_free(bp1275
, bp1275len
);
2107 if (ddi_getlongprop(DDI_DEV_T_ANY
,
2108 ddi_root_node(), 0, "boot-path",
2109 (caddr_t
)&bp
, &bplen
) != DDI_PROP_SUCCESS
|| bplen
<= 1) {
2111 * No fallback position for matching. This is
2112 * certainly unexpected, but we'll handle it
2116 kmem_free(bp1275
, bp1275len
);
2118 kmem_free(bp
, bplen
);
2123 * Determine boot device module and 1275 name_addr
2125 * bootpath assumed to be of the form /bus/module@name_addr
2127 if (busp
= strchr(bp1275
, '/')) {
2128 if (modp
= strchr(busp
+ 1, '/')) {
2129 if (atp
= strchr(modp
+ 1, '@')) {
2132 if (eoaddrp
= strchr(addrp
, '/'))
2138 if (modp
&& addrp
) {
2139 (void) strncpy(bootdev_module
, modp
+ 1,
2141 bootdev_module
[MAXCOMPONENTLEN
- 1] = '\0';
2143 (void) strncpy(bootdev_newaddr
, addrp
, MAXCOMPONENTLEN
);
2144 bootdev_newaddr
[MAXCOMPONENTLEN
- 1] = '\0';
2147 kmem_free(bp1275
, bp1275len
);
2148 kmem_free(bp
, bplen
);
2153 * Determine fallback name_addr
2155 * 10/3/96 - Also save fallback module name because it
2156 * might actually be different than the current module
2157 * name. E.G., ISA pnp drivers have new names.
2159 * bootpath assumed to be of the form /bus/module@name_addr
2162 if (busp
= strchr(bp
, '/')) {
2163 if (modp
= strchr(busp
+ 1, '/')) {
2164 if (atp
= strchr(modp
+ 1, '@')) {
2167 if (eoaddrp
= strchr(addrp
, '/'))
2173 if (modp
&& addrp
) {
2174 (void) strncpy(bootdev_oldmod
, modp
+ 1,
2176 bootdev_module
[MAXCOMPONENTLEN
- 1] = '\0';
2178 (void) strncpy(bootdev_oldaddr
, addrp
, MAXCOMPONENTLEN
);
2179 bootdev_oldaddr
[MAXCOMPONENTLEN
- 1] = '\0';
2182 /* Free up the bootpath storage now that we're done with it. */
2183 kmem_free(bp1275
, bp1275len
);
2184 kmem_free(bp
, bplen
);
2186 if (bootdev_oldaddr
[0] == '\0') {
2192 if (((lkupname
= ddi_get_name(cdip
)) != NULL
) &&
2193 (strcmp(bootdev_module
, lkupname
) == 0 ||
2194 strcmp(bootdev_oldmod
, lkupname
) == 0) &&
2195 ((ddi_getprop(DDI_DEV_T_ANY
, cdip
, DDI_PROP_DONTPASS
,
2196 "ignore-hardware-nodes", -1) != -1) ||
2197 ignore_hardware_nodes
) &&
2198 strcmp(bootdev_newaddr
, caddr
) == 0 &&
2199 strcmp(bootdev_oldaddr
, naddr
) == 0) {
2207 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2208 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2212 e_ddi_copyfromdev(dev_info_t
*devi
,
2213 off_t off
, const void *devaddr
, void *kaddr
, size_t len
)
2215 bcopy(devaddr
, kaddr
, len
);
2220 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2221 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2225 e_ddi_copytodev(dev_info_t
*devi
,
2226 off_t off
, const void *kaddr
, void *devaddr
, size_t len
)
2228 bcopy(kaddr
, devaddr
, len
);
2234 poke_mem(peekpoke_ctlops_t
*in_args
)
2236 int err
= DDI_SUCCESS
;
2239 /* Set up protected environment. */
2240 if (!on_trap(&otd
, OT_DATA_ACCESS
)) {
2241 switch (in_args
->size
) {
2242 case sizeof (uint8_t):
2243 *(uint8_t *)(in_args
->dev_addr
) =
2244 *(uint8_t *)in_args
->host_addr
;
2247 case sizeof (uint16_t):
