8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / i86pc / os / machdep.c
blob674e6e2bbc33dbb3c5e19804519f6ca07d2df895
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/segments.h>
34 #include <sys/sysmacros.h>
35 #include <sys/signal.h>
36 #include <sys/systm.h>
37 #include <sys/user.h>
38 #include <sys/mman.h>
39 #include <sys/vm.h>
41 #include <sys/disp.h>
42 #include <sys/class.h>
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
48 #include <sys/reboot.h>
49 #include <sys/uadmin.h>
50 #include <sys/callb.h>
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
56 #include <sys/procfs.h>
57 #include <sys/acct.h>
59 #include <sys/vfs.h>
60 #include <sys/dnlc.h>
61 #include <sys/var.h>
62 #include <sys/cmn_err.h>
63 #include <sys/utsname.h>
64 #include <sys/debug.h>
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
72 #include <sys/consdev.h>
73 #include <sys/frame.h>
75 #include <sys/sunddi.h>
76 #include <sys/ddidmareq.h>
77 #include <sys/psw.h>
78 #include <sys/regset.h>
79 #include <sys/privregs.h>
80 #include <sys/clock.h>
81 #include <sys/tss.h>
82 #include <sys/cpu.h>
83 #include <sys/stack.h>
84 #include <sys/trap.h>
85 #include <sys/pic.h>
86 #include <vm/hat.h>
87 #include <vm/anon.h>
88 #include <vm/as.h>
89 #include <vm/page.h>
90 #include <vm/seg.h>
91 #include <vm/seg_kmem.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kp.h>
95 #include <vm/hat_i86.h>
96 #include <sys/swap.h>
97 #include <sys/thread.h>
98 #include <sys/sysconf.h>
99 #include <sys/vm_machparam.h>
100 #include <sys/archsystm.h>
101 #include <sys/machsystm.h>
102 #include <sys/machlock.h>
103 #include <sys/x_call.h>
104 #include <sys/instance.h>
106 #include <sys/time.h>
107 #include <sys/smp_impldefs.h>
108 #include <sys/psm_types.h>
109 #include <sys/atomic.h>
110 #include <sys/panic.h>
111 #include <sys/cpuvar.h>
112 #include <sys/dtrace.h>
113 #include <sys/bl.h>
114 #include <sys/nvpair.h>
115 #include <sys/x86_archext.h>
116 #include <sys/pool_pset.h>
117 #include <sys/autoconf.h>
118 #include <sys/mem.h>
119 #include <sys/dumphdr.h>
120 #include <sys/compress.h>
121 #include <sys/cpu_module.h>
122 #if defined(__xpv)
123 #include <sys/hypervisor.h>
124 #include <sys/xpv_panic.h>
125 #endif
127 #include <sys/fastboot.h>
128 #include <sys/machelf.h>
129 #include <sys/kobj.h>
130 #include <sys/multiboot.h>
132 #ifdef TRAPTRACE
133 #include <sys/traptrace.h>
134 #endif /* TRAPTRACE */
136 #include <c2/audit.h>
137 #include <sys/clock_impl.h>
139 extern void audit_enterprom(int);
140 extern void audit_exitprom(int);
143 * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
145 int apix_enable = 1;
147 int apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */
150 * Occassionally the kernel knows better whether to power-off or reboot.
152 int force_shutdown_method = AD_UNKNOWN;
155 * The panicbuf array is used to record messages and state:
157 char panicbuf[PANICBUFSIZE];
160 * Flags to control Dynamic Reconfiguration features.
162 uint64_t plat_dr_options;
165 * Maximum physical address for memory DR operations.
167 uint64_t plat_dr_physmax;
170 * maxphys - used during physio
171 * klustsize - used for klustering by swapfs and specfs
173 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */
174 int klustsize = 56 * 1024;
176 caddr_t p0_va; /* Virtual address for accessing physical page 0 */
179 * defined here, though unused on x86,
180 * to make kstat_fr.c happy.
182 int vac;
184 void debug_enter(char *);
186 extern void pm_cfb_check_and_powerup(void);
187 extern void pm_cfb_rele(void);
189 extern fastboot_info_t newkernel;
192 * Machine dependent code to reboot.
193 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
194 * to a string to be used as the argument string when rebooting.
196 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
197 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
198 * we are in a normal shutdown sequence (interrupts are not blocked, the
199 * system is not panic'ing or being suspended).
