8322 nl: misleading-indentation
[unleashed/tickless.git] / usr / src / uts / i86pc / os / mp_startup.c
blob05a2667280733722dafacc506bf496bc7c771203
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
30 * Copyright 2016 Joyent, Inc.
31 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
34 #include <sys/types.h>
35 #include <sys/thread.h>
36 #include <sys/cpuvar.h>
37 #include <sys/cpu.h>
38 #include <sys/t_lock.h>
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 #include <sys/cmn_err.h>
44 #include <sys/debug.h>
45 #include <sys/note.h>
46 #include <sys/asm_linkage.h>
47 #include <sys/x_call.h>
48 #include <sys/systm.h>
49 #include <sys/var.h>
50 #include <sys/vtrace.h>
51 #include <vm/hat.h>
52 #include <vm/as.h>
53 #include <vm/seg_kmem.h>
54 #include <vm/seg_kp.h>
55 #include <sys/segments.h>
56 #include <sys/kmem.h>
57 #include <sys/stack.h>
58 #include <sys/smp_impldefs.h>
59 #include <sys/x86_archext.h>
60 #include <sys/machsystm.h>
61 #include <sys/traptrace.h>
62 #include <sys/clock.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/pg.h>
65 #include <sys/cmt.h>
66 #include <sys/dtrace.h>
67 #include <sys/archsystm.h>
68 #include <sys/fp.h>
69 #include <sys/reboot.h>
70 #include <sys/kdi_machimpl.h>
71 #include <vm/hat_i86.h>
72 #include <vm/vm_dep.h>
73 #include <sys/memnode.h>
74 #include <sys/pci_cfgspace.h>
75 #include <sys/mach_mmu.h>
76 #include <sys/sysmacros.h>
77 #if defined(__xpv)
78 #include <sys/hypervisor.h>
79 #endif
80 #include <sys/cpu_module.h>
81 #include <sys/ontrap.h>
83 struct cpu cpus[1]; /* CPU data */
84 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */
85 struct cpu *cpu_free_list; /* list for released CPUs */
86 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */
88 #define cpu_next_free cpu_prev
91 * Useful for disabling MP bring-up on a MP capable system.
93 int use_mp = 1;
96 * to be set by a PSM to indicate what cpus
97 * are sitting around on the system.
99 cpuset_t mp_cpus;
102 * This variable is used by the hat layer to decide whether or not
103 * critical sections are needed to prevent race conditions. For sun4m,
104 * this variable is set once enough MP initialization has been done in
105 * order to allow cross calls.
107 int flushes_require_xcalls;
109 cpuset_t cpu_ready_set; /* initialized in startup() */
111 static void mp_startup_boot(void);
112 static void mp_startup_hotplug(void);
114 static void cpu_sep_enable(void);
115 static void cpu_sep_disable(void);
116 static void cpu_asysc_enable(void);
117 static void cpu_asysc_disable(void);
120 * Init CPU info - get CPU type info for processor_info system call.
122 void
123 init_cpu_info(struct cpu *cp)
125 processor_info_t *pi = &cp->cpu_type_info;
128 * Get clock-frequency property for the CPU.
130 pi->pi_clock = cpu_freq;
133 * Current frequency in Hz.
135 cp->cpu_curr_clock = cpu_freq_hz;
138 * Supported frequencies.
140 if (cp->cpu_supp_freqs == NULL) {
141 cpu_set_supp_freqs(cp, NULL);
144 (void) strcpy(pi->pi_processor_type, "i386");
145 if (fpu_exists)
146 (void) strcpy(pi->pi_fputypes, "i387 compatible");
148 cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
149 cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP);
152 * If called for the BSP, cp is equal to current CPU.
153 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info
154 * of current CPU as default values for cpu_idstr and cpu_brandstr.
155 * They will be corrected in mp_startup_common() after cpuid_pass1()
156 * has been invoked on target CPU.
158 (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN);
159 (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN);
163 * Configure syscall support on this CPU.
165 /*ARGSUSED*/
166 void
167 init_cpu_syscall(struct cpu *cp)
169 kpreempt_disable();
171 #if defined(__amd64)
172 if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
173 is_x86_feature(x86_featureset, X86FSET_ASYSC)) {
174 uint64_t flags;
176 #if !defined(__lint)
178 * The syscall instruction imposes a certain ordering on
179 * segment selectors, so we double-check that ordering
180 * here.
182 ASSERT(KDS_SEL == KCS_SEL + 8);
183 ASSERT(UDS_SEL == U32CS_SEL + 8);
184 ASSERT(UCS_SEL == U32CS_SEL + 16);
185 #endif
187 * Turn syscall/sysret extensions on.
189 cpu_asysc_enable();
192 * Program the magic registers ..
194 wrmsr(MSR_AMD_STAR,
195 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32);
196 wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall);
197 wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32);
200 * This list of flags is masked off the incoming
201 * %rfl when we enter the kernel.
203 flags = PS_IE | PS_T;
204 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE)
205 flags |= PS_ACHK;
206 wrmsr(MSR_AMD_SFMASK, flags);
208 #endif
211 * On 32-bit kernels, we use sysenter/sysexit because it's too
212 * hard to use syscall/sysret, and it is more portable anyway.
214 * On 64-bit kernels on Nocona machines, the 32-bit syscall
215 * variant isn't available to 32-bit applications, but sysenter is.
217 if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
218 is_x86_feature(x86_featureset, X86FSET_SEP)) {
220 #if !defined(__lint)
222 * The sysenter instruction imposes a certain ordering on
223 * segment selectors, so we double-check that ordering
224 * here. See "sysenter" in Intel document 245471-012, "IA-32
225 * Intel Architecture Software Developer's Manual Volume 2:
226 * Instruction Set Reference"
228 ASSERT(KDS_SEL == KCS_SEL + 8);
230 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3));
231 ASSERT32(UDS_SEL == UCS_SEL + 8);
233 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3));
234 ASSERT64(UDS_SEL == U32CS_SEL + 8);
235 #endif
237 cpu_sep_enable();
240 * resume() sets this value to the base of the threads stack
241 * via a context handler.
243 wrmsr(MSR_INTC_SEP_ESP, 0);
244 wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter);
247 kpreempt_enable();
250 #if !defined(__xpv)
252 * Configure per-cpu ID GDT
254 static void
255 init_cpu_id_gdt(struct cpu *cp)
257 /* Write cpu_id into limit field of GDT for usermode retrieval */
258 #if defined(__amd64)
259 set_usegd(&cp->cpu_gdt[GDT_CPUID], SDP_SHORT, NULL, cp->cpu_id,
260 SDT_MEMRODA, SEL_UPL, SDP_BYTES, SDP_OP32);
261 #elif defined(__i386)
262 set_usegd(&cp->cpu_gdt[GDT_CPUID], NULL, cp->cpu_id, SDT_MEMRODA,
263 SEL_UPL, SDP_BYTES, SDP_OP32);
264 #endif
266 #endif /* !defined(__xpv) */
269 * Multiprocessor initialization.
271 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the
272 * startup and idle threads for the specified CPU.
273 * Parameter boot is true for boot time operations and is false for CPU
274 * DR operations.