2248 *(uint16_t *)(in_args
->dev_addr
) =
2249 *(uint16_t *)in_args
->host_addr
;
2252 case sizeof (uint32_t):
2253 *(uint32_t *)(in_args
->dev_addr
) =
2254 *(uint32_t *)in_args
->host_addr
;
2257 case sizeof (uint64_t):
2258 *(uint64_t *)(in_args
->dev_addr
) =
2259 *(uint64_t *)in_args
->host_addr
;
2269 /* Take down protected environment. */
2277 peek_mem(peekpoke_ctlops_t
*in_args
)
2279 int err
= DDI_SUCCESS
;
2282 if (!on_trap(&otd
, OT_DATA_ACCESS
)) {
2283 switch (in_args
->size
) {
2284 case sizeof (uint8_t):
2285 *(uint8_t *)in_args
->host_addr
=
2286 *(uint8_t *)in_args
->dev_addr
;
2289 case sizeof (uint16_t):
2290 *(uint16_t *)in_args
->host_addr
=
2291 *(uint16_t *)in_args
->dev_addr
;
2294 case sizeof (uint32_t):
2295 *(uint32_t *)in_args
->host_addr
=
2296 *(uint32_t *)in_args
->dev_addr
;
2299 case sizeof (uint64_t):
2300 *(uint64_t *)in_args
->host_addr
=
2301 *(uint64_t *)in_args
->dev_addr
;
2317 * This is called only to process peek/poke when the DIP is NULL.
2318 * Assume that this is for memory, as nexi take care of device safe accesses.
2321 peekpoke_mem(ddi_ctl_enum_t cmd
, peekpoke_ctlops_t
*in_args
)
2323 return (cmd
== DDI_CTLOPS_PEEK
? peek_mem(in_args
) : poke_mem(in_args
));
2327 * we've just done a cautious put/get. Check if it was successful by
2328 * calling pci_ereport_post() on all puts and for any gets that return -1
2331 pci_peekpoke_check_fma(dev_info_t
*dip
, void *arg
, ddi_ctl_enum_t ctlop
,
2332 void (*scan
)(dev_info_t
*, ddi_fm_error_t
*))
2334 int rval
= DDI_SUCCESS
;
2335 peekpoke_ctlops_t
*in_args
= (peekpoke_ctlops_t
*)arg
;
2337 ddi_acc_impl_t
*hp
= (ddi_acc_impl_t
*)in_args
->handle
;
2338 ddi_acc_hdl_t
*hdlp
= (ddi_acc_hdl_t
*)in_args
->handle
;
2340 int repcount
= in_args
->repcount
;
2342 if (ctlop
== DDI_CTLOPS_POKE
&&
2343 hdlp
->ah_acc
.devacc_attr_access
!= DDI_CAUTIOUS_ACC
)
2344 return (DDI_SUCCESS
);
2346 if (ctlop
== DDI_CTLOPS_PEEK
&&
2347 hdlp
->ah_acc
.devacc_attr_access
!= DDI_CAUTIOUS_ACC
) {
2348 for (; repcount
; repcount
--) {
2349 switch (in_args
->size
) {
2350 case sizeof (uint8_t):
2351 if (*(uint8_t *)in_args
->host_addr
== 0xff)
2354 case sizeof (uint16_t):
2355 if (*(uint16_t *)in_args
->host_addr
== 0xffff)
2358 case sizeof (uint32_t):
2359 if (*(uint32_t *)in_args
->host_addr
==
2363 case sizeof (uint64_t):
2364 if (*(uint64_t *)in_args
->host_addr
==
2371 return (DDI_SUCCESS
);
2374 * for a cautious put or get or a non-cautious get that returned -1 call
2375 * io framework to see if there really was an error
2377 bzero(&de
, sizeof (ddi_fm_error_t
));
2378 de
.fme_version
= DDI_FME_VERSION
;
2379 de
.fme_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
2380 if (hdlp
->ah_acc
.devacc_attr_access
== DDI_CAUTIOUS_ACC
) {
2381 de
.fme_flag
= DDI_FM_ERR_EXPECTED
;
2382 de
.fme_acc_handle
= in_args
->handle
;
2383 } else if (hdlp
->ah_acc
.devacc_attr_access
== DDI_DEFAULT_ACC
) {
2385 * We only get here with DDI_DEFAULT_ACC for config space gets.