201 /*ARGSUSED*/
202 void
203 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
205 processorid_t bootcpuid = 0;
206 static int is_first_quiesce = 1;
207 static int is_first_reset = 1;
208 int reset_status = 0;
209 static char fallback_str[] = "Falling back to regular reboot.\n";
211 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
212 fcn = AD_BOOT;
214 if (!panicstr) {
215 kpreempt_disable();
216 if (fcn == AD_FASTREBOOT) {
217 mutex_enter(&cpu_lock);
218 if (CPU_ACTIVE(cpu_get(bootcpuid))) {
219 affinity_set(bootcpuid);
221 mutex_exit(&cpu_lock);
222 } else {
223 affinity_set(CPU_CURRENT);
227 if (force_shutdown_method != AD_UNKNOWN)
228 fcn = force_shutdown_method;
231 * XXX - rconsvp is set to NULL to ensure that output messages
232 * are sent to the underlying "hardware" device using the
233 * monitor's printf routine since we are in the process of
234 * either rebooting or halting the machine.
236 rconsvp = NULL;
239 * Print the reboot message now, before pausing other cpus.
240 * There is a race condition in the printing support that
241 * can deadlock multiprocessor machines.
243 if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
244 prom_printf("rebooting...\n");
246 if (IN_XPV_PANIC())
247 reset();
250 * We can't bring up the console from above lock level, so do it now
252 pm_cfb_check_and_powerup();
254 /* make sure there are no more changes to the device tree */
255 devtree_freeze();
257 if (invoke_cb)
258 (void) callb_execute_class(CB_CL_MDBOOT, NULL);
261 * Clear any unresolved UEs from memory.
263 page_retire_mdboot();
265 #if defined(__xpv)
267 * XXPV Should probably think some more about how we deal
268 * with panicing before it's really safe to panic.
269 * On hypervisors, we reboot very quickly.. Perhaps panic
270 * should only attempt to recover by rebooting if,
271 * say, we were able to mount the root filesystem,
272 * or if we successfully launched init(1m).
274 if (panicstr && proc_init == NULL)
275 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
276 #endif
278 * stop other cpus and raise our priority. since there is only
279 * one active cpu after this, and our priority will be too high
280 * for us to be preempted, we're essentially single threaded
281 * from here on out.
283 (void) spl6();
284 if (!panicstr) {
285 mutex_enter(&cpu_lock);
286 pause_cpus(NULL, NULL);
287 mutex_exit(&cpu_lock);
291 * If the system is panicking, the preloaded kernel is valid, and
292 * fastreboot_onpanic has been set, and the system has been up for
293 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
294 * choose Fast Reboot.
296 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
297 fastreboot_onpanic &&
298 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
299 fcn = AD_FASTREBOOT;
303 * Try to quiesce devices.
305 if (is_first_quiesce) {
307 * Clear is_first_quiesce before calling quiesce_devices()
308 * so that if quiesce_devices() causes panics, it will not
309 * be invoked again.
311 is_first_quiesce = 0;
313 quiesce_active = 1;
314 quiesce_devices(ddi_root_node(), &reset_status);
315 if (reset_status == -1) {
316 if (fcn == AD_FASTREBOOT && !force_fastreboot) {
317 prom_printf("Driver(s) not capable of fast "
318 "reboot.\n");
319 prom_printf(fallback_str);
320 fastreboot_capable = 0;
321 fcn = AD_BOOT;
322 } else if (fcn != AD_FASTREBOOT)
323 fastreboot_capable = 0;
325 quiesce_active = 0;
329 * Try to reset devices. reset_leaves() should only be called
330 * a) when there are no other threads that could be accessing devices,
331 * and
332 * b) on a system that's not capable of fast reboot (fastreboot_capable
333 * being 0), or on a system where quiesce_devices() failed to
334 * complete (quiesce_active being 1).
336 if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
338 * Clear is_first_reset before calling reset_devices()
339 * so that if reset_devices() causes panics, it will not
340 * be invoked again.