276 static struct cpu *
277 mp_cpu_configure_common(int cpun, boolean_t boot)
279 struct cpu *cp;
280 kthread_id_t tp;
281 caddr_t sp;
282 proc_t *procp;
283 #if !defined(__xpv)
284 extern int idle_cpu_prefer_mwait;
285 extern void cpu_idle_mwait();
286 #endif
287 extern void idle();
288 extern void cpu_idle();
290 #ifdef TRAPTRACE
291 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun];
292 #endif
294 ASSERT(MUTEX_HELD(&cpu_lock));
295 ASSERT(cpun < NCPU && cpu[cpun] == NULL);
297 if (cpu_free_list == NULL) {
298 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP);
299 } else {
300 cp = cpu_free_list;
301 cpu_free_list = cp->cpu_next_free;
304 cp->cpu_m.mcpu_istamp = cpun << 16;
306 /* Create per CPU specific threads in the process p0. */
307 procp = &p0;
310 * Initialize the dispatcher first.
312 disp_cpu_init(cp);
314 cpu_vm_data_init(cp);
317 * Allocate and initialize the startup thread for this CPU.
318 * Interrupt and process switch stacks get allocated later
319 * when the CPU starts running.
321 tp = thread_create(NULL, 0, NULL, NULL, 0, procp,
322 TS_STOPPED, maxclsyspri);
325 * Set state to TS_ONPROC since this thread will start running
326 * as soon as the CPU comes online.
328 * All the other fields of the thread structure are setup by
329 * thread_create().
331 THREAD_ONPROC(tp, cp);
332 tp->t_preempt = 1;
333 tp->t_bound_cpu = cp;
334 tp->t_affinitycnt = 1;
335 tp->t_cpu = cp;
336 tp->t_disp_queue = cp->cpu_disp;
339 * Setup thread to start in mp_startup_common.
341 sp = tp->t_stk;
342 tp->t_sp = (uintptr_t)(sp - MINFRAME);
343 #if defined(__amd64)
344 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */
345 #endif
347 * Setup thread start entry point for boot or hotplug.
349 if (boot) {
350 tp->t_pc = (uintptr_t)mp_startup_boot;
351 } else {
352 tp->t_pc = (uintptr_t)mp_startup_hotplug;
355 cp->cpu_id = cpun;
356 cp->cpu_self = cp;
357 cp->cpu_thread = tp;
358 cp->cpu_lwp = NULL;
359 cp->cpu_dispthread = tp;
360 cp->cpu_dispatch_pri = DISP_PRIO(tp);
363 * cpu_base_spl must be set explicitly here to prevent any blocking
364 * operations in mp_startup_common from causing the spl of the cpu
365 * to drop to 0 (allowing device interrupts before we're ready) in
366 * resume().
367 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY.
368 * As an extra bit of security on DEBUG kernels, this is enforced with
369 * an assertion in mp_startup_common() -- before cpu_base_spl is set
370 * to its proper value.
372 cp->cpu_base_spl = ipltospl(LOCK_LEVEL);
375 * Now, initialize per-CPU idle thread for this CPU.
377 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1);
379 cp->cpu_idle_thread = tp;
381 tp->t_preempt = 1;
382 tp->t_bound_cpu = cp;
383 tp->t_affinitycnt = 1;
384 tp->t_cpu = cp;
385 tp->t_disp_queue = cp->cpu_disp;
388 * Bootstrap the CPU's PG data
390 pg_cpu_bootstrap(cp);
393 * Perform CPC initialization on the new CPU.
395 kcpc_hw_init(cp);
398 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2
399 * for each CPU.
401 setup_vaddr_for_ppcopy(cp);
404 * Allocate page for new GDT and initialize from current GDT.
406 #if !defined(__lint)
407 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE);
408 #endif
409 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP);
410 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT));
412 #if defined(__i386)
414 * setup kernel %gs.
416 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA,
417 SEL_KPL, 0, 1);
418 #endif
421 * If we have more than one node, each cpu gets a copy of IDT
422 * local to its node. If this is a Pentium box, we use cpu 0's
423 * IDT. cpu 0's IDT has been made read-only to workaround the
424 * cmpxchgl register bug
426 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) {
427 #if !defined(__lint)
428 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE);
429 #endif
430 cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP);
431 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE);
432 } else {
433 cp->cpu_idt = CPU->cpu_idt;
437 * alloc space for cpuid info
439 cpuid_alloc_space(cp);
440 #if !defined(__xpv)
441 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
442 idle_cpu_prefer_mwait) {
443 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp);
444 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
445 } else
446 #endif
447 cp->cpu_m.mcpu_idle_cpu = cpu_idle;
449 init_cpu_info(cp);
451 #if !defined(__xpv)
452 init_cpu_id_gdt(cp);
453 #endif
456 * alloc space for ucode_info
458 ucode_alloc_space(cp);
459 xc_init_cpu(cp);
460 hat_cpu_online(cp);
462 #ifdef TRAPTRACE
464 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers
466 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP);
467 ttc->ttc_next = ttc->ttc_first;
468 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize;
469 #endif
472 * Record that we have another CPU.
475 * Initialize the interrupt threads for this CPU
477 cpu_intr_alloc(cp, NINTR_THREADS);
479 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
480 cpu_set_state(cp);
483 * Add CPU to list of available CPUs. It'll be on the active list
484 * after mp_startup_common().
486 cpu_add_unit(cp);
488 return (cp);
492 * Undo what was done in mp_cpu_configure_common
494 static void
495 mp_cpu_unconfigure_common(struct cpu *cp, int error)
497 ASSERT(MUTEX_HELD(&cpu_lock));
500 * Remove the CPU from the list of available CPUs.
502 cpu_del_unit(cp->cpu_id);
504 if (error == ETIMEDOUT) {
506 * The cpu was started, but never *seemed* to run any
507 * code in the kernel; it's probably off spinning in its
508 * own private world, though with potential references to
509 * our kmem-allocated IDTs and GDTs (for example).
511 * Worse still, it may actually wake up some time later,
512 * so rather than guess what it might or might not do, we
513 * leave the fundamental data structures intact.
515 cp->cpu_flags = 0;
516 return;
520 * At this point, the only threads bound to this CPU should
521 * special per-cpu threads: it's idle thread, it's pause threads,
522 * and it's interrupt threads. Clean these up.
524 cpu_destroy_bound_threads(cp);
525 cp->cpu_idle_thread = NULL;
528 * Free the interrupt stack.