2386 * Non-hardened drivers may be probing the hardware and
2387 * expecting -1 returned. So need to treat errors on
2388 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2390 de
.fme_flag
= DDI_FM_ERR_EXPECTED
;
2391 de
.fme_acc_handle
= in_args
->handle
;
2394 * Hardened driver doing protected accesses shouldn't
2395 * get errors unless there's a hardware problem. Treat
2396 * as nonfatal if there's an error, but set UNEXPECTED
2397 * so we raise ereports on any errors and potentially
2400 de
.fme_flag
= DDI_FM_ERR_UNEXPECTED
;
2402 (void) scan(dip
, &de
);
2403 if (hdlp
->ah_acc
.devacc_attr_access
!= DDI_DEFAULT_ACC
&&
2404 de
.fme_status
!= DDI_FM_OK
) {
2405 ndi_err_t
*errp
= (ndi_err_t
*)hp
->ahi_err
;
2407 errp
->err_ena
= de
.fme_ena
;
2408 errp
->err_expected
= de
.fme_flag
;
2409 errp
->err_status
= DDI_FM_NONFATAL
;
2415 * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2416 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2417 * recurse, so assume all puts are OK and gets have failed if they return -1
2420 pci_peekpoke_check_nofma(void *arg
, ddi_ctl_enum_t ctlop
)
2422 int rval
= DDI_SUCCESS
;
2423 peekpoke_ctlops_t
*in_args
= (peekpoke_ctlops_t
*)arg
;
2424 ddi_acc_impl_t
*hp
= (ddi_acc_impl_t
*)in_args
->handle
;
2425 ddi_acc_hdl_t
*hdlp
= (ddi_acc_hdl_t
*)in_args
->handle
;
2426 int repcount
= in_args
->repcount
;
2428 if (ctlop
== DDI_CTLOPS_POKE
)
2431 for (; repcount
; repcount
--) {
2432 switch (in_args
->size
) {
2433 case sizeof (uint8_t):
2434 if (*(uint8_t *)in_args
->host_addr
== 0xff)
2437 case sizeof (uint16_t):
2438 if (*(uint16_t *)in_args
->host_addr
== 0xffff)
2441 case sizeof (uint32_t):
2442 if (*(uint32_t *)in_args
->host_addr
== 0xffffffff)
2445 case sizeof (uint64_t):
2446 if (*(uint64_t *)in_args
->host_addr
==
2452 if (hdlp
->ah_acc
.devacc_attr_access
!= DDI_DEFAULT_ACC
&&
2453 rval
== DDI_FAILURE
) {
2454 ndi_err_t
*errp
= (ndi_err_t
*)hp
->ahi_err
;
2455 errp
->err_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
2456 errp
->err_expected
= DDI_FM_ERR_UNEXPECTED
;
2457 errp
->err_status
= DDI_FM_NONFATAL
;
2463 pci_peekpoke_check(dev_info_t
*dip
, dev_info_t
*rdip
,
2464 ddi_ctl_enum_t ctlop
, void *arg
, void *result
,
2465 int (*handler
)(dev_info_t
*, dev_info_t
*, ddi_ctl_enum_t
, void *,
2466 void *), kmutex_t
*err_mutexp
, kmutex_t
*peek_poke_mutexp
,
2467 void (*scan
)(dev_info_t
*, ddi_fm_error_t
*))
2470 peekpoke_ctlops_t
*in_args
= (peekpoke_ctlops_t
*)arg
;
2471 ddi_acc_impl_t
*hp
= (ddi_acc_impl_t
*)in_args
->handle
;
2474 * this function only supports cautious accesses, not peeks/pokes
2475 * which don't have a handle
2478 return (DDI_FAILURE
);
2480 if (hp
->ahi_acc_attr
& DDI_ACCATTR_CONFIG_SPACE
) {
2481 if (!mutex_tryenter(err_mutexp
)) {
2483 * As this may be a recursive call from within
2484 * pci_ereport_post() we can't wait for the mutexes.