342 is_first_reset = 0;
343 reset_leaves();
346 /* Verify newkernel checksum */
347 if (fastreboot_capable && fcn == AD_FASTREBOOT &&
348 fastboot_cksum_verify(&newkernel) != 0) {
349 fastreboot_capable = 0;
350 prom_printf("Fast reboot: checksum failed for the new "
351 "kernel.\n");
352 prom_printf(fallback_str);
355 (void) spl8();
357 if (fastreboot_capable && fcn == AD_FASTREBOOT) {
359 * psm_shutdown is called within fast_reboot()
361 fast_reboot();
362 } else {
363 (*psm_shutdownf)(cmd, fcn);
365 if (fcn == AD_HALT || fcn == AD_POWEROFF)
366 halt((char *)NULL);
367 else
368 prom_reboot("");
370 /*NOTREACHED*/
373 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
374 /*ARGSUSED*/
375 void
376 mdpreboot(int cmd, int fcn, char *mdep)
378 if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
379 fcn = AD_BOOT;
380 #ifdef __xpv
381 cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
382 #else
383 cmn_err(CE_WARN,
384 "Fast reboot is not supported on this platform%s",
385 fastreboot_nosup_message());
386 #endif
389 if (fcn == AD_FASTREBOOT) {
390 fastboot_load_kernel(mdep);
391 if (!newkernel.fi_valid)
392 fcn = AD_BOOT;
395 (*psm_preshutdownf)(cmd, fcn);
398 static void
399 stop_other_cpus(void)
401 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
402 cpuset_t xcset;
404 CPUSET_ALL_BUT(xcset, CPU->cpu_id);
405 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
406 restore_int_flag(s);
410 * Machine dependent abort sequence handling
412 void
413 abort_sequence_enter(char *msg)
415 if (abort_enable == 0) {
416 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
417 audit_enterprom(0);
418 return;
420 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
421 audit_enterprom(1);
422 debug_enter(msg);
423 if (AU_ZONE_AUDITING(GET_KCTX_GZ))
424 audit_exitprom(1);
428 * Enter debugger. Called when the user types ctrl-alt-d or whenever
429 * code wants to enter the debugger and possibly resume later.
431 * msg: message to print, possibly NULL.
433 void
434 debug_enter(char *msg)
436 if (dtrace_debugger_init != NULL)
437 (*dtrace_debugger_init)();
439 if (msg != NULL || (boothowto & RB_DEBUG))
440 prom_printf("\n");
442 if (msg != NULL)
443 prom_printf("%s\n", msg);
445 if (boothowto & RB_DEBUG)
446 kmdb_enter();
448 if (dtrace_debugger_fini != NULL)
449 (*dtrace_debugger_fini)();
452 void
453 reset(void)
455 extern void acpi_reset_system();
456 #if !defined(__xpv)
457 ushort_t *bios_memchk;
460 * Can't use psm_map_phys or acpi_reset_system before the hat is
461 * initialized.
463 if (khat_running) {
464 bios_memchk = (ushort_t *)psm_map_phys(0x472,
465 sizeof (ushort_t), PROT_READ | PROT_WRITE);
466 if (bios_memchk)
467 *bios_memchk = 0x1234; /* bios memory check disable */
469 if (options_dip != NULL &&
470 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
471 "efi-systab")) {
472 if (bootops == NULL)
473 acpi_reset_system();
474 efi_reset();
478 * The problem with using stubs is that we can call
479 * acpi_reset_system only after the kernel is up and running.
481 * We should create a global state to keep track of how far
482 * up the kernel is but for the time being we will depend on
483 * bootops. bootops cleared in startup_end().
485 if (bootops == NULL)
486 acpi_reset_system();
489 pc_reset();
490 #else
491 if (IN_XPV_PANIC()) {
492 if (khat_running && bootops == NULL) {
493 acpi_reset_system();
496 pc_reset();
499 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
500 panic("HYPERVISOR_shutdown() failed");
501 #endif
502 /*NOTREACHED*/
506 * Halt the machine and return to the monitor
508 void
509 halt(char *s)
511 stop_other_cpus(); /* send stop signal to other CPUs */
512 if (s)
513 prom_printf("(%s) \n", s);
514 prom_exit_to_mon();
515 /*NOTREACHED*/
519 * Initiate interrupt redistribution.
521 void
522 i_ddi_intr_redist_all_cpus()
527 * XXX These probably ought to live somewhere else
528 * XXX They are called from mem.c
532 * Convert page frame number to an OBMEM page frame number
533 * (i.e. put in the type bits -- zero for this implementation)
535 pfn_t
536 impl_obmem_pfnum(pfn_t pf)
538 return (pf);
541 #ifdef NM_DEBUG
542 int nmi_test = 0; /* checked in intentry.s during clock int */
543 int nmtest = -1;
544 nmfunc1(int arg, struct regs *rp)
546 printf("nmi called with arg = %x, regs = %x\n", arg, rp);
547 nmtest += 50;
548 if (arg == nmtest) {
549 printf("ip = %x\n", rp->r_pc);
550 return (1);
552 return (0);
555 #endif
557 #include <sys/bootsvcs.h>
559 /* Hacked up initialization for initial kernel check out is HERE. */
560 /* The basic steps are: */
561 /* kernel bootfuncs definition/initialization for KADB */
562 /* kadb bootfuncs pointer initialization */
563 /* putchar/getchar (interrupts disabled) */
565 /* kadb bootfuncs pointer initialization */
568 sysp_getchar()
570 int i;
571 ulong_t s;
573 if (cons_polledio == NULL) {
574 /* Uh oh */
575 prom_printf("getchar called with no console\n");
576 for (;;)
577 /* LOOP FOREVER */;
580 s = clear_int_flag();
581 i = cons_polledio->cons_polledio_getchar(
582 cons_polledio->cons_polledio_argument);
583 restore_int_flag(s);
584 return (i);
587 void
588 sysp_putchar(int c)
590 ulong_t s;
593 * We have no alternative but to drop the output on the floor.