530 segkp_release(segkp,
531 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME)));
532 cp->cpu_intr_stack = NULL;
534 #ifdef TRAPTRACE
536 * Discard the trap trace buffer
539 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id];
541 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize);
542 ttc->ttc_first = NULL;
544 #endif
546 hat_cpu_offline(cp);
548 ucode_free_space(cp);
550 /* Free CPU ID string and brand string. */
551 if (cp->cpu_idstr) {
552 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN);
553 cp->cpu_idstr = NULL;
555 if (cp->cpu_brandstr) {
556 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN);
557 cp->cpu_brandstr = NULL;
560 #if !defined(__xpv)
561 if (cp->cpu_m.mcpu_mwait != NULL) {
562 cpuid_mwait_free(cp);
563 cp->cpu_m.mcpu_mwait = NULL;
565 #endif
566 cpuid_free_space(cp);
568 if (cp->cpu_idt != CPU->cpu_idt)
569 kmem_free(cp->cpu_idt, PAGESIZE);
570 cp->cpu_idt = NULL;
572 kmem_free(cp->cpu_gdt, PAGESIZE);
573 cp->cpu_gdt = NULL;
575 if (cp->cpu_supp_freqs != NULL) {
576 size_t len = strlen(cp->cpu_supp_freqs) + 1;
577 kmem_free(cp->cpu_supp_freqs, len);
578 cp->cpu_supp_freqs = NULL;
581 teardown_vaddr_for_ppcopy(cp);
583 kcpc_hw_fini(cp);
585 cp->cpu_dispthread = NULL;
586 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */
588 cpu_vm_data_destroy(cp);
590 xc_fini_cpu(cp);
591 disp_cpu_fini(cp);
593 ASSERT(cp != CPU0);
594 bzero(cp, sizeof (*cp));
595 cp->cpu_next_free = cpu_free_list;
596 cpu_free_list = cp;
600 * Apply workarounds for known errata, and warn about those that are absent.
602 * System vendors occasionally create configurations which contain different
603 * revisions of the CPUs that are almost but not exactly the same. At the
604 * time of writing, this meant that their clock rates were the same, their
605 * feature sets were the same, but the required workaround were -not-
606 * necessarily the same. So, this routine is invoked on -every- CPU soon
607 * after starting to make sure that the resulting system contains the most
608 * pessimal set of workarounds needed to cope with *any* of the CPUs in the
609 * system.
611 * workaround_errata is invoked early in mlsetup() for CPU 0, and in
612 * mp_startup_common() for all slave CPUs. Slaves process workaround_errata
613 * prior to acknowledging their readiness to the master, so this routine will
614 * never be executed by multiple CPUs in parallel, thus making updates to
615 * global data safe.
617 * These workarounds are based on Rev 3.57 of the Revision Guide for
618 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005.
621 #if defined(OPTERON_ERRATUM_88)
622 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */
623 #endif
625 #if defined(OPTERON_ERRATUM_91)
626 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */
627 #endif
629 #if defined(OPTERON_ERRATUM_93)
630 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */
631 #endif
633 #if defined(OPTERON_ERRATUM_95)
634 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */
635 #endif
637 #if defined(OPTERON_ERRATUM_100)
638 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */
639 #endif
641 #if defined(OPTERON_ERRATUM_108)
642 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */
643 #endif
645 #if defined(OPTERON_ERRATUM_109)
646 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */
647 #endif
649 #if defined(OPTERON_ERRATUM_121)
650 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */
651 #endif
653 #if defined(OPTERON_ERRATUM_122)
654 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */
655 #endif
657 #if defined(OPTERON_ERRATUM_123)
658 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */
659 #endif
661 #if defined(OPTERON_ERRATUM_131)
662 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */
663 #endif
665 #if defined(OPTERON_WORKAROUND_6336786)
666 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */
667 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */
668 #endif
670 #if defined(OPTERON_WORKAROUND_6323525)
671 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */
672 #endif
674 #if defined(OPTERON_ERRATUM_298)
675 int opteron_erratum_298;
676 #endif
678 #if defined(OPTERON_ERRATUM_721)
679 int opteron_erratum_721;
680 #endif
682 static void
683 workaround_warning(cpu_t *cp, uint_t erratum)
685 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u",
686 cp->cpu_id, erratum);
689 static void
690 workaround_applied(uint_t erratum)
692 if (erratum > 1000000)
693 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n",
694 erratum);
695 else
696 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n",
697 erratum);
700 static void
701 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error)
703 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d",
704 cp->cpu_id, rw, msr, error);
708 * Determine the number of nodes in a Hammer / Greyhound / Griffin family
709 * system.
711 static uint_t
712 opteron_get_nnodes(void)
714 static uint_t nnodes = 0;
716 if (nnodes == 0) {
717 #ifdef DEBUG
718 uint_t family;
721 * This routine uses a PCI config space based mechanism
722 * for retrieving the number of nodes in the system.
723 * Device 24, function 0, offset 0x60 as used here is not
724 * AMD processor architectural, and may not work on processor
725 * families other than those listed below.
727 * Callers of this routine must ensure that we're running on
728 * a processor which supports this mechanism.
729 * The assertion below is meant to catch calls on unsupported
730 * processors.
732 family = cpuid_getfamily(CPU);
733 ASSERT(family == 0xf || family == 0x10 || family == 0x11);
734 #endif /* DEBUG */
737 * Obtain the number of nodes in the system from
738 * bits [6:4] of the Node ID register on node 0.
740 * The actual node count is NodeID[6:4] + 1
742 * The Node ID register is accessed via function 0,
743 * offset 0x60. Node 0 is device 24.
745 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1;
747 return (nnodes);
750 uint_t
751 do_erratum_298(struct cpu *cpu)
753 static int osvwrc = -3;
754 extern int osvw_opteron_erratum(cpu_t *, uint_t);
757 * L2 Eviction May Occur During Processor Operation To Set
758 * Accessed or Dirty Bit.
760 if (osvwrc == -3) {
761 osvwrc = osvw_opteron_erratum(cpu, 298);
762 } else {
763 /* osvw return codes should be consistent for all cpus */
764 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298));
767 switch (osvwrc) {
768 case 0: /* erratum is not present: do nothing */
769 break;
770 case 1: /* erratum is present: BIOS workaround applied */
772 * check if workaround is actually in place and issue warning
773 * if not.
775 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
776 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) {
777 #if defined(OPTERON_ERRATUM_298)
778 opteron_erratum_298++;
779 #else
780 workaround_warning(cpu, 298);
781 return (1);
782 #endif
784 break;
785 case -1: /* cannot determine via osvw: check cpuid */
786 if ((cpuid_opteron_erratum(cpu, 298) > 0) &&
787 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) ||
788 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) {
789 #if defined(OPTERON_ERRATUM_298)
790 opteron_erratum_298++;
791 #else
792 workaround_warning(cpu, 298);
793 return (1);
794 #endif
796 break;
798 return (0);
801 uint_t
802 workaround_errata(struct cpu *cpu)
804 uint_t missing = 0;
806 ASSERT(cpu == CPU);
808 /*LINTED*/
809 if (cpuid_opteron_erratum(cpu, 88) > 0) {
811 * SWAPGS May Fail To Read Correct GS Base
813 #if defined(OPTERON_ERRATUM_88)
815 * The workaround is an mfence in the relevant assembler code
817 opteron_erratum_88++;
818 #else
819 workaround_warning(cpu, 88);
820 missing++;
821 #endif
824 if (cpuid_opteron_erratum(cpu, 91) > 0) {
826 * Software Prefetches May Report A Page Fault
828 #if defined(OPTERON_ERRATUM_91)
830 * fix is in trap.c
832 opteron_erratum_91++;
833 #else
834 workaround_warning(cpu, 91);
835 missing++;
836 #endif
839 if (cpuid_opteron_erratum(cpu, 93) > 0) {
841 * RSM Auto-Halt Restart Returns to Incorrect RIP
843 #if defined(OPTERON_ERRATUM_93)
845 * fix is in trap.c
847 opteron_erratum_93++;
848 #else
849 workaround_warning(cpu, 93);
850 missing++;
851 #endif
854 /*LINTED*/
855 if (cpuid_opteron_erratum(cpu, 95) > 0) {
857 * RET Instruction May Return to Incorrect EIP
859 #if defined(OPTERON_ERRATUM_95)
860 #if defined(_LP64)
862 * Workaround this by ensuring that 32-bit user code and
863 * 64-bit kernel code never occupy the same address
864 * range mod 4G.