2485 * Fortunately we know someone is already calling
2486 * pci_ereport_post() which will handle the error bits
2487 * for us, and as this is a config space access we can
2488 * just do the access and check return value for -1
2489 * using pci_peekpoke_check_nofma().
2491 rval
= handler(dip
, rdip
, ctlop
, arg
, result
);
2492 if (rval
== DDI_SUCCESS
)
2493 rval
= pci_peekpoke_check_nofma(arg
, ctlop
);
2497 * This can't be a recursive call. Drop the err_mutex and get
2498 * both mutexes in the right order. If an error hasn't already
2499 * been detected by the ontrap code, use pci_peekpoke_check_fma
2500 * which will call pci_ereport_post() to check error status.
2502 mutex_exit(err_mutexp
);
2504 mutex_enter(peek_poke_mutexp
);
2505 rval
= handler(dip
, rdip
, ctlop
, arg
, result
);
2506 if (rval
== DDI_SUCCESS
) {
2507 mutex_enter(err_mutexp
);
2508 rval
= pci_peekpoke_check_fma(dip
, arg
, ctlop
, scan
);
2509 mutex_exit(err_mutexp
);
2511 mutex_exit(peek_poke_mutexp
);
2516 impl_setup_ddi(void)
2519 extern void startup_bios_disk(void);
2520 extern int post_fastreboot
;
2522 dev_info_t
*xdip
, *isa_dip
;
2523 rd_existing_t rd_mem_prop
;
2526 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2527 (pnode_t
)DEVI_SID_NODEID
, &xdip
);
2529 (void) BOP_GETPROP(bootops
,
2530 "ramdisk_start", (void *)&ramdisk_start
);
2531 (void) BOP_GETPROP(bootops
,
2532 "ramdisk_end", (void *)&ramdisk_end
);
2535 ramdisk_start
-= ONE_GIG
;
2536 ramdisk_end
-= ONE_GIG
;
2538 rd_mem_prop
.phys
= ramdisk_start
;
2539 rd_mem_prop
.size
= ramdisk_end
- ramdisk_start
+ 1;
2541 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE
, xdip
,
2542 RD_EXISTING_PROP_NAME
, (uchar_t
*)&rd_mem_prop
,
2543 sizeof (rd_mem_prop
));
2544 err
= ndi_devi_bind_driver(xdip
, 0);
2549 ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2550 (pnode_t
)DEVI_SID_NODEID
, &isa_dip
);
2551 (void) ndi_prop_update_string(DDI_DEV_T_NONE
, isa_dip
,
2552 "device_type", "isa");
2553 (void) ndi_prop_update_string(DDI_DEV_T_NONE
, isa_dip
,
2555 (void) ndi_devi_bind_driver(isa_dip
, 0);
2559 * Read in the properties from the boot.
2561 get_boot_properties();
2563 /* not framebuffer should be enumerated, if present */
2564 get_vga_properties();
2567 * Check for administratively disabled drivers.
2569 check_driver_disable();
2572 if (!post_fastreboot
)
2573 startup_bios_disk();
2575 /* do bus dependent probes. */
2576 impl_bus_initialprobe();
2583 * Usually rootfs.bo_name is initialized by the
2584 * the bootpath property from bootenv.rc, but
2585 * defaults to "/ramdisk:a" otherwise.
2587 return (ddi_pathname_to_dev_t(rootfs
.bo_name
));
2590 static struct bus_probe
{
2591 struct bus_probe
*next
;
2596 impl_bus_add_probe(void (*func
)(int))
2598 struct bus_probe
*probe
;
2599 struct bus_probe
*lastprobe
= NULL
;
2601 probe
= kmem_alloc(sizeof (*probe
), KM_SLEEP
);
2602 probe
->probe
= func
;
2610 lastprobe
= bus_probes
;
2611 while (lastprobe
->next
)
2612 lastprobe
= lastprobe
->next
;
2613 lastprobe
->next
= probe
;
2618 impl_bus_delete_probe(void (*func
)(int))
2620 struct bus_probe
*prev
= NULL
;
2621 struct bus_probe
*probe
= bus_probes
;
2624 if (probe
->probe
== func
)
2627 probe
= probe
->next
;
2634 prev
->next
= probe
->next
;
2636 bus_probes
= probe
->next
;
2638 kmem_free(probe
, sizeof (struct bus_probe
));
2642 * impl_bus_initialprobe
2643 * Modload the prom simulator, then let it probe to verify existence
2644 * and type of PCI support.