595 if (cons_polledio == NULL ||
596 cons_polledio->cons_polledio_putchar == NULL)
597 return;
599 s = clear_int_flag();
600 cons_polledio->cons_polledio_putchar(
601 cons_polledio->cons_polledio_argument, c);
602 restore_int_flag(s);
606 sysp_ischar()
608 int i;
609 ulong_t s;
611 if (cons_polledio == NULL ||
612 cons_polledio->cons_polledio_ischar == NULL)
613 return (0);
615 s = clear_int_flag();
616 i = cons_polledio->cons_polledio_ischar(
617 cons_polledio->cons_polledio_argument);
618 restore_int_flag(s);
619 return (i);
623 goany(void)
625 prom_printf("Type any key to continue ");
626 (void) prom_getchar();
627 prom_printf("\n");
628 return (1);
631 static struct boot_syscalls kern_sysp = {
632 sysp_getchar, /* unchar (*getchar)(); 7 */
633 sysp_putchar, /* int (*putchar)(); 8 */
634 sysp_ischar, /* int (*ischar)(); 9 */
637 #if defined(__xpv)
638 int using_kern_polledio;
639 #endif
641 void
642 kadb_uses_kernel()
645 * This routine is now totally misnamed, since it does not in fact
646 * control kadb's I/O; it only controls the kernel's prom_* I/O.
648 sysp = &kern_sysp;
649 #if defined(__xpv)
650 using_kern_polledio = 1;
651 #endif
655 * the interface to the outside world
659 * poll_port -- wait for a register to achieve a
660 * specific state. Arguments are a mask of bits we care about,
661 * and two sub-masks. To return normally, all the bits in the
662 * first sub-mask must be ON, all the bits in the second sub-
663 * mask must be OFF. If about seconds pass without the register
664 * achieving the desired bit configuration, we return 1, else
665 * 0.
668 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
670 int i;
671 ushort_t maskval;
673 for (i = 500000; i; i--) {
674 maskval = inb(port) & mask;
675 if (((maskval & onbits) == onbits) &&
676 ((maskval & offbits) == 0))
677 return (0);
678 drv_usecwait(10);
680 return (1);
684 * set_idle_cpu is called from idle() when a CPU becomes idle.
686 /*LINTED: static unused */
687 static uint_t last_idle_cpu;
689 /*ARGSUSED*/
690 void
691 set_idle_cpu(int cpun)
693 last_idle_cpu = cpun;
694 (*psm_set_idle_cpuf)(cpun);
698 * unset_idle_cpu is called from idle() when a CPU is no longer idle.
700 /*ARGSUSED*/
701 void
702 unset_idle_cpu(int cpun)
704 (*psm_unset_idle_cpuf)(cpun);
708 * This routine is almost correct now, but not quite. It still needs the
709 * equivalent concept of "hres_last_tick", just like on the sparc side.
710 * The idea is to take a snapshot of the hi-res timer while doing the
711 * hrestime_adj updates under hres_lock in locore, so that the small
712 * interval between interrupt assertion and interrupt processing is
713 * accounted for correctly. Once we have this, the code below should
714 * be modified to subtract off hres_last_tick rather than hrtime_base.
716 * I'd have done this myself, but I don't have source to all of the
717 * vendor-specific hi-res timer routines (grrr...). The generic hook I
718 * need is something like "gethrtime_unlocked()", which would be just like
719 * gethrtime() but would assume that you're already holding CLOCK_LOCK().
720 * This is what the GET_HRTIME() macro is for on sparc (although it also
721 * serves the function of making time available without a function call
722 * so you don't take a register window overflow while traps are disabled).