866 if (_userlimit32 > 0xc0000000ul)
867 *(uintptr_t *)&_userlimit32 = 0xc0000000ul;
869 /*LINTED*/
870 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u);
871 opteron_erratum_95++;
872 #endif /* _LP64 */
873 #else
874 workaround_warning(cpu, 95);
875 missing++;
876 #endif
879 if (cpuid_opteron_erratum(cpu, 100) > 0) {
881 * Compatibility Mode Branches Transfer to Illegal Address
883 #if defined(OPTERON_ERRATUM_100)
885 * fix is in trap.c
887 opteron_erratum_100++;
888 #else
889 workaround_warning(cpu, 100);
890 missing++;
891 #endif
894 /*LINTED*/
895 if (cpuid_opteron_erratum(cpu, 108) > 0) {
897 * CPUID Instruction May Return Incorrect Model Number In
898 * Some Processors
900 #if defined(OPTERON_ERRATUM_108)
902 * (Our cpuid-handling code corrects the model number on
903 * those processors)
905 #else
906 workaround_warning(cpu, 108);
907 missing++;
908 #endif
911 /*LINTED*/
912 if (cpuid_opteron_erratum(cpu, 109) > 0) do {
914 * Certain Reverse REP MOVS May Produce Unpredictable Behavior
916 #if defined(OPTERON_ERRATUM_109)
918 * The "workaround" is to print a warning to upgrade the BIOS
920 uint64_t value;
921 const uint_t msr = MSR_AMD_PATCHLEVEL;
922 int err;
924 if ((err = checked_rdmsr(msr, &value)) != 0) {
925 msr_warning(cpu, "rd", msr, err);
926 workaround_warning(cpu, 109);
927 missing++;
929 if (value == 0)
930 opteron_erratum_109++;
931 #else
932 workaround_warning(cpu, 109);
933 missing++;
934 #endif
935 /*CONSTANTCONDITION*/
936 } while (0);
938 /*LINTED*/
939 if (cpuid_opteron_erratum(cpu, 121) > 0) {
941 * Sequential Execution Across Non_Canonical Boundary Caused
942 * Processor Hang
944 #if defined(OPTERON_ERRATUM_121)
945 #if defined(_LP64)
947 * Erratum 121 is only present in long (64 bit) mode.
948 * Workaround is to include the page immediately before the
949 * va hole to eliminate the possibility of system hangs due to
950 * sequential execution across the va hole boundary.
952 if (opteron_erratum_121)
953 opteron_erratum_121++;
954 else {
955 if (hole_start) {
956 hole_start -= PAGESIZE;
957 } else {
959 * hole_start not yet initialized by
960 * mmu_init. Initialize hole_start
961 * with value to be subtracted.
963 hole_start = PAGESIZE;
965 opteron_erratum_121++;
967 #endif /* _LP64 */
968 #else
969 workaround_warning(cpu, 121);
970 missing++;
971 #endif
974 /*LINTED*/
975 if (cpuid_opteron_erratum(cpu, 122) > 0) do {
977 * TLB Flush Filter May Cause Coherency Problem in
978 * Multiprocessor Systems
980 #if defined(OPTERON_ERRATUM_122)
981 uint64_t value;
982 const uint_t msr = MSR_AMD_HWCR;
983 int error;
986 * Erratum 122 is only present in MP configurations (multi-core
987 * or multi-processor).
989 #if defined(__xpv)
990 if (!DOMAIN_IS_INITDOMAIN(xen_info))
991 break;
992 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1)
993 break;
994 #else
995 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 &&
996 cpuid_get_ncpu_per_chip(cpu) == 1)
997 break;
998 #endif
999 /* disable TLB Flush Filter */
1001 if ((error = checked_rdmsr(msr, &value)) != 0) {
1002 msr_warning(cpu, "rd", msr, error);
1003 workaround_warning(cpu, 122);
1004 missing++;
1005 } else {
1006 value |= (uint64_t)AMD_HWCR_FFDIS;
1007 if ((error = checked_wrmsr(msr, value)) != 0) {
1008 msr_warning(cpu, "wr", msr, error);
1009 workaround_warning(cpu, 122);
1010 missing++;
1013 opteron_erratum_122++;
1014 #else
1015 workaround_warning(cpu, 122);
1016 missing++;
1017 #endif
1018 /*CONSTANTCONDITION*/
1019 } while (0);
1021 /*LINTED*/
1022 if (cpuid_opteron_erratum(cpu, 123) > 0) do {
1024 * Bypassed Reads May Cause Data Corruption of System Hang in
1025 * Dual Core Processors
1027 #if defined(OPTERON_ERRATUM_123)
1028 uint64_t value;
1029 const uint_t msr = MSR_AMD_PATCHLEVEL;
1030 int err;
1033 * Erratum 123 applies only to multi-core cpus.
1035 if (cpuid_get_ncpu_per_chip(cpu) < 2)
1036 break;
1037 #if defined(__xpv)
1038 if (!DOMAIN_IS_INITDOMAIN(xen_info))
1039 break;
1040 #endif
1042 * The "workaround" is to print a warning to upgrade the BIOS
1044 if ((err = checked_rdmsr(msr, &value)) != 0) {
1045 msr_warning(cpu, "rd", msr, err);
1046 workaround_warning(cpu, 123);
1047 missing++;
1049 if (value == 0)
1050 opteron_erratum_123++;
1051 #else
1052 workaround_warning(cpu, 123);
1053 missing++;
1055 #endif
1056 /*CONSTANTCONDITION*/
1057 } while (0);
1059 /*LINTED*/
1060 if (cpuid_opteron_erratum(cpu, 131) > 0) do {
1062 * Multiprocessor Systems with Four or More Cores May Deadlock
1063 * Waiting for a Probe Response
1065 #if defined(OPTERON_ERRATUM_131)
1066 uint64_t nbcfg;
1067 const uint_t msr = MSR_AMD_NB_CFG;
1068 const uint64_t wabits =
1069 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR;
1070 int error;
1073 * Erratum 131 applies to any system with four or more cores.
1075 if (opteron_erratum_131)
1076 break;
1077 #if defined(__xpv)
1078 if (!DOMAIN_IS_INITDOMAIN(xen_info))
1079 break;
1080 if (xpv_nr_phys_cpus() < 4)
1081 break;
1082 #else
1083 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4)
1084 break;
1085 #endif
1087 * Print a warning if neither of the workarounds for
1088 * erratum 131 is present.
1090 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) {
1091 msr_warning(cpu, "rd", msr, error);
1092 workaround_warning(cpu, 131);
1093 missing++;
1094 } else if ((nbcfg & wabits) == 0) {
1095 opteron_erratum_131++;
1096 } else {
1097 /* cannot have both workarounds set */
1098 ASSERT((nbcfg & wabits) != wabits);
1100 #else
1101 workaround_warning(cpu, 131);
1102 missing++;
1103 #endif
1104 /*CONSTANTCONDITION*/
1105 } while (0);
1108 * This isn't really an erratum, but for convenience the
1109 * detection/workaround code lives here and in cpuid_opteron_erratum.