2647 impl_bus_initialprobe(void)
2649 struct bus_probe
*probe
;
2651 /* load modules to install bus probes */
2653 if (DOMAIN_IS_INITDOMAIN(xen_info
)) {
2654 if (modload("misc", "pci_autoconfig") < 0) {
2655 panic("failed to load misc/pci_autoconfig");
2658 if (modload("drv", "isa") < 0)
2659 panic("failed to load drv/isa");
2662 (void) modload("misc", "xpv_autoconfig");
2664 if (modload("misc", "pci_autoconfig") < 0) {
2665 panic("failed to load misc/pci_autoconfig");
2668 (void) modload("misc", "acpidev");
2670 if (modload("drv", "isa") < 0)
2671 panic("failed to load drv/isa");
2676 /* run the probe functions */
2678 probe
= probe
->next
;
2684 * Reprogram devices not set up by firmware.
2687 impl_bus_reprobe(void)
2689 struct bus_probe
*probe
;
2693 /* run the probe function */
2695 probe
= probe
->next
;
2701 * The following functions ready a cautious request to go up to the nexus
2702 * driver. It is up to the nexus driver to decide how to process the request.
2703 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2708 i_ddi_caut_getput_ctlops(ddi_acc_impl_t
*hp
, uint64_t host_addr
,
2709 uint64_t dev_addr
, size_t size
, size_t repcount
, uint_t flags
,
2712 peekpoke_ctlops_t cautacc_ctlops_arg
;
2714 cautacc_ctlops_arg
.size
= size
;
2715 cautacc_ctlops_arg
.dev_addr
= dev_addr
;
2716 cautacc_ctlops_arg
.host_addr
= host_addr
;
2717 cautacc_ctlops_arg
.handle
= (ddi_acc_handle_t
)hp
;
2718 cautacc_ctlops_arg
.repcount
= repcount
;
2719 cautacc_ctlops_arg
.flags
= flags
;
2721 (void) ddi_ctlops(hp
->ahi_common
.ah_dip
, hp
->ahi_common
.ah_dip
, cmd
,
2722 &cautacc_ctlops_arg
, NULL
);
2726 i_ddi_caut_get8(ddi_acc_impl_t
*hp
, uint8_t *addr
)
2729 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2730 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK
);
2736 i_ddi_caut_get16(ddi_acc_impl_t
*hp
, uint16_t *addr
)
2739 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2740 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK
);
2746 i_ddi_caut_get32(ddi_acc_impl_t
*hp
, uint32_t *addr
)
2749 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2750 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK
);
2756 i_ddi_caut_get64(ddi_acc_impl_t
*hp
, uint64_t *addr
)
2759 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2760 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK
);
2766 i_ddi_caut_put8(ddi_acc_impl_t
*hp
, uint8_t *addr
, uint8_t value
)
2768 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2769 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE
);
2773 i_ddi_caut_put16(ddi_acc_impl_t
*hp
, uint16_t *addr
, uint16_t value
)
2775 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2776 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE
);
2780 i_ddi_caut_put32(ddi_acc_impl_t
*hp
, uint32_t *addr
, uint32_t value
)
2782 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2783 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE
);
2787 i_ddi_caut_put64(ddi_acc_impl_t
*hp
, uint64_t *addr
, uint64_t value
)
2789 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)&value
, (uintptr_t)addr
,
2790 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE
);
2794 i_ddi_caut_rep_get8(ddi_acc_impl_t
*hp
, uint8_t *host_addr
, uint8_t *dev_addr
,
2795 size_t repcount
, uint_t flags
)
2797 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2798 sizeof (uint8_t), repcount