724 void
725 pc_gethrestime(timestruc_t *tp)
727 int lock_prev;
728 timestruc_t now;
729 int nslt; /* nsec since last tick */
730 int adj; /* amount of adjustment to apply */
732 loop:
733 lock_prev = hres_lock;
734 now = hrestime;
735 nslt = (int)(gethrtime() - hres_last_tick);
736 if (nslt < 0) {
738 * nslt < 0 means a tick came between sampling
739 * gethrtime() and hres_last_tick; restart the loop
742 goto loop;
744 now.tv_nsec += nslt;
745 if (hrestime_adj != 0) {
746 if (hrestime_adj > 0) {
747 adj = (nslt >> ADJ_SHIFT);
748 if (adj > hrestime_adj)
749 adj = (int)hrestime_adj;
750 } else {
751 adj = -(nslt >> ADJ_SHIFT);
752 if (adj < hrestime_adj)
753 adj = (int)hrestime_adj;
755 now.tv_nsec += adj;
757 while ((unsigned long)now.tv_nsec >= NANOSEC) {
760 * We might have a large adjustment or have been in the
761 * debugger for a long time; take care of (at most) four
762 * of those missed seconds (tv_nsec is 32 bits, so
763 * anything >4s will be wrapping around). However,
764 * anything more than 2 seconds out of sync will trigger
765 * timedelta from clock() to go correct the time anyway,
766 * so do what we can, and let the big crowbar do the
767 * rest. A similar correction while loop exists inside
768 * hres_tick(); in all cases we'd like tv_nsec to
769 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
770 * user processes, but if tv_sec's a little behind for a
771 * little while, that's OK; time still monotonically
772 * increases.
775 now.tv_nsec -= NANOSEC;
776 now.tv_sec++;
778 if ((hres_lock & ~1) != lock_prev)
779 goto loop;
781 *tp = now;
784 void
785 gethrestime_lasttick(timespec_t *tp)
787 int s;
789 s = hr_clock_lock();
790 *tp = hrestime;
791 hr_clock_unlock(s);
794 time_t
795 gethrestime_sec(void)
797 timestruc_t now;
799 gethrestime(&now);
800 return (now.tv_sec);
804 * Initialize a kernel thread's stack
807 caddr_t
808 thread_stk_init(caddr_t stk)
810 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
811 return (stk - SA(MINFRAME));
815 * Initialize lwp's kernel stack.
818 #ifdef TRAPTRACE
820 * There's a tricky interdependency here between use of sysenter and
821 * TRAPTRACE which needs recording to avoid future confusion (this is
822 * about the third time I've re-figured this out ..)
824 * Here's how debugging lcall works with TRAPTRACE.
826 * 1 We're in userland with a breakpoint on the lcall instruction.
827 * 2 We execute the instruction - the instruction pushes the userland
828 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
829 * via the call gate.
830 * 3 The hardware raises a debug trap in kernel mode, the hardware
831 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
832 * 4 dbgtrap pushes the error code and trapno and calls cmntrap
833 * 5 cmntrap finishes building a trap frame
834 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
835 * off the stack into the traptrace buffer.
837 * This means that the traptrace buffer contains the wrong values in
838 * %esp and %ss, but everything else in there is correct.
840 * Here's how debugging sysenter works with TRAPTRACE.
842 * a We're in userland with a breakpoint on the sysenter instruction.
843 * b We execute the instruction - the instruction pushes -nothing-
844 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged
845 * values to take us to sys_sysenter, at the top of the lwp's
846 * stack.
847 * c goto 3
849 * At this point, because we got into the kernel without the requisite
850 * five pushes on the stack, if we didn't make extra room, we'd
851 * end up with the TRACE_REGS macro fetching the saved %ss and %esp
852 * values from negative (unmapped) stack addresses -- which really bites.
853 * That's why we do the '-= 8' below.
855 * XXX Note that reading "up" lwp0's stack works because t0 is declared
856 * right next to t0stack in locore.s
858 #endif
860 caddr_t
861 lwp_stk_init(klwp_t *lwp, caddr_t stk)
863 caddr_t oldstk;
864 struct pcb *pcb = &lwp->lwp_pcb;
866 oldstk = stk;
867 stk -= SA(sizeof (struct regs) + SA(MINFRAME));
868 #ifdef TRAPTRACE
869 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
870 #endif
871 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
872 bzero(stk, oldstk - stk);
873 lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
876 * Arrange that the virtualized %fs and %gs GDT descriptors
877 * have a well-defined initial state (present, ring 3
878 * and of type data).
880 #if defined(__amd64)
881 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
882 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
883 else
884 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
885 #elif defined(__i386)
886 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
887 #endif /* __i386 */
888 lwp_installctx(lwp);
889 return (stk);
892 /*ARGSUSED*/
893 void
894 lwp_stk_fini(klwp_t *lwp)
898 * If we're not the panic CPU, we wait in panic_idle for reboot.
900 void
901 panic_idle(void)
903 splx(ipltospl(CLOCK_LEVEL));
904 (void) setjmp(&curthread->t_pcb);
906 dumpsys_helper();
908 #ifndef __xpv
909 for (;;)
910 i86_halt();
911 #else
912 for (;;)
914 #endif
918 * Stop the other CPUs by cross-calling them and forcing them to enter
919 * the panic_idle() loop above.