1111 if (cpuid_opteron_erratum(cpu, 6336786) > 0) {
1112 #if defined(OPTERON_WORKAROUND_6336786)
1114 * Disable C1-Clock ramping on multi-core/multi-processor
1115 * K8 platforms to guard against TSC drift.
1117 if (opteron_workaround_6336786) {
1118 opteron_workaround_6336786++;
1119 #if defined(__xpv)
1120 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) &&
1121 xpv_nr_phys_cpus() > 1) ||
1122 opteron_workaround_6336786_UP) {
1124 * XXPV Hmm. We can't walk the Northbridges on
1125 * the hypervisor; so just complain and drive
1126 * on. This probably needs to be fixed in
1127 * the hypervisor itself.
1129 opteron_workaround_6336786++;
1130 workaround_warning(cpu, 6336786);
1131 #else /* __xpv */
1132 } else if ((opteron_get_nnodes() *
1133 cpuid_get_ncpu_per_chip(cpu) > 1) ||
1134 opteron_workaround_6336786_UP) {
1136 uint_t node, nnodes;
1137 uint8_t data;
1139 nnodes = opteron_get_nnodes();
1140 for (node = 0; node < nnodes; node++) {
1142 * Clear PMM7[1:0] (function 3, offset 0x87)
1143 * Northbridge device is the node id + 24.
1145 data = pci_getb_func(0, node + 24, 3, 0x87);
1146 data &= 0xFC;
1147 pci_putb_func(0, node + 24, 3, 0x87, data);
1149 opteron_workaround_6336786++;
1150 #endif /* __xpv */
1152 #else
1153 workaround_warning(cpu, 6336786);
1154 missing++;
1155 #endif
1158 /*LINTED*/
1160 * Mutex primitives don't work as expected.
1162 if (cpuid_opteron_erratum(cpu, 6323525) > 0) {
1163 #if defined(OPTERON_WORKAROUND_6323525)
1165 * This problem only occurs with 2 or more cores. If bit in
1166 * MSR_AMD_BU_CFG set, then not applicable. The workaround
1167 * is to patch the semaphone routines with the lfence
1168 * instruction to provide necessary load memory barrier with
1169 * possible subsequent read-modify-write ops.
1171 * It is too early in boot to call the patch routine so
1172 * set erratum variable to be done in startup_end().
1174 if (opteron_workaround_6323525) {
1175 opteron_workaround_6323525++;
1176 #if defined(__xpv)
1177 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1178 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1180 * XXPV Use dom0_msr here when extended
1181 * operations are supported?
1183 if (xpv_nr_phys_cpus() > 1)
1184 opteron_workaround_6323525++;
1185 } else {
1187 * We have no way to tell how many physical
1188 * cpus there are, or even if this processor
1189 * has the problem, so enable the workaround
1190 * unconditionally (at some performance cost).
1192 opteron_workaround_6323525++;
1194 #else /* __xpv */
1195 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) &&
1196 ((opteron_get_nnodes() *
1197 cpuid_get_ncpu_per_chip(cpu)) > 1)) {
1198 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0)
1199 opteron_workaround_6323525++;
1200 #endif /* __xpv */
1202 #else
1203 workaround_warning(cpu, 6323525);
1204 missing++;
1205 #endif
1208 missing += do_erratum_298(cpu);
1210 if (cpuid_opteron_erratum(cpu, 721) > 0) {
1211 #if defined(OPTERON_ERRATUM_721)
1212 on_trap_data_t otd;
1214 if (!on_trap(&otd, OT_DATA_ACCESS))
1215 wrmsr(MSR_AMD_DE_CFG,
1216 rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721);
1217 no_trap();
1219 opteron_erratum_721++;
1220 #else
1221 workaround_warning(cpu, 721);
1222 missing++;
1223 #endif
1226 #ifdef __xpv
1227 return (0);
1228 #else
1229 return (missing);
1230 #endif
1233 void
1234 workaround_errata_end()
1236 #if defined(OPTERON_ERRATUM_88)
1237 if (opteron_erratum_88)
1238 workaround_applied(88);
1239 #endif
1240 #if defined(OPTERON_ERRATUM_91)
1241 if (opteron_erratum_91)
1242 workaround_applied(91);
1243 #endif
1244 #if defined(OPTERON_ERRATUM_93)
1245 if (opteron_erratum_93)
1246 workaround_applied(93);
1247 #endif
1248 #if defined(OPTERON_ERRATUM_95)
1249 if (opteron_erratum_95)
1250 workaround_applied(95);
1251 #endif
1252 #if defined(OPTERON_ERRATUM_100)
1253 if (opteron_erratum_100)
1254 workaround_applied(100);
1255 #endif
1256 #if defined(OPTERON_ERRATUM_108)
1257 if (opteron_erratum_108)
1258 workaround_applied(108);
1259 #endif
1260 #if defined(OPTERON_ERRATUM_109)
1261 if (opteron_erratum_109) {
1262 cmn_err(CE_WARN,
1263 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1264 " processor\nerratum 109 was not detected; updating your"
1265 " system's BIOS to a version\ncontaining this"
1266 " microcode patch is HIGHLY recommended or erroneous"
1267 " system\noperation may occur.\n");
1269 #endif
1270 #if defined(OPTERON_ERRATUM_121)
1271 if (opteron_erratum_121)
1272 workaround_applied(121);
1273 #endif
1274 #if defined(OPTERON_ERRATUM_122)
1275 if (opteron_erratum_122)
1276 workaround_applied(122);
1277 #endif
1278 #if defined(OPTERON_ERRATUM_123)
1279 if (opteron_erratum_123) {
1280 cmn_err(CE_WARN,
1281 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1282 " processor\nerratum 123 was not detected; updating your"
1283 " system's BIOS to a version\ncontaining this"
1284 " microcode patch is HIGHLY recommended or erroneous"
1285 " system\noperation may occur.\n");
1287 #endif
1288 #if defined(OPTERON_ERRATUM_131)
1289 if (opteron_erratum_131) {
1290 cmn_err(CE_WARN,
1291 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)"
1292 " processor\nerratum 131 was not detected; updating your"
1293 " system's BIOS to a version\ncontaining this"
1294 " microcode patch is HIGHLY recommended or erroneous"
1295 " system\noperation may occur.\n");
1297 #endif
1298 #if defined(OPTERON_WORKAROUND_6336786)
1299 if (opteron_workaround_6336786)
1300 workaround_applied(6336786);
1301 #endif
1302 #if defined(OPTERON_WORKAROUND_6323525)
1303 if (opteron_workaround_6323525)
1304 workaround_applied(6323525);
1305 #endif
1306 #if defined(OPTERON_ERRATUM_298)
1307 if (opteron_erratum_298) {
1308 cmn_err(CE_WARN,
1309 "BIOS microcode patch for AMD 64/Opteron(tm)"
1310 " processor\nerratum 298 was not detected; updating your"
1311 " system's BIOS to a version\ncontaining this"
1312 " microcode patch is HIGHLY recommended or erroneous"
1313 " system\noperation may occur.\n");
1315 #endif
1316 #if defined(OPTERON_ERRATUM_721)
1317 if (opteron_erratum_721)
1318 workaround_applied(721);
1319 #endif
1323 * The procset_slave and procset_master are used to synchronize
1324 * between the control CPU and the target CPU when starting CPUs.