, flags
, DDI_CTLOPS_PEEK
);
2802 i_ddi_caut_rep_get16(ddi_acc_impl_t
*hp
, uint16_t *host_addr
,
2803 uint16_t *dev_addr
, size_t repcount
, uint_t flags
)
2805 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2806 sizeof (uint16_t), repcount
, flags
, DDI_CTLOPS_PEEK
);
2810 i_ddi_caut_rep_get32(ddi_acc_impl_t
*hp
, uint32_t *host_addr
,
2811 uint32_t *dev_addr
, size_t repcount
, uint_t flags
)
2813 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2814 sizeof (uint32_t), repcount
, flags
, DDI_CTLOPS_PEEK
);
2818 i_ddi_caut_rep_get64(ddi_acc_impl_t
*hp
, uint64_t *host_addr
,
2819 uint64_t *dev_addr
, size_t repcount
, uint_t flags
)
2821 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2822 sizeof (uint64_t), repcount
, flags
, DDI_CTLOPS_PEEK
);
2826 i_ddi_caut_rep_put8(ddi_acc_impl_t
*hp
, uint8_t *host_addr
, uint8_t *dev_addr
,
2827 size_t repcount
, uint_t flags
)
2829 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2830 sizeof (uint8_t), repcount
, flags
, DDI_CTLOPS_POKE
);
2834 i_ddi_caut_rep_put16(ddi_acc_impl_t
*hp
, uint16_t *host_addr
,
2835 uint16_t *dev_addr
, size_t repcount
, uint_t flags
)
2837 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2838 sizeof (uint16_t), repcount
, flags
, DDI_CTLOPS_POKE
);
2842 i_ddi_caut_rep_put32(ddi_acc_impl_t
*hp
, uint32_t *host_addr
,
2843 uint32_t *dev_addr
, size_t repcount
, uint_t flags
)
2845 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2846 sizeof (uint32_t), repcount
, flags
, DDI_CTLOPS_POKE
);
2850 i_ddi_caut_rep_put64(ddi_acc_impl_t
*hp
, uint64_t *host_addr
,
2851 uint64_t *dev_addr
, size_t repcount
, uint_t flags
)
2853 i_ddi_caut_getput_ctlops(hp
, (uintptr_t)host_addr
, (uintptr_t)dev_addr
,
2854 sizeof (uint64_t), repcount
, flags
, DDI_CTLOPS_POKE
);
2858 i_ddi_copybuf_required(ddi_dma_attr_t
*attrp
)
2862 hi_pa
= ((uint64_t)physmax
+ 1ull) << PAGESHIFT
;
2863 if (attrp
->dma_attr_addr_hi
< hi_pa
) {
2871 i_ddi_copybuf_size()
2873 return (dma_max_copybuf_size
);
2878 * returns the maximum DMA size which can be performed in a single DMA
2879 * window taking into account the devices DMA contraints (attrp), the
2880 * maximum copy buffer size (if applicable), and the worse case buffer
2885 i_ddi_dma_max(dev_info_t
*dip
, ddi_dma_attr_t
*attrp
)
2891 * take the min of maxxfer and the the worse case fragementation
2892 * (e.g. every cookie <= 1 page)
2894 maxxfer
= MIN(attrp
->dma_attr_maxxfer
,
2895 ((uint64_t)(attrp
->dma_attr_sgllen
- 1) << PAGESHIFT
));
2898 * If the DMA engine can't reach all off memory, we also need to take
2899 * the max size of the copybuf into consideration.
2901 if (i_ddi_copybuf_required(attrp
)) {
2902 maxxfer
= MIN(i_ddi_copybuf_size(), maxxfer
);
2906 * we only return a 32-bit value. Make sure it's not -1. Round to a
2907 * page so it won't be mistaken for an error value during debug.
2909 if (maxxfer
>= 0xFFFFFFFF) {
2910 maxxfer
= 0xFFFFF000;
2914 * make sure the value we return is a whole multiple of the
2917 if (attrp
->dma_attr_granular
> 1) {
2918 maxxfer
= maxxfer
- (maxxfer
% attrp
->dma_attr_granular
);
2921 return ((uint32_t)maxxfer
);
2926 translate_devid(dev_info_t
*dip
)
2931 i_ddi_paddr_to_pfn(paddr_t paddr
)
2936 if (DOMAIN_IS_INITDOMAIN(xen_info
)) {
2937 pfn
= xen_assign_pfn(mmu_btop(paddr
));
2939 pfn
= mmu_btop(paddr
);
2942 pfn
= mmu_btop(paddr
);