921 /*ARGSUSED*/
922 void
923 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
925 processorid_t i;
926 cpuset_t xcset;
929 * In the case of a Xen panic, the hypervisor has already stopped
930 * all of the CPUs.
932 if (!IN_XPV_PANIC()) {
933 (void) splzs();
935 CPUSET_ALL_BUT(xcset, cp->cpu_id);
936 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
939 for (i = 0; i < NCPU; i++) {
940 if (i != cp->cpu_id && cpu[i] != NULL &&
941 (cpu[i]->cpu_flags & CPU_EXISTS))
942 cpu[i]->cpu_flags |= CPU_QUIESCED;
947 * Platform callback following each entry to panicsys().
949 /*ARGSUSED*/
950 void
951 panic_enter_hw(int spl)
953 /* Nothing to do here */
957 * Platform-specific code to execute after panicstr is set: we invoke
958 * the PSM entry point to indicate that a panic has occurred.
960 /*ARGSUSED*/
961 void
962 panic_quiesce_hw(panic_data_t *pdp)
964 psm_notifyf(PSM_PANIC_ENTER);
966 cmi_panic_callback();
968 #ifdef TRAPTRACE
970 * Turn off TRAPTRACE
972 TRAPTRACE_FREEZE;
973 #endif /* TRAPTRACE */
977 * Platform callback prior to writing crash dump.
979 /*ARGSUSED*/
980 void
981 panic_dump_hw(int spl)
983 /* Nothing to do here */
986 void *
987 plat_traceback(void *fpreg)
989 #ifdef __xpv
990 if (IN_XPV_PANIC())
991 return (xpv_traceback(fpreg));
992 #endif
993 return (fpreg);
996 /*ARGSUSED*/
997 void
998 plat_tod_fault(enum tod_fault_type tod_bad)
1001 /*ARGSUSED*/
1003 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1005 return (ENOTSUP);
1009 * The underlying console output routines are protected by raising IPL in case
1010 * we are still calling into the early boot services. Once we start calling
1011 * the kernel console emulator, it will disable interrupts completely during
1012 * character rendering (see sysp_putchar, for example). Refer to the comments
1013 * and code in common/os/console.c for more information on these callbacks.
1015 /*ARGSUSED*/
1017 console_enter(int busy)
1019 return (splzs());
1022 /*ARGSUSED*/
1023 void
1024 console_exit(int busy, int spl)
1026 splx(spl);
1030 * Allocate a region of virtual address space, unmapped.
1031 * Stubbed out except on sparc, at least for now.
1033 /*ARGSUSED*/
1034 void *
1035 boot_virt_alloc(void *addr, size_t size)
1037 return (addr);
1040 volatile unsigned long tenmicrodata;
1042 void
1043 tenmicrosec(void)
1045 extern int gethrtime_hires;
1047 if (gethrtime_hires) {
1048 hrtime_t start, end;
1049 start = end = gethrtime();
1050 while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1051 SMT_PAUSE();
1052 end = gethrtime();
1054 } else {
1055 #if defined(__xpv)
1056 hrtime_t newtime;
1058 newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1059 while (xpv_gethrtime() < newtime)
1060 SMT_PAUSE();
1061 #else /* __xpv */
1062 int i;
1065 * Artificial loop to induce delay.
1067 for (i = 0; i < microdata; i++)
1068 tenmicrodata = microdata;
1069 #endif /* __xpv */
1074 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1075 * long, and it fills in the array with the time spent on cpu in
1076 * each of the mstates, where time is returned in nsec.
1078 * No guarantee is made that the returned values in times[] will
1079 * monotonically increase on sequential calls, although this will
1080 * be true in the long run. Any such guarantee must be handled by
1081 * the caller, if needed. This can happen if we fail to account
1082 * for elapsed time due to a generation counter conflict, yet we
1083 * did account for it on a prior call (see below).
1085 * The complication is that the cpu in question may be updating
1086 * its microstate at the same time that we are reading it.
1087 * Because the microstate is only updated when the CPU's state
1088 * changes, the values in cpu_intracct[] can be indefinitely out
1089 * of date. To determine true current values, it is necessary to
1090 * compare the current time with cpu_mstate_start, and add the
1091 * difference to times[cpu_mstate].
1093 * This can be a problem if those values are changing out from
1094 * under us. Because the code path in new_cpu_mstate() is
1095 * performance critical, we have not added a lock to it. Instead,
1096 * we have added a generation counter. Before beginning
1097 * modifications, the counter is set to 0. After modifications,
1098 * it is set to the old value plus one.