1326 static cpuset_t procset_slave, procset_master;
1328 static void
1329 mp_startup_wait(cpuset_t *sp, processorid_t cpuid)
1331 cpuset_t tempset;
1333 for (tempset = *sp; !CPU_IN_SET(tempset, cpuid);
1334 tempset = *(volatile cpuset_t *)sp) {
1335 SMT_PAUSE();
1337 CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid);
1340 static void
1341 mp_startup_signal(cpuset_t *sp, processorid_t cpuid)
1343 cpuset_t tempset;
1345 CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid);
1346 for (tempset = *sp; CPU_IN_SET(tempset, cpuid);
1347 tempset = *(volatile cpuset_t *)sp) {
1348 SMT_PAUSE();
1353 mp_start_cpu_common(cpu_t *cp, boolean_t boot)
1355 _NOTE(ARGUNUSED(boot));
1357 void *ctx;
1358 int delays;
1359 int error = 0;
1360 cpuset_t tempset;
1361 processorid_t cpuid;
1362 #ifndef __xpv
1363 extern void cpupm_init(cpu_t *);
1364 #endif
1366 ASSERT(cp != NULL);
1367 cpuid = cp->cpu_id;
1368 ctx = mach_cpucontext_alloc(cp);
1369 if (ctx == NULL) {
1370 cmn_err(CE_WARN,
1371 "cpu%d: failed to allocate context", cp->cpu_id);
1372 return (EAGAIN);
1374 error = mach_cpu_start(cp, ctx);
1375 if (error != 0) {
1376 cmn_err(CE_WARN,
1377 "cpu%d: failed to start, error %d", cp->cpu_id, error);
1378 mach_cpucontext_free(cp, ctx, error);
1379 return (error);
1382 for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid);
1383 delays++) {
1384 if (delays == 500) {
1386 * After five seconds, things are probably looking
1387 * a bit bleak - explain the hang.
1389 cmn_err(CE_NOTE, "cpu%d: started, "
1390 "but not running in the kernel yet", cpuid);
1391 } else if (delays > 2000) {
1393 * We waited at least 20 seconds, bail ..
1395 error = ETIMEDOUT;
1396 cmn_err(CE_WARN, "cpu%d: timed out", cpuid);
1397 mach_cpucontext_free(cp, ctx, error);
1398 return (error);
1402 * wait at least 10ms, then check again..
1404 delay(USEC_TO_TICK_ROUNDUP(10000));
1405 tempset = *((volatile cpuset_t *)&procset_slave);
1407 CPUSET_ATOMIC_DEL(procset_slave, cpuid);
1409 mach_cpucontext_free(cp, ctx, 0);
1411 #ifndef __xpv
1412 if (tsc_gethrtime_enable)
1413 tsc_sync_master(cpuid);
1414 #endif
1416 if (dtrace_cpu_init != NULL) {
1417 (*dtrace_cpu_init)(cpuid);
1421 * During CPU DR operations, the cpu_lock is held by current
1422 * (the control) thread. We can't release the cpu_lock here
1423 * because that will break the CPU DR logic.
1424 * On the other hand, CPUPM and processor group initialization
1425 * routines need to access the cpu_lock. So we invoke those
1426 * routines here on behalf of mp_startup_common().
1428 * CPUPM and processor group initialization routines depend
1429 * on the cpuid probing results. Wait for mp_startup_common()
1430 * to signal that cpuid probing is done.
1432 mp_startup_wait(&procset_slave, cpuid);
1433 #ifndef __xpv
1434 cpupm_init(cp);
1435 #endif
1436 (void) pg_cpu_init(cp, B_FALSE);
1437 cpu_set_state(cp);
1438 mp_startup_signal(&procset_master, cpuid);
1440 return (0);
1444 * Start a single cpu, assuming that the kernel context is available
1445 * to successfully start another cpu.
1447 * (For example, real mode code is mapped into the right place
1448 * in memory and is ready to be run.)
1451 start_cpu(processorid_t who)
1453 cpu_t *cp;
1454 int error = 0;
1455 cpuset_t tempset;
1457 ASSERT(who != 0);
1460 * Check if there's at least a Mbyte of kmem available
1461 * before attempting to start the cpu.
1463 if (kmem_avail() < 1024 * 1024) {
1465 * Kick off a reap in case that helps us with
1466 * later attempts ..
1468 kmem_reap();
1469 return (ENOMEM);
1473 * First configure cpu.
1475 cp = mp_cpu_configure_common(who, B_TRUE);
1476 ASSERT(cp != NULL);
1479 * Then start cpu.
1481 error = mp_start_cpu_common(cp, B_TRUE);
1482 if (error != 0) {
1483 mp_cpu_unconfigure_common(cp, error);
1484 return (error);
1487 mutex_exit(&cpu_lock);
1488 tempset = cpu_ready_set;
1489 while (!CPU_IN_SET(tempset, who)) {
1490 drv_usecwait(1);
1491 tempset = *((volatile cpuset_t *)&cpu_ready_set);
1493 mutex_enter(&cpu_lock);
1495 return (0);
1498 void
1499 start_other_cpus(int cprboot)
1501 _NOTE(ARGUNUSED(cprboot));
1503 uint_t who;
1504 uint_t bootcpuid = 0;
1507 * Initialize our own cpu_info.
1509 init_cpu_info(CPU);
1511 #if !defined(__xpv)
1512 init_cpu_id_gdt(CPU);
1513 #endif
1515 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr);
1516 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr);
1519 * Initialize our syscall handlers
1521 init_cpu_syscall(CPU);
1524 * Take the boot cpu out of the mp_cpus set because we know
1525 * it's already running. Add it to the cpu_ready_set for
1526 * precisely the same reason.
1528 CPUSET_DEL(mp_cpus, bootcpuid);
1529 CPUSET_ADD(cpu_ready_set, bootcpuid);
1532 * skip the rest of this if
1533 * . only 1 cpu dectected and system isn't hotplug-capable
1534 * . not using MP
1536 if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) ||
1537 use_mp == 0) {
1538 if (use_mp == 0)
1539 cmn_err(CE_CONT, "?***** Not in MP mode\n");
1540 goto done;
1544 * perform such initialization as is needed
1545 * to be able to take CPUs on- and off-line.
1547 cpu_pause_init();
1549 xc_init_cpu(CPU); /* initialize processor crosscalls */
1551 if (mach_cpucontext_init() != 0)
1552 goto done;
1554 flushes_require_xcalls = 1;
1557 * We lock our affinity to the master CPU to ensure that all slave CPUs
1558 * do their TSC syncs with the same CPU.