1100 * get_cpu_mstate() will not consider the values of cpu_mstate
1101 * and cpu_mstate_start to be usable unless the value of
1102 * cpu_mstate_gen is both non-zero and unchanged, both before and
1103 * after reading the mstate information. Note that we must
1104 * protect against out-of-order loads around accesses to the
1105 * generation counter. Also, this is a best effort approach in
1106 * that we do not retry should the counter be found to have
1107 * changed.
1109 * cpu_intracct[] is used to identify time spent in each CPU
1110 * mstate while handling interrupts. Such time should be reported
1111 * against system time, and so is subtracted out from its
1112 * corresponding cpu_acct[] time and added to
1113 * cpu_acct[CMS_SYSTEM].
1116 void
1117 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1119 int i;
1120 hrtime_t now, start;
1121 uint16_t gen;
1122 uint16_t state;
1123 hrtime_t intracct[NCMSTATES];
1126 * Load all volatile state under the protection of membar.
1127 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1128 * of (now - cpu_mstate_start) by a change in CPU mstate that
1129 * arrives after we make our last check of cpu_mstate_gen.
1132 now = gethrtime_unscaled();
1133 gen = cpu->cpu_mstate_gen;
1135 membar_consumer(); /* guarantee load ordering */
1136 start = cpu->cpu_mstate_start;
1137 state = cpu->cpu_mstate;
1138 for (i = 0; i < NCMSTATES; i++) {
1139 intracct[i] = cpu->cpu_intracct[i];
1140 times[i] = cpu->cpu_acct[i];
1142 membar_consumer(); /* guarantee load ordering */
1144 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1145 times[state] += now - start;
1147 for (i = 0; i < NCMSTATES; i++) {
1148 if (i == CMS_SYSTEM)
1149 continue;
1150 times[i] -= intracct[i];
1151 if (times[i] < 0) {
1152 intracct[i] += times[i];
1153 times[i] = 0;
1155 times[CMS_SYSTEM] += intracct[i];
1156 scalehrtime(&times[i]);
1158 scalehrtime(&times[CMS_SYSTEM]);
1162 * This is a version of the rdmsr instruction that allows
1163 * an error code to be returned in the case of failure.
1166 checked_rdmsr(uint_t msr, uint64_t *value)
1168 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1169 return (ENOTSUP);
1170 *value = rdmsr(msr);
1171 return (0);
1175 * This is a version of the wrmsr instruction that allows
1176 * an error code to be returned in the case of failure.
1179 checked_wrmsr(uint_t msr, uint64_t value)
1181 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1182 return (ENOTSUP);
1183 wrmsr(msr, value);
1184 return (0);
1188 * The mem driver's usual method of using hat_devload() to establish a
1189 * temporary mapping will not work for foreign pages mapped into this
1190 * domain or for the special hypervisor-provided pages. For the foreign
1191 * pages, we often don't know which domain owns them, so we can't ask the
1192 * hypervisor to set up a new mapping. For the other pages, we don't have
1193 * a pfn, so we can't create a new PTE. For these special cases, we do a
1194 * direct uiomove() from the existing kernel virtual address.
1196 /*ARGSUSED*/
1198 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1200 #if defined(__xpv)
1201 void *va = (void *)(uintptr_t)uio->uio_loffset;
1202 off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1203 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1204 (size_t)uio->uio_iov->iov_len);
1206 if ((rw == UIO_READ &&
1207 (va == HYPERVISOR_shared_info || va == xen_info)) ||
1208 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1209 return (uiomove(va, nbytes, rw, uio));
1210 #endif
1211 return (ENOTSUP);
1214 pgcnt_t
1215 num_phys_pages()
1217 pgcnt_t npages = 0;
1218 struct memlist *mp;
1220 #if defined(__xpv)
1221 if (DOMAIN_IS_INITDOMAIN(xen_info))
1222 return (xpv_nr_phys_pages());
1223 #endif /* __xpv */
1225 for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1226 npages += mp->ml_size >> PAGESHIFT;
1228 return (npages);
1231 /* cpu threshold for compressed dumps */
1232 #ifdef _LP64
1233 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1234 #else
1235 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1236 #endif
1239 dump_plat_addr()
1241 #ifdef __xpv
1242 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1243 mem_vtop_t mem_vtop;
1244 int cnt;
1247 * On the hypervisor, we want to dump the page with shared_info on it.