1560 affinity_set(CPU_CURRENT);
1562 for (who = 0; who < NCPU; who++) {
1563 if (!CPU_IN_SET(mp_cpus, who))
1564 continue;
1565 ASSERT(who != bootcpuid);
1567 mutex_enter(&cpu_lock);
1568 if (start_cpu(who) != 0)
1569 CPUSET_DEL(mp_cpus, who);
1570 cpu_state_change_notify(who, CPU_SETUP);
1571 mutex_exit(&cpu_lock);
1574 /* Free the space allocated to hold the microcode file */
1575 ucode_cleanup();
1577 affinity_clear();
1579 mach_cpucontext_fini();
1581 done:
1582 if (get_hwenv() == HW_NATIVE)
1583 workaround_errata_end();
1584 cmi_post_mpstartup();
1586 if (use_mp && ncpus != boot_max_ncpus) {
1587 cmn_err(CE_NOTE,
1588 "System detected %d cpus, but "
1589 "only %d cpu(s) were enabled during boot.",
1590 boot_max_ncpus, ncpus);
1591 cmn_err(CE_NOTE,
1592 "Use \"boot-ncpus\" parameter to enable more CPU(s). "
1593 "See eeprom(1M).");
1598 mp_cpu_configure(int cpuid)
1600 cpu_t *cp;
1602 if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1603 return (ENOTSUP);
1606 cp = cpu_get(cpuid);
1607 if (cp != NULL) {
1608 return (EALREADY);
1612 * Check if there's at least a Mbyte of kmem available
1613 * before attempting to start the cpu.
1615 if (kmem_avail() < 1024 * 1024) {
1617 * Kick off a reap in case that helps us with
1618 * later attempts ..
1620 kmem_reap();
1621 return (ENOMEM);
1624 cp = mp_cpu_configure_common(cpuid, B_FALSE);
1625 ASSERT(cp != NULL && cpu_get(cpuid) == cp);
1627 return (cp != NULL ? 0 : EAGAIN);
1631 mp_cpu_unconfigure(int cpuid)
1633 cpu_t *cp;
1635 if (use_mp == 0 || plat_dr_support_cpu() == 0) {
1636 return (ENOTSUP);
1637 } else if (cpuid < 0 || cpuid >= max_ncpus) {
1638 return (EINVAL);
1641 cp = cpu_get(cpuid);
1642 if (cp == NULL) {
1643 return (ENODEV);
1645 mp_cpu_unconfigure_common(cp, 0);
1647 return (0);
1651 * Startup function for 'other' CPUs (besides boot cpu).
1652 * Called from real_mode_start.
1654 * WARNING: until CPU_READY is set, mp_startup_common and routines called by
1655 * mp_startup_common should not call routines (e.g. kmem_free) that could call
1656 * hat_unload which requires CPU_READY to be set.
1658 static void
1659 mp_startup_common(boolean_t boot)
1661 cpu_t *cp = CPU;
1662 uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)];
1663 extern void cpu_event_init_cpu(cpu_t *);
1666 * We need to get TSC on this proc synced (i.e., any delta
1667 * from cpu0 accounted for) as soon as we can, because many
1668 * many things use gethrtime/pc_gethrestime, including
1669 * interrupts, cmn_err, etc. Before we can do that, we want to
1670 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that
1671 * right away.
1673 bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES));
1674 cpuid_pass1(cp, new_x86_featureset);
1676 if (boot && get_hwenv() == HW_NATIVE &&
1677 cpuid_getvendor(CPU) == X86_VENDOR_Intel &&
1678 cpuid_getfamily(CPU) == 6 &&
1679 (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) &&
1680 is_x86_feature(new_x86_featureset, X86FSET_TSC)) {
1681 (void) wrmsr(REG_TSC, 0UL);
1684 /* Let the control CPU continue into tsc_sync_master() */
1685 mp_startup_signal(&procset_slave, cp->cpu_id);
1687 #ifndef __xpv
1688 if (tsc_gethrtime_enable)
1689 tsc_sync_slave();
1690 #endif
1693 * Once this was done from assembly, but it's safer here; if
1694 * it blocks, we need to be able to swtch() to and from, and
1695 * since we get here by calling t_pc, we need to do that call
1696 * before swtch() overwrites it.
1698 (void) (*ap_mlsetup)();
1700 #ifndef __xpv
1702 * Program this cpu's PAT
1704 pat_sync();
1705 #endif
1708 * Set up TSC_AUX to contain the cpuid for this processor
1709 * for the rdtscp instruction.
1711 if (is_x86_feature(x86_featureset, X86FSET_TSCP))
1712 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id);
1715 * Initialize this CPU's syscall handlers
1717 init_cpu_syscall(cp);
1720 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the
1721 * highest level at which a routine is permitted to block on
1722 * an adaptive mutex (allows for cpu poke interrupt in case
1723 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks
1724 * device interrupts that may end up in the hat layer issuing cross
1725 * calls before CPU_READY is set.
1727 splx(ipltospl(LOCK_LEVEL));
1728 sti();
1731 * Do a sanity check to make sure this new CPU is a sane thing
1732 * to add to the collection of processors running this system.
1734 * XXX Clearly this needs to get more sophisticated, if x86
1735 * systems start to get built out of heterogenous CPUs; as is
1736 * likely to happen once the number of processors in a configuration
1737 * gets large enough.
1739 if (compare_x86_featureset(x86_featureset, new_x86_featureset) ==
1740 B_FALSE) {
1741 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id);
1742 print_x86_featureset(new_x86_featureset);
1743 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id);
1747 * There exists a small subset of systems which expose differing
1748 * MWAIT/MONITOR support between CPUs. If MWAIT support is absent from
1749 * the boot CPU, but is found on a later CPU, the system continues to
1750 * operate as if no MWAIT support is available.
1752 * The reverse case, where MWAIT is available on the boot CPU but not
1753 * on a subsequently initialized CPU, is not presently allowed and will
1754 * result in a panic.
1756 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) !=
1757 is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) {
1758 if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) {
1759 remove_x86_feature(new_x86_featureset, X86FSET_MWAIT);
1760 } else {
1761 panic("unsupported mixed cpu mwait support detected");
1766 * We could be more sophisticated here, and just mark the CPU
1767 * as "faulted" but at this point we'll opt for the easier
1768 * answer of dying horribly. Provided the boot cpu is ok,
1769 * the system can be recovered by booting with use_mp set to zero.
1771 if (workaround_errata(cp) != 0)
1772 panic("critical workaround(s) missing for cpu%d", cp->cpu_id);
1775 * We can touch cpu_flags here without acquiring the cpu_lock here
1776 * because the cpu_lock is held by the control CPU which is running
1777 * mp_start_cpu_common().
1778 * Need to clear CPU_QUIESCED flag before calling any function which
1779 * may cause thread context switching, such as kmem_alloc() etc.
1780 * The idle thread checks for CPU_QUIESCED flag and loops for ever if
1781 * it's set. So the startup thread may have no chance to switch back
1782 * again if it's switched away with CPU_QUIESCED set.
1784 cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED);
1787 * Setup this processor for XSAVE.
1789 if (fp_save_mech == FP_XSAVE) {
1790 xsave_setup_msr(cp);
1793 cpuid_pass2(cp);
1794 cpuid_pass3(cp);
1795 cpuid_pass4(cp, NULL);
1798 * Correct cpu_idstr and cpu_brandstr on target CPU after
1799 * cpuid_pass1() is done.
1801 (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN);
1802 (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN);
1804 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS;
1806 post_startup_cpu_fixups();
1808 cpu_event_init_cpu(cp);
1811 * Enable preemption here so that contention for any locks acquired
1812 * later in mp_startup_common may be preempted if the thread owning
1813 * those locks is continuously executing on other CPUs (for example,
1814 * this CPU must be preemptible to allow other CPUs to pause it during
1815 * their startup phases). It's safe to enable preemption here because
1816 * the CPU state is pretty-much fully constructed.
1818 curthread->t_preempt = 0;
1820 /* The base spl should still be at LOCK LEVEL here */
1821 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL));
1822 set_base_spl(); /* Restore the spl to its proper value */
1824 pghw_physid_create(cp);
1826 * Delegate initialization tasks, which need to access the cpu_lock,
1827 * to mp_start_cpu_common() because we can't acquire the cpu_lock here
1828 * during CPU DR operations.
1830 mp_startup_signal(&procset_slave, cp->cpu_id);
1831 mp_startup_wait(&procset_master, cp->cpu_id);
1832 pg_cmt_cpu_startup(cp);
1834 if (boot) {
1835 mutex_enter(&cpu_lock);
1836 cp->cpu_flags &= ~CPU_OFFLINE;
1837 cpu_enable_intr(cp);
1838 cpu_add_active(cp);
1839 mutex_exit(&cpu_lock);
1842 /* Enable interrupts */
1843 (void) spl0();
1846 * Fill out cpu_ucode_info. Update microcode if necessary.
1848 ucode_check(cp);
1850 #ifndef __xpv
1853 * Set up the CPU module for this CPU. This can't be done
1854 * before this CPU is made CPU_READY, because we may (in
1855 * heterogeneous systems) need to go load another CPU module.
1856 * The act of attempting to load a module may trigger a
1857 * cross-call, which will ASSERT unless this cpu is CPU_READY.
1859 cmi_hdl_t hdl;
1861 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU),
1862 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) {
1863 if (is_x86_feature(x86_featureset, X86FSET_MCA))
1864 cmi_mca_init(hdl);
1865 cp->cpu_m.mcpu_cmi_hdl = hdl;
1868 #endif /* __xpv */
1870 if (boothowto & RB_DEBUG)
1871 kdi_cpu_init();
1874 * Setting the bit in cpu_ready_set must be the last operation in
1875 * processor initialization; the boot CPU will continue to boot once
1876 * it sees this bit set for all active CPUs.
1878 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id);
1880 (void) mach_cpu_create_device_node(cp, NULL);
1882 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr);
1883 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr);
1884 cmn_err(CE_CONT, "?cpu%d initialization complete - online\n",
1885 cp->cpu_id);
1888 * Now we are done with the startup thread, so free it up.
1890 thread_exit();
1891 panic("mp_startup: cannot return");
1892 /*NOTREACHED*/
1896 * Startup function for 'other' CPUs at boot time (besides boot cpu).
1898 static void
1899 mp_startup_boot(void)
1901 mp_startup_common(B_TRUE);
1905 * Startup function for hotplug CPUs at runtime.
1907 void
1908 mp_startup_hotplug(void)
1910 mp_startup_common(B_FALSE);
1914 * Start CPU on user request.
1916 /* ARGSUSED */
1918 mp_cpu_start(struct cpu *cp)
1920 ASSERT(MUTEX_HELD(&cpu_lock));
1921 return (0);
1925 * Stop CPU on user request.
1928 mp_cpu_stop(struct cpu *cp)
1930 extern int cbe_psm_timer_mode;
1931 ASSERT(MUTEX_HELD(&cpu_lock));
1933 #ifdef __xpv
1935 * We can't offline vcpu0.
1937 if (cp->cpu_id == 0)
1938 return (EBUSY);
1939 #endif
1942 * If TIMER_PERIODIC mode is used, CPU0 is the one running it;
1943 * can't stop it. (This is true only for machines with no TSC.)
1946 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0))
1947 return (EBUSY);
1949 return (0);
1953 * Take the specified CPU out of participation in interrupts.
1956 cpu_disable_intr(struct cpu *cp)
1958 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS)
1959 return (EBUSY);
1961 cp->cpu_flags &= ~CPU_ENABLE;
1962 return (0);
1966 * Allow the specified CPU to participate in interrupts.
1968 void
1969 cpu_enable_intr(struct cpu *cp)
1971 ASSERT(MUTEX_HELD(&cpu_lock));
1972 cp->cpu_flags |= CPU_ENABLE;
1973 psm_enable_intr(cp->cpu_id);
1976 void
1977 mp_cpu_faulted_enter(struct cpu *cp)
1979 #ifdef __xpv
1980 _NOTE(ARGUNUSED(cp));
1981 #else
1982 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
1984 if (hdl != NULL) {
1985 cmi_hdl_hold(hdl);
1986 } else {
1987 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
1988 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
1990 if (hdl != NULL) {
1991 cmi_faulted_enter(hdl);
1992 cmi_hdl_rele(hdl);
1994 #endif
1997 void
1998 mp_cpu_faulted_exit(struct cpu *cp)
2000 #ifdef __xpv
2001 _NOTE(ARGUNUSED(cp));
2002 #else
2003 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl;
2005 if (hdl != NULL) {
2006 cmi_hdl_hold(hdl);
2007 } else {
2008 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp),
2009 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp));
2011 if (hdl != NULL) {
2012 cmi_faulted_exit(hdl);
2013 cmi_hdl_rele(hdl);
2015 #endif
2019 * The following two routines are used as context operators on threads belonging
2020 * to processes with a private LDT (see sysi86). Due to the rarity of such
2021 * processes, these routines are currently written for best code readability and
2022 * organization rather than speed. We could avoid checking x86_featureset at
2023 * every context switch by installing different context ops, depending on
2024 * x86_featureset, at LDT creation time -- one for each combination of fast
2025 * syscall features.
2028 /*ARGSUSED*/
2029 void
2030 cpu_fast_syscall_disable(void *arg)
2032 if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2033 is_x86_feature(x86_featureset, X86FSET_SEP))
2034 cpu_sep_disable();
2035 if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2036 is_x86_feature(x86_featureset, X86FSET_ASYSC))
2037 cpu_asysc_disable();
2040 /*ARGSUSED*/
2041 void
2042 cpu_fast_syscall_enable(void *arg)
2044 if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2045 is_x86_feature(x86_featureset, X86FSET_SEP))
2046 cpu_sep_enable();
2047 if (is_x86_feature(x86_featureset, X86FSET_MSR) &&
2048 is_x86_feature(x86_featureset, X86FSET_ASYSC))
2049 cpu_asysc_enable();
2052 static void
2053 cpu_sep_enable(void)
2055 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2056 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2058 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL);
2061 static void
2062 cpu_sep_disable(void)
2064 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP));
2065 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2068 * Setting the SYSENTER_CS_MSR register to 0 causes software executing
2069 * the sysenter or sysexit instruction to trigger a #gp fault.
2071 wrmsr(MSR_INTC_SEP_CS, 0);
2074 static void
2075 cpu_asysc_enable(void)
2077 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2078 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2080 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) |
2081 (uint64_t)(uintptr_t)AMD_EFER_SCE);
2084 static void
2085 cpu_asysc_disable(void)
2087 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC));
2088 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL);
2091 * Turn off the SCE (syscall enable) bit in the EFER register. Software
2092 * executing syscall or sysret with this bit off will incur a #ud trap.
2094 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) &
2095 ~((uint64_t)(uintptr_t)AMD_EFER_SCE));