1249 if (!IN_XPV_PANIC()) {
1250 mem_vtop.m_as = &kas;
1251 mem_vtop.m_va = HYPERVISOR_shared_info;
1252 mem_vtop.m_pfn = pfn;
1253 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1254 cnt = 1;
1255 } else {
1256 cnt = dump_xpv_addr();
1258 return (cnt);
1259 #else
1260 return (0);
1261 #endif
1264 void
1265 dump_plat_pfn()
1267 #ifdef __xpv
1268 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1270 if (!IN_XPV_PANIC())
1271 dumpvp_write(&pfn, sizeof (pfn));
1272 else
1273 dump_xpv_pfn();
1274 #endif
1277 /*ARGSUSED*/
1279 dump_plat_data(void *dump_cbuf)
1281 #ifdef __xpv
1282 uint32_t csize;
1283 int cnt;
1285 if (!IN_XPV_PANIC()) {
1286 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1287 PAGESIZE);
1288 dumpvp_write(&csize, sizeof (uint32_t));
1289 dumpvp_write(dump_cbuf, csize);
1290 cnt = 1;
1291 } else {
1292 cnt = dump_xpv_data(dump_cbuf);
1294 return (cnt);
1295 #else
1296 return (0);
1297 #endif
1301 * Calculates a linear address, given the CS selector and PC values
1302 * by looking up the %cs selector process's LDT or the CPU's GDT.
1303 * proc->p_ldtlock must be held across this call.
1306 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1308 user_desc_t *descrp;
1309 caddr_t baseaddr;
1310 uint16_t idx = SELTOIDX(rp->r_cs);
1312 ASSERT(rp->r_cs <= 0xFFFF);
1313 ASSERT(MUTEX_HELD(&p->p_ldtlock));
1315 if (SELISLDT(rp->r_cs)) {
1317 * Currently 64 bit processes cannot have private LDTs.
1319 ASSERT(p->p_model != DATAMODEL_LP64);
1321 if (p->p_ldt == NULL)
1322 return (-1);
1324 descrp = &p->p_ldt[idx];
1325 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1328 * Calculate the linear address (wraparound is not only ok,
1329 * it's expected behavior). The cast to uint32_t is because
1330 * LDT selectors are only allowed in 32-bit processes.
1332 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1333 rp->r_pc);
1334 } else {
1335 #ifdef DEBUG
1336 descrp = &CPU->cpu_gdt[idx];
1337 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1338 /* GDT-based descriptors' base addresses should always be 0 */
1339 ASSERT(baseaddr == 0);
1340 #endif
1341 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1344 return (0);
1348 * The implementation of dtrace_linear_pc is similar to the that of
1349 * linear_pc, above, but here we acquire p_ldtlock before accessing
1350 * p_ldt. This implementation is used by the pid provider; we prefix
1351 * it with "dtrace_" to avoid inducing spurious tracing events.
1354 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1356 user_desc_t *descrp;
1357 caddr_t baseaddr;
1358 uint16_t idx = SELTOIDX(rp->r_cs);
1360 ASSERT(rp->r_cs <= 0xFFFF);
1362 if (SELISLDT(rp->r_cs)) {
1364 * Currently 64 bit processes cannot have private LDTs.
1366 ASSERT(p->p_model != DATAMODEL_LP64);
1368 mutex_enter(&p->p_ldtlock);
1369 if (p->p_ldt == NULL) {
1370 mutex_exit(&p->p_ldtlock);
1371 return (-1);
1373 descrp = &p->p_ldt[idx];
1374 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1375 mutex_exit(&p->p_ldtlock);
1378 * Calculate the linear address (wraparound is not only ok,
1379 * it's expected behavior). The cast to uint32_t is because
1380 * LDT selectors are only allowed in 32-bit processes.
1382 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1383 rp->r_pc);
1384 } else {
1385 #ifdef DEBUG
1386 descrp = &CPU->cpu_gdt[idx];
1387 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1388 /* GDT-based descriptors' base addresses should always be 0 */
1389 ASSERT(baseaddr == 0);
1390 #endif
1391 *linearp = (caddr_t)(uintptr_t)rp->r_pc;
1394 return (0);
1398 * We need to post a soft interrupt to reprogram the lbolt cyclic when
1399 * switching from event to cyclic driven lbolt. The following code adds
1400 * and posts the softint for x86.
1402 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1403 {0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1405 void
1406 lbolt_softint_add(void)
1408 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1409 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1412 void
1413 lbolt_softint_post(void)
1415 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1418 boolean_t
1419 plat_dr_check_capability(uint64_t features)
1421 return ((plat_dr_options & features) == features);
1424 boolean_t
1425 plat_dr_support_cpu(void)
1427 return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1430 boolean_t
1431 plat_dr_support_memory(void)
1433 return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1436 void
1437 plat_dr_enable_capability(uint64_t features)
1439 atomic_or_64(&plat_dr_options, features);
1442 void
1443 plat_dr_disable_capability(uint64_t features)
1445 atomic_and_64(&plat_dr_options, ~features);